MC68HC908JB8 MC68HC08JB8 MC68HC08JT8
Technical Data
M68HC08 Microcontrollers
MC68HC908JB8/D Rev. 2.3 9/2005
freescale.com
MC68HC908JB8 MC68HC08JB8 MC68HC08JT8
Technical Data
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://freescale.com The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.
Freescale and the Freescale logo are registered trademarks of Freescale Semiconductor, Inc. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc., 2005. All rights reserved.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor
Technical Data 3
Revision History
Revision History
Date September 2005 August 2005 Revision Level 2.3 2.2 Added Pb-free parts. Updated to meet Freescale identity guidelines. 4.9 ROM-Resident Routines — Removed block erase references for ROM-resident routines. 9.8.8 USB Control Register 3 — Clarified bit descriptions for OSTALL0 and ISTALL0. 2.1 9.8.11 USB Status Register 1 — Clarified bit descriptions for TXACK, TXNAK, and TXSTL. Section 19. Mechanical Specifications — Replaced incorrect 44-pin QFP drawing, case 824E to case 824A. Corrected PTD6 and PTD7: not direct LED drive pins. Removed incorrect RX1E text from USB control register 1. Corrected Figure 9-30 for USB module. Corrected timer discrepancies throughout Section 11. Timer Interface Module (TIM). February 2002 2 Added Table 12-1 . Port Control Register Bits Summary. Changed pullup resistor limits for D– and I/O ports in 18.6 DC Electrical Characteristics. Added mechanical drawing for 20-pin SOIC package. Added Appendix A. MC68HC08JB8 — ROM part. Added Appendix B. MC68HC08JT8 — low-voltage ROM part. 153 263 28, 210, 217 146 159 177 201 256 266 269 277 Description Page Number(s) 267, 284 Throughout 61 149, 150
December 2003
Technical Data 4
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
List of Sections
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 27 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 51 Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . 53 Section 5. Configuration Register (CONFIG) . . . . . . . . . 65 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 69 Section 7. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . . 89 Section 8. System Integration Module (SIM) . . . . . . . . . 93 Section 9. Universal Serial Bus Module (USB) . . . . . . . 117 Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 163 Section 11. Timer Interface Module (TIM) . . . . . . . . . . . 177 Section 12. Input/Output Ports (I/O) . . . . . . . . . . . . . . . 199 Section 13. External Interrupt (IRQ) . . . . . . . . . . . . . . . 219 Section 14. Keyboard Interrupt Module (KBI). . . . . . . . 227 Section 15. Computer Operating Properly (COP) . . . . 237 Section 16. Low Voltage Inhibit (LVI) . . . . . . . . . . . . . . 243 Section 17. Break Module (BREAK) . . . . . . . . . . . . . . . 245 Section 18. Electrical Specifications. . . . . . . . . . . . . . . 253 Section 19. Mechanical Specifications . . . . . . . . . . . . . 263 Section 20. Ordering Information . . . . . . . . . . . . . . . . . 267 Appendix A. MC68HC08JB8 . . . . . . . . . . . . . . . . . . . . . . 269 Appendix B. MC68HC08JT8 . . . . . . . . . . . . . . . . . . . . . . 277
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor List of Sections Technical Data 5
List of Sections
Technical Data 6
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 List of Sections Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Table of Contents
Section 1. General Description
1.1 1.2 1.3 1.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.5.1 Power Supply Pins (VDD, VSS) . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.2 Voltage Regulator Out (VREG) . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.3 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 35 1.5.4 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.5.5 External Interrupt Pins (IRQ, PTE4/D–) . . . . . . . . . . . . . . . . 35 1.5.6 Port A Input/Output (I/O) Pins (PTA7/KBA7–PTA0/KBA0). . 36 1.5.7 Port B (I/O) Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . 36 1.5.8 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 36 1.5.9 Port D I/O Pins (PTD7–PTD0) . . . . . . . . . . . . . . . . . . . . . . . 36 1.5.10 Port E I/O Pins (PTE4/D–, PTE3/D+, PTE2/TCH1, PTE1/TCH0, PTE0/TCLK). . . . . . . . . . . . . . . . . . . . . . . . 36
Section 2. Memory Map
2.1 2.2 2.3 2.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Table of Contents
Technical Data 7
Table of Contents Section 3. Random-Access Memory (RAM)
3.1 3.2 3.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Section 4. FLASH Memory
4.1 4.2 4.3 4.4 4.5 4.6 4.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 FLASH Block Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 56 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 57 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.8 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 60 4.9 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.9.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.9.2 ERASE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.9.3 PROGRAM Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.9.4 VERIFY Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Section 5. Configuration Register (CONFIG)
5.1 5.2 5.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Technical Data 8
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Table of Contents Freescale Semiconductor
Table of Contents
Section 6. Central Processor Unit (CPU)
6.1 6.2 6.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 6.7 6.8 6.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 7. Oscillator (OSC)
7.1 7.2 7.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . . .90
7.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . 91 7.4.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . 91 7.4.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . 91 7.4.4 External Clock Source (OSCXCLK) . . . . . . . . . . . . . . . . . . . 91 7.4.5 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.6 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 92
Technical Data 9
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Table of Contents
Table of Contents Section 8. System Integration Module (SIM)
8.1 8.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 96 8.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . 97 8.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 97 8.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 97 8.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 99 8.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 8.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 101 8.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .101 8.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 102 8.4.2.6 Universal Serial Bus Reset . . . . . . . . . . . . . . . . . . . . . . 102 8.4.2.7 Registers Values After Different Resets. . . . . . . . . . . . . 102 8.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 103 8.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 104 8.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 104 8.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 8.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 110 8.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 8.8
Technical Data 10
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Table of Contents Freescale Semiconductor
Table of Contents
8.8.1 8.8.2 8.8.3
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .116
Section 9. Universal Serial Bus Module (USB)
9.1 9.2 9.3 9.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 9.5.1 USB Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.5.1.1 Sync Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9.5.1.2 Packet Identifier Field . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.5.1.3 Address Field (ADDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.5.1.4 Endpoint Field (ENDP). . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.5.1.5 Cyclic Redundancy Check (CRC) . . . . . . . . . . . . . . . . . 128 9.5.1.6 End-of-Packet (EOP) . . . . . . . . . . . . . . . . . . . . . . . . . . .128 9.5.2 Reset Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.5.3 Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.5.4 Resume After Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.5.4.1 Host Initiated Resume . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.5.4.2 USB Reset Signalling. . . . . . . . . . . . . . . . . . . . . . . . . . .131 9.5.4.3 Remote Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 9.5.5 Low-Speed Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 9.6 Clock Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.7 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.7.1 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.7.2 USB Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.7.2.1 Output Driver Characteristics . . . . . . . . . . . . . . . . . . . . . 134 9.7.2.2 Low Speed (1.5 Mbps) Driver Characteristics . . . . . . . . 134 9.7.2.3 Receiver Data Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.7.2.4 Data Source Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.7.2.5 Data Signal Rise and Fall Time . . . . . . . . . . . . . . . . . . . 136 9.7.3 USB Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Table of Contents
Technical Data 11
Table of Contents
9.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.8.1 USB Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.8.2 USB Interrupt Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.8.3 USB Interrupt Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9.8.4 USB Interrupt Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.8.5 USB Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.8.6 USB Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.8.7 USB Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.8.8 USB Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 9.8.9 USB Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.8.10 USB Status Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.8.11 USB Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.8.12 USB Endpoint 0 Data Registers . . . . . . . . . . . . . . . . . . . . . 154 9.8.13 USB Endpoint 1 Data Registers . . . . . . . . . . . . . . . . . . . . . 155 9.8.14 USB Endpoint 2 Data Registers . . . . . . . . . . . . . . . . . . . . . 156 9.9 USB Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.9.1 USB End-of-Transaction Interrupt . . . . . . . . . . . . . . . . . . . 157 9.9.1.1 Receive Control Endpoint 0 . . . . . . . . . . . . . . . . . . . . . . 158 9.9.1.2 Transmit Control Endpoint 0 . . . . . . . . . . . . . . . . . . . . . 160 9.9.1.3 Transmit Endpoint 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.9.1.4 Transmit Endpoint 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.9.1.5 Receive Endpoint 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.9.2 Resume Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.9.3 End-of-Packet Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Section 10. Monitor ROM (MON)
10.1 10.2 10.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.4.2 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 10.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.4.4 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.4.5 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Technical Data 12
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Table of Contents Freescale Semiconductor
Table of Contents
10.4.6 10.5
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Section 11. Timer Interface Module (TIM)
11.1 11.2 11.3 11.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 182 11.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .183 11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 183 11.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 184 11.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 185 11.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 188
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.9.1 TIM Clock Pin (PTE0/TCLK) . . . . . . . . . . . . . . . . . . . . . . .189 11.9.2 TIM Channel I/O Pins (PTE1/TCH0:PTE2/TCH1) . . . . . . . 189 11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 190 11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 193 11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 194 11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Table of Contents
Technical Data 13
Table of Contents Section 12. Input/Output Ports (I/O)
12.1 12.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 203 12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 205 12.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.5.2 Data Direction Register C. . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 12.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . . 215 12.8 Port Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 12.8.1 Port Option Control Register . . . . . . . . . . . . . . . . . . . . . . .217
Section 13. External Interrupt (IRQ)
13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9
Technical Data 14
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 PTE4/D– Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 223 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 224 IRQ Option Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . 225
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Table of Contents Freescale Semiconductor
Table of Contents
Section 14. Keyboard Interrupt Module (KBI)
14.1 14.2 14.3 14.4 14.5 14.6 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 14.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 14.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 14.8 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 233
14.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 14.9.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 233 14.9.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 235
Section 15. Computer Operating Properly (COP)
15.1 15.2 15.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.4.1 OSCXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 240 15.5 15.6 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Table of Contents
Technical Data 15
Table of Contents
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242 15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242 15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 242
Section 16. Low Voltage Inhibit (LVI)
16.1 16.2 16.3 16.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 LVI Control Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . .244
16.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 16.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244 16.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
Section 17. Break Module (BREAK)
17.1 17.2 17.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246 17.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 248 17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .248 17.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 248 17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 248 17.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 17.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 17.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 17.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 249 17.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.6.4 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 252
Technical Data 16 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Table of Contents Freescale Semiconductor
Table of Contents
Section 18. Electrical Specifications
18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 255 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 256 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 USB DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 258
18.10 USB Low-Speed Source Electrical Characteristics . . . . . . . . 259 18.11 USB Signaling Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.12 TImer Interface Module Characteristics . . . . . . . . . . . . . . . . . 260 18.13 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Section 19. Mechanical Specifications
19.1 19.2 19.3 19.4 19.5 19.6 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 264 28-Pin Small Outline Integrated Circuit (SOIC) . . . . . . . . . . . 265 20-Pin Dual In-Line Package (PDIP) . . . . . . . . . . . . . . . . . . . 265 20-Pin Small Outline Integrated Circuit (SOIC) . . . . . . . . . . . 266
Section 20. Ordering Information
20.1 20.2 20.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Technical Data 17
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Table of Contents
Table of Contents Appendix A. MC68HC08JB8
A.1 A.2 A.3 A.4 A.5 A.6 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
A.7 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 A.7.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . .274 A.7.2 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 A.8 MC68HC08JB8 Order Numbers . . . . . . . . . . . . . . . . . . . . . . . 275
Appendix B. MC68HC08JT8
B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Reserved Register Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282 Universal Serial Bus Module. . . . . . . . . . . . . . . . . . . . . . . . . . 282
B.10 Low-Voltage Inhibit Module . . . . . . . . . . . . . . . . . . . . . . . . . . 282 B.11 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 B.11.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . 282 B.11.2 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . .283 B.11.3 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . .283 B.11.4 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 B.11.5 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 B.12 MC68HC08JT8 Order Numbers . . . . . . . . . . . . . . . . . . . . . . . 284
Technical Data 18 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Table of Contents Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
List of Figures
Figure 1-1 1-2 1-3 1-4 1-5 1-6 2-1 2-2 4-1 4-2 4-3 4-4 4-5 5-1 6-1 6-2 6-3 6-4 6-5 6-6 7-1 8-1 8-2 8-3 Title Page
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 44-Pin QFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 32 28-pin SOIC Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 33 20-pin PDIP and SOIC Pin Assignments . . . . . . . . . . . . . . . . . 33 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Regulator Supply Capacitor Configuration . . . . . . . . . . . . . . . . 35 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .42 FLASH Memory Register Summary . . . . . . . . . . . . . . . . . . . . .54 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 55 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 59 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 60 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . .60 Configuration Register (CONFIG). . . . . . . . . . . . . . . . . . . . . . . 66 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 74 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . . .90 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . .96 SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Technical Data 19
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor List of Figures
List of Figures
Figure 8-4 8-5 8-6 8-7 8-8 8-9 8-10 8-11 8-12 8-13 8-14 8-15 8-16 8-17 8-18 8-19 8-20 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 9-17 9-18 Title Page
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 107 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . 109 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 111 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 111 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 113 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 113 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . . . 115 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . 116 USB I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 120 USB Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Supported Transaction Types Per Endpoint. . . . . . . . . . . . . . 125 Supported USB Packet Types . . . . . . . . . . . . . . . . . . . . . . . . 126 Sync Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 SOP, Sync Signaling, and Voltage Levels . . . . . . . . . . . . . . . 127 EOP Transaction Voltage Levels . . . . . . . . . . . . . . . . . . . . . . 129 EOP Width Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 External Low-Speed Device Configuration . . . . . . . . . . . . . . . 132 Regulator Electrical Connections . . . . . . . . . . . . . . . . . . . . . . 133 Receiver Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Differential Input Sensitivity Range. . . . . . . . . . . . . . . . . . . . . 135 Data Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Data Signal Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . .136 USB Address Register (UADDR) . . . . . . . . . . . . . . . . . . . . . . 138 USB Interrupt Register 0 (UIR0) . . . . . . . . . . . . . . . . . . . . . . . 139 USB Interrupt Register 1 (UIR1) . . . . . . . . . . . . . . . . . . . . . . . 141 USB Interrupt Register 2 (UIR2) . . . . . . . . . . . . . . . . . . . . . . . 144
Technical Data 20
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 List of Figures Freescale Semiconductor
List of Figures
Figure 9-19 9-20 9-21 9-22 9-23 9-24 9-25 9-26 9-27 9-28 9-29 9-30 9-31 9-32 10-1 10-2 10-3 10-4 10-5 10-6 10-7 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9
Title
Page
USB Control Register 0 (UCR0) . . . . . . . . . . . . . . . . . . . . . . . 145 USB Control Register 1 (UCR1) . . . . . . . . . . . . . . . . . . . . . . . 146 USB Control Register 2 (UCR2) . . . . . . . . . . . . . . . . . . . . . . . 147 USB Control Register 3 (UCR3) . . . . . . . . . . . . . . . . . . . . . . . 149 USB Control Register 4 (UCR4) . . . . . . . . . . . . . . . . . . . . . . . 151 USB Status Register 0 (USR0). . . . . . . . . . . . . . . . . . . . . . . . 152 USB Status Register 1 (USR1). . . . . . . . . . . . . . . . . . . . . . . . 153 USB Endpoint 0 Data Registers (UE0D0–UE0D7). . . . . . . . . 154 USB Endpoint 1 Data Registers (UE1D0–UE1D7). . . . . . . . . 155 USB Endpoint 2 Data Registers (UE2D0–UE2D7). . . . . . . . . 156 OUT Token Data Flow for Receive Endpoint 0. . . . . . . . . . . . 158 SETUP Token Data Flow for Receive Endpoint 0 . . . . . . . . . 159 IN Token Data Flow for Transmit Endpoint 0 . . . . . . . . . . . . . 160 IN Token Data Flow for Transmit Endpoint 1 . . . . . . . . . . . . . 161 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . . 168 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .175 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .180 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 184 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 190 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . . 192 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . . 193 TIM Channel Status and Control Registers (TSC0:TSC1) . . . 194 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . . 198
12-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .200 12-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 203
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor List of Figures
Technical Data 21
List of Figures
12-4 12-5 12-6 12-7 12-8 12-9 12-10 12-11 12-12 12-13 12-14 12-15 12-16 12-17 13-1 13-2 13-3 13-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 205 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . . 208 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 211 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 215 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Port Option Control Register (POCR). . . . . . . . . . . . . . . . . . . 217 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 221 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .221 IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . . 224 IRQ Option Control Register (IOCR) . . . . . . . . . . . . . . . . . . . 225
14-1 Keyboard Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . 229 14-2 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 234 14-3 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 235 15-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 15-2 Configuration Register (CONFIG). . . . . . . . . . . . . . . . . . . . . . 240 15-3 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 241 16-1 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .244 16-2 Configuration Register (CONFIG). . . . . . . . . . . . . . . . . . . . . . 244 17-1 17-2 17-3 17-4 17-5 17-6 17-7
Technical Data 22
Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 247 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 247 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 249 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 250 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 250 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 251 Break Flag Control Register High (BFCR) . . . . . . . . . . . . . . . 252
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 List of Figures Freescale Semiconductor
List of Figures
Figure 19-1 19-2 19-3 19-4 A-1 A-2 B-1 B-2 B-3
Title
Page
44-Pin QFP (Case #824E) . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 28-Pin SOIC (Case #751F). . . . . . . . . . . . . . . . . . . . . . . . . . .265 20-Pin PDIP (Case #738) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 20-Pin SOIC (Case #751D) . . . . . . . . . . . . . . . . . . . . . . . . . . 266 MC68HC08JB8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 271 MC68HC08JB8 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . 272 MC68HC08JT8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . .279 MC68HC08JT8 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . 280 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor List of Figures
Technical Data 23
List of Figures
Technical Data 24
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 List of Figures Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
List of Tables
Table 1-1 2-1 4-1 4-2 4-3 4-4 4-5 6-1 6-2 8-1 8-2 8-3 8-4 9-1 9-2 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 Title Page
Summary of Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 ROM-Resident Routine Variables. . . . . . . . . . . . . . . . . . . . . . . 62 ERASE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 PROGRAM Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 VERIFY Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SIM Module Signal Name Conventions . . . . . . . . . . . . . . . . . . 95 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Registers not Affected by Normal Reset. . . . . . . . . . . . . . . . . 103 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 USB Module Pin Name Conventions . . . . . . . . . . . . . . . . . . . 120 Supported Packet Identifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 127 Mode Entry Requirements and Options . . . . . . . . . . . . . . . . . 166 Monitor Mode Vector Differences . . . . . . . . . . . . . . . . . . . . . . 169 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 169 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 172 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 172 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 173 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 173 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 174 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 174
Technical Data 25
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor List of Tables
List of Tables
11-1 TIM Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 11-3 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 196 12-1 12-2 12-3 12-4 12-5 12-6 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .201 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
14-1 KBI Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 228 14-2 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 20-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 A-1 A-2 B-1 B-2 Summary of MC68HC08JB8 and MC68HC908JB8 Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 MC68HC08JB8 Order Numbers . . . . . . . . . . . . . . . . . . . . . . . 275 Summary of MC68HC08JT8 and MC68HC908JB8 Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 MC68HC08JT8 Order Numbers . . . . . . . . . . . . . . . . . . . . . . . 284
Technical Data 26
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 List of Tables Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 1. General Description
1.1 Contents
1.2 1.3 1.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.5.1 Power Supply Pins (VDD, VSS) . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.2 Voltage Regulator Out (VREG) . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.3 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 35 1.5.4 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.5.5 External Interrupt Pins (IRQ, PTE4/D–) . . . . . . . . . . . . . . . . 35 1.5.6 Port A Input/Output (I/O) Pins (PTA7/KBA7–PTA0/KBA0). . 36 1.5.7 Port B (I/O) Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . 36 1.5.8 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 36 1.5.9 Port D I/O Pins (PTD7–PTD0) . . . . . . . . . . . . . . . . . . . . . . . 36 1.5.10 Port E I/O Pins (PTE4/D–, PTE3/D+, PTE2/TCH1, PTE1/TCH0, PTE0/TCLK). . . . . . . . . . . . . . . . . . . . . . . . 36
1.2 Introduction
The MC68HC908JB8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor General Description
Technical Data 27
General Description 1.3 Features
Features of the MC68HC908JB8 include: • • • • • • • • High-performance M68HC08 architecture Fully upward-compatible object code with M6805, M146805, and M68HC05 Families 3-MHz internal bus frequency 8,192 bytes of on-chip FLASH memory 256 bytes of on-chip random-access memory (RAM) FLASH program memory security1 On-chip programming firmware for use with host PC computer Up to 37 general-purpose 3.3V input/output (I/O) pins, including: – 13 or 10 shared-function I/O pins, depending on package – 24, 8, or 2 dedicated I/O pins, depending on package – 8 keyboard interrupts on port A, on all packages – 10mA sink capability for normal LED on 4 pins – 25mA sink capability for infrared LED on 2 pins – 10mA sink capability for PS/2 connection on 2 pins (with USB module disabled) • 16-bit, 2-channel timer interface module (TIM) with selectable input capture, output compare, PWM capability on each channel, and external clock input option (TCLK) Full Universal Serial Bus Specification 1.1 low-speed functions: – 1.5 Mbps data rate – On-chip 3.3V regulator – Endpoint 0 with 8-byte transmit buffer and 8-byte receive buffer – Endpoint 1 with 8-byte transmit buffer – Endpoint 2 with 8-byte transmit buffer and 8-byte receive buffer
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users.
•
Technical Data 28
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 General Description Freescale Semiconductor
General Description Features
•
System protection features: – Optional computer operating properly (COP) reset – Optional low-voltage detection with reset – Illegal opcode detection with reset – Illegal address detection with reset
• • • •
Low-power design (fully static with stop and wait modes) Master reset pin with internal pullup and power-on reset External interrupt pin with programmable internal pullup (IRQ) 44-pin quad flat pack (QFP), 28-pin small outline integrated circuit package (SOIC), 20-pin small outline integrated circuit package (SOIC), and 20-pin plastic dual in-line package (DIP) Specific features of MC68HC908JB8 in 44-pin are: – Port B is 8 bits: PTB0–PTB7 – Port C is 8 bits: PTC0–PTC7 – Port D is 8 bits: PTD0–PTD7 – Port E is 5 bits: PTE0–PTE4; 2-channel TIM module with TCLK input option
•
•
Specific features of MC68HC908JB8 in 28-pin are: – Port B is not available – Port C is only one bit: PTC0 – Port D is only 7 bits: PTD0–PTD6 – Port E is 5 bits: PTE0–PTE4; 2-channel TIM module with TCLK input option
•
Specific features of MC68HC908JB8 in 20-pin are: – Port B is not available – Port C is only one bit: PTC0 – Port D is only one bit: PTD0/1; internal PTD0 and PTD1 pads are bonded together to a single pin, PTD0/1 – Port E is only 3 bits: PTE1, PTE3, and PTE4; 1-channel TIM module without TCLK input option
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor General Description
Technical Data 29
General Description
Features of the CPU08 include the following: • • • • • • • • • • Enhanced HC05 programming model Extensive loop control functions 16 addressing modes (eight more than the HC05) 16-bit index register and stack pointer Memory-to-memory data transfers Fast 8 × 8 multiply instruction Fast 16/8 divide instruction Binary-coded decimal (BCD) instructions Optimization for controller applications Efficient C language support
1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908JB8.
Technical Data 30
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 General Description Freescale Semiconductor
DDRC
PTC
DDRD
PTD
DDRE
PTE
USB MODULE VDD POWER VSS USB ENDPOINT 0, 1, 2
VREG (3.3 V)
INTERNAL VOLTAGE REGULATOR
(1) Pins have 5V logic. (2) Pins have integrated pullup device. (3) Pins have software configurable pullup device. (4) Pins are open-drain when configured as output. (5) Pins have 10mA sink capability. (6) Pins have 25mA sink capability.
