Freescale Semiconductor Data Sheet: Product Preview
Document Number: K20P121M100SF2 Rev. 4, 3/2011
Supports the following: MK20X256VMC100, MK20N512VMC100
K20 Sub-Family Data Sheet
K20P121M100SF2
Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 512 KB program flash memory on nonFlexMemory devices – Up to 256 KB program flash memory on FlexMemory devices – Up to 256 KB FlexNVM on FlexMemory devices – 4 KB FlexRAM on FlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) – FlexBus external bus interface • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – 10 low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 16-channel DMA controller, supporting up to 64 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – 128-bit unique identification (ID) number per chip
• Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – Two 16-bit SAR ADCs – Programmable gain amplifier (up to x64) integrated into each ADC – 12-bit DAC – Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Eight-channel motor control/general purpose/PWM timer – Two 2-channel quadrature decoder/general purpose timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock • Communication interfaces – USB full-/low-speed On-the-Go controller with onchip transceiver – Two Controller Area Network (CAN) modules – Three SPI modules – Two I2C modules – Six UART modules – Secure Digital host controller (SDHC) – I2S module
This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © 2010–2011 Freescale Semiconductor, Inc. Preliminary
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
2
Preliminary
Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................4 1.1 Determining valid orderable parts......................................4 2 Part identification......................................................................4 2.1 Description.........................................................................4 2.2 Format...............................................................................4 2.3 Fields.................................................................................4 2.4 Example............................................................................5 3 Terminology and guidelines......................................................5 3.1 Definition: Operating requirement......................................5 3.2 Definition: Operating behavior...........................................6 3.3 Definition: Attribute............................................................6 3.4 Definition: Rating...............................................................7 3.5 Result of exceeding a rating..............................................7 3.6 Relationship between ratings and operating requirements......................................................................7 3.7 Guidelines for ratings and operating requirements............8 3.8 Definition: Typical value.....................................................8 3.9 Typical value conditions....................................................9 4 Ratings......................................................................................9 4.1 Thermal handling ratings...................................................10 4.2 Moisture handling ratings..................................................10 4.3 ESD handling ratings.........................................................10 4.4 Voltage and current operating ratings...............................10 5 General.....................................................................................11 5.1 Nonswitching electrical specifications...............................11 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 Voltage and current operating requirements......11 LVD and POR operating requirements...............12 Voltage and current operating behaviors............13 Power mode transition operating behaviors.......13 Power consumption operating behaviors............14 EMC radiated emissions operating behaviors....17 Designing with radiated emissions in mind.........18 Capacitance attributes........................................18 6.8.7 6.8.8 6.8.9 6.8.10 6.8.6 6.1 Core modules....................................................................20 6.1.1 6.1.2 Debug trace timing specifications.......................21 JTAG electricals..................................................21 6.2 System modules................................................................24 6.3 Clock modules...................................................................24 6.3.1 6.3.2 6.3.3 MCG specifications.............................................24 Oscillator electrical specifications.......................27 32kHz Oscillator Electrical Characteristics.........29
6.4 Memories and memory interfaces.....................................29 6.4.1 6.4.2 6.4.3 Flash (FTFL) electrical specifications.................30 EzPort Switching Specifications.........................34 Flexbus Switching Specifications........................35
6.5 Security and integrity modules..........................................37 6.6 Analog...............................................................................37 6.6.1 6.6.2 6.6.3 6.6.4 ADC electrical specifications..............................37 CMP and 6-bit DAC electrical specifications......45 12-bit DAC electrical characteristics...................48 Voltage reference electrical specifications..........51
6.7 Timers................................................................................52 6.8 Communication interfaces.................................................52 6.8.1 6.8.2 6.8.3 6.8.4 6.8.5 USB electrical specifications...............................53 USB DCD electrical specifications......................53 USB VREG electrical specifications...................53 CAN switching specifications..............................54 DSPI switching specifications (low-speed mode)..................................................................54 DSPI switching specifications (high-speed mode)..................................................................55 I2C switching specifications................................57 UART switching specifications............................57 SDHC specifications...........................................57 I2S switching specifications................................58
6.9 Human-machine interfaces (HMI)......................................60 6.9.1 TSI electrical specifications................................60
5.2 Switching specifications.....................................................18 5.2.1 5.2.2 Device clock specifications.................................18 General switching specifications.........................19
7 Dimensions...............................................................................61 7.1 Obtaining package dimensions.........................................61 8 Pinout........................................................................................62 8.1 K20 Signal Multiplexing and Pin Assignments..................62 8.2 K20 Pinouts.......................................................................66 9 Revision History........................................................................67
5.3 Thermal specifications.......................................................19 5.3.1 5.3.2 Thermal operating requirements.........................19 Thermal attributes...............................................20
6 Peripheral operating requirements and behaviors....................20
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
3
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers: PK20 and MK20.
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format: Q K## M FFF T PP CCC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations are valid):
Field Q K## M Qualification status Kinetis family Flash memory type Description Values • M = Fully qualified, general market flow • P = Prequalification • K20 • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page...
