0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
K60P144M100SF2

K60P144M100SF2

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    飞思卡尔生产的高性能单片机

  • 数据手册
  • 价格&库存
K60P144M100SF2 数据手册
Freescale Semiconductor Data Sheet: Technical Data K60 Sub-Family Data Sheet Document Number: K60P144M100SF2 Rev. 6, 9/2011 K60P144M100SF2 Supports the following: MK60DN256ZVLQ10, MK60DX256ZVLQ10, MK60DN512ZVLQ10, MK60DN256ZVMD10, MK60DX256ZVMD10, MK60DN512ZVMD10 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 512 KB program flash memory on nonFlexMemory devices – Up to 256 KB program flash memory on FlexMemory devices – Up to 256 KB FlexNVM on FlexMemory devices – 4 KB FlexRAM on FlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) – FlexBus external bus interface • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – 10 low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 16-channel DMA controller, supporting up to 64 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – Hardware random-number generator – Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms – 128-bit unique identification (ID) number per chip • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – Two 16-bit SAR ADCs – Programmable gain amplifier (PGA) (up to x64) integrated into each ADC – Two 12-bit DACs – Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Eight-channel motor control/general purpose/PWM timer – Two 2-channel quadrature decoder/general purpose timers – IEEE 1588 timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2010–2011 Freescale Semiconductor, Inc. • Communication interfaces – Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability – USB full-/low-speed On-the-Go controller with on-chip transceiver – Two Controller Area Network (CAN) modules – Three SPI modules – Two I2C modules – Six UART modules – Secure Digital host controller (SDHC) – I2S module K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 2 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................5 5.4.2 Thermal attributes...............................................22 1.1 Determining valid orderable parts......................................5 6 Peripheral operating requirements and behaviors....................23 2 Part identification......................................................................5 6.1 Core modules....................................................................23 2.1 Description.........................................................................5 6.1.1 Debug trace timing specifications.......................23 2.2 Format...............................................................................5 6.1.2 JTAG electricals..................................................24 2.3 Fields.................................................................................5 6.2 System modules................................................................27 2.4 Example............................................................................6 6.3 Clock modules...................................................................27 3 Terminology and guidelines......................................................6 6.3.1 MCG specifications.............................................27 3.1 Definition: Operating requirement......................................6 6.3.2 Oscillator electrical specifications.......................29 3.2 Definition: Operating behavior...........................................7 6.3.3 32kHz Oscillator Electrical Characteristics.........31 3.3 Definition: Attribute............................................................7 6.4 Memories and memory interfaces.....................................32 3.4 Definition: Rating...............................................................8 6.4.1 Flash (FTFL) electrical specifications.................32 3.5 Result of exceeding a rating..............................................8 6.4.2 EzPort Switching Specifications.........................37 3.6 Relationship between ratings and operating 6.4.3 Flexbus Switching Specifications........................38 requirements......................................................................8 6.5 Security and integrity modules..........................................41 3.7 Guidelines for ratings and operating requirements............9 6.6 Analog...............................................................................41 3.8 Definition: Typical value.....................................................9 6.6.1 ADC electrical specifications..............................41 3.9 Typical value conditions....................................................10 6.6.2 CMP and 6-bit DAC electrical specifications......49 4 Ratings......................................................................................10 6.6.3 12-bit DAC electrical characteristics...................52 4.1 Thermal handling ratings...................................................11 6.6.4 Voltage reference electrical specifications..........55 4.2 Moisture handling ratings..................................................11 6.7 Timers................................................................................56 4.3 ESD handling ratings.........................................................11 6.8 Communication interfaces.................................................56 4.4 Voltage and current operating ratings...............................11 6.8.1 Ethernet switching specifications........................56 