LS USB TRANSCEIVER
Freescale Semiconductor General Description 31
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Technical Data
INTERNAL BUS DDRA M68HC08 CPU CPU REGISTERS ARITHMETIC/LOGIC UNIT (ALU) KEYBOARD INTERRUPT MODULE PTB CONTROL AND STATUS REGISTERS — 64 BYTES TIMER INTERFACE MODULE USER FLASH MEMORY — 8,192 BYTES DDRB PTB7–PTB0 (3) PTA7/KBA7 (3) : PTA0/KBA0 (3) PTA
USER RAM — 256 BYTES
BREAK MODULE
PTC7–PTC0 (3)
MONITOR ROM — 976 BYTES LOW VOLTAGE INHIBIT MODULE
USER FLASH VECTORS — 16 BYTES OSC1 OSC2
PTD7–PTD6 (4) PTD5–PTD2 (4) (5) PTD1–PTD0 (4) (6) PTE4/D– (3) (4) (5)
OSCILLATOR
POWER-ON RESET MODULE
(1), (2)
RST
SYSTEM INTEGRATION MODULE IRQ MODULE
PTE3/D+ (3) (4) (5) COMPUTER OPERATING PROPERLY MODULE PTE2/TCH1 (3) PTE1/TCH0 (3) PTE0/TCLK (3)
(1), (3) IRQ
General Description MCU Block Diagram
Figure 1-1. MCU Block Diagram
General Description 1.5 Pin Assignments
PTA0/KBA0 35
44
43
42
41
40
39
38
37
36
VREG VDD PTB2 PTB1 PTB0 PTD0 PTD1 PTD2 PTD3 PTD4 PTE1/TCH0
34
PTA1/KBA1
OSC2
OSC1
PTB3
PTB4
PTB5
PTB6
PTB7
RST
VSS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
33 32 31 30 29 28 27 26 25 24 23
PTA2/KBA2 PTA3/KBA3 PTC7 PTC6 PTC5 PTC4 PTE0/TCLK PTE2/TCH1 PTA4/KBA4 PTA5/KBA5 PTA6/KBA6
PTE3/D+
IRQ
Figure 1-2. 44-Pin QFP Pin Assignments
Technical Data 32
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 General Description Freescale Semiconductor
PTA7/KBA7
PTD7
PTD6
PTC0
PTC1
PTC2
PTE4/D–
PTC3
PTD5
General Description Pin Assignments
VSS OSC1 OSC2 VREG VDD PTD0 PTD1 PTD2 PTD3 PTD4 PTE1/TCH0 PTE3/D+ PTE4/D– PTC0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
RST PTA0/KBA0 PTA1/KBA1 PTA2/KBA2 PTA3/KBA3 PTE0/TCLK PTE2/TCH1 PTA4/KBA4 PTA5/KBA5 PTA6/KBA6 PTA7/KBA7 PTD5 PTD6 IRQ
Pins not available on 28-pin package: PTB0 PTB1 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7 PTC1 PTC2 PTC3 PTC4 PTC5 PTC6 PTC7 PTD7
Internal pads are unconnected.
Figure 1-3. 28-Pin SOIC Pin Assignments
PTD0/1 pin: PTD0 and PTD1 internal pads are bonded together to PTD0/1 pin.
VSS OSC1 OSC2 VREG VDD PTD0/1 PTE1/TCH0 PTE3/D+ PTE4/D– PTC0
1 2 3 4 5 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
RST PTA0/KBA0 PTA1/KBA1 PTA2/KBA2 PTA3/KBA3 PTA4/KBA4 PTA5/KBA5 PTA6/KBA6 PTA7/KBA7 IRQ
Pins not available on 20-pin package: PTB0 PTB1 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7 PTC1 PTC2 PTC3 PTC4 PTC5 PTC6 PTC7 PTD2 PTD3 PTD4 PTD5 PTD6 PTD7 PTE2/TCH1 PTE0/TCLK
Internal pads are unconnected.
Figure 1-4. 20-Pin PDIP and SOIC Pin Assignments
NOTE:
In 20-pin package, the PTD0 and PTD1 internal pads are bonded together to PTD0/1 pin.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor General Description
Technical Data 33
General Description
1.5.1 Power Supply Pins (VDD, VSS) VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-5 shows. Place the bypass capacitors as close to the MCU power pins as possible. Use high-frequency-response ceramic capacitors for CBYPASS. CBULK are optional bulk current bypass capacitors for use in applications that require the port pins to source high current levels. MCU
VDD VSS
CBYPASS 0.1 µF + CBULK
VDD NOTE: Values shown are typical values.
Figure 1-5. Power Supply Bypassing
1.5.2 Voltage Regulator Out (VREG) VREG is the 3.3 V output of the on-chip voltage regulator. VREG is used internally for the MCU operation and the USB data driver. It is also used to supply the voltage for the external pullup resistor required on the USB’s D– line. The VREG pin requires an external bulk capacitor 4.7µF or larger and a 0.1 µF ceramic bypass capacitor as Figure 1-6 shows. Place the bypass capacitors as close to the VREG pin as possible.
Technical Data 34
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 General Description Freescale Semiconductor
General Description Pin Assignments
VREG
MCU
VSS
CREGBYPASS 0.1 µF + CREGBULK > 4.7 µF VREG
Figure 1-6. Regulator Supply Capacitor Configuration
1.5.3 Oscillator Pins (OSC1 and OSC2) The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit.
1.5.4 External Reset Pin (RST) A logic zero on the RST pin forces the MCU to a known start-up state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. The RST pin contains an internal pullup device to VDD. (See Section 8. System Integration Module (SIM).)
1.5.5 External Interrupt Pins (IRQ, PTE4/D–) IRQ is an asynchronous external interrupt pin. IRQ is also the pin to enter monitor mode. The IRQ pin contains a software configurable pullup device to VDD. PTE4/D– can be programmed to trigger the IRQ interrupt. (See Section 13. External Interrupt (IRQ).)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor General Description
Technical Data 35
General Description
1.5.6 Port A Input/Output (I/O) Pins (PTA7/KBA7–PTA0/KBA0) PTA7/KBA7–PTA0/KBA0 are general-purpose bidirectional I/O port pins. (See Section 12. Input/Output Ports (I/O).) Each pin contains a software configurable pullup device to VREG when the pin is configured as an input. (See 12.8 Port Options.) Each pin can also be programmed as an external keyboard interrupt pin. (See Section 14. Keyboard Interrupt Module (KBI).)
1.5.7 Port B (I/O) Pins (PTB7–PTB0) PTB7–PTB0 are general-purpose bidirectional I/O port pins. Each pin contains a software configurable pullup device to VREG when the pin is configured as an input. (See 12.8 Port Options.)
1.5.8 Port C I/O Pins (PTC7–PTC0) PTC7–PTC0 are general-purpose bidirectional I/O port pins. (See Section 12. Input/Output Ports (I/O).) Each pin contains a software configurable pullup device to VREG when the pin is configured as an input. (See 12.8 Port Options.)
1.5.9 Port D I/O Pins (PTD7–PTD0) PTD7–PTD0 are general-purpose bidirectional I/O port pins; open-drain when configured as output. (See Section 12. Input/Output Ports (I/O).) PTD5–PTD2 are software configurable to be 10mA sink pins for direct LED connections. PTD1–PTD0 are software configurable to be 25mA sink pins for direct infrared LED connections. (See 12.8 Port Options.)
1.5.10 Port E I/O Pins (PTE4/D–, PTE3/D+, PTE2/TCH1, PTE1/TCH0, PTE0/TCLK) Port E is a 5-bit special function port that shares two of its pins with the USB module and three of its pins with the timer interface module. Each PTE2–PTE0 pin contains a software configurable pullup device to VREG when the pin is configured as an input or output.
Technical Data 36 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 General Description Freescale Semiconductor
General Description Pin Assignments
When the USB module is disabled, the PTE4 and PTE3 pins are general-purpose bidirectional I/O port pins with 10mA sink capability. Each pin is open-drain when configured as an output; and each pin contains a software configurable 5kΩ pullup to VDD when configured as an input. The PTE4 pin can also be enabled to trigger the IRQ interrupt. When the USB module is enabled, the PTE4/D– and PTE3/D+ pins become the USB module D– and D+ pins. The D– pin contains a software configurable 1.5kΩ pullup to VREG. (See Section 11. Timer Interface Module (TIM), Section 9. Universal Serial Bus Module (USB) and Section 12. Input/Output Ports (I/O).) Summary of the pin functions are provided in Table 1-1. Table 1-1. Summary of Pin Functions
PIN NAME VDD VSS VREG RST Power supply. Power supply ground. Regulated 3.3V output from MCU. Reset input; active low. With internal pullup to VDD and schmitt trigger input. External IRQ pin; with programmable internal pullup to VDD and schmitt trigger input. Used for mode entry selection. OSC1 OSC2 PTA0/KBA0 : PTA7/KBA7 Pins as keyboard interrupts, KBA0–KBA7. Each pin has programmable internal pullup to VREG when configured as input. 8-bit general-purpose I/O port. PTB0–PTB7 Each pin has programmable internal pullup to VREG when configured as input. IN IN IN/OUT IN Crystal oscillator input. Crystal oscillator output; inverting of OSC1 signal. 8-bit general-purpose I/O port. PIN DESCRIPTION IN/OUT IN OUT OUT IN/OUT IN IN IN OUT IN/OUT VOLTAGE LEVEL 4.0 to 5.5V 0V VREG (3.3V) VDD VDD VREG to VDD +VHI VREG VREG VREG VREG VREG VREG VREG
IRQ
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor General Description
Technical Data 37
General Description
Table 1-1. Summary of Pin Functions
PIN NAME PIN DESCRIPTION 8-bit general-purpose I/O port. PTC0–PTC7 Each pin has programmable internal pullup to VREG when configured as input. 8-bit general-purpose I/O port; open-drain when configured as output. PTD0–PTD7 PTD0–PTD1 have configurable 25mA sink for infrared LED. PTD2–PTD5 have configurable 10mA sink for LED. PTE0–PTE2 are general-purpose I/O pins. PTE0/TCLK PTE1/TCH0 PTE2/TCH1 PTE1 as TCH0 of timer interface module. PTE2 as TCH1 of timer interface module. PTE3–PTE4 are general-purpose I/O pins; open-drain when configured as output. PTE3–PTE4 have programmable internal pullup to VDD when configured as input. PTE3 as D+ of USB module. PTE4 as D– of USB module. PTE4 as additional IRQ interrupt. IN/OUT IN/OUT IN OUT IN IN/OUT IN/OUT IN PTE0–PTE2 have programmable internal pullup to VREG when configured as input or output. PTE0 as TCLK of timer interface module. IN/OUT IN/OUT IN IN OUT OUT OUT IN/OUT IN/OUT IN VOLTAGE LEVEL VREG VREG VREG VREG or VDD VREG or VDD VREG or VDD VREG VREG VREG VREG VREG VDD VREG or VDD VDD VREG VREG VDD
PTE3/D+ PTE4/D–
Technical Data 38
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 General Description Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 2. Memory Map
2.1 Contents
2.2 2.3 2.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
2.2 Introduction
The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes: • • • • 8,192 bytes of user FLASH memory 256 bytes of RAM 16 bytes of user-defined vectors 976 bytes of monitor ROM
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Memory Map
Technical Data 39
Memory Map
$0000 ↓ $003F $0040 ↓ $013F $0140 ↓ $DBFF $DC00 ↓ $FBFF $FC00 ↓ $FDFF $FE00 $FE01 $FE02 $FE03 $FE04 $FE05 $FE06 $FE07 $FE08 $FE09 $FE0A $FE0B $FE0C $FE0D $FE0E $FE0F $FE10 ↓ $FFDF $FFE0 ↓ $FFEF $FFF0 ↓ $FFFF
I/O Registers 64 Bytes RAM 256 Bytes Unimplemented 56,000 Bytes FLASH 8,192 Bytes Monitor ROM 1 512 Bytes Break Status Register (BSR) Reset Status Register (RSR) Reserved Break Flag Control Register (BFCR) Interrupt Status Register 1 (INT1) Reserved Reserved Reserved FLASH Control Register (FLCR) FLASH Block Protect Register (FLBPR) Reserved Reserved Break Address High Register (BRKH) Break Address Low Register (BRKL) Break Status and Control Register (BRKSCR) Reserved Monitor ROM 2 464 Bytes Reserved 16 Bytes FLASH Vectors 16 Bytes
Figure 2-1. Memory Map
Technical Data 40
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Memory Map Freescale Semiconductor
Memory Map I/O Section
2.3 I/O Section
Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have these addresses: • • • • • • • • • • • • • • • • $FE00; break status register, BSR $FE01; reset status register, RSR $FE02; reserved $FE03; break flag control register, BFCR $FE04; interrupt status register 1, INT1 $FE05; reserved $FE06; reserved $FE07; reserved $FE08; FLASH control register, FLCR $FE09; FLASH block protect register, FLBPR $FE0A; reserved $FE0B; reserved $FE0C; break Address Register High, BRKH $FE0D; break Address Register Low, BRKL $FE0E; break status and control register, BRKSCR $FFFF; COP control register, COPCTL
2.4 Monitor ROM
The 512 bytes at addresses $FC00–$FDFF and 464 bytes at addresses $FE10–$FFDF are reserved ROM addresses that contain the instructions for the monitor functions. (See Section 10. Monitor ROM (MON).)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Memory Map
Technical Data 41
Memory Map
Addr.
Register Name Read: Port A Data Register Write: (PTA) Reset: Read: Port B Data Register Write: (PTB) Reset: Read: Port C Data Register Write: (PTC) Reset: Read: Port D Data Register Write: (PTD) Reset:
Bit 7 PTA7
6 PTA6
5 PTA5
4 PTA4
3 PTA3
2 PTA2
1 PTA1
Bit 0 PTA0
$0000
Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
$0001
Unaffected by reset PTC7 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0
$0002
Unaffected by reset PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0
$0003
Unaffected by reset DDRA6 0 DDRA5 0 DDRA4 0 DDRA3 0 DDRA2 0 DDRA1 0 DDRA0 0
Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0* * DDRA7 bit is reset by POR or LVI reset only. Read: DDRB7 Data Direction Register B $0005 Write: (DDRB) Reset: 0 Read: DDRC7 Data Direction Register C $0006 Write: (DDRC) Reset: 0 Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 Read: Port E Data Register Write: (PTE) Reset: 0
DDRB6 0 DDRC6 0 DDRD6 0 0
DDRB5 0 DDRC5 0 DDRD5 0 0
DDRB4 0 DDRC4 0 DDRD4 0 PTE4
DDRB3 0 DDRC3 0 DDRD3 0 PTE3
DDRB2 0 DDRC2 0 DDRD2 0 PTE2
DDRB1 0 DDRC1 0 DDRD1 0 PTE1
DDRB0 0 DDRC0 0 DDRD0 0 PTE0
$0008
Unaffected by reset 0 0 0 DDRE4 0 R DDRE3 0 = Reserved DDRE2 0 DDRE1 0 DDRE0 0
Read: Data Direction Register E $0009 Write: (DDRE) Reset:
0
0
0
= Unimplemented
U = Unaffected by reset
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 8)
Technical Data 42 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Memory Map Freescale Semiconductor
Memory Map Monitor ROM
Addr.
Register Name Read: TIM Status and Control Register Write: (TSC) Reset: Read:
Bit 7 TOF 0 0
6 TOIE 0
5 TSTOP 1
4 0 TRST 0
3 0
2 PS2 0
1 PS1 0
Bit 0 PS0 0
$000A
0
$000B
Unimplemented Write:
$000C
Read: TIM Counter Register High Write: (TCNTH) Reset: Read: TIM Counter Register Low Write: (TCNTL) Reset: Read: TIM Counter Modulo Register High Write: (TMODH) Reset: Read: TIM Counter Modulo Register Low Write: (TMODL) Reset:
Bit15
Bit14
Bit13
Bit12
Bit11
Bit10
Bit9
Bit8
0 Bit7
0 Bit6
0 Bit5
0 Bit4
0 Bit3
0 Bit2
0 Bit1
0 Bit0
$000D
0 Bit15 1 Bit7 1 CH0F 0 0 Bit15
0 Bit14 1 Bit6 1 CH0IE 0 Bit14
0 Bit13 1 Bit5 1 MS0B 0 Bit13
0 Bit12 1 Bit4 1 MS0A 0 Bit12
0 Bit11 1 Bit3 1 ELS0B 0 Bit11
0 Bit10 1 Bit2 1 ELS0A 0 Bit10
0 Bit9 1 Bit1 1 TOV0 0 Bit9
0 Bit8 1 Bit0 1 CH0MAX 0 Bit8
$000E
$000F
Read: TIM Channel 0 Status and $0010 Control Register Write: (TSC0) Reset: Read: TIM Channel 0 Register High Write: (TCH0H) Reset: Read: TIM Channel 0 Register Low Write: (TCH0L) Reset:
$0011
Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
$0012
Indeterminate after reset CH1F 0 0 CH1IE 0 0 MS1A 0 R ELS1B 0 = Reserved ELS1A 0 TOV1 0 CH1MAX 0
Read: TIM Channel 1 Status and $0013 Control Register Write: (TSC1) Reset:
0
= Unimplemented
U = Unaffected by reset
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Memory Map
Technical Data 43
Memory Map
Addr.
Register Name Read: TIM Channel 1 Register High Write: (TCH1H) Reset: Read: TIM Channel 1 Register Low Write: (TCH1L) Reset: Read: Keyboard Status and Control Register Write: (KBSCR) Reset: Read: Keyboard Interrupt Enable Register Write: (KBIER) Reset:
Bit 7 Bit15
6 Bit14
5 Bit13
4 Bit12
3 Bit11
2 Bit10
1 Bit9
Bit 0 Bit8
$0014
Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
$0015
Indeterminate after reset 0 0 0 0 KEYF 0 ACKK 0 KBIE7 0 0 KBIE6 0 0 RSTFR 0 STALL2 0 0 TX1STR 0 0 0 KBIE5 0 0 TXD2FR 0 TX2E 0 OSTALL0 0 0 KBIE4 0 0 RXD2FR 0 RX2E 0 ISTALL0 0 0 KBIE3 0 0 0 KBIE2 0 0 IMASKK 0 KBIE1 0 0 MODEK 0 KBIE0 0 0 RXD0FR 0 TP2SIZ0 0
$0016
$0017
$0018
Read: 0 USB Interrupt Register 2 Write: EOPFR (UIR2) Reset: 0 Read: USB Control Register 2 Write: (UCR2) Reset: Read: USB Control Register 3 Write: (UCR3) Reset: T2SEQ 0 TX1ST
TDX1FR RESUMFR TXD0FR 0 TP2SIZ3 0 0 0 TP2SIZ2 0 0 TP2SIZ1 0
$0019
$001A
PULLEN ENABLE2 ENABLE1 0* 0 0
0
* PULLEN bit is reset by POR or LVI reset only. Read: USB Control Register 4 Write: (UCR4) Reset: Read: IRQ Option Control Register Write: (IOCR) Reset: 0 0 0 0 0 FUSBO 0 PTE4IF FDP 0 PTE4IE 0 PBP 0 FDM 0 IRQPD 0 PAP 0
$001B
0 0
0 0
0 0
0 0
0 0
$001C
0
0
0
0 PTE4P 0 R
0 PTE3P 0 = Reserved
0 PCP 0
$001D
Read: Port Option Control PTE20P Register Write: (POCR) Reset: 0
PTDLDD PTDILDD 0 0
= Unimplemented
U = Unaffected by reset
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8)
Technical Data 44 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Memory Map Freescale Semiconductor
Memory Map Monitor ROM
Addr.
Register Name Read: IRQ Status and Control Register Write: (ISCR) Reset: Read: Configuration Register Write: (CONFIG)† Reset:
Bit 7 0
6 0
5 0
4 0
3 IRQF
2 0 ACK
1 IMASK 0 STOP 0
Bit 0 MODE 0 COPD 0
$001E
0 0
0 0
0 URSTD 0
0 LVID 0
0 SSREC 0
0 COPRS 0
$001F
0
0
† One-time writable register after each reset. URSTD and LVID bits are reset by POR or LVI reset only. Read: UE0R07 USB Endpoint 0 Data Register 0 Write: UE0T07 (UE0D0) Reset: Read: UE0R17 USB Endpoint 0 Data Register 1 Write: UE0T17 (UE0D1) Reset: Read: UE0R27 USB Endpoint 0 Data Register 2 Write: UE0T27 (UE0D2) Reset: Read: UE0R37 USB Endpoint 0 Data Register 3 Write: UE0T37 (UE0D3) Reset: Read: UE0R47 USB Endpoint 0 Data Register 4 Write: UE0T47 (UE0D4) Reset: Read: UE0R57 USB Endpoint 0 Data Register 5 Write: UE0T57 (UE0D5) Reset: Read: UE0R67 USB Endpoint 0 Data Register 6 Write: UE0T67 (UE0D6) Reset: Read: UE0R77 USB Endpoint 0 Data Register 7 Write: UE0T77 (UE0D7) Reset: UE0R06 UE0T06 UE0R05 UE0T05 UE0R04 UE0T04 UE0R03 UE0T03 UE0R02 UE0T02 UE0R01 UE0T01 UE0R00 UE0T00
$0020
Unaffected by reset UE0R16 UE0T16 UE0R15 UE0T15 UE0R14 UE0T14 UE0R13 UE0T13 UE0R12 UE0T12 UE0R11 UE0T11 UE0R10 UE0T10
$0021
Unaffected by reset UE0R26 UE0T26 UE0R25 UE0T25 UE0R24 UE0T24 UE0R23 UE0T23 UE0R22 UE0T22 UE0R21 UE0T21 UE0R20 UE0T20
$0022
Unaffected by reset UE0R36 UE0T36 UE0R35 UE0T35 UE0R34 UE0T34 UE0R33 UE0T33 UE0R32 UE0T32 UE0R31 UE0T31 UE0R30 UE0T30
$0023
Unaffected by reset UE0R46 UE0T46 UE0R45 UE0T45 UE0R44 UE0T44 UE0R43 UE0T43 UE0R42 UE0T42 UE0R41 UE0T41 UE0R40 UE0T40
$0024
Unaffected by reset UE0R56 UE0T56 UE0R55 UE0T55 UE0R54 UE0T54 UE0R53 UE0T53 UE0R52 UE0T52 UE0R51 UE0T51 UE0R50 UE0T50
$0025
Unaffected by reset UE0R66 UE0T66 UE0R65 UE0T65 UE0R64 UE0T64 UE0R63 UE0T63 UE0R62 UE0T62 UE0R61 UE0T61 UE0R60 UE0T60
$0026
Unaffected by reset UE0R76 UE0T76 UE0R75 UE0T75 UE0R74 UE0T74 UE0R73 UE0T73 UE0R72 UE0T72 UE0R71 UE0T71 UE0R70 UE0T70
$0027
Unaffected by reset = Unimplemented R = Reserved U = Unaffected by reset
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Memory Map Technical Data 45
Memory Map
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
$0028
Read: USB Endpoint 1 Data Register 0 Write: UE1T07 (UE1D0) Reset: Read: USB Endpoint 1 Data Register 1 Write: UE1T17 (UE1D1) Reset: Read: USB Endpoint 1 Data Register 2 Write: UE1T27 (UE1D2) Reset: Read: USB Endpoint 1 Data Register 3 Write: UE1T37 (UE1D3) Reset: Read: USB Endpoint 1 Data Register 4 Write: UE1T47 (UE1D4) Reset: Read: USB Endpoint 1 Data Register 5 Write: UE1T57 (UE1D5) Reset: Read: USB Endpoint 1 Data Register 6 Write: UE1T67 (UE1D6) Reset: Read: USB Endpoint 1 Data Register 7 Write: UE1T77 (UE1D7) Reset: Read: UE2R07 USB Endpoint 2 Data Register 0 Write: UE2T07 (UE2D0) Reset: Read: UE2R17 USB Endpoint 2 Data Register 1 Write: UE2T17 (UE2D1) Reset:
UE1T06
UE1T05
UE1T04
UE1T03
UE1T02
UE1T01
UE1T00
Unaffected by reset
$0029
UE1T16
UE1T15
UE1T14
UE1T13
UE1T12
UE1T11
UE1T10
Unaffected by reset
$002A
UE1T26
UE1T25
UE1T24
UE1T23
UE1T22
UE1T21
UE1T20
Unaffected by reset
$002B
UE1T36
UE1T35
UE1T34
UE1T33
UE1T32
UE1T31
UE1T30
Unaffected by reset
$002C
UE1T46
UE1T45
UE1T44
UE1T43
UE1T42
UE1T41
UE1T40
Unaffected by reset
$002D
UE1T56
UE1T55
UE1T54
UE1T53
UE1T52
UE1T51
UE1T50
Unaffected by reset
$002E
UE1T66
UE1T65
UE1T64
UE1T63
UE1T62
UE1T61
UE1T60
Unaffected by reset
$002F
UE1T76
UE1T75
UE1T74
UE1T73
UE1T72
UE1T71
UE1T70
Unaffected by reset UE2R06 UE2T06 UE2R05 UE2T05 UE2R04 UE2T04 UE2R03 UE2T03 UE2R02 UE2T02 UE2R01 UE2T01 UE2R00 UE2T00
$0030
Unaffected by reset UE2R16 UE2T16 UE2R15 UE2T15 UE2R14 UE2T14 UE2R13 UE2T13 UE2R12 UE2T12 UE2R11 UE2T11 UE2R10 UE2T10
$0031
Unaffected by reset = Unimplemented R = Reserved U = Unaffected by reset
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 8)
Technical Data 46
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Memory Map Freescale Semiconductor
Memory Map Monitor ROM
Addr.