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
4
Preliminary
Freescale Semiconductor, Inc.
Terminology and guidelines Field FFF Description Program flash memory size • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB Values
T PP
Temperature range (°C) Package identifier
• V = –40 to 105 • C = –40 to 85 • • • • • • • • • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) EX = 64 QFN (9 mm x 9 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (12 mm x 12 mm) MB = 81 MAPBGA (8 mm x 8 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MF = 196 MAPBGA (15 mm x 15 mm) MJ = 256 MAPBGA (17 mm x 17 mm) 50 = 50 MHz 72 = 72 MHz 100 = 100 MHz 120 = 120 MHz 150 = 150 MHz
CCC
Maximum CPU frequency (MHz)
N
Packaging type
• R = Tape and reel • (Blank) = Trays
2.4 Example
This is an example part number: MK20N512VMD100
3 Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
5
Terminology and guidelines
3.1.1 Example
This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:
Symbol VDD Description 1.0 V core supply voltage 0.9 Min. 1.1 Max. V Unit
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:
Symbol IWP Description Digital I/O weak pullup/ 10 pulldown current Min. 130 Max. µA Unit
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
This is an example of an attribute:
Symbol CIN_D Description Input capacitance: digital pins — Min. 7 Max. pF Unit
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
6
Preliminary
Freescale Semiconductor, Inc.
Terminology and guidelines
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol VDD Description 1.0 V core supply voltage –0.3 Min. 1.2 Max. V Unit
3.5 Result of exceeding a rating
40 Failures in time (ppm) 30
20
The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
10
0 Operating rating Measured characteristic
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
7
Terminology and guidelines
3.6 Relationship between ratings and operating requirements
go a rh nd lin g in rat g( mi n.) ir qu em en t( n. mi ) ir qu em en t( x ma .) r go ha nd lin g in rat g( x.) ma e gr e gr
Op
era
tin
Op
era
tin
Op
era
tin
Op
era
tin
Fatal range
- Probable permanent failure
Limited operating range
- No permanent failure - Possible decreased life - Possible incorrect operation
Normal operating range
- No permanent failure - Correct operation
Limited operating range
- No permanent failure - Possible decreased life - Possible incorrect operation
Fatal range
- Probable permanent failure
Handling range
- No permanent failure –ȡ ȡ
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
8
Preliminary
Freescale Semiconductor, Inc.
Ratings Symbol IWP Description Digital I/O weak pullup/pulldown current 10 Min. 70 Typ. 130 Max. µA Unit
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and temperature conditions:
5000 4500 4000 3500 IDD_STOP (μA) 3000 2500 2000 1500 1000 500 0 0.90 0.95 1.00 VDD (V) 1.05 1.10 TJ 150 °C 105 °C 25 °C –40 °C
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as specified):
Symbol TA VDD Description Ambient temperature 3.3 V supply voltage 25 3.3 Value °C V Unit
4 Ratings
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
9
Ratings
4.1 Thermal handling ratings
Symbol TSTG TSDR Description Storage temperature Solder temperature, lead-free Solder temperature, leaded Min. –55 — — Max. 150 260 245 Unit °C °C Notes 1 2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol MSL Description Moisture sensitivity level Min. — Max. 3 Unit — Notes 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol VHBM VCDM ILAT Description Electrostatic discharge voltage, human body model Electrostatic discharge voltage, charged-device model Latch-up current at ambient temperature of 85°C Min. -2000 -500 -100 Max. +2000 +500 +100 Unit V V mA Notes 1 2
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol VDD IDD VDIO Description Digital supply voltage Digital supply current Digital input voltage (except RESET, EXTAL, and XTAL) Table continues on the next page... Min. –0.3 — –0.3 Max. 3.8 185 5.5 Unit V mA V
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
10
Preliminary
Freescale Semiconductor, Inc.
General Symbol VAIO ID VDDA VUSB_DP VUSB_DM VREGIN VBAT Description Analog, RESET, EXTAL, and XTAL input voltage Instantaneous maximum current single pin limit (applies to all port pins) Analog supply voltage USB_DP input voltage USB_DM input voltage USB regulator input RTC battery supply voltage Min. –0.3 –25 VDD – 0.3 –0.3 –0.3 –0.3 –0.3 Max. VDD + 0.3 25 VDD + 0.3 3.63 3.63 6.0 3.8 Unit V mA V V V V V
5 General
5.1 Nonswitching electrical specifications
5.1.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol VDD VDDA Description Supply voltage Analog supply voltage Min. 1.71 1.71 –0.1 –0.1 1.71 Max. 3.6 3.6 0.1 0.1 3.6 Unit V V V V V Notes
VDD – VDDA VDD-to-VDDA differential voltage VSS – VSSA VSS-to-VSSA differential voltage VBAT VIH RTC battery supply voltage Input high voltage • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VIL Input low voltage • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VHYS Input hysteresis
0.7 × VDD 0.75 × VDD
— —
V V
— — 0.06 × VDD Table continues on the next page...