5 General.....................................................................................12 6.8.2 USB electrical specifications...............................58 5.1 AC electrical characteristics..............................................12 6.8.3 USB DCD electrical specifications......................58 5.2 Nonswitching electrical specifications...............................12 6.8.4 USB VREG electrical specifications...................59 5.2.1 Voltage and current operating requirements......13 6.8.5 CAN switching specifications..............................59 5.2.2 LVD and POR operating requirements...............14 6.8.6 DSPI switching specifications (limited voltage 5.2.3 Voltage and current operating behaviors............14 5.2.4 Power mode transition operating behaviors.......15 5.2.5 Power consumption operating behaviors............16 5.2.6 EMC radiated emissions operating behaviors....19 6.8.8 I2C switching specifications................................63 5.2.7 Designing with radiated emissions in mind.........20 6.8.9 UART switching specifications............................63 5.2.8 Capacitance attributes........................................20 6.8.10 SDHC specifications...........................................63 5.3 Switching specifications.....................................................20 6.8.11 I2S switching specifications................................64 5.3.1 Device clock specifications.................................20 5.3.2 General switching specifications.........................21 5.4 Thermal specifications.......................................................21 5.4.1 Thermal operating requirements.........................21 range).................................................................60 6.8.7 DSPI switching specifications (full voltage range).................................................................61 6.9 Human-machine interfaces (HMI)......................................66 6.9.1 TSI electrical specifications................................66 7 Dimensions...............................................................................67 7.1 Obtaining package dimensions.........................................67 K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 3 8 Pinout........................................................................................68 8.2 K60 Pinouts.......................................................................74 8.1 K60 Signal Multiplexing and Pin Assignments..................68 9 Revision History........................................................................76 K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 4 Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers: PK60 and MK60. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K60 A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 5 Terminology and guidelines Field Description Values FFF Program flash memory size • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB R Silicon revision • Z = Initial • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • • • • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) EX = 64 LQFN (9 mm x 9 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (12 mm x 12 mm) MB = 81 MAPBGA (8 mm x 8 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MF = 196 MAPBGA (15 mm x 15 mm) MJ = 256 MAPBGA (17 mm x 17 mm) CC Maximum CPU frequency (MHz) • • • • • 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK60DN512ZVMD10 3 Terminology and guidelines K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 6 Freescale Semiconductor, Inc. Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 Example This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: Symbol IWP Description Digital I/O weak pullup/ 10 pulldown current Min. Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 7 Terminology and guidelines 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 3.4.1 Example This is an example of an operating rating: Symbol VDD Description 1.0 V core supply voltage Min. –0.3 Max. 1.2 Unit V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 8 Freescale Semiconductor, Inc. Terminology and guidelines 3.6 Relationship between ratings and operating requirements g( tin era Op nd go a rh g lin in rat n.) mi tin era Op e gr em ir qu n. mi t( en ) Op tin e gr era em ir qu x ma t( en .) x.) ma g( g lin nd ha tin era Op r go in rat Fatal range Limited operating range Normal operating range Limited operating range Fatal range - Probable permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation - Probable permanent failure Handling range - No permanent failure ∞ –∞ 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 9 Ratings Symbol Description IWP Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 VDD (V) 3.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 4 Ratings K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 10 Freescale Semiconductor, Inc. Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 Solder temperature, leaded — 245 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Min. Unit Notes — Moisture sensitivity level Max. 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 185 mA –0.3 5.5 V VDIO Digital input voltage (except RESET, EXTAL, and XTAL) Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 11 General Symbol VAIO ID Description Min. Max. Unit Analog1, –0.3 VDD + 0.3 V –25 25 mA RESET, EXTAL, and XTAL input voltage Instantaneous maximum current single pin limit (applies to all port pins) VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V VUSB_DP USB_DP input voltage –0.3 3.63 V VUSB_DM USB_DM input voltage –0.3 3.63 V VREGIN USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VBAT 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Figure 1. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) 5.2 Nonswitching electrical specifications K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 12 Freescale Semiconductor, Inc. General 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V -5 — mA VBAT VIH VIL RTC battery supply voltage Input high voltage Input low voltage VHYS Input hysteresis IICDIO Digital pin negative DC injection current — single pin • VIN < VSS-0.3V IICAIO 1 3 Analog2, EXTAL, and XTAL pin DC injection current — single pin mA • VIN < VSS-0.3V (Negative current injection) -5 — • VIN > VDD+0.3V (Positive current injection) IICcont — +5 -25 — — +25 1.2 — V VPOR_VBAT — V Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection • Positive current injection VRAM VRFVBAT Notes VDD voltage required to retain RAM VBAT voltage required to retain the VBAT register file mA 1. All 5 volt tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|. 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN (=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances. K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 13 General 5.2.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range Notes 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — ±80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — ±60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description Min. VPOR_VBAT Falling VBAT supply POR detect voltage Typ. Max. Unit 0.8 1.1 1.5 Notes V K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 14 Freescale Semiconductor, Inc. General 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — V — 100 mA • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA — 0.5 V Output low current total for all ports — 100 mA IIN Input leakage current (per pin) for full temperature range — 1 μA 1 IIN Input leakage current (per pin) at 25°C — 0.025 μA 1 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA RPU Internal pullup resistors 20 50 kΩ 2 RPD Internal pulldown resistors 20 50 kΩ 3 VOH Description Notes Output high voltage — high drive strength Output high voltage — low drive strength IOHT Output high current total for all ports VOL Output low voltage — high drive strength Output low voltage — low drive strength IOLT 1. Measured at VDD=3.6V 2. Measured at VDD supply voltage = VDD min and Vinput = VSS 3. Measured at VDD supply voltage = VDD min and Vinput = VDD 5.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • CPU and system clocks = 100 MHz Bus clock = 50 MHz FlexBus clock = 50 MHz Flash clock = 25 MHz K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 15 General Table 5. Power mode transition operating behaviors Symbol tPOR Description Min. μs 74 μs 73 μs 5.9 μs 5.8 μs — • STOP → RUN 112 — • VLPS → RUN 1 — • LLS → RUN μs — • VLLS3 → RUN 300 — • VLLS2 → RUN Notes — • VLLS1 → RUN Unit — After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. Max. 4.2 μs 1. Normal boot (FTFL_OPT[LPBOOT]=1) 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Min. Unit Notes — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V 2 — 45 70 mA — • @ 3.0V IDD_RUN Max. — Analog supply current Typ. 47 72 mA Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V 3, 4 — 61 85 mA — 63 71 mA — 72 87 mA • @ 3.0V • @ 25°C • @ 125°C IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 35 — mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 15 — mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — N/A — mA 6 Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 16 Freescale Semiconductor, Inc. General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — N/A — mA 7 IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled — N/A — mA 8 IDD_STOP Stop mode current at 3.0 V • @ –40 to 25°C — 0.59 1.4 mA • @ 70°C — 2.26 7.9 mA • @ 105°C — 5.94 19.2 mA • @ –40 to 25°C — 93 435 μA • @ 70°C — 520 2000 μA • @ 105°C — 1350 4000 μA IDD_VLPS IDD_LLS Very-low-power stop mode current at 3.0 V Low leakage stop mode current at 3.0 V 9 • @ –40 to 25°C 4.8 20 μA • @ 70°C — 28 68 μA • @ 105°C IDD_VLLS3 — — 126 270 μA Very low-leakage stop mode 3 current at 3.0 V 9 • @ –40 to 25°C μA — 17 35 μA — 82 148 μA • @ –40 to 25°C — 2.2 5.4 μA • @ 70°C — 7.1 12.5 μA • @ 105°C — 41 125 μA • @ –40 to 25°C — 2.1 7.6 μA • @ 70°C — 6.2 13.5 μA • @ 105°C IDD_VBAT 8.9 • @ 105°C IDD_VLLS1 3.1 • @ 70°C IDD_VLLS2 — — 30 46 μA — 0.33 0.39 μA — 0.60 0.78 μA — 1.97 2.9 μA Very low-leakage stop mode 2 current at 3.0 V Very low-leakage stop mode 1 current at 3.0 V Average current with RTC and 32kHz disabled at 3.0 V • @ –40 to 25°C • @ 70°C • @ 105°C Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 17 General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. IDD_VBAT Typ. Max. Unit Average current when CPU is not accessing RTC registers Notes 10 • @ 1.8V • @ –40 to 25°C • @ 70°C • @ 105°C — 0.71 0.81 μA — 1.01 1.3 μA — 2.82 4.3 μA — 0.84 0.94 μA — 1.17 1.5 μA — 3.16 4.6 μA • @ 3.0V • @ –40 to 25°C • @ 70°C • @ 105°C 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled. 3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled. 4. Max values are measured with CPU executing DSP instructions. 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode. 6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 9. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA. 10. Includes 32kHz oscillator current and RTC operation. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies • USB regulator disabled • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFL K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 18 Freescale Semiconductor, Inc. General Figure 2. Run mode supply current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 144LQFP Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2 VRE1 Radiated emissions voltage, band 1 0.15–50 23 dBμV VRE2 Radiated emissions voltage, band 2 50–150 27 dBμV VRE3 Radiated emissions voltage, band 3 150–500 28 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 14 dBμV IEC level 0.15–1000 K — VRE_IEC 2, 3 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 19 General 2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to http://www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 5.3 Switching specifications 5.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit System and core clock — 100 MHz System and core clock when Full Speed USB in operation 20 — MHz — Notes MHz Normal run mode fSYS fSYS_USB fENET System and core clock when ethernet in operation • 10 Mbps • 100 Mbps fBUS 5 50 Bus clock — 50 MHz FlexBus clock — 50 MHz fFLASH Flash clock — 25 MHz fLPTMR LPTMR clock — 25 MHz FB_CLK K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 20 Freescale Semiconductor, Inc. General 5.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, IEEE 1588 timer, and I2C signals. Table 10. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 16 — ns 2 External reset pulse width (digital glitch filter disabled) 100 — ns 2 2 — Bus clock cycles Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) 3 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 12 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled Port rise and fall time (low drive strength) 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 12 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled 1. 2. 3. 4. The greater synchronous and asynchronous timing must be met. This is the shortest pulse that is guaranteed to be recognized. 75pF load 15pF load 5.4 Thermal specifications K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 21 General 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C 5.4.2 Thermal attributes Board type Symbol Description Unit Notes Single-layer (1s) RθJA Thermal 45 resistance, junction to ambient (natural convection) 48 °C/W 1 Four-layer (2s2p) RθJA Thermal 36 resistance, junction to ambient (natural convection) 29 °C/W 1 Single-layer (1s) RθJMA Thermal 36 resistance, junction to ambient (200 ft./ min. air speed) 38 °C/W 1 Four-layer (2s2p) RθJMA Thermal 30 resistance, junction to ambient (200 ft./ min. air speed) 25 °C/W 1 — RθJB Thermal resistance, junction to board 24 16 °C/W 2 — RθJC Thermal resistance, junction to case 9 9 °C/W 3 — ΨJT Thermal 2 characterization parameter, junction to package top outside center (natural convection) 2 °C/W 4 1. 144 LQFP 144 MAPBGA Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 2. 3. 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 Debug trace timing specifications Table 12. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 3 — ns Th Data hold 2 — ns Figure 3. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 4. Trace data specifications K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors 6.1.2 JTAG electricals Table 13. JTAG limited voltage range electricals Symbol Min. Max. Unit Operating voltage J1 Description 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 TCLK cycle period J3 TCLK clock pulse width Table 14. JTAG full voltage range electricals Symbol Min. Max. Unit Operating voltage J1 Description 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 10 • JTAG and CJTAG 0 20 • Serial Wire Debug J2 0 0 40 1/J1 — TCLK cycle period ns Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 14. JTAG full voltage range electricals (continued) Symbol Min. Max. Unit • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug J3 Description 12.5 — ns TCLK clock pulse width J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 5. Test clock input timing K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 6. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 7. Test Access Port timing K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 26 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 8. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG specifications Table 15. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 38.2 kHz Internal reference (slow clock) current — 20 — µA Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 4.5 — %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz Internal reference (fast clock) current — 25 — µA fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Iints Δfdco_res_t Δfdco_t Iintf floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — Notes kHz Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 27 Peripheral operating requirements and behaviors Table 15. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — — — 1 ms 48.0 — 100 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 Notes MHz FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 4, 5 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fVCO = 48 MHz • fVCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 6 PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter (RMS) 7 7 8 • fvco = 48 MHz — 120 — ps • fvco = 100 MHz — 50 — ps Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 28 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 15. MCG specifications (continued) Symbol Description Min. Jacc_pll Typ. Max. Unit PLL accumulated jitter over 1µs (RMS) Notes 8 • fvco = 48 MHz — 1350 — ps • fvco = 100 MHz — 600 — ps Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % tpll_lock Lock detector detection time — — 150 × 10-6 + 1075(1/ fpll_ref) s 9 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6.3.2 Oscillator electrical specifications This section provides the electrical characteristics of the module. 6.3.2.1 Symbol VDD IDDOSC Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 29 Peripheral operating requirements and behaviors Table 16. Oscillator DC electrical specifications (continued) Symbol Description Min. IDDOSC Typ. Max. Unit Supply current — high gain mode (HGO=1) Notes 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Vpp5 1. 2. 3. 4. VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 30 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.2.2 Symbol Oscillator frequency specifications Table 17. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 50 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — Notes ms tcst 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 6.3.3 32kHz Oscillator Electrical Characteristics This section describes the module electrical characteristics. 6.3.3.1 Symbol VBAT RF 32kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V — 100 — MΩ Internal feedback resistor Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 31 Peripheral operating requirements and behaviors Table 18. 32kHz oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Cload Internal load capacitance (programmable) — 15 — pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V 1. The EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.3.2 Symbol fosc_lo tstart 32kHz oscillator frequency specifications Table 19. 32kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms Notes 1 1. Proper PC board layout procedures must be followed to achieve specifications. 6.4 Memories and memory interfaces 6.4.1 Flash (FTFL) electrical specifications This section describes the electrical characteristics of the FTFL module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 20. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm4 thversscr Longword Program high-voltage time — 7.5 18 μs Sector Erase high-voltage time — 13 113 ms 1 — 416 3616 ms 1 thversblk256k Erase Block high-voltage time for 256 KB Notes 1. Maximum time based on expectations at cycling end-of-life. K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 32 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.4.1.2 Symbol Flash timing specifications — commands Table 21. Flash command timing specifications Description Min. Typ. Max. Unit — — 1.7 Notes ms Read 1s Block execution time trd1blk256k • 256 KB program/data flash trd1sec2k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs Erase Flash Block execution time tersblk256k tersscr • 256 KB program/data flash Erase Flash Sector execution time 2 — 435 3700 ms — 14 114 ms 2 Program Section execution time tpgmsec512 • 512 B flash — 2.4 — ms tpgmsec1k • 1 KB flash — 4.7 — ms tpgmsec2k • 2 KB flash — 9.3 — ms trd1all Read 1s All Blocks execution time — — 1.8 ms trdonce Read Once execution time — — 25 μs Program Once execution time — 65 — μs tersall Erase All Blocks execution time — 870 7400 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tpgmonce 1 Swap Control execution time tswapx01 • control code 0x01 — 200 — μs tswapx02 • control code 0x02 — 70 150 μs tswapx04 • control code 0x04 — 70 150 μs tswapx08 • control code 0x08 — — 30 μs — 450 — ms • Control Code 0xFF — 70 — μs tsetram32k • 32 KB EEPROM backup — 0.8 1.2 ms tsetram256k • 256 KB EEPROM backup — 4.5 5.5 ms 260 μs Program Partition for EEPROM execution time tpgmpart256k • 256 KB FlexNVM Set FlexRAM Function execution time: tsetramff Byte-write to FlexRAM for EEPROM operation teewr8bers Byte-write to erased FlexRAM location execution time — 175 3 Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 33 Peripheral operating requirements and behaviors Table 21. Flash command timing specifications (continued) Symbol Description Min. Typ. Max. Unit Notes Byte-write to FlexRAM execution time: teewr8b32k • 32 KB EEPROM backup — 385 1800 μs teewr8b64k • 64 KB EEPROM backup — 475 2000 μs teewr8b128k • 128 KB EEPROM backup — 650 2400 μs teewr8b256k • 256 KB EEPROM backup — 1000 3200 μs Word-write to FlexRAM for EEPROM operation teewr16bers Word-write to erased FlexRAM location execution time — 175 260 μs Word-write to FlexRAM execution time: teewr16b32k • 32 KB EEPROM backup — 385 1800 μs teewr16b64k • 64 KB EEPROM backup — 475 2000 μs teewr16b128k • 128 KB EEPROM backup — 650 2400 μs teewr16b256k • 256 KB EEPROM backup — 1000 3200 μs Longword-write to FlexRAM for EEPROM operation teewr32bers Longword-write to erased FlexRAM location execution time — 360 540 μs Longword-write to FlexRAM execution time: teewr32b32k • 32 KB EEPROM backup — 630 2050 μs teewr32b64k • 64 KB EEPROM backup — 810 2250 μs teewr32b128k • 128 KB EEPROM backup — 1200 2675 μs teewr32b256k • 256 KB EEPROM backup — 1900 3500 μs 1. Assumes 25MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. 6.4.1.3 Flash (FTFL) current and power specfications Table 22. Flash (FTFL) current and power specfications Symbol Description IDD_PGM Worst case programming current in program flash 6.4.1.4 Symbol Typ. Unit 10 mA Reliability specifications Table 23. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes 50 — years 2 Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 34 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 23. NVM reliability specifications (continued) Symbol Description tnvmretp1k tnvmretp100 nnvmcycp Min. Typ.1 Max. Unit Notes Data retention after up to 1 K cycles 10 100 — years 2 Data retention after up to 100 cycles 15 100 — years 2 10 K 35 K — cycles 3 Cycling endurance Data Flash tnvmretd10k Data retention after up to 10 K cycles 5 50 — years 2 tnvmretd1k Data retention after up to 1 K cycles 10 100 — years 2 tnvmretd100 Data retention after up to 100 cycles 15 100 — years 2 10 K 35 K — cycles 3 nnvmcycd Cycling endurance FlexRAM as EEPROM tnvmretee100 Data retention up to 100% of write endurance 5 50 — years 2 tnvmretee10 Data retention up to 10% of write endurance 10 100 — years 2 tnvmretee1 Data retention up to 1% of write endurance 15 100 — years 2 Write endurance 4 nnvmwree16 • EEPROM backup to FlexRAM ratio = 16 35 K 175 K — writes nnvmwree128 • EEPROM backup to FlexRAM ratio = 128 315 K 1.6 M — writes nnvmwree512 • EEPROM backup to FlexRAM ratio = 512 1.27 M 6.4 M — writes nnvmwree4k • EEPROM backup to FlexRAM ratio = 4096 10 M 50 M — writes nnvmwree32k • EEPROM backup to FlexRAM ratio = 32,768 80 M 400 M — writes 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. 2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application). 3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM. 6.4.1.5 Write endurance to FlexRAM for EEPROM When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values. The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space. K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 35 Peripheral operating requirements and behaviors While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used. Writes_subsystem = EEPROM – 2 × EEESPLIT × EEESIZE EEESPLIT × EEESIZE × Write_efficiency × nnvmcycd where • Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance) • EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with Program Partition command • EEESPLIT — FlexRAM split factor for subsystem; entered with the Program Partition command • EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition command • Write_efficiency — • 0.25 for 8-bit writes to FlexRAM • 0.50 for 16-bit or 32-bit writes to FlexRAM • nnvmcycd — data flash cycling endurance K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 36 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Figure 9. EEPROM backup writes to FlexRAM 6.4.2 EzPort Switching Specifications Table 24. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 16 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 37 Peripheral operating requirements and behaviors EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 10. EzPort Timing Diagram 6.4.3 Flexbus Switching Specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 25. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — FB_CLK MHz FB1 Clock period 20 — ns FB2 Address, data, and control output valid — 11.5 ns 1 FB3 Address, data, and control output hold 0.5 — ns 1 FB4 Data and FB_TA input setup 8.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 38 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 26. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V — FB_CLK MHz 1/FB_CLK — ns Frequency of operation Notes FB1 Clock period FB2 Address, data, and control output valid — 13.5 ns 1 FB3 Address, data, and control output hold 0 — ns 1 FB4 Data and FB_TA input setup 13.7 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 39 Peripheral operating requirements and behaviors FB1 FB_CLK FB3 FB5 FB_A[Y] Address FB4 FB2 FB_D[X] Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 11. FlexBus read timing diagram K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 40 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 12. FlexBus write timing diagram 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 6.6 Analog K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. Freescale Semiconductor, Inc. 41 Peripheral operating requirements and behaviors 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3. The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 29 and Table 30. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDDVDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSSVSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL Reference voltage low VSSA VSSA VSSA V VADIN Input voltage VREFL — VREFH V CADIN Input capacitance • 16 bit modes — 8 10 pF • 8/10/12 bit modes — 4 5 — 2 5 Symbol RADIN RAS fADCK fADCK Input resistance Analog source resistance ADC conversion clock frequency ≤ 13 bit modes ADC conversion clock frequency kΩ 13/12 bit modes 16 bit modes fADCK < 4MHz Notes 3 — — 5 kΩ 4 1.0 — 18.0 MHz 4 2.0 — 12.0 MHz Table continues on the next page... K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011. 42 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 27. 16-bit ADC operating conditions (continued) Symbol Conditions ADC conversion rate Crate Description Min. Typ.1 Max. Unit Notes ≤ 13 bit modes 5 No ADC hardware averaging 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16 bit modes 5 No ADC hardware averaging 37.037 — 461.467 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has
K60P144M100SF2 价格&库存

很抱歉,暂时无法提供与“K60P144M100SF2”相匹配的价格&库存,您可以联系我们找货

免费人工找货