Register Name
Bit 7
6 UE2R26 UE2T26
5 UE2R25 UE2T25
4 UE2R24 UE2T24
3 UE2R23 UE2T23
2 UE2R22 UE2T22
1 UE2R21 UE2T21
Bit 0 UE2R20 UE2T20
$0032
Read: UE2R27 USB Endpoint 2 Data Register 2 Write: UE2T27 (UE2D2) Reset: Read: UE2R37 USB Endpoint 2 Data Register 3 Write: UE2T37 (UE2D3) Reset: Read: UE2R47 USB Endpoint 2 Data Register 4 Write: UE2T47 (UE2D4) Reset: Read: UE2R57 USB Endpoint 2 Data Register 5 Write: UE2T57 (UE2D5) Reset: Read: UE2R67 USB Endpoint 2 Data Register 6 Write: UE2T67 (UE2D6) Reset: Read: UE2R77 USB Endpoint 2 Data Register 7 Write: UE2T77 (UE2D7) Reset: Read: USBEN USB Address Register Write: (UADDR) Reset: 0*
Unaffected by reset UE2R36 UE2T36 UE2R35 UE2T35 UE2R34 UE2T34 UE2R33 UE2T33 UE2R32 UE2T32 UE2R31 UE2T31 UE2R30 UE2T30
$0033
Unaffected by reset UE2R46 UE2T46 UE2R45 UE2T45 UE2R44 UE2T44 UE2R43 UE2T43 UE2R42 UE2T42 UE2R41 UE2T41 UE2R40 UE2T40
$0034
Unaffected by reset UE2R56 UE2T56 UE2R55 UE2T55 UE2R54 UE2T54 UE2R53 UE2T53 UE2R52 UE2T52 UE2R51 UE2T51 UE2R50 UE2T50
$0035
Unaffected by reset UE2R66 UE2T66 UE2R65 UE2T65 UE2R64 UE2T64 UE2R63 UE2T63 UE2R62 UE2T62 UE2R61 UE2T61 UE2R60 UE2T60
$0036
Unaffected by reset UE2R76 UE2T76 UE2R75 UE2T75 UE2R74 UE2T74 UE2R73 UE2T73 UE2R72 UE2T72 UE2R71 UE2T71 UE2R70 UE2T70
$0037
Unaffected by reset UADD6 0 UADD5 0 UADD4 0 UADD3 0 UADD2 0 UADD1 0 UADD0 0
$0038
* USBEN bit is reset by POR or LVI reset only. Read: USB Interrupt Register 0 Write: (UIR0) Reset: Read: USB Interrupt Register 1 Write: (UIR1) Reset: Read: USB Control Register 0 Write: (UCR0) Reset: EOPIE 0 EOPF SUSPND 0 RSTF TXD2IE 0 TXD2F RXD2IE 0 RXD2F TXD1IE 0 TXD1F 0 TXD0IE 0 TXD0F RXD0IE 0 RXD0F
$0039
0 RESUMF
$003A
0 T0SEQ 0
0 0
0 TX0E 0
0 RX0E 0 R
0 TP0SIZ3 0 = Reserved
0 TP0SIZ2 0
0 TP0SIZ1 0
0 TP0SIZ0 0
$003B
0
= Unimplemented
U = Unaffected by reset
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Memory Map Technical Data 47
Memory Map
Addr.
Register Name Read: USB Control Register 1 Write: (UCR1) Reset:
Bit 7 T1SEQ 0
6 STALL1 0 SETUP
5 TX1E 0 0
4
3
2 TP1SIZ2 0 RP0SIZ2
1 TP1SIZ1 0 RP0SIZ1
Bit 0 TP1SIZ0 0 RP0SIZ0
$003C
FRESUM TP1SIZ3 0 0 0 RP0SIZ3
$003D
Read: R0SEQ USB Status Register 0 Write: (USR0) Reset: Read: R2SEQ USB Status Register 1 Write: (USR1) Reset: U Read:
Unaffected by reset TXACK TXNAK TXSTL RP2SIZ3 RP2SIZ2 RP2SIZ1 RP2SIZ0
$003E
0
0
0
U
U
U
U
$003F
Unimplemented Write:
$FE00
Read: Break Status Register Write: (BSR) Reset:
R
R
R
R
R
R
SBSW See note 0
R
Note: Writing a logic 0 clears SBSW. Read: Reset Status Register Write: (RSR) POR: Read: $FE02 Reserved Write: POR PIN COP ILOP ILAD USB LVI 0
$FE01
1 R
0 R
0 R
0 R
0 R
0 R
0 R
0 R
$FE03
Read: Break Flag Control Register Write: (BFCR) Reset:
BCFE 0 IF6 R 0 R
R
R
R
R
R
R
R
Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: Read: $FE05 Reserved Write:
IF5 R 0 R
IF4 R 0 R
IF3 R 0 R
IF2 R 0 R
IF1 R 0 R
0 R 0 R
0 R 0 R
= Unimplemented
R
= Reserved
U = Unaffected by reset
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8)
Technical Data 48 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Memory Map Freescale Semiconductor
Memory Map Monitor ROM
Addr.
Register Name Read:
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 R
Bit 0 R
$FE06
Reserved Write:
Read: $FE07 Reserved Write:
R
R
R
R
R
R
R
R
$FE08
Read: FLASH Control Register Write: (FLCR) Reset: Read: FLASH Block Protect Register Write: (FLBPR) Reset: Read:
0
0
0
0
HVEN 0 BPR3 0 R
MASS 0 BPR2 0 R
ERASE 0 BPR1 0 R
PGM 0 BPR0 0 R
0 BPR7 0 R
0 BPR6 0 R
0 BPR5 0 R
0 BPR4 0 R
$FE09
$FE0A
Reserved Write:
Read: $FE0B Reserved Write:
R
R
R
R
R
R
R
R
$FE0C
Read: Break Address High Register Write: (BRKH) Reset: Read: Break Address low Register Write: (BRKL) Reset:
Bit15 0 Bit7 0 BRKE 0
Bit14 0 Bit6 0 BRKA 0
Bit13 0 Bit5 0 0
Bit12 0 Bit4 0 0
Bit11 0 Bit3 0 0
Bit10 0 Bit2 0 0
Bit9 0 Bit1 0 0
Bit8 0 Bit0 0 0
$FE0D
Read: Break Status and Control $FE0E Register Write: (BRKSCR) Reset:
0
0
0
0
0
0
$FFFF
Read: COP Control Register Write: (COPCTL) Reset:
Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset = Unimplemented R = Reserved U = Unaffected by reset
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Memory Map Technical Data 49
Memory Map
Table 2-1 is a list of vector locations. Table 2-1. Vector Addresses
Vector Priority Lowest IF6 $FFF1 $FFF2 IF5 $FFF3 $FFF4 IF4 $FFF5 $FFF6 IF3 $FFF7 $FFF8 IF1 $FFF9 $FFFA IF2 $FFFB $FFFC — $FFFD $FFFE — Highest $FFFF Reset Vector (Low) SWI Vector (Low) Reset Vector (High) USB Vector (Low) SWI Vector (High) IRQ Vector (Low) USB Vector (High) TIM Channel 0 Vector (Low) IRQ Vector (High) TIM Channel 1 Vector (Low) TIM Channel 0 Vector (High) TIM Overflow Vector (Low) TIM Channel 1 Vector (High) Keyboard Vector (Low) TIM Overflow Vector (High) INT Flag Address $FFF0 Vector Keyboard Vector (High)
Technical Data 50
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Memory Map Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 3. Random-Access Memory (RAM)
3.1 Contents
3.2 3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
3.2 Introduction
This section describes the 256 bytes of RAM.
3.3 Functional Description
Addresses $0040–$013F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM locations. Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF, direct addressing mode instructions can access efficiently all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers.
NOTE:
For M6805 Family compatibility, the H register is not stacked.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Random-Access Memory (RAM)
Technical Data 51
Random-Access Memory (RAM)
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.
NOTE:
Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.
Technical Data 52
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Random-Access Memory (RAM) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 4. FLASH Memory
4.1 Contents
4.2 4.3 4.4 4.5 4.6 4.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 FLASH Block Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 56 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 57 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.8 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 60 4.9 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.9.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.9.2 ERASE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.9.3 PROGRAM Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.9.4 VERIFY Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Introduction
This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor FLASH Memory
Technical Data 53
FLASH Memory
Addr. $FE08
Register Name FLASH Control Register Read: (FLCR) Write: Reset:
Bit 7 0
6 0
5 0
4 0
3 HVEN
2 MASS 0 BPR2 0
1 ERASE 0 BPR1 0
Bit 0 PGM 0 BPR0 0
0 BPR7 0
0 BPR6 0
0 BPR5 0
0 BPR4 0
0 BPR3 0
$FE09
FLASH Block Protect Read: Register (FLBPR) Write: Reset:
Figure 4-1. FLASH Memory Register Summary
4.3 Functional Description
The FLASH memory consists of an array of 8,192 bytes for user memory plus a small block of 16 bytes for user interrupt vectors. An erased bit reads as logic 1 and a programmed bit reads as a logic 0. The FLASH memory is block erasable. The minimum erase block size is 512 bytes. Program and erase operation operations are facilitated through control bits in FLASH control register (FLCR).The address ranges for the FLASH memory are shown as follows: • • $DC00–$FBFF (user memory; 8,192 bytes) $FFF0–$FFFF (user interrupt vectors; 16 bytes)
Programming tools are available from Freescale. Contact your local Freescale representative for more information.
NOTE:
A security feature prevents viewing of the FLASH contents.1
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users.
Technical Data 54
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 FLASH Memory Freescale Semiconductor
FLASH Memory FLASH Control Register
4.4 FLASH Control Register
The FLASH control register (FLCR) controls FLASH program and erase operations.
Address: $FE08 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 5 0 4 0 HVEN MASS ERASE PGM 3 2 1 Bit 0
Figure 4-2. FLASH Control Register (FLCR) HVEN — High Voltage Enable Bit This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM or ERASE is high and the sequence for erase or program/verify is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS — Mass Erase Control Bit This read/write bit configures the memory for mass erase operation or block erase operation when the ERASE bit is set. 1 = Mass Erase operation selected 0 = Block Erase operation selected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. This bit and the PGM bit should not be set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation not selected PGM — Program Control Bit This read/write bit configures the memory for program operation. This bit and the ERASE bit should not be set to 1 at the same time. 1 = Program operation selected 0 = Program operation not selected
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor FLASH Memory Technical Data 55
FLASH Memory 4.5 FLASH Block Erase Operation
Use the following procedure to erase a block of FLASH memory. A block consists of 512 consecutive bytes starting from addresses $X000, $X200, $X400, $X600, $X800, $XA00, $XC00 or $XE00. Any block within the 8,192 bytes user memory area ($DC00–$FBFF) can be erased alone.
NOTE:
The 16-byte user vectors, $FFF0–$FFFF, cannot be erased by the block erase operation because of security reasons. Mass erase is required to erase this block. 1. Set the ERASE bit and clear the MASS bit in the FLASH control register. 2. Write any data to any FLASH address within the address range of the block to be erased. 3. Wait for a time, tnvs (5 µs). 4. Set the HVEN bit. 5. Wait for a time terase (2 ms). 6. Clear the ERASE bit. 7. Wait for a time, tnvh (5 µs). 8. Clear the HVEN bit. 9. After time, trcv (1 µs), the memory can be accessed in read mode again.
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
Technical Data 56
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 FLASH Memory Freescale Semiconductor
FLASH Memory FLASH Mass Erase Operation
4.6 FLASH Mass Erase Operation
Use the following procedure to erase the entire FLASH memory: 1. Set both the ERASE bit and the MASS bit in the FLASH control register. 2. Write any data to any FLASH address within the address range $FFE0–$FFFF. 3. Wait for a time, tnvs (5 µs). 4. Set the HVEN bit. 5. Wait for a time tme (2 ms). 6. Clear the ERASE bit. 7. Wait for a time, tnvh1 (100 µs). 8. Clear the HVEN bit. 9. After time, trcv (1 µs), the memory can be accessed in read mode again.
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor FLASH Memory
Technical Data 57
FLASH Memory 4.7 FLASH Program Operation
Programming of the FLASH memory is done on a row basis. A row consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80 or $XXC0. The procedure for programming a row of the FLASH memory is outlined below: 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Write any data to any FLASH address within the address range of the row to be programmed. 3. Wait for a time, tnvs (5 µs). 4. Set the HVEN bit. 5. Wait for a time, tpgs (10 µs). 6. Write data to the byte being programmed. 7. Wait for time, tPROG (20 µs). 8. Repeat step 6 and 7 until all the bytes within the row are programmed. 9. Clear the PGM bit. 10. Wait for time, tnvh (5 µs). 11. Clear the HVEN bit. 12. After time, trcv (1 µs), the memory can be accessed in read mode again. This program sequence is repeated throughout the memory until all data is programmed.
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed tPROG maximum (see 18.13 Memory Characteristics). Figure 4-3 shows a flowchart representation for programming the FLASH memory.
Technical Data 58
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 FLASH Memory Freescale Semiconductor
FLASH Memory FLASH Program Operation
1
Set PGM bit
Algorithm for programming a row (64 bytes) of FLASH memory
2
Write any data to any FLASH address within the row address range desired
3
Wait for a time, tnvs
4
Set HVEN bit
5
Wait for a time, tpgs
6
Write data to the FLASH address to be programmed
7
Wait for a time, tPROG
Completed programming this row? N
9
Y
NOTE: The time between each FLASH address change (step 6 to step 6), or the time between the last FLASH address programmed to clearing PGM bit (step 6 to step 9) must not exceed the maximum programming time, tPROG max. This row program algorithm assumes the row/s to be programmed are initially erased.
Clear PGM bit
10
Wait for a time, tnvh
11
Clear HVEN bit
12
Wait for a time, trcv
End of Programming
Figure 4-3. FLASH Programming Flowchart
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor FLASH Memory
Technical Data 59
FLASH Memory 4.8 FLASH Protection
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made to protect blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.
NOTE:
When the FLBPR is cleared (all 0’s), the entire FLASH memory is protected from being programmed and erased. When all the bits are set, the entire FLASH memory is accessible for program and erase.
4.8.1 FLASH Block Protect Register The FLASH block protect register is implemented as an 8-bit I/O register. The content of this register determine the starting location of the protected range within the FLASH memory.
Address: $FE09 Bit 7 Read: BPR7 Write: Reset: 0 0 0 0 0 0 0 0 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 6 5 4 3 2 1 Bit 0
Figure 4-4. FLASH Block Protect Register (FLBPR) BPR[7:0] — FLASH Block Protect Register Bit 7 to Bit 0 BPR[7:1] represent bits [15:9] of a 16-bit memory address; bits [8:0] are logic 0’s.
16-bit memory address Start address of FLASH block protect BPR[7:1] 000000000
Figure 4-5. FLASH Block Protect Start Address
Technical Data 60 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 FLASH Memory Freescale Semiconductor
FLASH Memory ROM-Resident Routines
BPR0 is used only for BPR[7:0] = $FF, for no block protection. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be X000, X200, X400, X600, X800, XA00, XC00, or XE00 within the FLASH memory. Examples of protect start address:
BPR[7:0] $00 to $DC $DE (1101 1110) $E0 (1110 0000) $E2 (1110 0010) $E4 (1110 0100) and so on... $FE $FF $FFE0–$FFFF (User vectors) The entire FLASH memory is not protected. Start of Address of Protect Range The entire FLASH memory is protected. $DE00 (1101 1110 0000 0000) $E000 (1110 0000 0000 0000) $E200 (1110 0010 0000 0000) $E400 (1110 0100 0000 0000)
Note: The end address of the protected range is always $FFFF.
4.9 ROM-Resident Routines
ROM-resident routines can be called by a program running in user mode or in monitor mode (see Section 10. Monitor ROM (MON)) for FLASH programming, erasing, and verifying. The range of the FLASH memory must be unprotected (see 4.8 FLASH Protection) before calling the erase or programming routine. Table 4-1. ROM-Resident Routines
Routine Name VERIFY ERASE PROGRAM Call Address $FC03 $FC06 $FC09 Routine Function FLASH verify routine FLASH mass erase routine FLASH program routine
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor FLASH Memory
Technical Data 61
FLASH Memory
4.9.1 Variables The ROM-resident routines use three variables: CTRLBYT, CPUSPD and LADDR; and one data buffer. The minimum size of the data buffer is one byte and the maximum size is 64 bytes. CPUSPD must be set before calling the ERASE or PROGRAM routine, and should be set to four times the value of the CPU internal bus speed in MHz. For example: for CPU speed of 3MHz, CPUSPD should be set to 12. Table 4-2. ROM-Resident Routine Variables
Variable CTRLBYT CPUSPD LADDR DATABUF Address $0048 $0049 $004A–$004B $004C–$008B Description Control byte for setting mass erase. Timing adjustment for different CPU speeds. Last FLASH address to be programmed. Data buffer for programming and verifying.
4.9.2 ERASE Routine The ERASE routine erases the entire FLASH memory. The routine does not check for a blank range before or after erase. Table 4-3. ERASE Routine
Routine Calling Address Stack Use ERASE $FC06 5 Bytes CPUSPD — CPU speed HX — Contains any address in the range to be erased CTRLBYT — Mass erase Mass erase if bit 6 = 1
Input
Technical Data 62
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 FLASH Memory Freescale Semiconductor
FLASH Memory ROM-Resident Routines
4.9.3 PROGRAM Routine The PROGRAM routine programs a range of addresses in FLASH memory, which does not have to be on page boundaries, either at the begin or end address. Table 4-4. PROGRAM Routine
Routine Calling Address Stack Use PROGRAM $FC09 7 Bytes CPUSPD — HX — LADDR — DATABUF — CPU speed FLASH start address to be programmed FLASH end address to be programmed Contains the data to be programmed
Input
4.9.4 VERIFY Routine The VERIFY routine reads and verifies a range of FLASH memory. Table 4-5. VERIFY Routine
Routine Calling Address Stack Use Input VERIFY $FC03 6 Bytes HX — FLASH start address to be verified LADDR — FLASH end address to be verified DATABUF — Contains the data to be verified C Bit — C bit is set if verify passes DATABUF — Contains the data in the range of the FLASH memory
Output
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor FLASH Memory
Technical Data 63
FLASH Memory
Technical Data 64
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 FLASH Memory Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 5. Configuration Register (CONFIG)
5.1 Contents
5.2 5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
5.2 Introduction
This section describes the configuration register (CONFIG). This writeonce-after-reset register controls the following options: • • • • • • USB reset Low voltage inhibit Stop mode recovery time (2048 or 4096 OSCXCLK cycles) COP timeout period (218 – 24 or 213 – 24 OSCXCLK cycles) STOP instruction Computer operating properly module (COP)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Configuration Register (CONFIG)
Technical Data 65
Configuration Register (CONFIG) 5.3 Functional Description
The configuration register is used in the initialization of various options. The configuration register can be written once after each reset. Bit-5 and bit-4 are cleared by a POR or LVI reset only. Bit-3 to bit-0 are cleared during any reset. Since the various options affect the operation of the MCU, it is recommended that this register be written immediately after reset. The configuration register is located at $001F. The configuration register may be read at any time.
Address: $001F Bit 7 Read: Write: Reset: 0 0 0* 0* 0 0 0 0 0 6 0 URSTD LVID SSREC COPRS STOP COPD 5 4 3 2 1 Bit 0
= Unimplemented
* URSTD and LVID bits are reset by POR or LVI reset only.
Figure 5-1. Configuration Register (CONFIG) URSTD — USB Reset Disable Bit URSTD disables the USB reset signal generating an internal reset to the CPU and internal registers. Instead, it will generate an interrupt request to the CPU. 1 = USB reset generates a USB interrupt request to CPU 0 = USB reset generates a chip reset LVID — Low Voltage Inhibit Disable Bit LVID disables the LVI circuit 1 = Disable LVI circuit 0 = Enable LVI circuit SSREC — Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 2048 × OSCXCLK cycles instead of a 4096 × OSCXCLK cycle delay. 1 = Stop mode recovery after 2048 × OSCXCLK cycles 0 = Stop mode recovery after 4096 × OSCXCLK cycles
Technical Data 66
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Configuration Register (CONFIG) Freescale Semiconductor
Configuration Register (CONFIG) Functional Description
NOTE:
Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal, do not set the SSREC bit. COPRS — COP Rate Select Bit COPD selects the COP timeout period. Reset clears COPRS. (See Section 15. Computer Operating Properly (COP).) 1 = COP timeout period = (213 – 24) × OSCXCLK cycles 0 = COP timeout period = (218 – 24) × OSCXCLK cycles STOP — STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD — COP Disable Bit COPD disables the COP module. (See Section 15. Computer Operating Properly (COP).) 1 = COP module disabled 0 = COP module enabled
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Configuration Register (CONFIG)
Technical Data 67
Configuration Register (CONFIG)
Technical Data 68
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Configuration Register (CONFIG) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 6. Central Processor Unit (CPU)
6.1 Contents
6.2 6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 6.7 6.8 6.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 69
Central Processor Unit (CPU) 6.2 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Freescale document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.
6.3 Features
• • • • • • • • • • • Object code fully upward-compatible with M68HC05 Family 16-bit stack pointer with stack manipulation instructions 16-bit index register with x-register manipulation instructions 3-MHz CPU internal bus frequency 64-Kbyte program/data memory space 16 addressing modes Memory-to-memory data moves without using accumulator Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions Enhanced binary-coded decimal (BCD) data handling Modular architecture with expandable internal bus definition for extension of addressing range beyond 64-Kbytes Low-power stop and wait modes
Technical Data 70
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) CPU Registers
6.4 CPU Registers
Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map.
7 15 H 15 15 X
0 ACCUMULATOR (A) 0 INDEX REGISTER (H:X) 0 STACK POINTER (SP) 0 PROGRAM COUNTER (PC)
7 0 V11HINZC
CONDITION CODE REGISTER (CCR)
CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG
Figure 6-1. CPU Registers
6.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.