0.35 × VDD 0.3 × VDD —
V V V
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
11
General
Table 1. Voltage and current operating requirements (continued)
Symbol IIC Description DC injection current — single pin • VIN < VSS DC injection current — total MCU limit, includes sum of all stressed pins • VIN < VSS VRAM VRFVBAT VDD voltage required to retain RAM VBAT voltage required to retain the VBAT register file 0 –0.2 mA 1 0 1.2 TBD –5 — — mA V V Min. Max. Unit Notes 1
1. All functional non-supply pins are internally clamped to VSS, and induce an injection current when VIN is less than VSS. The IIC maximum operating requirement should not be exceeded. If this requirement cannot be met, the input must be current limited to the value specified.
5.1.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol VPOR VLVDH Description Falling VDD POR detect voltage Falling low-voltage detect threshold — high range (LVDV=01) Low-voltage warning thresholds — high range VLVW1H VLVW2H VLVW3H VLVW4H VHYSH VLVDL • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10) • Level 4 falling (LVWV=11) Low-voltage inhibit reset/recover hysteresis — high range Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range VLVW1L VLVW2L VLVW3L VLVW4L VHYSL VBG tLPO • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10) • Level 4 falling (LVWV=11) Low-voltage inhibit reset/recover hysteresis — low range Bandgap voltage reference Internal low power oscillator period factory trimmed TBD TBD TBD TBD TBD TBD 1.80 1.90 2.00 2.10 40 1.00 1000 TBD TBD TBD TBD TBD TBD V V V V mV V μs TBD TBD TBD TBD TBD 2.70 2.80 2.90 3.00 60 1.60 TBD TBD TBD TBD TBD V V V V mV V 1 Min. TBD TBD Typ. 1.1 2.56 Max. TBD TBD Unit V V 1 Notes
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
12
Preliminary
Freescale Semiconductor, Inc.
General 1. Rising thresholds are falling threshold + hysteresis voltage
Table 3. VBAT power operating requirements
Symbol Description Min. TBD Typ. 1.1 Max. TBD Unit V Notes VPOR_VBAT Falling VBAT supply POR detect voltage
5.1.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol VOH Description Output high voltage — high drive strength • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA Output high voltage — low drive strength • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA IOHT VOL Output high current total for all ports Output low voltage — high drive strength • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10mA • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA Output low voltage — low drive strength • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA IOLT IIN IOZ RPU RPD Output low current total for all ports Input leakage current (per pin) Hi-Z (off-state) leakage current (per pin) Internal pullup resistors Internal pulldown resistors — — — — — 30 30 0.5 0.5 100 1 1 50 50 V V mA μA μA kΩ kΩ 2 3 1 — — 0.5 0.5 V V VDD – 0.5 VDD – 0.5 — — — 100 V V mA VDD – 0.5 VDD – 0.5 — — V V Min. Max. Unit Notes
1. Measured at VDD=3.6V 2. Measured at VDD supply voltage = VDD min and Vinput = VSS 3. Measured at VDD supply voltage = VDD min and Vinput = VDD
5.1.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration:
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
13
General
• CPU and system clocks = 100 MHz • Bus and FlexBus clocks = 50 MHz • Flash clock = 25 MHz
Table 5. Power mode transition operating behaviors
Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.8V to execution of the first instruction across the operating temperature range of the chip. RUN → VLLS1 → RUN • RUN → VLLS1 • VLLS1 → RUN RUN → VLLS2 → RUN • RUN → VLLS2 • VLLS2 → RUN RUN → VLLS3 → RUN • RUN → VLLS3 • VLLS3 → RUN RUN → LLS → RUN • RUN → LLS • LLS → RUN RUN → STOP → RUN • RUN → STOP • STOP → RUN RUN → VLPS → RUN • RUN → VLPS • VLPS → RUN 1. Normal boot (FTFL_OPT[LPBOOT]=1) — — 4.1 5.8 μs μs — — 4.1 4.2 μs μs — — 4.1 5.9 μs μs — — 4.1 49.2 μs μs — — 4.1 49.3 μs μs — — 4.1 123.8 μs μs Min. — Max. 300 Unit μs Notes 1
5.1.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol IDDA Description Analog supply current Min. — Table continues on the next page... Typ. — Max. TBD Unit mA Notes 1
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
14
Preliminary
Freescale Semiconductor, Inc.
