FDP8880 / FDB8880
0
May 2008
FDP8880 / FDB8880 N-Channel PowerTrench® MOSFET
30V, 54A, 11.6mΩ Features
r DS(ON) = 14.5mΩ, VGS = 4.5V, ID = 40A r DS(ON) = 11.6mΩ, VGS = 10V, ID = 40A High performance trench technology for extremely low r DS(ON) Low gate charge High power and current handling capability RoHS Complicant
tmM
General Description
This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low r DS(ON) and fast switching speed.
Application
DC / DC Converters
DRAIN (FLANGE) GATE
(FLANGE) DRAIN
D
SOURCE DRAIN GATE
SOURCE
G S
TO-263AB
FDB SERIES
TO-220AB
FDP SERIES
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
1
www.fairchildsemicom
FDP8880 / FDB8880
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
Symbol VDSS VGS Parameter Drain to Source Voltage Gate to Source Voltage Drain Current Continuous (TC = 25oC, VGS = 10V) ID Continuous (TC = 25 C, VGS = 4.5V) Continuous (Tamb = 25oC, VGS = 10V, with Rθ JA = 43oC/W) Pulsed E AS PD TJ, TSTG Single Pulse Avalanche Energy (Note 1) Power dissipation Derate above 25oC Operating and Storage Temperature
o
Ratings 30 ±20 54 48 11 Figure 4 31 55 0.37 -55 to 175
Units V V A A A A mJ W W/oC
o
C
Thermal Characteristics
Rθ JC Rθ JA Rθ JA Thermal Resistance Junction to Case TO-220,TO-263 Thermal Resistance Junction to Ambient TO-220,TO-262 ( Note 2) Thermal Resistance Junction to Ambient TO-263, 1in copper pad area
2
2.73 62 43
oC/W o o
C/W C/W
Package Marking and Ordering Information
Device Marking FDP8880 FDB8880 F F Device FDP8880 FDB8880 Package TO-220AB TO-263AB Reel Size Tube 330mm Tape Width N/A 24mm Quantity 50 units 800 units
Electrical Characteristics TC = 25°C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
BVDSS IDSS IGSS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250µA, VGS = 0V V DS = 24V VGS = 0V VGS = ±20V TC = 150oC 30 1 250 ±100 V µA nA
On Characteristics
VGS(TH) Gate to Source Threshold Voltage V GS = VDS, ID = 250µA ID = 40A, VGS = 10V rDS(ON) Drain to Source On Resistance ID = 40A, VGS = 4.5V ID = 40A, VGS = 10V, TJ = 175oC 1.2 0.012 0.015 2.5 0.0145 0.019 V Ω 0.0095 0.0116
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
2
www.fairchildsemicom
FDP8880 / FDB8880
Dynamic Characteristics
CISS COSS CRSS RG Qg(TOT) Qg(5) Qg(TH) Qgs Qgs2 Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain “Miller” Charge V DS = 15V, VGS = 0V, f = 1MHz VGS = 0.5V, f = 1MHz VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 15V ID = 40A Ig = 1.0mA 1240 255 147 2.7 22 12 1.6 3.2 2.0 4.8 29 16 2.1 pF pF pF Ω nC nC nC nC nC nC
Switching Characteristics (VGS = 10V)
tON td(ON) tr td(OFF) tf tOFF Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time V DD = 15V, ID = 40A V GS = 10V, RGS = 13.6Ω 8 107 47 51 171 147 ns ns ns ns ns ns
Drain-Source Diode Characteristics
V SD trr QRR Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ISD = 40A ISD = 3.5A ISD = 40A, dISD/dt = 100A/µs ISD = 40A, dISD/dt = 100A/µs 1.25 1.0 27 18 V V ns nC
Notes: 1: Starting T J = 25°C, L = 34uH, IAS = 43A,Vdd = 27V, Vgs = 10V. 2: Pulse width = 100s. 3
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
3
www.fairchildsemicom
FDP8880 / FDB8880
Typical Characteristics TC = 25°C unless otherwise noted
1.2 60
POWER DISSIPATION MULTIPLIER
1.0 ID, DRAIN CURRENT (A) 0 25 50 75 100 125 150 175
0.8
40
0.6
0.4
20
0.2
0 TC , CASE TEMPERATURE (o C)
0 25 50 75 100 125 150 TC, CASE TEMPERATURE (oC) 175
Figure 1. Normalized Power Dissipation vs Case Temperature
2 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01
Figure 2. Maximum Continuous Drain Current vs Case Temperature
ZθJC, NORMALIZED THERMAL IMPEDANCE
PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101
SINGLE PULSE 0.01 10-5 10-4
Figure 3. Normalized Maximum Transient Thermal Impedance
600
T C = 25o C FOR TEMPERATURES TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION ABOVE 25o C DERATE PEAK CURRENT AS FOLLOWS: I = I25 VGS = 10V VGS = 4.5V 175 - TC 150
IDM, PEAK CURRENT (A)
100
50 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
Figure 4. Peak Current Capability
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