Bit 7 Read: Write: Reset: Unaffected by reset 6 5 4 3 2 1 Bit 0
Figure 6-2. Accumulator (A)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 71
Central Processor Unit (CPU)
6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location.
Bit 15 Read: Write: Reset: 0 0 0 0 0 0 0 0 X X X X X X X X 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0
X = Indeterminate
Figure 6-3. Index Register (H:X) 6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.
Bit 15 Read: Write: Reset: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0
Figure 6-4. Stack Pointer (SP)
Technical Data 72 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) CPU Registers
NOTE:
The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations.
6.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.
Bit 15 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0
Figure 6-5. Program Counter (PC)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 73
Central Processor Unit (CPU)
6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register.
Bit 7 Read: V Write: Reset: X 1 1 X 1 X X X 1 1 H I N Z C 6 5 4 3 2 1 Bit 0
X = Indeterminate
Figure 6-6. Condition Code Register (CCR) V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4
Technical Data 74
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) CPU Registers
I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled
NOTE:
To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N — Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 75
Central Processor Unit (CPU)
C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7
6.5 Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Freescale document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.
6.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.
6.6.1 Wait Mode The WAIT instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
•
Technical Data 76
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) CPU During Break Interrupts
6.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
•
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.
6.7 CPU During Break Interrupts
If a break module is present on the MCU, the CPU starts a break interrupt by: • • Loading the instruction register with the SWI instruction Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 77
Central Processor Unit (CPU) 6.8 Instruction Set Summary
Table 6-1. Instruction Set Summary (Sheet 1 of 9)
Cycles 2 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 2 2 2 3 4 4 3 2 4 5 4 1 1 4 3 5 4 1 1 4 3 5 Source Form ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP AIS #opr AIX #opr AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP Operand ii dd hh ll ee ff ff ff ee ff ii dd hh ll ee ff ff ff ee ff ii ii ii dd hh ll ee ff ff ff ee ff dd ff ff dd ff ff Address Mode Opcode A9 B9 C9 D9 E9 F9 9EE9 9ED9 AB BB CB DB EB FB 9EEB 9EDB A7 AF A4 B4 C4 D4 E4 F4 9EE4 9ED4 38 48 58 68 78 9E68 37 47 57 67 77 9E67 Effect on CCR VHINZC
Operation
Description
Add with Carry
A ← (A) + (M) + (C)
–
IMM DIR EXT IX2 IX1 IX SP1 SP2 IMM DIR EXT IX2 IX1 IX SP1 SP2
Add without Carry
A ← (A) + (M)
–
Add Immediate Value (Signed) to SP Add Immediate Value (Signed) to H:X
SP ← (SP) + (16 « M) H:X ← (H:X) + (16 « M)
– – – – – – IMM – – – – – – IMM IMM DIR EXT IX2 – IX1 IX SP1 SP2 DIR INH INH IX1 IX SP1 DIR INH INH IX1 IX SP1
Logical AND
A ← (A) & (M)
0––
Arithmetic Shift Left (Same as LSL)
C b7 b0
0
––
Arithmetic Shift Right
b7 b0
C
––
Technical Data 78
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) Instruction Set Summary
Table 6-1. Instruction Set Summary (Sheet 2 of 9)
Cycles 3 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 3 4 4 3 2 4 5 3 3 3 3 3 3 3 Source Form BCC rel Operand rr dd dd dd dd dd dd dd dd rr rr rr rr rr rr rr rr rr rr ii dd hh ll ee ff ff ff ee ff rr rr rr rr rr rr rr Address Mode Opcode 24 11 13 15 17 19 1B 1D 1F 25 27 90 92 28 29 22 24 2F 2E A5 B5 C5 D5 E5 F5 9EE5 9ED5 93 25 23 91 2C 2B 2D Effect on CCR VHINZC Branch if Carry Bit Clear PC ← (PC) + 2 + rel ? (C) = 0
Operation
Description
– – – – – – REL DIR (b0) DIR (b1) DIR (b2) DIR (b3) –––––– DIR (b4) DIR (b5) DIR (b6) DIR (b7) – – – – – – REL – – – – – – REL – – – – – – REL
BCLR n, opr
Clear Bit n in M
Mn ← 0
BCS rel BEQ rel BGE opr
Branch if Carry Bit Set (Same as BLO) Branch if Equal Branch if Greater Than or Equal To (Signed Operands) Branch if Greater Than (Signed Operands) Branch if Half Carry Bit Clear Branch if Half Carry Bit Set Branch if Higher Branch if Higher or Same (Same as BCC) Branch if IRQ Pin High Branch if IRQ Pin Low
PC ← (PC) + 2 + rel ? (C) = 1 PC ← (PC) + 2 + rel ? (Z) = 1 PC ← (PC) + 2 + rel ? (N ⊕ V) = 0
BGT opr BHCC rel BHCS rel BHI rel BHS rel BIH rel BIL rel BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP BLE opr BLO rel BLS rel BLT opr BMC rel BMI rel BMS rel
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL
PC ← (PC) + 2 + rel ? (H) = 0 PC ← (PC) + 2 + rel ? (H) = 1 PC ← (PC) + 2 + rel ? (C) | (Z) = 0 PC ← (PC) + 2 + rel ? (C) = 0 PC ← (PC) + 2 + rel ? IRQ = 1 PC ← (PC) + 2 + rel ? IRQ = 0
– – – – – – REL – – – – – – REL – – – – – – REL – – – – – – REL – – – – – – REL – – – – – – REL IMM DIR EXT IX2 – IX1 IX SP1 SP2
Bit Test
(A) & (M)
0––
Branch if Less Than or Equal To (Signed Operands) Branch if Lower (Same as BCS) Branch if Lower or Same Branch if Less Than (Signed Operands) Branch if Interrupt Mask Clear Branch if Minus Branch if Interrupt Mask Set
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1
– – – – – – REL – – – – – – REL – – – – – – REL – – – – – – REL – – – – – – REL – – – – – – REL – – – – – – REL
PC ← (PC) + 2 + rel ? (C) = 1 PC ← (PC) + 2 + rel ? (C) | (Z) = 1 PC ← (PC) + 2 + rel ? (N ⊕ V) =1 PC ← (PC) + 2 + rel ? (I) = 0 PC ← (PC) + 2 + rel ? (N) = 1 PC ← (PC) + 2 + rel ? (I) = 1
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 79
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 3 of 9)
Cycles 3 3 3 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 5 4 4 5 4 6 1 2 Source Form BNE rel BPL rel BRA rel Operand rr rr rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd dd dd dd dd dd dd dd rr dd rr ii rr ii rr ff rr rr ff rr Address Mode Opcode 26 2A 20 01 03 05 07 09 0B 0D 0F 21 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E AD 31 41 51 61 71 9E61 98 9A Effect on CCR VHINZC Branch if Not Equal Branch if Plus Branch Always PC ← (PC) + 2 + rel ? (Z) = 0 PC ← (PC) + 2 + rel ? (N) = 0 PC ← (PC) + 2 + rel
Operation
Description
– – – – – – REL – – – – – – REL – – – – – – REL DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
BRCLR n,opr,rel Branch if Bit n in M Clear
PC ← (PC) + 3 + rel ? (Mn) = 0
–––––
BRN rel
Branch Never
PC ← (PC) + 2
– – – – – – REL DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
BRSET n,opr,rel Branch if Bit n in M Set
PC ← (PC) + 3 + rel ? (Mn) = 1
–––––
BSET n,opr
Set Bit n in M
Mn ← 1
DIR (b0) DIR (b1) DIR (b2) DIR (b3) –––––– DIR (b4) DIR (b5) DIR (b6) DIR (b7)
BSR rel
Branch to Subroutine
PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel
– – – – – – REL
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel CLC CLI Clear Carry Bit Clear Interrupt Mask
DIR PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (X) – (M) = $00 –––––– IX1+ PC ← (PC) + 3 + rel ? (A) – (M) = $00 IX+ PC ← (PC) + 2 + rel ? (A) – (M) = $00 SP1 PC ← (PC) + 4 + rel ? (A) – (M) = $00 C←0 I←0 – – – – – 0 INH – – 0 – – – INH
Technical Data 80
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) Instruction Set Summary
Table 6-1. Instruction Set Summary (Sheet 4 of 9)
Cycles 3 1 1 1 3 2 4 2 3 4 4 3 2 4 5 4 1 1 4 3 5 3 4 2 3 4 4 3 2 4 5 2 5 3 3 5 4 6 4 1 1 4 3 5 7 Source Form CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP COM opr COMA COMX COM opr,X COM ,X COM opr,SP CPHX #opr CPHX opr CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP DAA Operand dd ff ff ii dd hh ll ee ff ff ff ee ff dd ff ff ii ii+1 dd ii dd hh ll ee ff ff ff ee ff dd rr rr rr ff rr rr ff rr dd ff ff Address Mode Opcode 3F 4F 5F 8C 6F 7F 9E6F A1 B1 C1 D1 E1 F1 9EE1 9ED1 33 43 53 63 73 9E63 65 75 A3 B3 C3 D3 E3 F3 9EE3 9ED3 72 3B 4B 5B 6B 7B 9E6B 3A 4A 5A 6A 7A 9E6A 52 Effect on CCR VHINZC M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00
Operation
Description
Clear
DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 IMM DIR EXT IX2 IX1 IX SP1 SP2 DIR INH INH 1 IX1 IX SP1 IMM DIR IMM DIR EXT IX2 IX1 IX SP1 SP2 INH
Compare A with M
(A) – (M)
––
Complement (One’s Complement)
M ← (M) = $FF – (M) A ← (A) = $FF – (M) X ← (X) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) (H:X) – (M:M + 1)
0––
Compare H:X with M
––
Compare X with M
(X) – (M)
––
Decimal Adjust A
(A)10
A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1
U––
DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP DIV
PC ← (PC) + 3 + rel ? (result) ≠ 0 PC ← (PC) + 2 + rel ? (result) ≠ 0 PC ← (PC) + 2 + rel ? (result) ≠ 0 PC ← (PC) + 3 + rel ? (result) ≠ 0 PC ← (PC) + 2 + rel ? (result) ≠ 0 PC ← (PC) + 4 + rel ? (result) ≠ 0 M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 A ← (H:A)/(X) H ← Remainder
DIR INH – – – – – – INH IX1 IX SP1 DIR INH INH – IX1 IX SP1 INH
Decrement
––
Divide
––––
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 81
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 5 of 9)
Cycles 2 3 4 4 3 2 4 5 4 1 1 4 3 5 2 3 4 3 2 4 5 6 5 4 2 3 4 4 3 2 4 5 3 4 2 3 4 4 3 2 4 5 4 1 1 4 3 5 Source Form EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP LDHX #opr LDHX opr LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Operand ii dd hh ll ee ff ff ff ee ff dd ff ff dd hh ll ee ff ff dd hh ll ee ff ff ii dd hh ll ee ff ff ff ee ff ii jj dd ii dd hh ll ee ff ff ff ee ff dd ff ff Address Mode Opcode A8 B8 C8 D8 E8 F8 9EE8 9ED8 3C 4C 5C 6C 7C 9E6C BC CC DC EC FC BD CD DD ED FD A6 B6 C6 D6 E6 F6 9EE6 9ED6 45 55 AE BE CE DE EE FE 9EEE 9EDE 38 48 58 68 78 9E68 Effect on CCR VHINZC
Operation
Description
Exclusive OR M with A
A ← ( A ⊕ M)
0––
IMM DIR EXT IX2 – IX1 IX SP1 SP2 DIR INH INH – IX1 IX SP1
Increment
M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1
––
Jump
PC ← Jump Address
DIR EXT – – – – – – IX2 IX1 IX DIR EXT – – – – – – IX2 IX1 IX IMM DIR EXT IX2 – IX1 IX SP1 SP2 – IMM DIR
Jump to Subroutine
PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address
Load A from M
A ← (M)
0––
Load H:X from M
H:X ← (M:M + 1)
0––
Load X from M
X ← (M)
0––
IMM DIR EXT IX2 – IX1 IX SP1 SP2 DIR INH INH IX1 IX SP1
Logical Shift Left (Same as ASL)
C b7 b0
0
––
Technical Data 82
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) Instruction Set Summary
Table 6-1. Instruction Set Summary (Sheet 6 of 9)
Cycles 4 1 1 4 3 5 5 4 4 4 5 dd 4 1 1 4 3 5 1 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 2 2 2 2 2 2 dd 4 1 1 4 3 5 Source Form LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr MUL NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP NOP NSA ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP PSHA PSHH PSHX PULA PULH PULX ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Operand dd ff ff dd dd dd ii dd dd ff ff ff ff Address Mode Opcode 34 44 54 64 74 9E64 4E 5E 6E 7E 42 30 40 50 60 70 9E60 9D 62 AA BA CA DA EA FA 9EEA 9EDA 87 8B 89 86 8A 88 39 49 59 69 79 9E69 Effect on CCR VHINZC
Operation
Description
Logical Shift Right
0 b7 b0
C
––0
DIR INH INH IX1 IX SP1 DD DIX+ – IMD IX+D
(M)Destination ← (M)Source Move H:X ← (H:X) + 1 (IX+D, DIX+) Unsigned multiply X:A ← (X) × (A) M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) None A ← (A[3:0]:A[7:4]) 0––
– 0 – – – 0 INH DIR INH INH IX1 IX SP1
Negate (Two’s Complement)
––
No Operation Nibble Swap A
– – – – – – INH – – – – – – INH IMM DIR EXT IX2 – IX1 IX SP1 SP2
Inclusive OR A and M
A ← (A) | (M)
0––
Push A onto Stack Push H onto Stack Push X onto Stack Pull A from Stack Pull H from Stack Pull X from Stack
Push (A); SP ← (SP) – 1 Push (H); SP ← (SP) – 1 Push (X); SP ← (SP) – 1 SP ← (SP + 1); Pull (A) SP ← (SP + 1); Pull (H) SP ← (SP + 1); Pull (X)
– – – – – – INH – – – – – – INH – – – – – – INH – – – – – – INH – – – – – – INH – – – – – – INH DIR INH INH IX1 IX SP1
Rotate Left through Carry
C b7 b0
––
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 83
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 7 of 9)
Cycles 4 1 1 4 3 5 1 7 4 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 1 2 dd hh ll ee ff ff ff ee ff dd 3 4 4 3 2 4 5 4 1 dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 Source Form ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP RSP Operand dd ff ff Address Mode Opcode 36 46 56 66 76 9E66 9C 80 81 A2 B2 C2 D2 E2 F2 9EE2 9ED2 99 9B B7 C7 D7 E7 F7 9EE7 9ED7 35 8E BF CF DF EF FF 9EEF 9EDF Effect on CCR VHINZC
Operation
Description
Rotate Right through Carry
b7 b0
C
––
DIR INH INH IX1 IX SP1
Reset Stack Pointer
SP ← $FF SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL)
– – – – – – INH
RTI
Return from Interrupt
INH
RTS SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP SEC SEI STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP STHX opr STOP STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP
Return from Subroutine
– – – – – – INH IMM DIR EXT IX2 IX1 IX SP1 SP2
Subtract with Carry
A ← (A) – (M) – (C)
––
Set Carry Bit Set Interrupt Mask
C←1 I←1
– – – – – 1 INH – – 1 – – – INH DIR EXT IX2 – IX1 IX SP1 SP2 – DIR
Store A in M
M ← (A)
0––
Store H:X in M Enable IRQ Pin; Stop Oscillator
(M:M + 1) ← (H:X) I ← 0; Stop Oscillator
0––
– – 0 – – – INH DIR EXT IX2 – IX1 IX SP1 SP2
Store X in M
M ← (X)
0––
Technical Data 84
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) Instruction Set Summary
Table 6-1. Instruction Set Summary (Sheet 8 of 9)
Cycles 2 3 4 4 3 2 4 5 9 2 1 1 dd 3 1 1 3 2 4 2 1 2 Source Form SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Operand ii dd hh ll ee ff ff ff ee ff ff ff Address Mode Opcode A0 B0 C0 D0 E0 F0 9EE0 9ED0 83 84 97 85 3D 4D 5D 6D 7D 9E6D 95 9F 94 Effect on CCR VHINZC
Operation
Description
Subtract
A ← (A) – (M)
––
IMM DIR EXT IX2 IX1 IX SP1 SP2
SWI
Software Interrupt
PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte CCR ← (A) X ← (A) A ← (CCR)
– – 1 – – – INH
TAP TAX TPA TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP TSX TXA TXS
Transfer A to CCR Transfer A to X Transfer CCR to A
INH – – – – – – INH – – – – – – INH DIR INH INH – IX1 IX SP1
Test for Negative or Zero
(A) – $00 or (X) – $00 or (M) – $00
0––
Transfer SP to H:X Transfer X to A Transfer H:X to SP
H:X ← (SP) + 1 A ← (X) (SP) ← (H:X) – 1
– – – – – – INH – – – – – – INH – – – – – – INH
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Central Processor Unit (CPU)
Technical Data 85
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 9 of 9)
Cycles Source Form A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Operand Address Mode Opcode Effect on CCR VHINZC Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & |
Operation
Description
⊕
() –( ) #
«
← ? : —
Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected
6.9 Opcode Map
See Table 6-2.
Technical Data 86
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Table 6-2. Opcode Map
Bit Manipulation DIR DIR
MSB LSB
Freescale Semiconductor Central Processor Unit (CPU) 87
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Technical Data
Branch REL 2 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL
DIR 3
INH 4
Read-Modify-Write INH IX1 5 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 6 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1
SP1 9E6
IX 7
Control INH INH 8 9
IMM A 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM
DIR B
EXT C 4 SUB 3 EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT
Register/Memory IX2 SP2 D 4 SUB 3 IX2 4 CMP 3 IX2 4 SBC 3 IX2 4 CPX 3 IX2 4 AND 3 IX2 4 BIT 3 IX2 4 LDA 3 IX2 4 STA 3 IX2 4 EOR 3 IX2 4 ADC 3 IX2 4 ORA 3 IX2 4 ADD 3 IX2 4 JMP 3 IX2 6 JSR 3 IX2 4 LDX 3 IX2 4 STX 3 IX2 9ED 5 SUB 4 SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2
IX1 E
SP1 9EE 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1
IX F
0 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR
1 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR
0 1 2 3 4 5 6 7 8 9 A B C D E F
4 1 NEG NEGA 2 DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH
5 3 NEG NEG 3 SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX
7 3 RTI BGE 1 INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH
3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 BSR JSR 2 REL 2 DIR 2 3 LDX LDX 2 IMM 2 DIR 2 3 AIX STX 2 IMM 2 DIR
MSB LSB
3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 5 3 LDX LDX 4 SP2 2 IX1 5 3 STX STX 4 SP2 2 IX1
2 SUB 1 IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 4 2 LDX LDX 3 SP1 1 IX 4 2 STX STX 3 SP1 1 IX
Central Processor Unit (CPU) Opcode Map
INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions
SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment
0
High Byte of Opcode in Hexadecimal
Low Byte of Opcode in Hexadecimal
0
Cycles 5 BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode
Central Processor Unit (CPU)
Technical Data 88
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Central Processor Unit (CPU) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 7. Oscillator (OSC)
7.1 Contents
7.2 7.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . . .90
7.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . 91 7.4.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . 91 7.4.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . 91 7.4.4 External Clock Source (OSCXCLK) . . . . . . . . . . . . . . . . . . . 91 7.4.5 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.6 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Introduction
The oscillator circuit is designed for use with crystals or ceramic resonators. The oscillator circuit generates the crystal clock signal. The crystal oscillator output signal passes through the clock doubler. OSCXCLK is the output signal of the clock doubler. OSCXCLK is divided by two before being passed on to the system integration module (SIM) for bus clock generation. Figure 7-1 shows the structure of the oscillator. The oscillator requires various external components.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Oscillator (OSC)
Technical Data 89
Oscillator (OSC) 7.3 Oscillator External Connections
In its typical configuration, the oscillator requires five external components. The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 7-1. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: • • • • • Crystal, X1 Fixed capacitor, C1 Tuning capacitor, C2 (can also be a fixed capacitor) Feedback resistor, RB Series resistor, RS (optional)
TO USB TO SIM TO SIM
FROM SIM
CLOCK DOUBLER SIMOSCEN
OSCXCLK
÷2
OSCOUT
MCU OSC1 RB OSC2
RS * X1 * RS can be 0 (shorted) when used with higher frequency crystals. Refer to manufacturer’s data.
C1
C2
Figure 7-1. Oscillator External Connections
Technical Data 90
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Oscillator (OSC) Freescale Semiconductor
Oscillator (OSC) I/O Signals
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high-frequency crystals. Refer to the crystal manufacturer’s data for more information.
7.4 I/O Signals
The following paragraphs describe the oscillator input/output (I/O) signals.
7.4.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is an input to the crystal oscillator amplifier.
7.4.2 Crystal Amplifier Output Pin (OSC2) The OSC2 pin is the output of the crystal oscillator inverting amplifier.
7.4.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator.
7.4.4 External Clock Source (OSCXCLK) The crystal oscillator output signal passes through the clock doubler and OSCXCLK is the output signal of the clock doubler. OSCXCLK runs at twice the speed of the crystal (fXCLK). Figure 7-1 shows only the logical relation of OSCXCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of OSCXCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of OSCXCLK can be unstable at startup.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Oscillator (OSC)
Technical Data 91
Oscillator (OSC)
7.4.5 Oscillator Out (OSCOUT) The clock driven to the SIM is OSCXCLK. This signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the SIM and results in the internal bus frequency being one forth of the OSCXCLK frequency or one half of the crystal frequency.
7.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes.
7.5.1 Wait Mode The WAIT instruction has no effect on the oscillator logic. OSCXCLK continues to drive to the SIM module.
7.5.2 Stop Mode The STOP instruction disables the OSCXCLK output.
7.6 Oscillator During Break Mode
The oscillator continues to drive OSCXCLK when the chip enters the break state.
Technical Data 92
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Oscillator (OSC) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 8. System Integration Module (SIM)
8.1 Contents
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 96 8.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . 97 8.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 97 8.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 97 8.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 99 8.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 8.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 101 8.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .101 8.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 102 8.4.2.6 Universal Serial Bus Reset . . . . . . . . . . . . . . . . . . . . . . 102 8.4.2.7 Registers Values After Different Resets. . . . . . . . . . . . . 102 8.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 103 8.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 104 8.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 104 8.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 8.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 110
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM) Technical Data 93
System Integration Module (SIM)
8.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 8.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.8.1 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.8.2 Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.8.3 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .116
8.2 Introduction
This section describes the system integration module (SIM), which supports up to 8 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. The SIM is a system state controller that coordinates CPU and exception timing. A block diagram of the SIM is shown in Figure 8-1. Figure 8-2 is a summary of the SIM I/O registers. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals – Stop/wait/reset/break entry and recovery – Internal clock control • • Master reset control, including power-on reset (POR) and COP timeout Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation • • CPU enable/disable timing Modular architecture expandable to 128 interrupt sources
Technical Data 94
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Introduction
MODULE STOP MODULE WAIT STOP/WAIT CONTROL CPU STOP (FROM CPU) CPU WAIT (FROM CPU) SIMOSCEN (TO OSCILLATOR) SIM COUNTER COP CLOCK
OSCXCLK (FROM CLOCK DOUBLER) OSCOUT (FROM CLOCK DOUBLER) ÷2 VDD CLOCK CONTROL CLOCK GENERATORS INTERNAL CLOCKS
INTERNAL PULL-UP
RESET PIN LOGIC
POR CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER MASTER RESET CONTROL
ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP TIMEOUT (FROM COP MODULE) LVI RESET (FROM LVI MODULE) USB RESET (FROM USB MODULE)
RESET
INTERRUPT CONTROL AND PRIORITY DECODE
INTERRUPT SOURCES CPU INTERFACE
Figure 8-1. SIM Block Diagram Table 8-1. SIM Module Signal Name Conventions
Signal Name OSCXCLK OSCOUT IAB IDB PORRST IRST R/W Description Clock doubler output which has twice the frequency of OSC1 from the oscillator The OSCXCLK frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = OSCXCLK ÷ 4 = fOSC ÷ 2) Internal address bus Internal data bus Signal from the power-on reset module to the SIM Internal reset signal Read/write signal
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
Technical Data 95
System Integration Module (SIM)
Addr. $FE00
Register Name Break Status Register Read: (BSR) Write: Reset:
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 SBSW See note 0
Bit 0 R
Note: Writing a logic 0 clears SBSW. $FE01 Reset Status Register Read: (RSR) Write: POR: $FE02 Reserved Read: Write: POR PIN COP ILOP ILAD USB LVI 0
1 R
0 R
0 R
0 R
0 R
0 R
0 R
0 R
$FE03
Break Flag Control Read: Register Write: (BFCR) Reset:
BCFE 0 IF6 R 0
R
R
R
R
R
R
R
$FE04 Interrupt Status Register 1 Read: (INT1) Write: Reset:
IF5 R 0
IF4 R 0
IF3 R 0
IF2 R 0
IF1 R 0
0 R 0
0 R 0
Figure 8-2. SIM I/O Register Summary
8.3 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 8-3.