General
Table 6. Power consumption operating behaviors (continued)
Symbol IDD_RUN Description Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V • @ 3.0V IDD_RUN Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V • @ 3.0V IDD_RUN_M Run mode current — all peripheral clocks enabled and peripherals active, code executing AX from flash • @ 1.8V • @ 3.0V IDD_WAIT IDD_WAIT IDD_STOP IDD_VLPR IDD_VLPR IDD_VLPW IDD_VLPS IDD_LLS IDD_VLLS3 Wait mode high frequency current at 3.0 V — all peripheral clocks disabled Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled Stop mode current at 3.0 V Very-low-power run mode current at 3.0 V — all peripheral clocks disabled Very-low-power run mode current at 3.0 V — all peripheral clocks enabled Very-low-power wait mode current at 3.0 V Very-low-power stop mode current at 3.0 V Low leakage stop mode current at 3.0 V Very low-leakage stop mode 3 current at 3.0 V • 128KB RAM devices IDD_VLLS2 IDD_VLLS1 IDD_VBAT Very low-leakage stop mode 2 current at 3.0 V Very low-leakage stop mode 1 current at 3.0 V Average current when CPU is not accessing RTC registers at 3.0 V — — — — 8 4 2 550 TBD TBD TBD TBD μA μA μA nA 9 — — 55 56 TBD TBD mA mA 4 — — — — — — — — — — 85 85 35 15 0.4 1.25 TBD 1.05 50 12 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD mA mA mA mA mA mA mA mA μA μA 6 7 8 2 5 — — 40 42 TBD TBD mA mA 3 Min. Typ. Max. Unit Notes 2
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled. 3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, but peripherals are not in active operation. 4. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation. 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode. 6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. Code executing from flash.
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
15
General 7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. 9. Includes 32kHz oscillator current and RTC operation.
5.1.5.1 • • • • •
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions: MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) All peripheral clocks disabled except FTFL LVD disabled, USB regulator disabled No GPIOs toggled Code execution from flash
Figure 1. Run mode supply current vs. core frequency — all peripheral clocks disabled
The following data was measured under these conditions: • MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
16
Preliminary
Freescale Semiconductor, Inc.
General
• • • •
All peripheral clocks enabled but peripherals are not in active operation LVD disabled, USB regulator disabled No GPIOs toggled Code execution from flash
Figure 2. Run mode supply current vs. core frequency — all peripheral clocks enabled
5.1.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors
Symbol VRE1 VRE2 VRE3 VRE4 Description Radiated emissions voltage, band 1 Radiated emissions voltage, band 2 Radiated emissions voltage, band 3 Radiated emissions voltage, band 4 Frequency band (MHz) 0.15–50 50–150 150–500 500–1000 0.15–1000 Typ. TBD TBD TBD TBD TBD — 2, 3 Unit dBμV Notes 1, 2
VRE_IEC_SAE IEC and SAE level
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
17
General 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/ Wideband TEM (GTEM) Cell Method. 2. VDD = 3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method.
5.1.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to http://www.freescale.com. 2. Perform a keyword search for “EMC design.”
5.1.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol CIN_A CIN_D Description Input capacitance: analog pins Input capacitance: digital pins Min. — — Max. 7 7 Unit pF pF
5.2 Switching specifications
5.2.1 Device clock specifications
Symbol Description Normal run mode fSYS fSYS_USB fBUS FB_CLK fFLASH System and core clock System and core clock when USB in operation Bus clock FlexBus clock Flash clock VLPR mode fSYS System and core clock — Table continues on the next page... 2 MHz — 20 — — — 100 — 50 50 25 MHz MHz MHz MHz MHz Min. Max. Unit Notes
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
18
Preliminary
Freescale Semiconductor, Inc.
General Symbol fBUS FB_CLK fFLASH Description Bus clock FlexBus clock Flash clock Min. — — — Max. 2 2 1 Unit MHz MHz MHz Notes
5.2.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I2C signals.
Symbol Description GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path External reset pulse width (digital glitch filter disabled) Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) • Slew disabled • Slew enabled Port rise and fall time (low drive strength) • Slew disabled • Slew enabled 1. 2. 3. 4. The greater synchronous and asynchronous timing must be met. This is the shortest pulse that is guaranteed to be recognized. 75pF load 15pF load — — 32 36 ns ns — — 12 36 ns ns 4 Min. 1.5 100 16 TBD 2 Max. — — — — — Bus clock cycles 3 Unit Bus clock cycles ns ns Notes 1 2
2
5.3 Thermal specifications
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
19
Peripheral operating requirements and behaviors
5.3.1 Thermal operating requirements
Table 9. Thermal operating requirements
Symbol TJ TA Description Die junction temperature Ambient temperature Min. –40 –40 Max. 125 Unit °C °C
5.3.2 Thermal attributes
Board type Symbol Description