4
www.fairchildsemicom
FDP8880 / FDB8880
Typical Characteristics TC = 25°C unless otherwise noted
400 10 µs IAS, AVALANCHE CURRENT (A) 100µs 100 500 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100 ID, DRAIN CURRENT (A)
10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 SINGLE PULSE TJ = MAX RATED TC = 25oC 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 40
STARTING T J = 25o C 10
10ms
STARTING TJ = 150oC 1 0.001
DC
0.01 0.1 1 tAV, TIME IN AVALANCHE (ms)
10
100
Figure 5. Forward Bias Safe Operating Area
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching Capability
160 VGS = 4.5V VGS = 3.5V
80
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
60
120 VGS = 10V VGS = 3V 80 TC = 25 oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 2.5V
40 TJ = 175oC 20 TJ = 25oC TJ = -55 oC
40
0 1.5
0 2.0 2.5 3.0 3.5 VGS, GATE TO SOURCE VOLTAGE (V) 4.0 0 0.25 0.5 0.75 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics
20 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 54A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
Figure 8. Saturation Characteristics
1.7
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
1.53
16
1.36
1.19
12 ID = 5 A
1.02
0.85 VGS = 10V, ID = 54A 0.7 -80
8 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V)
-40
0 40 80 120 160 TJ, JUNCTION TEMPERATURE (o C)
200
Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current
Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
5
www.fairchildsemicom
FDP8880 / FDB8880
Typical Characteristics TC = 25°C unless otherwise noted
1.5 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.1 ID = 250µA
NORMALIZED GATE THRESHOLD VOLTAGE
1.2
0.9
1.0
0.6
0.3 -80
-40
0
40
80
120
160
200
0.9 -80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
TJ , JUNCTION TEMPERATURE (oC)
Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature
2000
Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 15V 8
1000 C, CAPACITANCE (pF)
CISS = CGS + C GD
COSS ≅ CDS + CGD C RSS = CGD
6
4 WAVEFORMS IN DESCENDING ORDER: ID = 54A ID = 5 A 0 5 10 15 Qg , GATE CHARGE (nC) 20 25
2
VGS = 0V, f = 1MHz 100 0.1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 30 0
Figure 13. Capacitance vs Drain to Source Voltage
Figure 14. Gate Charge Waveforms for Constant Gate Current
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
6
www.fairchildsemicom
FDP8880 / FDB8880
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP 0V RG IAS VDD VDD tP VDS
+
IAS 0.01Ω 0 tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS VDD L VGS Qg(TOT) VDS VGS VGS = 10V
+
Qg(5) VDD Qgs2 VGS = 5V
DUT Ig(REF) VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
VDD DUT 0
10%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH
90% 50%
Figure 19. Switching Time Test Circuit
Figure 20. Switching Time Waveforms
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
7
www.fairchildsemicom
FDP8880 / FDB8880
PSPICE Electrical Model
.SUBCKT FDP8880 2 1 3 ; rev October 2004 Ca 12 8 9.5e-10 Cb 15 14 9.5e-10 Cin 6 8 1.15e-9 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD Ebreak 11 7 17 18 32.88 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 Lgate 1 9 5.3e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 1.7e-9 RLgate 1 9 53 RLdrain 2 5 10 RLsource 3 7 17 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1.0e-3 Rgate 9 20 2.2 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 6.8e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*170),5))} .MODEL DbodyMOD D (IS=3E-12 IKF=10 N=1.01 RS=5e-3 TRS1=8e-4 TRS2=2e-7 + CJO=4.8e-10 M=0.55 TT=1e-11 XTI=2) .MODEL DbreakMOD D (RS=0.2 TRS1=1e-3 TRS2=-8.8e-6) .MODEL DplcapMOD D (CJO=5.5e-10 IS=1e-30 N=10 M=0.45) .MODEL MstroMOD NMOS (VTO=2.10 KP=170 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MmedMOD NMOS (VTO=1.75 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.2) .MODEL MweakMOD NMOS (VTO=1.39 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=22 RS=0.1) .MODEL RbreakMOD RES (TC1=8.0e-4 TC2=-8e-7) .MODEL RdrainMOD RES (TC1=-12e-3 TC2=.35e-4) .MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=5e-3 TC2=1e-6) .MODEL RvtempMOD RES (TC1=-2.78e-3 TC2=1.5e-6) .MODEL RvthresMOD RES (TC1=-1e-3 TC2=-8.2e-6) MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.3 VOFF=-0.8) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=-1.3) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