FROM CLOCK DOUBLER FROM CLOCK DOUBLER
OSCXCLK OSCOUT
SIM COUNTER ÷2 BUS CLOCK GENERATORS
SIM
Figure 8-3. SIM Clock Signals
Technical Data 96
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Reset and System Initialization
8.3.1 Bus Timing In user mode, the internal bus frequency is the oscillator frequency divided by two. 8.3.2 Clock Startup from POR or LVI Reset When the power-on reset (POR) module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 OSCXCLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout. 8.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows OSCXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 2048 OSCXCLK cycles. (See 8.7.2 Stop Mode.) In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.
8.4 Reset and System Initialization
The MCU has these reset sources: • • • • • • • Power-on reset module (POR) External reset pin (RST) Computer operating properly module (COP) Illegal opcode Illegal address Universal serial bus module (USB) Low-voltage inhibit module (LVI)
Technical Data 97
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
System Integration Module (SIM)
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 8.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the reset status register (RSR). (See 8.8 SIM Registers.)
8.4.1 External Pin Reset The RST pin circuit includes an internal pullup device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the reset status register (RSR) is set as long as RST is held low for a minimum of 67 OSCXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 8-2 for details. Figure 8-4 shows the relative timing. Table 8-2. PIN Bit Set Timing
Reset Type POR/LVI All others Number of Cycles Required to Set PIN 4163 (4096 + 64 + 3) 67 (64 + 3)
OSCOUT
RST
IAB
PC
VECT H
VECT L
Figure 8-4. External Reset Timing
Technical Data 98
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Reset and System Initialization
8.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 OSCXCLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles. (See Figure 8-5.) An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, the USB module or POR. (See Figure 8-6 . Sources of Internal Reset.)
NOTE:
For LVI or POR resets, the SIM cycles through 4096 OSCXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 8-5.
IRST
RST
RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES
OSCXCLK
IAB
VECTOR HIGH
Figure 8-5. Internal Reset Timing The COP reset is asynchronous to the bus clock.
ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST POR LVI USB
INTERNAL RESET
Figure 8-6. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
Technical Data 99
System Integration Module (SIM)
8.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 OSCXCLK cycles. Sixty-four OSCXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, the following events occur: • • • • • • A POR pulse is generated. The internal reset signal is asserted. The SIM enables the oscillator to drive OSCXCLK. Internal clocks to the CPU and modules are held inactive for 4096 OSCXCLK cycles to allow stabilization of the oscillator. The RST pin is driven low during the oscillator stabilization time. The POR bit of the reset status register (RSR) is set and all other bits in the register are cleared.
OSC1
PORRST 4096 CYCLES OSCXCLK 32 CYCLES 32 CYCLES
OSCOUT
RST
IAB
$FFFE
$FFFF
Figure 8-7. POR Recovery
Technical Data 100
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Reset and System Initialization
8.4.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every 212 – 24 OSCXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout. The COP module is disabled if the RST pin or the IRQ pin is held at VDD + VHI while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VDD + VHI on the RST pin disables the COP module. 8.4.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the reset status register (RSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 8.4.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM) Technical Data 101
System Integration Module (SIM)
8.4.2.5 Low-Voltage Inhibit (LVI) Reset The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVI reset voltage, VTRIP. The LVI bit in the reset status register (RSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 OSCXCLK cycles. Sixty-four OSCXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources. 8.4.2.6 Universal Serial Bus Reset The USB module will detect a reset signaled on the bus by the presence of an extended SE0 at the USB data pins of a device. The MCU seeing a single-ended 0 on its USB data inputs for more than 2.5 µs treats that signal as a reset. After the reset is removed, the device will be in the attached, but not yet addressed or configured, state (refer to Section 9.1 USB Devices of the Universal Serial Bus Specification Rev. 1.1). The device must be able to accept the device address via a SET_ADDRESS command (refer to Section 9.4 of the Universal Serial Bus Specification Rev. 1.1) no later than 10ms after the reset is removed. USB reset can be disabled to generate an internal reset, instead, a USB interrupt can be generated. (See Section 5. Configuration Register (CONFIG).)
NOTE:
USB reset is disabled when the USB module is disabled by clearing the USBEN bit of the USB Address Register (UADDR).
8.4.2.7 Registers Values After Different Resets Some registers are reset by POR or LVI reset only. Table 8-3 shows the registers or register bits which are unaffected by normal resets.
Technical Data 102
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) SIM Counter
Table 8-3. Registers not Affected by Normal Reset
Bits URSTD, LVIDIS USBEN PULLEN All All All All All DDRA7 Registers CONFIG UADDR UCR3 USR0, USR1 UE0D0–UE0D7 UE1D0–UE1D7 UE2D0–UE2D7 PTA, PTB, PTC, PTD, and PTE DDRA After Reset (except POR or LVI) Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected After POR or LVI 0 0 0 Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate 0
8.5 SIM Counter
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescalar for the computer operating properly module (COP). The SIM counter uses 12 stages for counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP module. The SIM counter is clocked by the falling edge of OSCXCLK.
8.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
Technical Data 103
System Integration Module (SIM)
8.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configuration register (CONFIG). If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 OSCXCLK cycles down to 2048 OSCXCLK cycles. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared in the configuration register (CONFIG).
8.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. (See 8.7.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 8.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.)
8.6 Exception Control
Normal, sequential program execution can be changed in three different ways: • Interrupts – Maskable hardware CPU interrupts – Non-maskable software interrupt instruction (SWI) • • Reset Break interrupts
8.6.1 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 8-8 flow charts the handling of system interrupts.
Technical Data 104
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Exception Control
FROM RESET
BREAK INTERRUPT ? NO YES
YES
BIT SET? IIBIT SET? NO IRQ INTERRUPT ? NO USB INTERRUPT ? NO YES
YES
OTHER INTERRUPTS ? NO
YES
STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR
FETCH NEXT INSTRUCTION
SWI INSTRUCTION ? NO RTI INSTRUCTION ? NO
YES
YES
UNSTACK CPU REGISTERS
EXECUTE INSTRUCTION
Figure 8-8. Interrupt Processing
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
Technical Data 105
System Integration Module (SIM)
Interrupts are latched and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced or the I bit is cleared. At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 8-9 shows interrupt entry timing. Figure 8-10 shows interrupt recovery timing.
MODULE INTERRUPT I BIT
IAB
DUMMY
SP
SP – 1
SP – 2
SP – 3
SP – 4
VECT H
VECT L
START ADDR
IDB
DUMMY
PC – 1[7:0] PC – 1[15:8]
X
A
CCR
V DATA H
V DATA L
OPCODE
R/W
Figure 8-9. Interrupt Entry
MODULE INTERRUPT I BIT
IAB
SP – 4
SP – 3
SP – 2
SP – 1
SP
PC
PC + 1
IDB
CCR
A
X
PC –1 [15:8] PC – 1[7:0]
OPCODE
OPERAND
R/W
Figure 8-10. Interrupt Recovery
Technical Data 106
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Exception Control
8.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register) and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 8-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.
CLI LDA #$FF BACKGROUND ROUTINE
INT1
PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI
INT2
PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI
Figure 8-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.
NOTE:
To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.
Technical Data 107
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
System Integration Module (SIM)
8.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does not push PC–1, as a hardware interrupt does.
8.6.2 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 8-4 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 8-4. Interrupt Sources
Source SWI Instruction USB Reset Interrupt USB Endpoint 0 Transmit USB Endpoint 0 Receive USB Endpoint 1 Transmit USB Endpoint 2 Transmit USB Endpoint 2 Receive USB End of Packet USB Resume Interrupt IRQ Interrupt (IRQ, PTE4) TIM Channel 0 TIM Channel 1 TIM Overflow Keyboard Interrupt RSTF TXD0F RXD0F TXD1F TXD2F RXD2F EOPF RESUMF IRQF PTE4IF CH0F CH1F TOF KEYF URSTD TXD0IE RXD0IE TXD1IE IF2 TXD2IE RXD2IE EOPIE — IMASK CH0IE CH1IE TOIE IMASKK IF1 IF3 IF4 IF5 IF6 2 3 4 5 6 $FFF8–$FFF9 $FFF6–$FFF7 $FFF4–$FFF5 $FFF2–$FFF3 $FFF0–$FFF1 1 $FFFA–$FFFB Flags Mask(1) INT Register Flag — Priority(2) 0 Vector Address $FFFC–$FFFD
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. 2. 0 = highest priority
Technical Data 108
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Exception Control
8.6.2.1 Interrupt Status Register 1
Address: $FE04 Bit 7 Read: Write: Reset: IF6 R 0 R 6 IF5 R 0 5 IF4 R 0 4 IF3 R 0 3 IF2 R 0 2 IF1 R 0 1 0 R 0 Bit 0 0 R 0
= Reserved
Figure 8-12. Interrupt Status Register 1 (INT1) IF6–IF1 — Interrupt Flags 1–6 These flags indicate the presence of interrupt requests from the sources shown in Table 8-4. 1 = Interrupt request present 0 = No interrupt request present Bit 0 and Bit 1 — Always read 0
8.6.3 Reset All reset sources always have equal and highest priority and cannot be arbitrated.
8.6.4 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See Section 17. Break Module (BREAK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
Technical Data 109
System Integration Module (SIM)
8.6.5 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the break flag control register (BFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.
8.7 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low-powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described here. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur.
8.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 8-13 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.
Technical Data 110 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Low-Power Modes
Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode.
IAB
WAIT ADDR
WAIT ADDR + 1
SAME
SAME
IDB
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
R/W
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.
Figure 8-13. Wait Mode Entry Timing Figure 8-14 and Figure 8-15 show the timing for WAIT recovery.
IAB $6E0B $6E0C $00FF $00FE $00FD $00FC
IDB
$A6
$A6
$A6
$01
$0B
$6E
EXITSTOPWAIT NOTE: EXITSTOPWAIT = RST pin or CPU interrupt or break interrupt
Figure 8-14. Wait Recovery from Interrupt or Break
32 CYCLES IAB $6E0B
32 CYCLES RST VCT H RST VCT L
IDB
$A6
$A6
$A6
RST
OSCXCLK
Figure 8-15. Wait Recovery from Internal Reset
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM) Technical Data 111
System Integration Module (SIM)
8.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the oscillator signals (OSCOUT and OSCXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register (CONFIG). If SSREC is set, stop recovery is reduced from the normal delay of 4096 OSCXCLK cycles down to 2048. This is ideal for applications using canned oscillators that do not require long startup times from stop mode.
NOTE:
External crystal applications should use the full stop recovery time by clearing the SSREC bit. A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the break status register (BSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 8-16 shows stop mode entry timing.
NOTE:
To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0.
CPUSTOP
IAB
STOP ADDR
STOP ADDR + 1
SAME
SAME
IDB
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
R/W
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.
Figure 8-16. Stop Mode Entry Timing
Technical Data 112
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) SIM Registers
STOP RECOVERY PERIOD OSCXCLK
INT/BREAK
IAB
STOP +1
STOP + 2
STOP + 2
SP
SP – 1
SP – 2
SP – 3
Figure 8-17. Stop Mode Recovery from Interrupt or Break
8.8 SIM Registers
The SIM has two break registers and one reset register.
8.8.1 Break Status Register The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.
Address: $FE00 Bit 7 Read: R Write: Reset: Note 1. Writing a logic 0 clears SBSW. R = Reserved R R R R R Note 1 0 6 5 4 3 2 1 SBSW R Bit 0
Figure 8-18. Break Status Register (BSR) SBSW — SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
Technical Data 113
System Integration Module (SIM)
SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. Writing 0 to the SBSW bit clears it. This code works if the H register has been pushed onto the stack in the break service routine software. This code should be executed at the end of the break service routine software.
HIBYTE LOBYTE ; EQU EQU 5 6
If not SBSW, do RTI BRCLR TST BNE DEC DOLO RETURN DEC PULH RTI SBSW,BSR, RETURN LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP ; See if wait mode or stop mode was exited ; by break. ; If RETURNLO is not zero, ; then just decrement low byte. ; Else deal with high byte, too. ; Point to WAIT/STOP opcode. ; Restore H register.
8.8.2 Reset Status Register This register contains seven flags that show the source of the last reset. All flag bits are cleared automatically following a read of the register. The register is initialized on power-up as shown with the POR bit set and all other bits cleared. However, during a POR or any other internal reset, the RST pin is pulled low. After the pin is released, it will be sampled 32 XCLK cycles later. If the pin is not above a VIH at that time, then the PIN bit in the RSR may be set in addition to whatever other bits are set.
Technical Data 114
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) SIM Registers
Address:
$FE01 Bit 7 6 PIN 5 COP 4 ILOP 3 ILAD 2 USB 1 LVI Bit 0 0
Read: Write: POR:
POR
1
0
0
0
0
0
0
0
= Unimplemented
Figure 8-19. Reset Status Register (RSR) POR — Power-On Reset Bit 1 = A POR has occurred 0 = Read of RSR PIN — External Reset Bit 1 = An external reset has occurred since the last read of the RSR 0 = Read of RSR COP — Computer Operating Properly Reset Bit 1 = A COP reset has occurred since the last read of the RSR 0 = POR or read of RSR ILOP — Illegal Opcode Reset Bit An illegal opcode reset has occurred since the last read of the RSR 0 = POR or read of RSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = An illegal address reset has occurred since the last read of the RSR 0 = POR or read of RSR USB — Universal Serial Bus Reset Bit 1 = Last reset caused by the USB module 0 = POR or read of RSR LVI — Low voltage inhibit Reset Bit 1 = A LVI reset has occurred since the last read of PSR 0 = POR or read of RSR
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor System Integration Module (SIM)
Technical Data 115
System Integration Module (SIM)
8.8.3 Break Flag Control Register The break control register contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: BCFE Write: POR:
0
6 R
5 R
4 R
3 R
2 R
1 R
Bit 0 R
R
= Reserved
Figure 8-20. Break Flag Control Register (BFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
Technical Data 116
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 System Integration Module (SIM) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 9. Universal Serial Bus Module (USB)
9.1 Contents
9.2 9.3 9.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 9.5.1 USB Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.5.1.1 Sync Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9.5.1.2 Packet Identifier Field . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.5.1.3 Address Field (ADDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.5.1.4 Endpoint Field (ENDP). . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.5.1.5 Cyclic Redundancy Check (CRC) . . . . . . . . . . . . . . . . . 128 9.5.1.6 End-of-Packet (EOP) . . . . . . . . . . . . . . . . . . . . . . . . . . .128 9.5.2 Reset Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.5.3 Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.5.4 Resume After Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.5.4.1 Host Initiated Resume . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.5.4.2 USB Reset Signalling. . . . . . . . . . . . . . . . . . . . . . . . . . .131 9.5.4.3 Remote Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 9.5.5 Low-Speed Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 9.6 Clock Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.7 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.7.1 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.7.2 USB Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.7.2.1 Output Driver Characteristics . . . . . . . . . . . . . . . . . . . . . 134 9.7.2.2 Low Speed (1.5 Mbps) Driver Characteristics . . . . . . . . 134 9.7.2.3 Receiver Data Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.7.2.4 Data Source Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.7.2.5 Data Signal Rise and Fall Time . . . . . . . . . . . . . . . . . . . 136
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB) Technical Data 117
Universal Serial Bus Module (USB)
9.7.3 USB Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.8.1 USB Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.8.2 USB Interrupt Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.8.3 USB Interrupt Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9.8.4 USB Interrupt Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.8.5 USB Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.8.6 USB Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.8.7 USB Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.8.8 USB Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 9.8.9 USB Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.8.10 USB Status Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.8.11 USB Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.8.12 USB Endpoint 0 Data Registers . . . . . . . . . . . . . . . . . . . . . 154 9.8.13 USB Endpoint 1 Data Registers . . . . . . . . . . . . . . . . . . . . . 155 9.8.14 USB Endpoint 2 Data Registers . . . . . . . . . . . . . . . . . . . . . 156 9.9 USB Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.9.1 USB End-of-Transaction Interrupt . . . . . . . . . . . . . . . . . . . 157 9.9.1.1 Receive Control Endpoint 0 . . . . . . . . . . . . . . . . . . . . . . 158 9.9.1.2 Transmit Control Endpoint 0 . . . . . . . . . . . . . . . . . . . . . 160 9.9.1.3 Transmit Endpoint 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.9.1.4 Transmit Endpoint 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.9.1.5 Receive Endpoint 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.9.2 Resume Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.9.3 End-of-Packet Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.2 Introduction
This section describes the universal serial bus (USB) module. The USB module is designed to serve as a low-speed (LS) USB device per the Universal Serial Bus Specification Rev 1.1. Control and interrupt data transfers are supported. Endpoint 0 functions as a transmit/receive control endpoint; endpoint 1 functions as interrupt transmit endpoint; endpoint 2 functions as interrupt transmit or receive endpoint.