Thermal resistance, junction to ambient (natural convection) Thermal resistance, junction to ambient (natural convection) Thermal resistance, junction to ambient (200 ft./min. air speed) Thermal resistance, junction to ambient (200 ft./min. air speed) Thermal resistance, junction to board Thermal resistance, junction to case Thermal characterization parameter, junction to package top outside center (natural convection)
121 MAPBGA
TBD TBD TBD TBD TBD TBD TBD
Unit
°C/W °C/W °C/W °C/W °C/W °C/W °C/W
Notes
1 1 1 1 2 3 4
Single-layer RθJA (1s) Four-layer (2s2p) RθJA
Single-layer RθJMA (1s) Four-layer (2s2p) — — — 1. RθJMA RθJB RθJC ΨJT
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
6 Peripheral operating requirements and behaviors
All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0)
6.1 Core modules
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
20
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.1.1 Debug trace timing specifications
Table 10. Debug trace operating behaviors
Symbol Tcyc Twl Twh Tr Tf Ts Th Description Clock period Low pulse width High pulse width Clock and data rise time Clock and data fall time Data setup Data hold Min. Max. Unit MHz ns ns ns ns ns ns Frequency dependent 2 2 — — 3 2 — — 3 3 — —
Figure 3. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts Th Ts Th
TRACE_D[3:0]
Figure 4. Trace data specifications
6.1.2 JTAG electricals
Table 11. JTAG limited voltage range electricals
Symbol Description Operating voltage J1 TCLK frequency of operation • Boundary Scan • JTAG and CJTAG • Serial Wire Debug Table continues on the next page... 0 0 0 10 25 50 Min. 2.7 Max. 3.6 Unit V MHz
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
21
Peripheral operating requirements and behaviors
Table 11. JTAG limited voltage range electricals (continued)
Symbol J2 J3 Description TCLK cycle period TCLK clock pulse width • Boundary Scan • JTAG and CJTAG • Serial Wire Debug J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 TCLK rise and fall times Boundary scan input data setup time to TCLK rise Boundary scan input data hold time after TCLK rise TCLK low to boundary scan output data valid TCLK low to boundary scan output high-Z TMS, TDI input data setup time to TCLK rise TMS, TDI input data hold time after TCLK rise TCLK low to TDO data valid TCLK low to TDO high-Z TRST assert time TRST setup time (negation) to TCLK high 50 20 10 — 20 0 — — 8 1 — — 100 8 3 — — 25 25 — — 17 17 — — ns ns ns ns ns ns ns ns ns ns ns — — Min. 1/J1 Max. — Unit ns ns
Table 12. JTAG full voltage range electricals
Symbol Description Operating voltage J1 TCLK frequency of operation • Boundary Scan • JTAG and CJTAG • Serial Wire Debug J2 J3 TCLK cycle period TCLK clock pulse width • Boundary Scan • JTAG and CJTAG • Serial Wire Debug J4 J5 J6 J7 J8 TCLK rise and fall times Boundary scan input data setup time to TCLK rise Boundary scan input data hold time after TCLK rise TCLK low to boundary scan output data valid TCLK low to boundary scan output high-Z Table continues on the next page... 50 25 12.5 — 20 0 — — 3 — — 25 25 ns ns ns ns ns — — 0 0 0 1/J1 10 20 40 — ns ns Min. 1.71 Max. 3.6 Unit V MHz
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
22
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 12. JTAG full voltage range electricals (continued)
Symbol J9 J10 J11 J12 J13 J14 Description TMS, TDI input data setup time to TCLK rise TMS, TDI input data hold time after TCLK rise TCLK low to TDO data valid TCLK low to TDO high-Z TRST assert time TRST setup time (negation) to TCLK high Min. 8 1.4 — — 100 8 Max. — — 22.1 22.1 — — Unit ns ns ns ns ns ns
J2 J3 J3
TCLK (input)
J4
J4
Figure 5. Test clock input timing
TCLK
J5 J6
Data inputs
J7
Input data valid
Data outputs
J8
Output data valid
Data outputs
J7
Data outputs
Output data valid
Figure 6. Boundary scan (JTAG) timing
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
23
Peripheral operating requirements and behaviors
TCLK
J9 J10
TDI/TMS
J11
Input data valid
TDO
J12
Output data valid
TDO
J11
TDO
Output data valid
Figure 7. Test Access Port timing
TCLK
J14 J13
TRST
Figure 8. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
24
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.3.1 MCG specifications
Table 13. MCG specifications
Symbol fints_ft fints_t Iints tirefsts Δfdco_res_t Description Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25°C Internal reference frequency (slow clock) — user trimmed Internal reference (slow clock) current Internal reference (slow clock) startup time Resolution of trimmed DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM Resolution of trimmed DCO output frequency at fixed voltage and temperature — using SCTRIM only Total deviation of trimmed average DCO output frequency over voltage and temperature Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C Internal reference frequency (fast clock) — user trimmed Internal reference (fast clock) current Internal reference startup time (fast clock) Loss of external clock minimum frequency — RANGE = 00 Loss of external clock minimum frequency — RANGE = 01, 10, or 11 FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref Table continues on the next page... 80 83.89 100 MHz 60 62.91 75 MHz 40 41.94 50 MHz 31.25 20 — 20.97 39.0625 25 kHz MHz 2, 3 Min. — 31.25 — — — Typ. 32.768 — TBD TBD ± 0.1 Max. — 39.0625 — 4 ± 0.3 Unit kHz kHz µA µs %fdco 1 Notes
Δfdco_res_t
—
± 0.2
± 0.5
%fdco
1
Δfdco_t Δfdco_t
—
+ 0.5 - 1.0
± 3.5
%fdco %fdco
1
—
± 0.5
± TBD
1
fintf_ft fintf_t Iintf tirefstf floc_low floc_high