CA S1A 12 13 8 S1B 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT 15 17 GATE 1 RLGATE CIN 10 RSLC1 51 ESLC 50 RDRAIN EVTHRES + 19 8 6 MSTRO LSOURCE 8 RSOURCE RLSOURCE RBREAK 18 RVTEMP 19 VBAT + 22 7 SOURCE 3 21 16 RLDRAIN DBREAK 11 + 17 EBREAK 18 MWEAK MMED LDRAIN DPLCAP 5 DRAIN 2
RSLC2
5 51 ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 -
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
8
+
DBODY
www.fairchildsemicom
FDP8880 / FDB8880
SABER Electrical Model
rev October 2004 template FDP8880 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=3e-12,ikf=10,nl=1.01,rs=5e-3,trs1=8e-4,trs2=2e-7,cjo=4.8e-10,m=0.55,tt=1e-11,xti=2) dp..model dbreakmod = (rs=0.2,trs1=1e-3,trs2=-8.8e-6) dp..model dplcapmod = (cjo=5.5e-10,isl=10e-30,nl=10,m=0.45) m..model mstrongmod = (type=_n,vto=2.10,kp=170,is=1e-30, tox=1) m..model mmedmod = (type=_n,vto=1.75,kp=10,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.39,kp=0.05,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3.5) LDRAIN sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4) DPLCAP 5 DRAIN 2 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.3,voff=-0.8) 10 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.8,voff=-1.3) RLDRAIN RSLC1 c.ca n12 n8 = 9.5e-10 51 c.cb n15 n14 = 9.5e-10 RSLC2 c.cin n6 n8 = 1.15e-9
ISCL
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 32.88 spe.eds n14 n8 n5 n8 = 1 GATE spe.egs n13 n8 n6 n8 = 1 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 l.lgate n1 n9 = 5.3e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 1.7e-9 res.rlgate n1 n9 = 53 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 17
CA LGATE
ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8
50 RDRAIN 21 16
DBREAK 11 DBODY MWEAK MMED EBREAK + 17 18 -
RLGATE CIN
MSTRO 8
LSOURCE 7 RLSOURCE SOURCE 3
RSOURCE S1A 12 S1B 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=8.0e-4,tc2=-8e-7 res.rdrain n50 n16 = 1.0e-3, tc1=-12e-3,tc2=.35e-4 res.rgate n9 n20 = 2.2 res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 6.8e-3, tc1=5e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-1e-3,tc2=-8.2e-6 res.rvtemp n18 n19 = 1, tc1=-2.78e-3,tc2=1.5e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/170))** 5))} }
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
9
www.fairchildsemicom
FDP8880 / FDB8880
PSPICE Thermal Model
REV 23 December 2003 FDP8880T CTHERM1 TH 6 8e-4 CTHERM2 6 5 1e-3 CTHERM3 5 4 2.5e-3 CTHERM4 4 3 2.6e-3 CTHERM5 3 2 8e-3 CTHERM6 2 TL 1.5e-2 RTHERM1 TH 6 1.44e-1 RTHERM2 6 5 1.9e-1 RTHERM3 5 4 3.0e-1 RTHERM4 4 3 4.0e-1 RTHERM5 3 2 5.7e-1 RTHERM6 2 TL 5.8e-1
th
JUNCTION
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model FDP8880T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =8e-4 ctherm.ctherm2 6 5 =1e-3 ctherm.ctherm3 5 4 =2.5e-3 ctherm.ctherm4 4 3 =2.6e-3 ctherm.ctherm5 3 2 =8e-3 ctherm.ctherm6 2 tl =1.5e-2 rtherm.rtherm1 th 6 =1.44e-1 rtherm.rtherm2 6 5 =1.9e-1 rtherm.rtherm3 5 4 =3.0e-1 rtherm.rtherm4 4 3 =4.0e-1 rtherm.rtherm5 3 2 =5.7e-1 rtherm.rtherm6 2 tl =5.8e-1 }
RTHERM3 CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1
10
www.fairchildsemicom
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks. ACEx® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ *
™
®
Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® *
FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®
®
tm
PDP-SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™ ®
The Power Franchise®
tm
TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™
* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
Rev. I34
Preliminary
First Production
No Identification Needed Obsolete
Full Production Not In Production
@2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev.A1
WWW. fairchildsemicom