Technical Data 118
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Features
9.3 Features
Features of the USB module include: • • • • • • • Full Universal Serial Bus Specification 1.1 low-speed functions 1.5 Mbps data rate On-chip 3.3V regulator Endpoint 0 with 8-byte transmit buffer and 8-byte receive buffer Endpoint 1 with 8-byte transmit buffer Endpoint 2 with 8-byte transmit buffer and 8-byte receive buffer USB data control logic: – Control endpoint 0 and interrupt endpoints 1 and 2 – Packet decoding/generation – CRC generation and checking – NRZI (Non-Return-to Zero Inserted) encoding/decoding – Bit-stuffing • USB reset options: – Internal MCU reset generation – CPU interrupt request generation • • Suspend and resume operations, with remote wakeup support USB-generated interrupts: – Transaction interrupt driven – Resume interrupt – End-of-packet interrupt – USB reset • STALL, NAK, and ACK handshake generation
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 119
Universal Serial Bus Module (USB) 9.4 Pin Name Conventions
The USB share two I/O pins with two port E I/O pins. The full name of the USB I/O pin is listed in Table 9-1. The generic pin name appear in the text that follows. Table 9-1. USB Module Pin Name Conventions
USB Generic Pin Names: Full USB Pin Names: D+ PTE3/D+ D– PTE4/D–
Addr. $0018
Register Name
Bit 7
6 0 RSTFR 0 STALL2 0 0 TX1STR
5 0 TXD2FR 0 TX2E 0 OSTALL0 0
4 0 RXD2FR 0 RX2E 0 ISTALL0 0
3 0
2 0
1 0
Bit 0 0 RXD0FR 0 TP2SIZ0 0
Read: 0 USB Interrupt Register 2 Write: EOPFR (UIR2) Reset: 0 Read: USB Control Register 2 Write: (UCR2) Reset: Read: USB Control Register 3 Write: (UCR3) Reset: T2SEQ 0 TX1ST
TXD1FR RESUMFR TXD0FR 0 TP2SIZ3 0 0 0 TP2SIZ2 0 0 TP2SIZ1 0
$0019
$001A
PULLEN ENABLE2 ENABLE1 0* 0 0
0
0
0
* PULLEN bit is reset by POR or LVI reset only. $001B Read: USB Control Register 4 Write: (UCR4) Reset: 0 0 0 0 0 FUSBO 0 UE0R02 UE0T02 FDP 0 UE0R01 UE0T01 FDM 0 UE0R00 UE0T00
0
0 UE0R06 UE0T06
0 UE0R05 UE0T05
0 UE0R04 UE0T04
0 UE0R03 UE0T03
$0020
Read: UE0R07 USB Endpoint 0 Data Register 0 Write: UE0T07 (UE0D0) Reset: Read: UE0R17 USB Endpoint 0 Data Register 1 Write: UE0T17 (UE0D1) Reset:
Unaffected by reset UE0R16 UE0T16 UE0R15 UE0T15 UE0R14 UE0T14 UE0R13 UE0T13 UE0R12 UE0T12 UE0R11 UE0T11 UE0R10 UE0T10
$0021
Unaffected by reset = Unimplemented U = Unaffected by reset
Figure 9-1. USB I/O Register Summary (Sheet 1 of 4)
Technical Data 120
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Pin Name Conventions
Addr. $0022
Register Name
Bit 7
6 UE0R26 UE0T26
5 UE0R25 UE0T25
4 UE0R24 UE0T24
3 UE0R23 UE0T23
2 UE0R22 UE0T22
1 UE0R21 UE0T21
Bit 0 UE0R20 UE0T20
Read: UE0R27 USB Endpoint 0 Data Register 2 Write: UE0T27 (UE0D2) Reset: Read: UE0R37 USB Endpoint 0 Data Register 3 Write: UE0T37 (UE0D3) Reset: Read: UE0R47 USB Endpoint 0 Data Register 4 Write: UE0T47 (UE0D4) Reset: Read: UE0R57 USB Endpoint 0 Data Register 5 Write: UE0T57 (UE0D5) Reset: Read: UE0R67 USB Endpoint 0 Data Register 6 Write: UE0T67 (UE0D6) Reset: Read: UE0R77 USB Endpoint 0 Data Register 7 Write: UE0T77 (UE0D7) Reset: Read: USB Endpoint 1 Data Register 0 Write: UE1T07 (UE1D0) Reset: Read: USB Endpoint 1 Data Register 1 Write: UE1T17 (UE1D1) Reset: Read: USB Endpoint 1 Data Register 2 Write: UE1T27 (UE1D2) Reset: Read: USB Endpoint 1 Data Register 3 Write: UE1T37 (UE1D3) Reset:
Unaffected by reset UE0R36 UE0T36 UE0R35 UE0T35 UE0R34 UE0T34 UE0R33 UE0T33 UE0R32 UE0T32 UE0R31 UE0T31 UE0R30 UE0T30
$0023
Unaffected by reset UE0R46 UE0T46 UE0R45 UE0T45 UE0R44 UE0T44 UE0R43 UE0T43 UE0R42 UE0T42 UE0R41 UE0T41 UE0R40 UE0T40
$0024
Unaffected by reset UE0R56 UE0T56 UE0R55 UE0T55 UE0R54 UE0T54 UE0R53 UE0T53 UE0R52 UE0T52 UE0R51 UE0T51 UE0R50 UE0T50
$0025
Unaffected by reset UE0R66 UE0T66 UE0R65 UE0T65 UE0R64 UE0T64 UE0R63 UE0T63 UE0R62 UE0T62 UE0R61 UE0T61 UE0R60 UE0T60
$0026
Unaffected by reset UE0R76 UE0T76 UE0R75 UE0T75 UE0R74 UE0T74 UE0R73 UE0T73 UE0R72 UE0T72 UE0R71 UE0T71 UE0R70 UE0T70
$0027
Unaffected by reset
$0028
UE1T06
UE1T05
UE1T04
UE1T03
UE1T02
UE1T01
UE1T00
Unaffected by reset
$0029
UE1T16
UE1T15
UE1T14
UE1T13
UE1T12
UE1T11
UE1T10
Unaffected by reset
$002A
UE1T26
UE1T25
UE1T24
UE1T23
UE1T22
UE1T21
UE1T20
Unaffected by reset
$002B
UE1T36
UE1T35
UE1T34
UE1T33
UE1T32
UE1T31
UE1T30
Unaffected by reset = Unimplemented U = Unaffected by reset
Figure 9-1. USB I/O Register Summary (Sheet 2 of 4)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 121
Universal Serial Bus Module (USB)
Addr. $002C
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Read: USB Endpoint 1 Data Register 4 Write: UE1T47 (UE1D4) Reset: Read: USB Endpoint 1 Data Register5 Write: UE1T57 (UE1D5) Reset: Read: USB Endpoint 1 Data Register 6 Write: UE1T67 (UE1D6) Reset: Read: USB Endpoint 1 Data Register 7 Write: UE1T77 (UE1D7) Reset: Read: UE2R07 USB Endpoint 2 Data Register 0 Write: UE2T07 (UE2D0) Reset: Read: UE2R17 USB Endpoint 2 Data Register 1 Write: UE2T17 (UE2D1) Reset: Read: UE2R27 USB Endpoint 2 Data Register 2 Write: UE2T27 (UE2D2) Reset: Read: UE2R37 USB Endpoint 2 Data Register 3 Write: UE2T37 (UE2D3) Reset: Read: UE2R47 USB Endpoint 2 Data Register 4 Write: UE2T47 (UE2D4) Reset: Read: UE2R57 USB Endpoint 2 Data Register 5 Write: UE2T57 (UE2D5) Reset:
UE1T46
UE1T45
UE1T44
UE1T43
UE1T42
UE1T41
UE1T40
Unaffected by reset
$002D
UE1T56
UE1T55
UE1T54
UE1T53
UE1T52
UE1T51
UE1T50
Unaffected by reset
$002E
UE1T66
UE1T65
UE1T64
UE1T63
UE1T62
UE1T61
UE1T60
Unaffected by reset
$002F
UE1T76
UE1T75
UE1T74
UE1T73
UE1T72
UE1T71
UE1T70
Unaffected by reset UE2R06 UE2T06 UE2R05 UE2T05 UE2R04 UE2T04 UE2R03 UE2T03 UE2R02 UE2T02 UE2R01 UE2T01 UE2R00 UE2T00
$0030
Unaffected by reset UE2R16 UE2T16 UE2R15 UE2T15 UE2R14 UE2T14 UE2R13 UE2T13 UE2R12 UE2T12 UE2R11 UE2T11 UE2R10 UE2T10
$0031
Unaffected by reset UE2R26 UE2T26 UE2R25 UE2T25 UE2R24 UE2T24 UE2R23 UE2T23 UE2R22 UE2T22 UE2R21 UE2T21 UE2R20 UE2T20
$0032
Unaffected by reset UE2R36 UE2T36 UE2R35 UE2T35 UE2R34 UE2T34 UE2R33 UE2T33 UE2R32 UE2T32 UE2R31 UE2T31 UE2R30 UE2T30
$0033
Unaffected by reset UE2R46 UE2T46 UE2R45 UE2T45 UE2R44 UE2T44 UE2R43 UE2T43 UE2R42 UE2T42 UE2R41 UE2T41 UE2R40 UE2T40
$0034
Unaffected by reset UE2R56 UE2T56 UE2R55 UE2T55 UE2R54 UE2T54 UE2R53 UE2T53 UE2R52 UE2T52 UE2R51 UE2T51 UE2R50 UE2T50
$0035
Unaffected by reset = Unimplemented U = Unaffected by reset
Figure 9-1. USB I/O Register Summary (Sheet 3 of 4)
Technical Data 122
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Pin Name Conventions
Addr. $0036
Register Name
Bit 7
6 UE2R66 UE2T66
5 UE2R65 UE2T65
4 UE2R64 UE2T64
3 UE2R63 UE2T63
2 UE2R62 UE2T62
1 UE2R61 UE2T61
Bit 0 UE2R60 UE2T60
Read: UE2R67 USB Endpoint 2 Data Register 6 Write: UE2T67 (UE2D6) Reset: Read: UE2R77 USB Endpoint 2 Data Register 7 Write: UE2T77 (UE2D7) Reset: USB Address Register Read: USBEN (UADDR) Write: Reset: 0*
Unaffected by reset UE2R76 UE2T76 UE2R75 UE2T75 UE2R74 UE2T74 UE2R73 UE2T73 UE2R72 UE2T72 UE2R71 UE2T71 UE2R70 UE2T70
$0037
Unaffected by reset UADD6 0 UADD5 0 UADD4 0 UADD3 0 UADD2 0 UADD1 0 UADD0 0
$0038
* USBEN bit is reset by POR or LVI reset only. $0039 USB Interrupt Register 0 Read: (UIR0) Write: Reset: $003A USB Interrupt Register 1 Read: (UIR1) Write: Reset: $003B USB Control Register 0 Read: (UCR0) Write: Reset: $003C USB Control Register 1 Read: (UCR1) Write: Reset: $003D EOPIE 0 EOPF SUSPND 0 RSTF TXD2IE 0 TXD2F RXD2IE 0 RXD2F TXD1IE 0 TXD1F 0 TXD0IE 0 TXD0F RXD0IE 0 RXD0F
0 RESUMF
0 T0SEQ 0 T1SEQ 0
0 0
0 TX0E 0 TX1E 0 0
0 RX0E 0
0 TP0SIZ3 0
0 TP0SIZ2 0 TP1SIZ2 0 RP0SIZ2
0 TP0SIZ1 0 TP1SIZ1 0 RP0SIZ1
0 TP0SIZ0 0 TP1SIZ0 0 RP0SIZ0
0 STALL1 0 SETUP
FRESUM TP1SIZ3 0 0 0 RP0SIZ3
USB Status Register 0 Read: R0SEQ (USR0) Write: Reset:
Unaffected by reset TXACK TXNAK TXSTL RP2SIZ3 RP2SIZ2 RP2SIZ1 RP2SIZ0
$003E
USB Status Register 1 Read: R2SEQ (USR1) Write: Reset: U
0
0
0
U
U
U
U
= Unimplemented
U = Unaffected by reset
Figure 9-1. USB I/O Register Summary (Sheet 4 of 4)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 123
Universal Serial Bus Module (USB) 9.5 Functional Description
Figure 9-2 shows the block diagram of the USB module. The USB module manages communications between the host and the USB function. The module is partitioned into three functional blocks. These blocks consist of a dual-function transceiver, the USB control logic, and the endpoint registers. The blocks are further detailed later in this section (see 9.7 Hardware Description).
RCV USB CONTROL LOGIC VPOUT VMOUT VPIN VMIN TRANSCEIVER D+ USB UPSTREAM PORT
D–
CPU BUS
USB REGISTERS
Figure 9-2. USB Block Diagram
Technical Data 124
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Functional Description
9.5.1 USB Protocol Figure 9-3 shows the various transaction types supported by the USB module. The transactions are portrayed as error free. The effect of errors in the data flow are discussed later.
ENDPOINT 0 TRANSACTIONS: Control Write SETUP DATA0 ACK OUT DATA1 ACK
OUT
DATA0
ACK
OUT
DATA0/1
ACK
IN Control Read SETUP DATA0 ACK IN DATA1
DATA1
ACK
ACK
IN
DATA0
ACK
IN
DATA0/1
ACK
OUT No-Data Control SETUP DATA0 ACK IN DATA1
DATA1
ACK
ACK
ENDPOINTS 1 & 2 TRANSACTIONS: KEY: Interrupt IN DATA0/1 ACK Unrelated Bus Traffic Host Generated Device Generated
Bulk Transmit IN DATA0/1 ACK
Figure 9-3. Supported Transaction Types Per Endpoint
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 125
Universal Serial Bus Module (USB)
Each USB transaction is comprised of a series of packets. The USB module supports the packet types shown in Figure 9-4. Token packets are generated by the USB host and decoded by the USB device. Data and handshake packets are both decoded and generated by the USB device, depending on the type of transaction.
Token Packet: IN OUT SETUP Data Packet: DATA0 DATA1 Handshake Packet: ACK NAK STALL SYNC PID PID EOP SYNC PID PID DATA 0 – 8 Bytes CRC16 EOP SYNC PID PID ADDR ENDP CRC5 EOP
Figure 9-4. Supported USB Packet Types The following sections detail each segment used to form a complete USB transaction. 9.5.1.1 Sync Pattern The NRZI bit pattern shown in Figure 9-5 is used as a synchronization pattern and is prefixed to each packet. This pattern is equivalent to a data pattern of seven 0s followed by a 1 ($80).
SYNC PATTERN NRZI Data Encoding Idle PID0 PID1
Figure 9-5. Sync Pattern
Technical Data 126
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Functional Description
The start of a packet (SOP) is signaled by the originating port by driving the D+ and D– lines from the idle state (also referred to as the J state) to the opposite logic level (also referred to as the K state). This switch in levels represents the first bit of the sync field. Figure 9-6 shows the data signaling and voltage levels for the start of packet and the sync pattern.
VOH (min.)
VSE (max) VSE (min.) VOL (min.) VSS FIRST BIT OF PACKET BUS IDLE SOP END OF SYNC
Figure 9-6. SOP, Sync Signaling, and Voltage Levels 9.5.1.2 Packet Identifier Field The packet identifier field is an 8-bit number comprised of the 4-bit packet identification and its complement. The field follows the sync pattern and determines the direction and type of transaction on the bus. Table 9-2 shows the packet identifier values for the supported packet types. Table 9-2. Supported Packet Identifiers
Packet Identifier Value %1001 %0001 %1101 %0011 %1011 %0010 %1010 %1110 Packet Identifier Type IN Token OUT Token SETUP Token DATA0 Packet DATA1 Packet ACK Handshake NAK Handshake STALL Handshake
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 127
Universal Serial Bus Module (USB)
9.5.1.3 Address Field (ADDR) The address field is a 7-bit number that is used to select a particular USB device. This field is compared to the lower seven bits of the UADDR register to determine if a given transaction is targeting the MCU USB device. 9.5.1.4 Endpoint Field (ENDP) The endpoint field is a 4-bit number that is used to select a particular endpoint within a USB device. For the MCU, this will be a binary number between 0 and 2 inclusive. Any other value will cause the transaction to be ignored. 9.5.1.5 Cyclic Redundancy Check (CRC) Cyclic redundancy checks are used to verify the address and data stream of a USB transaction. This field is five bits wide for token packets and 16 bits wide for data packets. CRCs are generated in the transmitter and sent on the USB data lines after both the endpoint field and the data field. 9.5.1.6 End-of-Packet (EOP) The single-ended 0 (SE0) state is used to signal an end-of-packet (EOP). The single-ended 0 state is indicated by both D+ and D– being below 0.8V. EOP will be signaled by driving D+ and D– to the single-ended 0 state for two bit times followed by driving the lines to the idle state for one bit time. The transition from the single-ended 0 to the idle state defines the end of the packet. The idle state is asserted for one bit time and then both the D+ and D– output drivers are placed in their high-impedance state. The bus termination resistors hold the bus in the idle state. Figure 9-7 shows the data signaling and voltage levels for an end-of-packet transaction.
Technical Data 128
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Functional Description
LAST BIT OF PACKET EOP STROBE VOH (min.)
BUS DRIVEN TO IDLE STATE BUS FLOATS BUS IDLE
VSE (max) VSE (min.) VOL (min.) VSS
Figure 9-7. EOP Transaction Voltage Levels The width of the SE0 in the EOP is about two bit times. The EOP width is measured with the same capacitive load used for maximum rise and fall times and is measured at the same level as the differential signal crossover points of the data lines.
tPeriod DIFFERENTIAL DATA LINES DATA CROSSOVER LEVEL
EOP WIDTH
Figure 9-8. EOP Width Timing
9.5.2 Reset Signaling The USB module will detect a reset signaled on the bus by the presence of an extended SE0 at the USB data pins of a device. The MCU seeing a single-ended 0 on its USB data inputs for more than 8 µs treats that signal as a reset. A USB sourced reset will hold the MCU in reset for the duration of the reset on the USB bus. The USB bit in the reset status register (RSR) will be set after the internal reset is removed. Refer to 8.8.2 Reset Status Register for more detail. The MCU’s reset recovery sequence is detailed in Section 8. System Integration Module (SIM).
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB) Technical Data 129
Universal Serial Bus Module (USB)
The reset flag bit (RSTF) in the USB interrupt register 1 (UIR1) also will be set after the internal reset is removed. Refer to 9.8.3 USB Interrupt Register 1 for more detail. After a reset is removed, the device will be in the default, but not yet addressed or configured state (refer to Section 9.1 USB Device States of the Universal Serial Bus Specification Rev. 1.1). The device must be able to accept a device address via a SET_ADDRESS command (refer to Section 9.4 Standard Device Request in the Universal Serial Bus Specification Rev. 1.1) no later than 10 ms after the reset is removed. Reset can wake a device from the suspended mode.
NOTE:
USB Reset can be configured not to generate a reset signal to the CPU by setting the URSTD bit of the configuration register (see Section 5. Configuration Register (CONFIG)). When a USB reset is detected, the CPU generates an USB interrupt.
9.5.3 Suspend The MCU supports suspend mode for low power. Suspend mode should be entered when the USB data lines are in the idle state for more than 3ms. Entry into suspend mode is controlled by the SUSPND bit in the USB interrupt register. Any low-speed bus activity should keep the device out of the suspend state. Low-speed devices are kept awake by periodic low-speed EOP signals from the host. This is referred to as low speed keep alive (refer to Section 11.8.4.1 Low-Speed Keep-alive in the Universal Serial Bus Specification Rev. 1.1). Firmware should monitor the EOPF flag and enter suspend mode by setting the SUSPND bit if an EOP is not detected for 3ms. Per the USB specification, the bus powered USB system is required to draw less than 500 µA from the VDD supply when in the suspend state. This includes the current supplied by the voltage regulator to the 1.5kΩ to ground termination resistors placed at the host end of the USB bus. This low-current requirement means that firmware is responsible for entering stop mode once the USB module has been placed in the suspend state.
Technical Data 130
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Functional Description
9.5.4 Resume After Suspend The MCU can be activated from the suspend state by normal bus activity, a USB reset signal, or by a forced resume driven from the MCU. 9.5.4.1 Host Initiated Resume The host signals resume by initiating resume signalling (K state) for at least 20ms followed by a standard low-speed EOP signal. This 20ms ensures that all devices in the USB network are awakened. After resuming the bus, the host must begin sending bus traffic within 37ms to prevent the device from re-entering suspend mode. 9.5.4.2 USB Reset Signalling Reset can wake a device from the suspended mode. 9.5.4.3 Remote Wakeup The MCU also supports the remote wakeup feature. The firmware has the ability to exit suspend mode by signaling a resume state to the upstream host or hub. A non-idle state (K state) on the USB data lines is accomplished by asserting the FRESUM bit in the UCR1 register. When using the remote wakeup capability, the firmware must wait for at least 5ms after the bus is in the idle state before sending the remote wakeup resume signaling. This allows the upstream devices to get into their suspend state and prepare for propagating resume signaling. The FRESUM bit should be asserted to cause the resume state on the USB data lines for at least 10ms, but not more than 15ms. Note that the resume signalling is controlled by the FRESUM bit and meeting the timing specifications is dependent on the firmware. When FRESUM is cleared by firmware, the data lines will return to their high-impedance state. Refer to the register definitions (see 9.8.6 USB Control Register 1) for more information about how the force resume (FRESUM) bit can be used to initiate the remote wakeup feature.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 131
Universal Serial Bus Module (USB)
9.5.5 Low-Speed Device Low-speed devices are configured by the position of a pull-up resistor on the USB D– pin of the MCU. Low-speed devices are terminated as shown in Figure 9-9 with the pull-up on the D– line.
VREG (3.3V)
MCU
1.5 kΩ D+ USB LOW-SPEED CABLE D–
Figure 9-9. External Low-Speed Device Configuration For low-speed transmissions, the transmitter’s EOP width must be between 1.25 µs and 1.50 µs. These ranges include timing variations due to differential buffer delay and rise/fall time mismatches and to noise and other random effects. A low-speed receiver must accept a 670ns SE0 followed by a J transition as a valid EOP. An SE0 shorter than 330ns or an SE0 not followed by a J transition are rejected as an EOP. Any SE0 that is 8 µs or longer is automatically a reset.
9.6 Clock Requirements
The low-speed data rate is nominally 1.5 Mbps. The OSCXCLK signal driven by the oscillator circuits is the clock source for the USB module and requires that a 6-MHz oscillator circuit be connected to the OSC1 and OSC2 pins. The permitted frequency tolerance for low-speed functions is approximately ±1.5% (15,000 ppm). This tolerance includes inaccuracies from all sources: initial frequency accuracy, crystal capacitive loading, supply voltage on the oscillator, temperature, and aging. The jitter in the low-speed data rate must be less than 10ns.
Technical Data 132
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Hardware Description
9.7 Hardware Description
The USB module as previously shown in Figure 9-2 contains three functional blocks: the low-speed USB transceiver, the USB control logic, and the USB registers. The following details the function of the regulator, transceiver, and control logic. See 9.8 I/O Registers for details of register settings.
9.7.1 Voltage Regulator The USB data lines are required by the USB specification to have an output voltage between 2.8V and 3.6V. The data lines also are required to have an external 1.5kΩ pull-up resistor connected between a data line and a voltage source between 3.0V and 3.6V. Figure 9-10 shows the worst case electrical connection for the voltage regulator.
4.0V – 5.5V
3.3V REGULATOR R1 LOW-SPEED TRANSCEIVER D+
USB DATA LINES
USB CABLE D– R1 = 1.5kΩ ± 5% R2 = 15kΩ ± 5% R2 R2
HOST OR HUB
Figure 9-10. Regulator Electrical Connections
9.7.2 USB Transceiver The USB transceiver provides the physical interface to the USB D+ and D– data lines. The transceiver is composed of two parts: an output drive circuit and a receiver.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 133
Universal Serial Bus Module (USB)
9.7.2.1 Output Driver Characteristics The USB transceiver uses a differential output driver to drive the USB data signal onto the USB cable. The static output swing of the driver in its low state is below the VOL of 0.3V with a 1.5kΩ load to 3.6V and in its high state is above the VOH of 2.8V with a 15kΩ load to ground. The output swings between the differential high and low state are well balanced to minimize signal skew. Slew rate control on the driver is used to minimize the radiated noise and cross talk. The driver’s outputs support 3-state operation to achieve bidirectional half duplex operation. The driver can tolerate a voltage on the signal pins of –1.0V to 5.5V with respect to local ground reference without damage. 9.7.2.2 Low Speed (1.5 Mbps) Driver Characteristics The rise and fall time of the signals on this cable are greater than 75ns and less than 300ns. The edges are matched to within ±20% to minimize RFI emissions and signal skew. USB data transmission is done with differential signals. A differential input receiver is used to accept the USB data signal. A differential 1 on the bus is represented by D+ being at least 200mV more positive than D– as seen at the receiver, and a differential 0 is represented by D– being at least 200mV more positive than D+ as seen at the receiver. The signal cross over point must be between 1.3V and 2.0V.
ONE BIT TIME (1.5 Mb/s)
VSE (max) VSE (min.) VSS
SIGNAL PINS PASS OUTPUT SPEC LEVELS WITH MINIMAL REFLECTIONS AND RINGING
Figure 9-11. Receiver Characteristics
Technical Data 134
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) Hardware Description
The receiver features an input sensitivity of 200mV when both differential data inputs are in the differential common mode range of 0.8V to 2.5V as shown in Figure 9-12. In addition to the differential receiver, there is a single-ended receiver (schmitt trigger) for each of the two data lines.
Differential Input voltage Range Differential Output Crossover Voltage Range
–1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
5.5
INPUT VOLTAGE RANGE (VOLTS)
Figure 9-12. Differential Input Sensitivity Range 9.7.2.3 Receiver Data Jitter The data receivers for all types of devices must be able to properly decode the differential data in the presence of jitter. The more of the bit time that any data edge can occupy and still be decoded, the more reliable the data transfer will be. Data receivers are required to decode differential data transitions that occur in a window plus and minus a nominal quarter bit time from the nominal (centered) data edge position. Jitter will be caused by the delay mismatches and by mismatches in the source and destination data rates (frequencies). The receive data jitter budget for low speed is given in Section 18. Electrical Specifications. The specification includes the consecutive (next) and paired transition values for each source of jitter. 9.7.2.4 Data Source Jitter The source of data can have some variation (jitter) in the timing of edges of the data transmitted. The time between any set of data transitions is N × TPeriod ± jitter time, where N is the number of bits between the transitions and TPeriod is defined as the actual period of the data rate. The data jitter is measured with the same capacitive load used for maximum rise and fall times and is measured at the crossover points of the data lines as shown in Figure 9-13.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB) Technical Data 135
Universal Serial Bus Module (USB)
tPeriod DIFFERENTIAL DATA LINES CROSSOVER POINTS
JITTER
CONSECUTIVE TRANSITIONS
PAIRED TRANSITIONS
Figure 9-13. Data Jitter For low-speed transmissions, the jitter time for any consecutive differential data transitions must be within ±25ns and within ±10ns for any set of paired differential data transitions. These jitter numbers include timing variations due to differential buffer delay, rise/fall time mismatches, internal clock source jitter, noise and other random effects. 9.7.2.5 Data Signal Rise and Fall Time The output rise time and fall time are measured between 10% and 90% of the signal. Edge transition time for the rising and falling edges of low-speed signals is 75ns (minimum) into a capacitive load (CL) of 200pF and 300ns (maximum) into a capacitive load of 600pF. The rising and falling edges should be transitioning (monotonic) smoothly when driving the cable to avoid excessive EMI.
RISE TIME
+
FALL TIME 90% 90%
CL
DIFFERENTIAL DATA LINES 10% 10% tR tF
+
CL
LOW SPEED: 75ns at CL = 200pF, 300ns at CL = 600 pF
Figure 9-14. Data Signal Rise and Fall Time
Technical Data 136
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
9.7.3 USB Control Logic The USB control logic manages data movement between the CPU and the transceiver. The control logic handles both transmit and receive operations on the USB. It contains the logic used to manipulate the transceiver and the endpoint registers. The byte count buffer is loaded with the active transmit endpoints byte count value during transmit operations. This same buffer is used for receive transactions to count the number of bytes received and, upon the end of the transaction, transfer that number to the receive endpoints byte count register. When transmitting, the control logic handles parallel-to-serial conversion, CRC generation, NRZI encoding, and bit stuffing. When receiving, the control logic handles sync detection, packet identification, end-of-packet detection, bit (un)stuffing, NRZI decoding, CRC validation, and serial-to-parallel conversion. Errors detected by the control logic include bad CRC, timeout while waiting for EOP, and bit stuffing violations.
9.8 I/O Registers
These I/O registers control and monitor USB operation: • • • • • • • USB address register (UADDR) USB control registers 0–4 (UCR0–UCR4) USB status registers 0–1 (USR0–USR1) USB interrupt registers 0–2 (UIR0–UIR2) USB endpoint 0 data registers 0–7 (UE0D0–UE0D7) USB endpoint 1 data registers 0–7 (UE1D0–UE1D7) USB endpoint 2 data registers 0–7 (UE2D0–UE2D7)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 137
Universal Serial Bus Module (USB)
9.8.1 USB Address Register
Address: $0038 Bit 7 Read: USBEN Write: Reset: 0* 0 0 0 0 0 0 0 UADD6 UADD5 UADD4 UADD3 UADD2 UADD1 UADD0 6 5 4 3 2 1 Bit 0
* USBEN bit is reset by POR or LVI reset only.