3.4 3 — — (3/5) x fints_t (16/5) x fints_t
— — TBD TBD — —
4 5 — TBD — —
MHz MHz µA µs kHz kHz
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
25
Peripheral operating requirements and behaviors
Table 13. MCG specifications (continued)
Symbol Description Low range (DRS=00) 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll Jacc_fll tfll_acquire FLL period jitter FLL accumulated jitter of DCO output over a 1µs time window FLL target frequency acquisition time PLL fvco Ipll VCO operating frequency PLL operating current • PLL @ 96 MHz (fosc_hi_1=8MHz, fpll_ref=2MHz, VDIV multiplier=48) PLL reference frequency range PLL period jitter PLL accumulated jitter over 1µs window Lock entry frequency tolerance Lock exit frequency tolerance Lock detector detection time 48.0 — — 950 100 — MHz µA 8 — — — TBD TBD — TBD TBD 1 ps ps ms 6 6 7 — 95.98 — MHz — 71.99 — MHz — 47.97 — MHz Min. — Typ. 23.99 Max. — Unit MHz Notes 4, 5 fdco_t_DMX3 DCO output frequency 2
fpll_ref Jcyc_pll Jacc_pll Dlock Dunl tpll_lock
2.0 — — ± 1.49 ± 4.47 —
— 400 TBD — — —
4.0 — — ± 2.98 ± 5.97 0.15 + 1075(1/ fpll_ref)
MHz ps ps % % ms 11 9, 10 9, 10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification was obtained at TBD frequency. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Excludes any oscillator currents that are also consuming power while PLL is in operation. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. This specification was obtained at internal frequency of TBD. 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
26
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.3.2 Oscillator electrical specifications
This section provides the electrical characteristics of the module. 6.3.2.1
Symbol VDD IDDOSC
Oscillator DC electrical specifications
Description Supply voltage Supply current — low-power mode (HGO=0) • 32 kHz • 4 MHz • 8 MHz • 16 MHz • 24 MHz • 32 MHz — — — — — — Min. 1.71
Table 14. Oscillator DC electrical specifications
Typ. — Max. 3.6 Unit V 1 500 200 300 700 1.2 1.5 — — — — — — nA μA μA μA mA mA 1 — — — — — — — — — — — — 25 400 800 1.5 3 4 — — — 10 — 1 — — — — — — — — — — — — MΩ MΩ MΩ MΩ μA μA μA mA mA mA 2, 3 2, 3 2, 4 Notes
IDDOSC
Supply current — high gain mode (HGO=1) • 32 kHz • 4 MHz • 8 MHz • 16 MHz • 24 MHz • 32 MHz
Cx Cy RF
EXTAL load capacitance XTAL load capacitance Feedback resistor — low-frequency, low-power mode (HGO=0) Feedback resistor — low-frequency, high-gain mode (HGO=1) Feedback resistor — high-frequency, low-power mode (HGO=0) Feedback resistor — high-frequency, high-gain mode (HGO=1)
Table continues on the next page...
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
27
Peripheral operating requirements and behaviors
Table 14. Oscillator DC electrical specifications (continued)
Symbol RS Description Series resistor — low-frequency, low-power mode (HGO=0) Series resistor — low-frequency, high-gain mode (HGO=1) Series resistor — high-frequency, low-power mode (HGO=0) Series resistor — high-frequency, high-gain mode (HGO=1) — Vpp5 Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) 1. 2. 3. 4. 5. — 0 0.6 — — kΩ V Min. — — — Typ. — 200 — Max. — — — Unit kΩ kΩ kΩ Notes
—
VDD
—
V
—
0.6
—
V
—
VDD
—
V
VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.
6.3.2.2
Symbol fosc_lo fosc_hi_1
Oscillator frequency specifications
Description Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00) Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01) Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) Input clock frequency (external clock mode) Input clock duty cycle (external clock mode) Min. 32 3
Table 15. Oscillator frequency specifications
Typ. — — Max. 40 8 Unit kHz MHz Notes
fosc_hi_2
8
—
32
MHz
fec_extal tdc_extal
— 40
— 50
50 60
MHz %
1
Table continues on the next page...
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
28
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 15. Oscillator frequency specifications (continued)
Symbol tcst Description Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) Min. — — — Typ. TBD 800 4 Max. — — — Unit ms ms ms Notes 2, 3
—
3
—
ms
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL 2. Proper PC board layout procedures must be followed to achieve specifications. 3. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.
6.3.3 32kHz Oscillator Electrical Characteristics
This section describes the module electrical characteristics. 6.3.3.1
Symbol VBAT RF Cpara Cload Vpp
32kHz oscillator DC electrical specifications
Description Supply voltage Internal feedback resistor Parasitical capacitance of EXTAL32 and XTAL32 Internal load capacitance (programmable) Peak-to-peak amplitude of oscillation Min. 1.71 — — — —
Table 16. 32kHz oscillator DC electrical specifications
Typ. — 100 2.5 15 0.6 Max. 3.6 — — — — Unit V MΩ pF pF V
6.3.3.2
Symbol fosc_lo tstart
32kHz oscillator frequency specifications
Description Oscillator crystal Crystal start-up time Min. — —
Table 17. 32kHz oscillator frequency specifications
Typ. 32 1000 Max. — — Unit kHz ms 1 Notes
1. Proper PC board layout procedures must be followed to achieve specifications.
6.4 Memories and memory interfaces
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
29
Peripheral operating requirements and behaviors
6.4.1 Flash (FTFL) electrical specifications
This section describes the electrical characteristics of the FTFL module. 6.4.1.1 Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.
