0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FQP11P06

FQP11P06

  • 厂商:

    FAIRCHILD(仙童半导体)

  • 封装:

  • 描述:

    FQP11P06 - 60V P-Channel MOSFET - Fairchild Semiconductor

  • 数据手册
  • 价格&库存
FQP11P06 数据手册
FQP11P06 QFET FQP11P06 60V P-Channel MOSFET General Description These P-Channel enhancement mode power field effect transistors are produced using Fairchild’s proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand a high energy pulse in the avalanche and commutation modes. These devices are well suited for low voltage applications such as automotive, DC/DC converters, and high efficiency switching for power management in portable and battery operated products. ® Features • • • • • • • -11.4A, -60V, RDS(on) = 0.175Ω @VGS = -10 V Low gate charge ( typical 13 nC) Low Crss ( typical 45 pF) Fast switching 100% avalanche tested Improved dv/dt capability 175°C maximum junction temperature rating S ! ● ● G! ▶▲ ● GDS TO-220 FQP Series ! D Absolute Maximum Ratings Symbol VDSS ID IDM VGSS EAS IAR EAR dv/dt PD TJ, TSTG TL TC = 25°C unless otherwise noted Parameter Drain-Source Voltage - Continuous (TC = 25°C) Drain Current - Continuous (TC = 100°C) Drain Current - Pulsed (Note 1) FQP11P06 -60 -11.4 -8.05 -45.6 ± 25 (Note 2) (Note 1) (Note 1) (Note 3) Units V A A A V mJ A mJ V/ns W W/°C °C °C Gate-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Power Dissipation (TC = 25°C) 160 -11.4 5.3 -7.0 53 0.35 -55 to +175 300 - Derate above 25°C Operating and Storage Temperature Range Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds Thermal Characteristics Symbol RθJC RθCS RθJA Parameter Thermal Resistance, Junction-to-Case Thermal Resistance, Case-to-Sink Thermal Resistance, Junction-to-Ambient Typ -0.5 -Max 2.85 -62.5 Units °C/W °C/W °C /W ©2004 Fairchild Semiconductor Corporation Rev. B4, March 2004 FQP11P06 Elerical Characteristics Symbol Parameter TC = 25°C unless otherwise noted Test Conditions Min Typ Max Units Off Characteristics BVDSS ∆BVDSS / ∆TJ IDSS IGSSF IGSSR Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse VGS = 0 V, ID = -250 µA ID = -250 µA, Referenced to 25°C VDS = -60 V, VGS = 0 V VDS = -48 V, TC = 150°C VGS = -25 V, VDS = 0 V VGS = 25 V, VDS = 0 V -60 -------0.07 -------1 -10 -100 100 V V/°C µA µA nA nA On Characteristics VGS(th) RDS(on) gFS Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance VDS = VGS, ID = -250 µA VGS = -10 V, ID = -5.7 A VDS = -30 V, ID = -5.7 A (Note 4) -2.0 --- -0.14 5.1 -4.0 0.175 -- V Ω S Dynamic Characteristics Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance VDS = -25 V, VGS = 0 V, f = 1.0 MHz ---420 195 45 550 250 60 pF pF pF Switching Characteristics td(on) tr td(off) tf Qg Qgs Qgd Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge VDS = -48 V, ID = -11.4 A, VGS = -10 V (Note 4, 5) VDD = -30 V, ID = -5.7 A, RG = 25 Ω (Note 4, 5) -------- 6.5 40 15 45 13 2.0 6.3 25 90 40 100 17 --- ns ns ns ns nC nC nC Drain-Source Diode Characteristics and Maximum Ratings IS ISM VSD trr Qrr Maximum Continuous Drain-Source Diode Forward Current Maximum Pulsed Drain-Source Diode Forward Current VGS = 0 V, IS = -11.4 A Drain-Source Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge VGS = 0 V, IS = -11.4 A, dIF / dt = 100 A/µs (Note 4) ------ ---83 0.26 -11.4 -45.6 -4.0 --- A A V ns µC Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 1.44mH, IAS = -11.4A, VDD = -25V, RG = 25 Ω, Starting TJ = 25°C 3. ISD ≤ -11.4A, di/dt ≤ 300A/µs, VDD ≤ BVDSS, Starting TJ = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature ©2004 Fairchild Semiconductor Corporation Rev. B4, March 2004 FQP11P06 Typical Characteristics -ID , Drain Current [A] 10 1 -ID, Drain Current [A] VGS - 15.0 V - 10.0 V - 8.0 V - 7.0 V - 6.0 V - 5.5 V - 5.0 V Bottom : - 4.5 V Top : 10 1 175℃ 10 0 10 0 25℃ -55℃ ※ Notes : 1. VDS = -30V 2. 250µ s Pulse Test ※ Notes : 1. 250µ s Pulse Test 2. TC = 25℃ 10 -1 10 -1 10 0 10 1 10 -1 2 4 6 8 10 -VDS, Drain-Source Voltage [V] -VGS , Gate-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics 0.8 RDS(on) [Ω], Drain-Source On-Resistance -IDR , Reverse Drain Current [A] 0.6 VGS = - 10V 0.4 VGS = - 20V 0.2 ※ Note : TJ = 25℃ 10 1 10 0 175℃ 10 -1 25℃ ※ Notes : 1. VGS = 0V 2. 