Figure 9-15. USB Address Register (UADDR) USBEN — USB Module Enable This read/write bit enables and disables the USB module and the USB pins. When USBEN is set, the USB module is enabled and the PTE4 interrupt is disabled. When USBEN is clear, the USB module will not respond to any tokens, USB reset and USB related interrupts are disabled, and pins PTE4/D– and PTE3/D+ function as high current open-drain I/O port pins PTE4 and PTE3. 1 = USB function enabled and PTE4 interrupt is disabled 0 = USB function disabled including USB interrupt, reset and reset interrupt UADD[6:0] — USB Function Address These bits specify the USB address of the device. Reset clears these bits.
Technical Data 138
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
9.8.2 USB Interrupt Register 0
Address: $0039 Bit 7 Read: EOPIE Write: Reset: 0 0 0 0 0 0 0 0 SUSPND TXD2IE RXD2IE TXD1IE 6 5 4 3 2 0 TXD0IE RXD0IE 1 Bit 0
= Unimplemented
Figure 9-16. USB Interrupt Register 0 (UIR0) EOPIE — End-of-Packet Detect Interrupt Enable This read/write bit enables the USB to generate CPU interrupt requests when the EOPF bit becomes set. Reset clears the EOPIE bit. 1 = End-of-packet sequence detection can generate a CPU interrupt request 0 = End-of-packet sequence detection cannot generate a CPU interrupt request SUSPND — USB Suspend Bit To save power, this read/write bit should be set by the software if a 3ms constant idle state is detected on the USB bus. Setting this bit puts the transceiver into a power-saving mode. The RESUMF flag must be cleared before setting SUSPND. Software must clear this bit after the resume flag (RESUMF) is set while this resume interrupt flag is serviced. TXD2IE — Endpoint 2 Transmit Interrupt Enable This read/write bit enables the transmit endpoint 2 to generate CPU interrupt requests when the TXD2F bit becomes set. Reset clears the TXD2IE bit. 1 = Transmit endpoint 2 can generate a CPU interrupt request 0 = Transmit endpoint 2 cannot generate a CPU interrupt request
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 139
Universal Serial Bus Module (USB)
RXD2IE — Endpoint 2 Receive Interrupt Enable This read/write bit enables the receive endpoint 2 to generate CPU interrupt requests when the RXD2F bit becomes set. Reset clears the RXD2IE bit. 1 = Receive endpoint 2 can generate a CPU interrupt request 0 = Receive endpoint 2 cannot generate a CPU interrupt request TXD1IE — Endpoint 1 Transmit Interrupt Enable This read/write bit enables the transmit endpoint 1 to generate CPU interrupt requests when the TXD1F bit becomes set. Reset clears the TXD1IE bit. 1 = Transmit endpoints 1 can generate a CPU interrupt request 0 = Transmit endpoints 1 cannot generate a CPU interrupt request TXD0IE — Endpoint 0 Transmit Interrupt Enable This read/write bit enables the transmit endpoint 0 to generate CPU interrupt requests when the TXD0F bit becomes set. Reset clears the TXD0IE bit. 1 = Transmit endpoint 0 can generate a CPU interrupt request 0 = Transmit endpoint 0 cannot generate a CPU interrupt request RXD0IE — Endpoint 0 Receive Interrupt Enable This read/write bit enables the receive endpoint 0 to generate CPU interrupt requests when the RXD0F bit becomes set. Reset clears the RXD0IE bit. 1 = Receive endpoint 0 can generate a CPU interrupt request 0 = Receive endpoint 0 cannot generate a CPU interrupt request
Technical Data 140
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
9.8.3 USB Interrupt Register 1
Address: $003A Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 EOPF 6 RSTF 5 TXD2F 4 RXD2F 3 TXD1F 2 RESUMF 1 TXD0F Bit 0 RXD0F
= Unimplemented
Figure 9-17. USB Interrupt Register 1 (UIR1) EOPF — End-of-Packet Detect Flag This read-only bit is set when a valid end-of-packet sequence is detected on the D+ and D– lines. Software must clear this flag by writing a logic 1 to the EOPFR bit. Reset clears this bit. Writing to EOPF has no effect. 1 = End-of-packet sequence has been detected 0 = End-of-packet sequence has not been detected RSTF — USB Reset Flag This read-only bit is set when a valid reset signal state is detected on the D+ and D– lines. If the URSTD bit of the configuration register (CONFIG) is clear, this reset detection will generate an internal reset signal to reset the CPU and other peripherals including the USB module. If the URSTD bit is set, this reset detection will generate an USB interrupt. This bit is cleared by writing a logic 1 to the RSTFR bit. This bit also is cleared by a POR reset.
NOTE:
The USB bit in the RSR register (see 8.8.2 Reset Status Register) is also a USB reset indicator. TXD2F — Endpoint 2 Data Transmit Flag This read-only bit is set after the data stored in endpoint 2 transmit buffers has been sent and an ACK handshake packet from the host is received. Once the next set of data is ready in the transmit buffers, software must clear this flag by writing a logic 1 to the TXD2FR bit.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 141
Universal Serial Bus Module (USB)
To enable the next data packet transmission, TX2E also must be set. If the TXD2F bit is not cleared, a NAK handshake will be returned in the next IN transaction. Reset clears this bit. Writing to TXD2F has no effect. 1 = Transmit on endpoint 2 has occurred 0 = Transmit on endpoint 2 has not occurred RXD2F — Endpoint 2 Data Receive Flag This read-only bit is set after the USB module has received a data packet and responded with an ACK handshake packet. Software must clear this flag by writing a logic 1 to the RXD2FR bit after all of the received data has been read. Software also must set the RX2E bit to 1 to enable the next data packet reception. If the RXD2F bit is not cleared, a NAK handshake will be returned in the next OUT transaction. Reset clears this bit. Writing to RXD2F has no effect. 1 = Receive on endpoint 2 has occurred 0 = Receive on endpoint 2 has not occurred TXD1F — Endpoint 1 Data Transmit Flag This read-only bit is set after the data stored in the endpoint 1 transmit buffer has been sent and an ACK handshake packet from the host is received. Once the next set of data is ready in the transmit buffers, software must clear this flag by writing a logic 1 to the TXD1FR bit. To enable the next data packet transmission, TX1E also must be set. If the TXD1F bit is not cleared, a NAK handshake will be returned in the next IN transaction. Reset clears this bit. Writing to TXD1F has no effect. 1 = Transmit on endpoint 1has occurred 0 = Transmit on endpoint 1has not occurred RESUMF — Resume Flag This read-only bit is set when USB bus activity is detected while the SUSPND bit is set. Software must clear this flag by writing a logic 1 to the RESUMFR bit. Reset clears this bit. Writing a logic 0 to RESUMF has no effect. 1 = USB bus activity has been detected 0 = No USB bus activity has been detected
Technical Data 142 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
TXD0F — Endpoint 0 Data Transmit Flag This read-only bit is set after the data stored in endpoint 0 transmit buffers has been sent and an ACK handshake packet from the host is received. Once the next set of data is ready in the transmit buffers, software must clear this flag by writing a logic 1 to the TXD0FR bit. To enable the next data packet transmission, TX0E also must be set. If the TXD0F bit is not cleared, a NAK handshake will be returned in the next IN transaction. Reset clears this bit. Writing to TXD0F has no effect. 1 = Transmit on endpoint 0 has occurred 0 = Transmit on endpoint 0 has not occurred RXD0F — Endpoint 0 Data Receive Flag This read-only bit is set after the USB module has received a data packet and responded with an ACK handshake packet. Software must clear this flag by writing a logic 1 to the RXD0FR bit after all of the received data has been read. Software also must set the RX0E bit to 1 to enable the next data packet reception. If the RXD0F bit is not cleared, the USB will respond with a NAK handshake to any endpoint 0 OUT tokens; but does not respond to a SETUP token. Reset clears this bit. Writing to RXD0F has no effect. 1 = Receive on endpoint 0 has occurred 0 = Receive on endpoint 0 has not occurred
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 143
Universal Serial Bus Module (USB)
9.8.4 USB Interrupt Register 2
Address: $0018 Bit 7 Read: Write: Reset: 0 EOPFR 0 6 0 RSTFR 0 5 0 TXD2FR 0 4 0 RXD2FR 0 3 0 2 0 1 0 Bit 0 0 RXD0FR 0
TXD1FR RESUMFR TXD0FR 0 0 0
Figure 9-18. USB Interrupt Register 2 (UIR2) EOPFR — End-of-Packet Flag Reset Writing a logic 1 to this write-only bit will clear the EOPF bit if it is set. Writing a logic 0 to the EOPFR has no effect. Reset clears this bit. RSTFR — Clear Reset Indicator Bit Writing a logic 1 to this write-only bit will clear the RSTF bit if it is set. Writing a logic 0 to the RSTFR has no effect. Reset clears this bit. TXD2FR — Endpoint 2 Transmit Flag Reset Writing a logic 1 to this write-only bit will clear the TXD2F bit if it is set. Writing a logic 0 to TXD2FR has no effect. Reset clears this bit. RXD2FR — Endpoint 2 Receive Flag Reset Writing a logic 1 to this write-only bit will clear the RXD2F bit if it is set. Writing a logic 0 to RXD2FR has no effect. Reset clears this bit. TXD1FR — Endpoint 1 Transmit Flag Reset Writing a logic 1 to this write-only bit will clear the TXD1F bit if it is set. Writing a logic 0 to TXD1FR has no effect. Reset clears this bit. RESUMFR — Resume Flag Reset Writing a logic 1 to this write-only bit will clear the RESUMF bit if it is set. Writing to RESUMFR has no effect. Reset clears this bit. TXD0FR — Endpoint 0 Transmit Flag Reset Writing a logic 1 to this write-only bit will clear the TXD0F bit if it is set. Writing a logic 0 to TXD0FR has no effect. Reset clears this bit. RXD0FR — Endpoint 0 Receive Flag Reset Writing a logic 1 to this write-only bit will clear the RXD0F bit if it is set. Writing a logic 0 to RXD0FR has no effect. Reset clears this bit.
Technical Data 144 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
9.8.5 USB Control Register 0
Address: $003B Bit 7 Read: T0SEQ Write: Reset: 0 0 0 0 0 0 0 0 6 0 TX0E RX0E TP0SIZ3 TP0SIZ2 TP0SIZ1 TP0SIZ0 5 4 3 2 1 Bit 0
Figure 9-19. USB Control Register 0 (UCR0) T0SEQ — Endpoint 0 Transmit Sequence Bit This read/write bit determines which type of data packet (DATA0 or DATA1) will be sent during the next IN transaction directed at endpoint 0. Toggling of this bit must be controlled by software. Reset clears this bit. 1 = DATA1 token active for next endpoint 0 transmit 0 = DATA0 token active for next endpoint 0 transmit TX0E — Endpoint 0 Transmit Enable This read/write bit enables a transmit to occur when the USB host controller sends an IN token to endpoint 0. Software should set this bit when data is ready to be transmitted. It must be cleared by software when no more endpoint 0 data needs to be transmitted. If this bit is 0 or the TXD0F is set, the USB will respond with a NAK handshake to any endpoint 0 IN tokens. Reset clears this bit. 1 = Data is ready to be sent 0 = Data is not ready. Respond with NAK RX0E — Endpoint 0 Receive Enable This read/write bit enables a receive to occur when the USB host controller sends an OUT token to endpoint 0. Software should set this bit when data is ready to be received. It must be cleared by software when data cannot be received. If this bit is 0 or the RXD0F is set, the USB will respond with a NAK handshake to any endpoint 0 OUT tokens; but does not respond to a SETUP token. Reset clears this bit. 1 = Data is ready to be received 0 = Not ready for data. Respond with NAK
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB) Technical Data 145
Universal Serial Bus Module (USB)
TP0SIZ3–TP0SIZ0 — Endpoint 0 Transmit Data Packet Size These read/write bits store the number of transmit data bytes for the next IN token request for endpoint 0. These bits are cleared by reset.
9.8.6 USB Control Register 1
Address: $003C Bit 7 Read: T1SEQ Write: Reset: 0 0 0 0 0 0 0 0 STALL1 TX1E FRESUM TP1SIZ3 TP1SIZ2 TP1SIZ1 TP1SIZ0 6 5 4 3 2 1 Bit 0
Figure 9-20. USB Control Register 1 (UCR1) T1SEQ — Endpoint 1 Transmit Sequence Bit This read/write bit determines which type of data packet (DATA0 or DATA1) will be sent during the next IN transaction directed to endpoint 1. Toggling of this bit must be controlled by software. Reset clears this bit. 1 = DATA1 token active for next endpoint 1 transmit 0 = DATA0 token active for next endpoint 1 transmit STALL1 — Endpoint 1 Force Stall Bit This read/write bit causes endpoint 1 to return a STALL handshake when polled by either an IN or OUT token by the USB host controller. Reset clears this bit. 1 = Send STALL handshake 0 = Default TX1E — Endpoint 1 Transmit Enable This read/write bit enables a transmit to occur when the USB host controller sends an IN token to endpoint 1. The appropriate endpoint enable bit, ENABLE1 bit in the UCR3 register, also should be set. Software should set the TX1E bit when data is ready to be transmitted. It must be cleared by software when no more data needs to be transmitted.
Technical Data 146
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
If this bit is 0 or the TXD1F is set, the USB will respond with a NAK handshake to any endpoint 1 directed IN tokens. Reset clears this bit. 1 = Data is ready to be sent 0 = Data is not ready. Respond with NAK FRESUM — Force Resume This read/write bit forces a resume state (K or non-idle state) onto the USB data lines to initiate a remote wakeup. Software should control the timing of the forced resume to be between 10 and 15 ms. Setting this bit will not cause the RESUMF bit to be set. 1 = Force data lines to K state 0 = Default TP1SIZ3–TP1SIZ0 — Endpoint 1 Transmit Data Packet Size These read/write bits store the number of transmit data bytes for the next IN token request for endpoint 1. These bits are cleared by reset.
9.8.7 USB Control Register 2
Address: $0019 Bit 7 Read: T2SEQ Write: Reset: 0 0 0 0 0 0 0 0 STALL2 TX2E RX2E TP2SIZ3 TP2SIZ2 TP2SIZ1 TP2SIZ0 6 5 4 3 2 1 Bit 0
Figure 9-21. USB Control Register 2 (UCR2) T2SEQ — Endpoint 2 Transmit Sequence Bit This read/write bit determines which type of data packet (DATA0 or DATA1) will be sent during the next IN transaction directed to endpoint 2. Toggling of this bit must be controlled by software. Reset clears this bit. 1 = DATA1 token active for next endpoint 2 transmit 0 = DATA0 token active for next endpoint 2 transmit
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 147
Universal Serial Bus Module (USB)
STALL2 — Endpoint 2 Force Stall Bit This read/write bit causes endpoint 2 to return a STALL handshake when polled by either an IN or OUT token by the USB host controller. Reset clears this bit. 1 = Send STALL handshake 0 = Default TX2E — Endpoint 2 Transmit Enable This read/write bit enables a transmit to occur when the USB host controller sends an IN token to endpoint 2. The appropriate endpoint enable bit, ENABLE2 bit in the UCR3 register, also should be set. Software should set the TX2E bit when data is ready to be transmitted. It must be cleared by software when no more data needs to be transmitted. If this bit is 0 or the TXD2F is set, the USB will respond with a NAK handshake to any endpoint 2 directed IN tokens. Reset clears this bit. 1 = Data is ready to be sent 0 = Data is not ready. Respond with NAK RX2E — Endpoint 2 Receive Enable This read/write bit enables a receive to occur when the USB host controller sends an OUT token to endpoint 2. Software should set this bit when data is ready to be received. It must be cleared by software when data cannot be received. If this bit is 0 or the RXD2F is set, the USB will respond with a NAK handshake to any endpoint 2 OUT tokens. Reset clears this bit. 1 = Data is ready to be received 0 = Not ready for data. Respond with NAK TP2SIZ3–TP2SIZ0 — Endpoint 2 Transmit Data Packet Size These read/write bits store the number of transmit data bytes for the next IN token request for endpoint 2. These bits are cleared by reset.
Technical Data 148
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
9.8.8 USB Control Register 3
Address: $001A Bit 7 Read: Write: Reset: 0 TX1ST 6 0 OSTALL0 TX1STR 0 0 0 0 0* 0 0 ISTALL0 5 4 3 0 PULLEN ENABLE2 ENABLE1 2 1 Bit 0
= Unimplemented * PULLEN bit is reset by POR or LVI reset only.
Figure 9-22. USB Control Register 3 (UCR3) TX1ST — Endpoint 0 Transmit First Flag This read-only bit is set if the endpoint 0 data transmit flag (TXD0F) is set when the USB control logic is setting the endpoint 0 data receive flag (RXD0F). In other words, if an unserviced endpoint 0 transmit flag is still set at the end of an endpoint 0 reception, then this bit will be set. This bit lets the firmware know that the endpoint 0 transmission happened before the endpoint 0 reception. Reset clears this bit. 1 = IN transaction occurred before SETUP/OUT 0 = IN transaction occurred after SETUP/OUT TX1STR — Clear Endpoint 0 Transmit First Flag Writing a logic 1 to this write-only bit will clear the TX1ST bit if it is set. Writing a logic 0 to the TX1STR has no effect. Reset clears this bit. OSTALL0 — Endpoint 0 Force STALL Bit for OUT token This read/write bit causes endpoint 0 to return a STALL handshake when polled by an OUT token by the USB host controller. Reset clears this bit. 1 = Send STALL handshake 0 = Default
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 149
Universal Serial Bus Module (USB)
ISTALL0 — Endpoint 0 Force STALL Bit for IN token This read/write bit causes endpoint 0 to return a STALL handshake when polled by an IN token by the USB host controller. Reset clears this bit. 1 = Send STALL handshake 0 = Default PULLEN — Pull-up Enable This read/write bit controls the pull-up option for the USB D– pin if the USB module is enabled. 1 = Configure D– pin to have internal pull-up 0 = Disconnect D– pin internal pull-up ENABLE2 — Endpoint 2 Enable This read/write bit enables endpoint 2 and allows the USB to respond to IN or OUT packets addressed to endpoint 2. Reset clears this bit. 1 = Endpoint 2 is enabled and can respond to an IN or OUT token 0 = Endpoint 2 is disabled ENABLE1 — Endpoint 1 Enable This read/write bit enables endpoint 1 and allows the USB to respond to IN packets addressed to endpoint 1. Reset clears this bit. 1 = Endpoint 1 is enabled and can respond to an IN token 0 = Endpoint 1 is disabled
Technical Data 150
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
9.8.9 USB Control Register 4 USB control register 4 directly controls the USB data pins D+ and D–. If the FUSBO bit, and the USBEN bit of the USB address register (UADDR) are set, the output buffers of the USB modules are enabled and the corresponding levels of the USB data pins D+ and D– are equal to the values set by the FDP and the FDM bits.
Address: $001B Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 5 0 4 0 3 0 FUSBO FDP FDM 2 1 Bit 0
= Unimplemented
Figure 9-23. USB Control Register 4 (UCR4) FUSBO — Force USB Output This read/write bit enables the USB output buffers. 1 = Enables USB output buffers 0 = USB module in normal operation FDP — Force D+ This read/write bit determinates the output level of D+. 1 = D+ at output high level 0 = D+ at output low level FDM — Force D– This read/write bit determinates the output level of D–. 1 = D– at output high level 0 = D– at output low level
NOTE:
Customers must be very careful when setting the UCR4 register. When the FUSBO and the USBEN bits are set, the USB module is in output mode and it will not recognize any USB signals including the USB reset signal. The UCR4 register is used for some special applications. Customers are not normally expected to use this register.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 151
Universal Serial Bus Module (USB)
9.8.10 USB Status Register 0
Address: $003D Bit 7 Read: Write: Reset: = Unimplemented Unaffected by reset R0SEQ 6 SETUP 5 0 4 0 3 RP0SIZ3 2 RP0SIZ2 1 RP0SIZ1 Bit 0 RP0SIZ0
Figure 9-24. USB Status Register 0 (USR0) R0SEQ — Endpoint 0 Receive Sequence Bit This read-only bit indicates the type of data packet last received for endpoint 0 (DATA0 or DATA1). 1 = DATA1 token received in last endpoint 0 receive 0 = DATA0 token received in last endpoint 0 receive SETUP — SETUP Token Detect Bit This read-only bit indicates that a valid SETUP token has been received. 1 = Last token received for endpoint 0 was a SETUP token 0 = Last token received for endpoint 0 was not a SETUP token RP0SIZ3–RP0SIZ0 — Endpoint 0 Receive Data Packet Size These read-only bits store the number of data bytes received for the last OUT or SETUP transaction for endpoint 0.
Technical Data 152
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
9.8.11 USB Status Register 1
Address: $003E Bit 7 Read: Write: Reset: U 0 0 0 U U U U R2SEQ 6 TXACK 5 TXNAK 4 TXSTL 3 RP2SIZ3 2 RP2SIZ2 1 RP2SIZ1 Bit 0 RP2SIZ0
= Unimplemented
U = Unaffected by reset
Figure 9-25. USB Status Register 1 (USR1) R2SEQ — Endpoint 2 Receive Sequence Bit This read-only bit indicates the type of data packet last received for endpoint 2 (DATA0 or DATA1). 1 = DATA1 token received in last endpoint 2 receive 0 = DATA0 token received in last endpoint 2 receive TXACK — ACK Token Transmit Bit This read-only bit indicates that an ACK token has been transmitted. This bit is updated at the end of the EP0 data transmission. 1 = Last token transmitted for endpoint 0 was an ACK token 0 = Last token transmitted for endpoint 0 was not an ACK token TXNAK — NAK Token Transmit Bit This read-only bit indicates that a TXNAK token has been transmitted. This bit is updated at the end of the EP0 data transmission. 1 = Last token transmitted for endpoint 0 was a NAK token 0 = Last token transmitted for endpoint 0 was not a NAK token TXSTL — STALL Token Transmit Bit This read-only bit indicates that a STALL token has been transmitted. This bit is updated at the end of the EP0 data transmission. 1 = Last token transmitted for endpoint 0 was a STALL token 0 = Last token transmitted for endpoint 0 was not a STALL token RP2SIZ3–RP2SIZ0 — Endpoint 2 Receive Data Packet Size These read-only bits store the number of data bytes received for the last OUT transaction for endpoint 2.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB) Technical Data 153
Universal Serial Bus Module (USB)
9.8.12 USB Endpoint 0 Data Registers
Address: $0020 Bit 7 Read: UE0R07 Write: UE0T07 Reset: UE0D0 6 UE0R06 UE0T06 5 UE0R05 UE0T05 4 UE0R04 UE0T04 3 UE0R03 UE0T03 2 UE0R02 UE0T02 1 UE0R01 UE0T01 Bit 0 UE0R00 UE0T00
Unaffected by reset
↓
Address: $0027 UE0D7 UE0R76 UE0T76 UE0R75 UE0T75 UE0R74 UE0T74 UE0R73 UE0T73 UE0R72 UE0T72 UE0R71 UE0T71 Read: UE0R77 Write: UE0T77 Reset:
↓
UE0R70 UE0T70
Unaffected by reset
Figure 9-26. USB Endpoint 0 Data Registers (UE0D0–UE0D7) UE0Rx7–UE0Rx0 — Endpoint 0 Receive Data Buffer These read-only bits are serially loaded with OUT token or SETUP token data directed at endpoint 0. The data is received over the USB’s D+ and D– pins. UE0Tx7–UE0Tx0 — Endpoint 0 Transmit Data Buffer These write-only buffers are loaded by software with data to be sent on the USB bus on the next IN token directed at endpoint 0.