Table 18. NVM program/erase timing specifications
Symbol thvpgm4 thversscr Description Longword Program high-voltage time Sector Erase high-voltage time Min. — — — Typ. 20 20 160 Max. TBD 100 800 Unit μs ms ms 1 1 Notes
thversblk256k Erase Block high-voltage time for 256 KB 1. Maximum time based on expectations at cycling end-of-life.
6.4.1.2
Symbol
Flash timing specifications — commands
Description Read 1s Block execution time Min.
Table 19. Flash command timing specifications
Typ. Max. Unit Notes
trd1blk256k trd1sec2k tpgmchk trdrsrc tpgm4
• 256 KB data flash Read 1s Section execution time (flash sector) Program Check execution time Read Resource execution time Program Longword execution time Erase Flash Block execution time
— — — — —
— — — — 50
1.4 40 35 35 TBD
ms μs μs μs μs 2 1 1 1
tersblk256k tersscr
• 256 KB data flash Erase Flash Sector execution time Program Section execution time
— —
160 20
800 100
ms ms 2
tpgmsec512 tpgmsec1k tpgmsec2k trd1all trdonce tpgmonce
• 512 B flash • 1 KB flash • 2 KB flash Read 1s All Blocks execution time Read Once execution time Program Once execution time
— — — — — —
TBD TBD TBD — — 50
TBD TBD TBD 2.8 35 TBD
ms ms ms ms μs μs 1
Table continues on the next page...
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
30
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 19. Flash command timing specifications (continued)
Symbol tersall tvfykey Description Erase All Blocks execution time Verify Backdoor Access Key execution time Program Partition for EEPROM execution time tpgmpart256k • 256 KB FlexNVM Set FlexRAM Function execution time: tsetram32k tsetram256k • 32 KB EEPROM backup • 256 KB EEPROM backup — — TBD TBD TBD TBD ms ms — 175 TBD ms Min. — — Typ. 320 — Max. 1600 35 Unit ms μs Notes 2 1
Byte-write to FlexRAM for EEPROM operation teewr8bers Byte-write to erased FlexRAM location execution time Byte-write to FlexRAM execution time: teewr8b32k teewr8b64k teewr8b128k teewr8b256k • 32 KB EEPROM backup • 64 KB EEPROM backup • 128 KB EEPROM backup • 256 KB EEPROM backup — — — — TBD TBD TBD TBD TBD 1.5 TBD 2.5 ms ms ms ms — 100 TBD μs 3
Word-write to FlexRAM for EEPROM operation teewr16bers Word-write to erased FlexRAM location execution time Word-write to FlexRAM execution time: teewr16b32k teewr16b64k teewr16b128k teewr16b256k • 32 KB EEPROM backup • 64 KB EEPROM backup • 128 KB EEPROM backup • 256 KB EEPROM backup — — — — TBD TBD TBD TBD TBD 1.5 TBD 2.5 ms ms ms ms — 100 TBD μs
Longword-write to FlexRAM for EEPROM operation teewr32bers Longword-write to erased FlexRAM location execution time Longword-write to FlexRAM execution time: teewr32b32k teewr32b64k teewr32b128k teewr32b256k • 32 KB EEPROM backup • 64 KB EEPROM backup • 128 KB EEPROM backup • 256 KB EEPROM backup — — — — TBD TBD TBD TBD TBD 2.7 TBD 3.7 ms ms ms ms — 200 TBD μs
1. Assumes 25MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
31
Peripheral operating requirements and behaviors
6.4.1.3
Flash (FTFL) current and power specfications
Description Worst case programming current in program flash
Table 20. Flash (FTFL) current and power specfications
Typ. 10 Unit mA
Symbol IDD_PGM
6.4.1.4
Symbol
Reliability specifications
Description
Table 21. NVM reliability specifications
Min. Program Flash Typ.1 Max. Unit Notes
tnvmretp10k tnvmretp1k tnvmretp100 nnvmcycp
Data retention after up to 10 K cycles Data retention after up to 1 K cycles Data retention after up to 100 cycles Cycling endurance
5 10 15 10 K Data Flash
TBD TBD TBD TBD
— — — —
years years years cycles
2 2 2 3
tnvmretd10k tnvmretd1k tnvmretd100 nnvmcycd
Data retention after up to 10 K cycles Data retention after up to 1 K cycles Data retention after up to 100 cycles Cycling endurance
5 10 15 10 K FlexRAM as EEPROM
TBD TBD TBD TBD
— — — —
years years years cycles
2 2 2 3
tnvmretee100 Data retention up to 100% of write endurance tnvmretee10 tnvmretee1 Data retention up to 10% of write endurance Data retention up to 1% of write endurance Write endurance nnvmwree16 nnvmwree128 nnvmwree512 nnvmwree4k nnvmwree32k • EEPROM backup to FlexRAM ratio = 16 • EEPROM backup to FlexRAM ratio = 128 • EEPROM backup to FlexRAM ratio = 512 • EEPROM backup to FlexRAM ratio = 4096 • EEPROM backup to FlexRAM ratio = 32,768
5 10 15
TBD TBD TBD
— — —
years years years
2 2 2 4
35 K 315 K 1.27 M 10 M 80 M
TBD TBD TBD TBD TBD
— — — — —
writes writes writes writes writes
1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to 25°C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618. 2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application). 3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum value assumes all byte-writes to FlexRAM.