250µ s Pulse Test 0.0 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -ID , Drain Current [A] -VSD , Source-Drain Voltage [V] Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature 1200 -VGS, Gate-Source Voltage [V] 1000 Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd 12 10 VDS = -30V 8 Capacitance [pF] 800 Coss Ciss ※ Notes : 1. VGS = 0 V 2. f = 1 MHz VDS = -48V 600 6 400 4 Crss 200 2 ※ Note : ID = -11.4 A 0 -1 10 10 0 10 1 0 0 2 4 6 8 10 12 14 -VDS, Drain-Source Voltage [V] QG, Total Gate Charge [nC] Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics ©2004 Fairchild Semiconductor Corporation Rev. B4, March 2004 FQP11P06 Typical Characteristics (Continued) 1.2 2.5 -BVDSS, (Normalized) Drain-Source Breakdown Voltage RDS(ON), (Normalized) Drain-Source On-Resistance 2.0 1.1 1.5 1.0 1.0 0.9 ※ Notes : 1. VGS = 0 V 2. ID = -250 µA 0.5 ※ Notes : 1. VGS = -10 V 2. ID = -5.7 A 0.8 -100 -50 0 50 100 o 150 200 0.0 -100 -50 0 50 100 o 150 200 TJ, Junction Temperature [ C] TJ, Junction Temperature [ C] Figure 7. Breakdown Voltage Variation vs. Temperature Figure 8. On-Resistance Variation vs. Temperature 12 10 2 Operation in This Area is Limited by R DS(on) 10 -ID, Drain Current [A] -ID, Drain Current [A] 100 µs 1 ms 10 1 8 10 ms DC 6 10 0 4 ※ Notes : 1. TC = 25 C 2. TJ = 175 C 3. Single Pulse o o 2 10 -1 10 0 10 1 10 2 0 25 50 75 100 125 150 175 -VDS, Drain-Source Voltage [V] TC, Case Temperature [℃] Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current vs. Case Temperature Zθ JC(t), Thermal Response D = 0 .5 10 0 0 .2 0 .1 0 .0 5 10 -1 ※ N o te s : 1 . Z θ J C ( t) = 2 .8 5 ℃ / W M a x . 2 . D u ty F a c to r , D = t 1 /t 2 3 . T J M - T C = P D M * Z θ J C ( t) 0 .0 2 0 .0 1 s in g le p u ls e PDM t1 t2 10 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t 1 , S q u a r e W a v e P u ls e D u r a t io n [ s e c ] Figure 11. Transient Thermal Response Curve ©2004 Fairchild Semiconductor Corporation Rev.B4, March 2004 FQP11P06 Gate Charge Test Circuit & Waveform 50KΩ 12V 200nF 300nF Same Type as DUT VDS VGS -10V Qgs Qg VGS Qgd DUT -3mA Charge Resistive Switching Test Circuit & Waveforms VDS RG VGS RL VDD td(on) t on tr td(off) t off tf VGS 10% -10V DUT VDS 90% Unclamped Inductive Switching Test Circuit & Waveforms L VDS ID RG -10V tp BVDSS 1 EAS = ---- L IAS2 -------------------2 BVDSS - VDD tp Time VDS (t) VDD DUT VDD ID (t) IAS BVDSS ©2004 Fairchild Semiconductor Corporation Rev. B4, March 2004 FQP11P06 Peak Diode Recovery dv/dt Test Circuit & Waveforms + VDS DUT I SD L Driver RG Compliment of DUT (N-Channel) _ VDD VGS • dv/dt controlled by RG • ISD controlled by pulse period VGS ( Driver ) Gate Pulse Width D = -------------------------Gate Pulse Period 10V I SD ( DUT ) Body Diode Reverse Current IRM di/dt IFM , Body Diode Forward Current VDS ( DUT ) VSD Body Diode Forward Voltage Drop Body Diode Recovery dv/dt VDD ©2004 Fairchild Semiconductor Corporation Rev.B4, March 2004 FQP11P06 Package Dimensions TO-220 9.90 ±0.20 1.30 ±0.10 2.80 ±0.10 (8.70) ø3.60 ±0.10 (1.70) 4.50 ±0.20 1.30 –0.05 +0.10 9.20 ±0.20 (1.46) 13.08 ±0.20 (1.00) (3.00) 15.90 ±0.20 1.27 ±0.10 1.52 ±0.10 0.80 ±0.10 2.54TYP [2.54 ±0.20] 2.54TYP [2.54 ±0.20] 10.08 ±0.30 18.95MAX. (3.70) (45° ) 0.50 –0.05 +0.10 2.40 ±0.20 10.00 ±0.20 Dimensions in Millimeters ©2004 Fairchild Semiconductor Corporation Rev. B4, March 2004 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT Quiet Series™ ActiveArray™ FAST Bottomless™ FASTr™ CoolFET™ FPS™ CROSSVOLT™ FRFET™ DOME™ GlobalOptoisolator™ EcoSPARK™ GTO™ E2CMOS™ HiSeC™ EnSigna™ I2C™ FACT™ ImpliedDisconnect™ Across the board. Around the world.™ The Power Franchise Programmable Active Droop™ DISCLAIMER ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerSaver™ PowerTrench QFET QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic TINYOPTO™ TruTranslation™ UHC™ UltraFET VCX™ FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Preliminary First Production No Identification Needed Full Production Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I9
FQP11P06 价格&库存

很抱歉,暂时无法提供与“FQP11P06”相匹配的价格&库存,您可以联系我们找货

免费人工找货