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
32
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.4.1.5
Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values. The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space. While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.
Writes_subsystem = EEPROM – 2 × EEESPLIT × EEESIZE EEESPLIT × EEESIZE × Write_efficiency × nnvmcycd
where • Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance) • EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with Program Partition command • EEESPLIT — FlexRAM split factor for subsystem; entered with the Program Partition command • EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition command • Write_efficiency — • 0.25 for 8-bit writes to FlexRAM • 0.50 for 16-bit or 32-bit writes to FlexRAM • nnvmcycd — data flash cycling endurance
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
33
Peripheral operating requirements and behaviors
Figure 9. EEPROM backup writes to FlexRAM
6.4.2 EzPort Switching Specifications
Table 22. EzPort switching specifications
Num Description Operating voltage EP1 EP1a EP2 EP3 EP4 EP5 EP6 EP7 EP8 EP9 EZP_CK frequency of operation (all commands except READ) EZP_CK frequency of operation (READ command) EZP_CS negation to next EZP_CS assertion EZP_CS input valid to EZP_CK high (setup) EZP_CK high to EZP_CS input invalid (hold) EZP_D input valid to EZP_CK high (setup) EZP_CK high to EZP_D input invalid (hold) EZP_CK low to EZP_Q output valid (setup) EZP_CK low to EZP_Q output invalid (hold) EZP_CS negation to EZP_Q tri-state Min. 2.7 — — 2 x tEZP_CK 5 5 2 5 — 0 — Max. 3.6 fSYS/2 fSYS/8 — — — — — 12 — 12 Unit V MHz MHz ns ns ns ns ns ns ns ns
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
34
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
EZP_CK
EP3 EP4 EP2
EZP_CS
EP7 EP8
EP9
EZP_Q (output)
EP5 EP6
EZP_D (input)
Figure 10. EzPort Timing Diagram
6.4.3 Flexbus Switching Specifications
All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.
Table 23. Flexbus switching specifications
Num Description Operating voltage Frequency of operation FB1 FB2 FB3 FB4 FB5 Clock period Address, data, and control output valid Address, data, and control output hold Data and FB_TA input setup Data and FB_TA input hold Min. 2.7 — 20 TBD 0 8.5 0.5 Max. 3.6 50 — 11.5 — — — Unit V Mhz ns ns ns ns ns 1 1 2 2 Notes
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA.
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
35
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB3 FB5
FB_A[Y]
FB2
Address FB4 Data
FB_D[X] FB_RW FB_TS FB_ALE
Address
AA=1
FB_CSn FB_OEn
FB4
AA=0
FB_BEn
FB5
AA=1
FB_TA FB_TSIZ[1:0]
AA=0
TSIZ
Figure 11. FlexBus read timing diagram
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
36
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB2 FB3 Address
FB_A[Y] FB_D[X] FB_RW FB_TS FB_ALE
Address
Data
AA=1
FB_CSn FB_OEn
FB4
AA=0
FB_BEn
FB5
AA=1
FB_TA FB_TSIZ[1:0]
AA=0
TSIZ
Figure 12. FlexBus write timing diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
37
Peripheral operating requirements and behaviors
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DP3. The ADCx_DP2 and ADCx_DM2 ADC inputs are used as the PGA inputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 26 and Table 27. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1
Symbol VDDA ΔVDDA ΔVSSA VREFH VREFL VADIN CADIN
16-bit ADC operating conditions
Description Supply voltage Supply voltage Ground voltage ADC reference voltage high Reference voltage low Input voltage Input capacitance • 16 bit modes • 8/10/12 bit modes Conditions Absolute Delta to VDD (VDDVDDA) Delta to VSS (VSSVSSA) Min. 1.71 -100 -100 1.13 VSSA VREFL — —
Table 24. 16-bit ADC operating conditions
Typ.1 — 0 0 VDDA VSSA — 8 4 Max. 3.6 +100 +100 VDDA VSSA VREFH 10 5 Unit V mV mV V V V pF 2 2 Notes
RADIN RAS
Input resistance Analog source resistance 13/12 bit modes fADCK < 4MHz ≤13 bit modes
—
2
5
kΩ 3
—
—
5
kΩ
fADCK fADCK
ADC conversion clock frequency ADC conversion clock frequency
4 1.0 — 18.0 MHz 5 2.0 — 12.0 MHz
16 bit modes
Table continues on the next page...
K20 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
38
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 24. 16-bit ADC operating conditions (continued)
Symbol Crate Description ADC conversion rate Conditions ≤13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50MHz Crate ADC conversion rate 16 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50MHz 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has