Technical Data 154
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) I/O Registers
9.8.13 USB Endpoint 1 Data Registers
Address: $0028 Bit 7 Read: Write: UE1T07 Reset: UE1T06 UE1T05 UE1T04 UE1T03 UE1T02 UE1T01 UE1T00 UE1D0 6 5 4 3 2 1 Bit 0
Unaffected by reset
↓
Address: Read: Write: UE1T77 Reset: = Unimplemented UE1T76 UE1T75 UE1T74 UE1T73 UE1T72 UE1T71 $002F UE1D7
↓
UE1T70
Unaffected by reset
Figure 9-27. USB Endpoint 1 Data Registers (UE1D0–UE1D7) UE1Tx7–UE1Tx0 — Endpoint 1 Transmit or Receive Data Buffer These write-only buffers are loaded by software with data to be sent on the USB bus on the next IN token directed at endpoint 1.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 155
Universal Serial Bus Module (USB)
9.8.14 USB Endpoint 2 Data Registers
Address: $0030 Bit 7 Read: UE2R07 Write: UE2T07 Reset: UE2D0 6 UE2R06 UE2T06 5 UE2R05 UE2T05 4 UE2R04 UE2T04 3 UE2R03 UE2T03 2 UE2R02 UE2T02 1 UE2R01 UE2T01 Bit 0 UE2R00 UE2T00
Unaffected by reset
↓
Address: $0037 UE2D7 UE2R76 UE2T76 UE2R75 UE2T75 UE2R74 UE2T74 UE2R73 UE2T73 UE2R72 UE2T72 UE2R71 UE2T71 Read: UE2R77 Write: UE2T77 Reset:
↓
UE2R70 UE2T70
Unaffected by reset
Figure 9-28. USB Endpoint 2 Data Registers (UE2D0–UE2D7) UE2Rx7–UE2Rx0 — Endpoint 2 Receive Data Buffer These read-only bits are serially loaded with OUT token data directed at endpoint 2. The data is received over the USB’s D+ and D– pins. UE2Tx7–UE2Tx0 — Endpoint 2 Transmit Data Buffer These write-only buffers are loaded by software with data to be sent on the USB bus on the next IN token directed at endpoint 2.
Technical Data 156
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) USB Interrupts
9.9 USB Interrupts
The USB module is capable of generating interrupts and causing the CPU to execute the USB interrupt service routine. There are three types of USB interrupts: • • • End-of-transaction interrupts signify either a completed transaction receive or transmit transaction. Resume interrupts signify that the USB bus is reactivated after having been suspended. End-of-packet interrupts signify that a low-speed end-of-packet signal was detected.
All USB interrupts share the same interrupt vector. Firmware is responsible for determining which interrupt is active.
9.9.1 USB End-of-Transaction Interrupt There are five possible end-of-transaction interrupts: • • Endpoint 0 or 2 receive Endpoint 0, 1 or 2 transmit
End-of-transaction interrupts occur as detailed in the following sections.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 157
Universal Serial Bus Module (USB)
9.9.1.1 Receive Control Endpoint 0 For a control OUT transaction directed at endpoint 0, the USB module will generate an interrupt by setting the RXD0F flag in the UIR0 register. The conditions necessary for the interrupt to occur are shown in the flowchart in Figure 9-29.
VALID OUT TOKEN RECEIVED FOR ENDPOINT 0 Y VALID DATA TOKEN RECEIVED FOR ENDPOINT 0? Y USB MODULE ENABLED? (USBEN = 1) Y ENDPOINT 0 RECEIVE NOT STALLED? (OSTALL0 = 0) Y ENDPOINT 0 RECEIVE READY TO RECEIVE? (RX0E = 1) AND (RXD0F = 0) Y ACCEPT DATA SET/CLEAR R0SEQ BIT N SEND NAK HANDSHAKE N SEND STALL HANDSHAKE N NO RESPONSE FROM USB FUNCTION N TIMEOUT NO RESPONSE FROM USB FUNCTION
ERROR FREE DATA PACKET? Y SET RXD0F TO 1
N
IGNORE TRANSACTION NO RESPONSE FROM USB FUNCTION
RECEIVE CONTROL ENDPOINT INTERRUPT ENABLED? (RXD0IE = 1) Y VALID TRANSACTION INTERRUPT GENERATED
N
NO INTERRUPT
Figure 9-29. OUT Token Data Flow for Receive Endpoint 0
Technical Data 158
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) USB Interrupts
SETUP transactions cannot be stalled by the USB function. A SETUP received by a control endpoint will clear the ISTALL0 and OSTALL0 bits. The conditions for receiving a SETUP interrupt are shown in Figure 9-30.
VALID SETUP TOKEN RECEIVED FOR ENDPOINT 0? Y USB MODULE ENABLED? (USBEN = 1) Y ENDPOINT 0 RECEIVE READY TO RECEIVE? (RX0E = 1) AND (RXD0F = 0) Y N NO RESPONSE FROM USB FUNCTION N NO RESPONSE FROM USB FUNCTION
ACCEPT DATA SET/CLEAR R0SEQ BIT SET SETUP BIT TO 1
ERROR FREE DATA PACKET? Y SET RXD0F TO 1
N
IGNORE TRANSACTION NO RESPONSE FROM USB FUNCTION
RECEIVE CONTROL ENDPOINT INTERRUPT ENABLED? (RXD0IE = 1) Y VALID TRANSACTION INTERRUPT GENERATED
N
NO INTERRUPT
Figure 9-30. SETUP Token Data Flow for Receive Endpoint 0
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 159
Universal Serial Bus Module (USB)
9.9.1.2 Transmit Control Endpoint 0 For a control IN transaction directed at endpoint 0, the USB module will generate an interrupt by setting the TXD0F flag in the UIR1 register. The conditions necessary for the interrupt to occur are shown in the flowchart in Figure 9-31.
VALID IN TOKEN RECEIVED FOR ENDPOINT 0 Y USB MODULE ENABLED? (USBEN = 1) Y TRANSMIT ENDPOINT NOT STALLED BY FIRMWARE (ISTALL0 = 0)? Y TRANSMIT ENDPOINT READY TO TRANSFER? (TX0E = 1) AND (TXD0F = 0) Y SEND DATA DATA PID SET BY T0SEQ N SEND NAK HANDSHAKE N SEND STALL HANDSHAKE N NO RESPONSE FROM USB FUNCTION
ACK RECEIVED AND NO TIMEOUT CONDITION OCCURS? Y SET TXD0F TO 1
N
NO RESPONSE FROM USB FUNCTION
TRANSMIT ENDPOINT INTERRUPT ENABLED? (TXD0IE = 1) Y VALID TRANSACTION INTERRUPT GENERATED
N
NO INTERRUPT
Figure 9-31. IN Token Data Flow for Transmit Endpoint 0
Technical Data 160
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Universal Serial Bus Module (USB) USB Interrupts
9.9.1.3 Transmit Endpoint 1 For an IN transaction directed at endpoint 1, the USB module will generate an interrupt by setting the TXD1F in the UIR1 register. The conditions necessary for the interrupt to occur are shown in Figure 9-32.
VALID IN TOKEN RECEIVED FOR ENDPOINT 1 Y USB MODULE ENABLED? (USBEN = 1) Y TRANSMIT ENDPOINT NOT STALLED BY FIRMWARE (STALL1 = 1)? Y TRANSMIT ENDPOINT READY TO TRANSFER? (TX1E = 1) AND (TXD1F = 0) AND (UE1TR = 0) Y TRANSMIT ENDPOINT ENABLED? (ENABLE = 1) Y SEND DATA DATA PID SET BY T1SEQ N NO RESPONSE FROM USB FUNCTION N SEND NAK HANDSHAKE N SEND STALL HANDSHAKE N NO RESPONSE FROM USB FUNCTION
ACK RECEIVED AND NO TIMEOUT CONDITION OCCURS? Y SET TXD1F TO 1
N
NO RESPONSE FROM USB FUNCTION
TRANSMIT ENDPOINT INTERRUPT ENABLED? (TXD1IE = 1) Y VALID TRANSACTION INTERRUPT GENERATED
N
NO INTERRUPT
Figure 9-32. IN Token Data Flow for Transmit Endpoint 1
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Universal Serial Bus Module (USB)
Technical Data 161
Universal Serial Bus Module (USB)
9.9.1.4 Transmit Endpoint 2 For an IN transaction directed at endpoint 2, the USB module will generate an interrupt by setting the TXD2F in the UIR1 register. 9.9.1.5 Receive Endpoint 2 For an OUT transaction directed at endpoint 2, the USB module will generate an interrupt by setting the RXD2F in the UIR1 register.
9.9.2 Resume Interrupt The USB module will generate a CPU interrupt if low-speed bus activity is detected after entering the suspend state. A transition of the USB data lines to the non-idle state (K state) while in the suspend mode will set the RESUMF flag in the UIR1 register. There is no interrupt enable bit for this interrupt source and an interrupt will be executed if the I-bit in the CCR is cleared. A resume interrupt can only occur while the MCU is in the suspend mode.
9.9.3 End-of-Packet Interrupt The USB module can generate a USB interrupt upon detection of an end-of-packet signal for low-speed devices. Upon detection of an end-of-packet signal, the USB module sets the EOPF bit and will generate a CPU interrupt if the EOPIE bit in the UIR0 register is set.
Technical Data 162
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Universal Serial Bus Module (USB) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 10. Monitor ROM (MON)
10.1 Contents
10.2 10.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.4.2 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 10.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.4.4 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.4.5 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.2 Introduction
This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with host computer. This mode is also used for programming and erasing of FLASH memory in the MCU. Monitor mode entry can be achieved without use of the higher voltage, VDD + VHI, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Monitor ROM (MON)
Technical Data 163
Monitor ROM (MON) 10.3 Features
Features of the monitor ROM include the following: • • • • • • • • • Normal user-mode pin functionality One pin dedicated to serial communication between monitor ROM and host computer Standard mark/space non-return-to-zero (NRZ) communication with host computer Execution of code in RAM or FLASH FLASH memory security feature1 FLASH memory programming interface 976 bytes monitor ROM code size Monitor mode entry without high voltage, VDD + VHI, if reset vector is blank ($FFFE and $FFFF contain $FF) Standard monitor mode entry if high voltage, VDD + VHI, is applied to IRQ
10.4 Functional Description
The monitor ROM receives and executes commands from a host computer. Figure 10-1 shows a example circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute host-computer code in RAM while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pull-up resistor.
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users.
Technical Data 164
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
VDD 10k Ω (SEE NOTE 2)
VDD + VHI 10k Ω C D + SW2 0.1 µF
RST
HC908JB8
IRQ
VREG 0.1 µF VDD VDD 0.1 µF
4.7 µF VDD 6MHz
(SEE NOTE 3) 1 10 µF + 3 4 10 µF + 18 17 + 10 µF VDD 20 pF 20 + 10MΩ 10 µF 20 pF 6MHz F E E SW3 fXCLK
VSS
MC145407
OSC1
OSC2 F 3.3V 10 kΩ
2
19
DB-25 2 3 7
A 5 6 16 15 3.3V 1 2 6 4 MC74LCX125 14 3 5 (SEE NOTE 1) B
SW1 PTA3
3.3V 10 kΩ PTA0 3.3V 10 kΩ
7 PTA1 PTA2 NOTES: 1. Affects high voltage entry to monitor mode only (SW2 at position C): SW1: Position A — Bus clock = fXCLK ÷ 2 SW1: Position B — Bus clock = fXCLK 2. SW2: Position C — High-voltage entry to monitor mode. SW2: Position D — Low-voltage entry to monitor mode (with blank reset vector). See Section 18 for IRQ voltage level requirements. 3. SW3: Position E — OSC1 directly driven by external oscillator. SW3: Position F — OSC1 driven by crystal oscillator circuit. 10 kΩ
Figure 10-1. Monitor Mode Circuit
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Monitor ROM (MON) Technical Data 165
Monitor ROM (MON)
10.4.1 Entering Monitor Mode Table 10-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a POR and will allow communication at 9600 baud provided one of the following sets of conditions is met: 1. If IRQ = VDD + VHI: – External clock on OSC1 is 3MHz – PTA3 = low 2. If IRQ = VDD + VHI: – External clock on OSC1 is 6MHz – PTA3 = high 3. If $FFFE & $FFFF is blank (contains $FF): – External clock on OSC1 is 6MHz – IRQ = VDD Table 10-1. Mode Entry Requirements and Options
PTA3 PTA2 PTA1 PTA0 External Clock, fXCLK 3MHz 6MHz Bus Frequency, fBUS 3MHz (fXCLK) 3MHz (fXCLK ÷ 2) 3MHz (fXCLK ÷ 2) $FFFE and $FFFF IRQ Comments
VDD + VHI VDD + VHI
X X BLANK (contain $FF)
0 1
0 0
1 1
1 1
High-voltage entry to monitor mode. 9600 baud communication on PTA0. COP disabled. Low-voltage entry to monitor mode. 9600 baud communication on PTA0. COP disabled. Enters user mode. If $FFFE and $FFFF is blank, MCU will encounter an illegal address reset.
VDD
X
X
X
1
6MHz
VDD
NOT BLANK
X
X
X
X
6MHz
3MHz (fXCLK ÷ 2)
Notes: 1. PTA3 = 0: Bypasses the divide-by-two prescaler to SIM when using VDD + VHI for monitor mode entry. 2. See Section 18. Electrical Specifications for VDD + VHI voltage level requirements.
Technical Data 166
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
If VDD +VHI is applied to IRQ and PTA3 is low upon monitor mode entry (Table 10-1 condition set 1), the bus frequency is a equal to the external clock, fXCLK. If PTA3 is high with VDD +VHI applied to IRQ upon monitor mode entry (Table 10-1 condition set 2), the bus frequency is a divideby-two of the external clock. Holding the PTA3 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator only if VDD +VHI is applied to IRQ. In this event, the OSCOUT frequency is equal to the OSCXCLK frequency. Entering monitor mode with VDD + VHI on IRQ, the COP is disabled as long as VDD + VHI is applied to either the IRQ or the RST. (See Section 8. System Integration Module (SIM) for more information on modes of operation.) If entering monitor mode without high voltage on IRQ and reset vector being blank ($FFFE and $FFFF) (Table 10-1 condition set 3, where IRQ applied voltage is VDD), then all port A pin requirements and conditions, including the PTA3 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming. Entering monitor mode with the reset vector being blank, the COP is always disabled regardless of the state of IRQ or the RST. Figure 10-2. shows a simplified diagram of the monitor mode entry when the reset vector is blank and IRQ = VDD. An external clock of 6MHz is required for a baud rate of 9600.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Monitor ROM (MON)
Technical Data 167
Monitor ROM (MON)
POR RESET
IS VECTOR BLANK? YES
NO
NORMAL USER MODE
MONITOR MODE
EXECUTE MONITOR CODE
POR TRIGGERED?
NO
YES
Figure 10-2. Low-Voltage Monitor Mode Entry Flowchart Enter monitor mode with the pin configuration shown above by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes. (See 10.5 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic zeros) to the host, indicating that it is ready to receive a command. The break signal also provides a timing reference to allow the host to determine the necessary baud rate. In monitor mode, the MCU uses different vectors for reset, SWI, and break interrupt. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code.
Technical Data 168
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
Table 10-2 is a summary of the vector differences between user mode and monitor mode. Table 10-2. Monitor Mode Vector Differences
Functions Modes COP Enabled Disabled(1) Reset Vector High $FFFE $FEFE Reset Vector Low $FFFF $FEFF Break Vector High $FFFC $FEFC Break Vector Low $FFFD $FEFD SWI Vector High $FFFC $FEFC SWI Vector Low $FFFD $FEFD
User Monitor
Notes: 1. If the high voltage (VDD + VHI) is removed from the IRQ pin or the RST pin, the SIM asserts its COP enable output. The COP is a mask option enabled or disabled by the COPD bit in the configuration register.
When the host computer has completed downloading code into the MCU RAM, the host then sends a RUN command, which executes an RTI, which sends control to the address on the stack pointer.
10.4.2 Baud Rate The communication baud rate is dependant on oscillator frequency, fXCLK. The state of PTA3 also affects baud rate if entry to monitor mode is by IRQ = VDD + VHI. When PTA3 is high, the divide by ratio is 625. If the PTA3 pin is at logic zero upon entry into monitor mode, the divide by ratio is 312. Table 10-3. Monitor Baud Rate Selection
Monitor Mode Entry By: Oscillator Clock Frequency, fCLK 3 MHz IRQ = VDD + VHI 6 MHz 3 MHz Blank reset vector, IRQ = VDD 6 MHz 3 MHz PTA3 0 1 1 X X Baud Rate 9600 bps 9600 bps 4800 bps 9600 bps 4800 bps
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Monitor ROM (MON)
Technical Data 169
Monitor ROM (MON)
10.4.3 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 10-3 and Figure 10-4.)
NEXT START BIT
START BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
STOP BIT
Figure 10-3. Monitor Data Format
NEXT START BIT NEXT START BIT
$A5 BREAK
START BIT START BIT
BIT 0 BIT 0
BIT 1 BIT 1
BIT 2 BIT 2
BIT 3 BIT 3
BIT 4 BIT 4
BIT 5 BIT 5
BIT 6 BIT 6
BIT 7 BIT 7
STOP BIT STOP BIT
Figure 10-4. Sample Monitor Waveforms The data transmit and receive rate can be anywhere from 4800 baud to 28.8k-baud. Transmit and receive baud rates must be identical.
10.4.4 Echoing As shown in Figure 10-5, the monitor ROM immediately echoes each received byte back to the PTA0 pin for error checking.
SENT TO MONITOR READ ECHO READ ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW DATA
RESULT
Figure 10-5. Read Transaction Any result of a command appears after the echo of the last byte of the command.
Technical Data 170
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
10.4.5 Break Signal A start bit followed by nine low bits is a break signal. (See Figure 10-6.) When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits before echoing the break signal.
MISSING STOP BIT TWO-STOP-BIT DELAY BEFORE ZERO ECHO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-6. Break Transaction 10.4.6 Commands The monitor ROM uses the following commands: • • • • • • READ (read memory) WRITE (write memory) IREAD (indexed read) IWRITE (indexed write) READSP (read stack pointer) RUN (run user program)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Monitor ROM (MON)
Technical Data 171
Monitor ROM (MON)
Table 10-4. READ (Read Memory) Command
Description Operand Data Returned Opcode Read byte from memory Specifies 2-byte address in high byte:low byte order Returns contents of specified address $4A
Command Sequence
SENT TO MONITOR
READ
READ
ADDR. HIGH
ADDR. HIGH
ADDR. LOW
ADDR. LOW
DATA
ECHO
RESULT
Table 10-5. WRITE (Write Memory) Command
Description Operand Data Returned Opcode Write byte to memory Specifies 2-byte address in high byte:low byte order; low byte followed by data byte None $49
Command Sequence
SENT TO MONITOR WRITE WRITE ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW DATA DATA
ECHO
Technical Data 172
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
Table 10-6. IREAD (Indexed Read) Command
Description Operand Data Returned Opcode Read next 2 bytes in memory from last address accessed Specifies 2-byte address in high byte:low byte order Returns contents of next two addresses $1A
Command Sequence
SENT TO MONITOR IREAD IREAD DATA DATA
ECHO
RESULT
Table 10-7. IWRITE (Indexed Write) Command
Description Operand Data Returned Opcode Write to last address accessed + 1 Specifies single data byte None $19
Command Sequence
SENT TO MONITOR IWRITE IWRITE DATA DATA
ECHO
NOTE:
A sequence of IREAD or IWRITE commands can sequentially access a block of memory over the full 64-Kbyte memory map.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Monitor ROM (MON)
Technical Data 173
Monitor ROM (MON)
Table 10-8. READSP (Read Stack Pointer) Command
Description Operand Data Returned Opcode Reads stack pointer None Returns stack pointer in high byte:low byte order $0C
Command Sequence
SENT TO MONITOR READSP READSP SP HIGH SP LOW
ECHO
RESULT
Table 10-9. RUN (Run User Program) Command
Description Operand Data Returned Opcode Executes RTI instruction None None $28
Command Sequence
SENT TO MONITOR RUN RUN
ECHO
Technical Data 174
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Security
10.5 Security
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain userdefined data.
NOTE:
Do not leave locations $FFF6–$FFFD blank. For security reasons, program locations $FFF6–$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 10-7.)
VDD 4096 + 32 OSCXCLK CYCLES RST COMMAND 1 BYTE 8 ECHO BYTE 2 ECHO 2 4 1 COMMAND ECHO BREAK 24 BUS CYCLES BYTE 1 BYTE 2 BYTE 8 1
FROM HOST
PTA0 1 BYTE 1 ECHO FROM MCU 4
NOTES: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 4 = Wait 1 bit time before sending next byte.
Figure 10-7. Monitor Mode Entry Timing
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Monitor ROM (MON)
Technical Data 175
Monitor ROM (MON)
Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.
NOTE:
The MCU does not transmit a break character until after the host sends the eight security bytes. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank).
Technical Data 176
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Monitor ROM (MON) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 11. Timer Interface Module (TIM)
11.1 Contents
11.2 11.3 11.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 182 11.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .183 11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 183 11.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 184 11.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 185 11.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 188
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.9.1 TIM Clock Pin (PTE0/TCLK) . . . . . . . . . . . . . . . . . . . . . . .189 11.9.2 TIM Channel I/O Pins (PTE1/TCH0:PTE2/TCH1) . . . . . . . 189 11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 190 11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 193 11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 194 11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM) Technical Data 177
Timer Interface Module (TIM) 11.2 Introduction
This section describes the timer interface module (TIM2, Version B). The TIM is a 2-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 11-1 is a block diagram of the TIM.
11.3 Features
Features of the TIM include: • Two input capture/output compare channels – Rising-edge, falling-edge, or any-edge input capture trigger – Set, clear, or toggle output compare action Buffered and unbuffered pulse width modulation (PWM) signal generation Programmable TIM clock input – 7-frequency internal bus clock prescaler selection – External TIM clock input (bus frequency ÷2 maximum) • • • Free-running or modulo up-count operation Toggle any channel pin on overflow TIM counter stop and reset bits
• •
11.4 Pin Name Conventions
The TIM share three I/O pins with three port E I/O pins. The full name of the TIM I/O pin is listed in Table 11-1. The generic pin name appear in the text that follows. Table 11-1. TIM Pin Name Conventions
TIM Generic Pin Names: Full TIM Pin Names: TCLK PTE0/TCLK TCH0 PTE1/TCH0 TCH1 PTE2/TCH1
Technical Data 178
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Functional Description
11.5 Functional Description
Figure 11-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels are programmable independently as input capture or output compare channels.
TCLK PRESCALER SELECT INTERNAL BUS CLOCK TSTOP TRST 16-BIT COUNTER 16-BIT COMPARATOR TMODH:TMODL TOV0 CHANNEL 0 16-BIT COMPARATOR TCH0H:TCH0L 16-BIT LATCH MS0A MS0B TOV1 INTERNAL BUS CHANNEL 1 16-BIT COMPARATOR TCH1H:TCH1L 16-BIT LATCH MS1A CH1IE CH1F INTERRUPT LOGIC ELS1B ELS1A CH1MAX PORT LOGIC TCH1 CH0IE CH0F INTERRUPT LOGIC ELS0B ELS0A CH0MAX PORT LOGIC TCH0 PRESCALER
PS2
PS1
PS0
TOF TOIE
INTERRUPT LOGIC
Figure 11-1. TIM Block Diagram
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 179
Timer Interface Module (TIM)
Addr.
Register Name TIM Status and Control Register (TSC) Read: Write: Reset: Read:
Bit 7 TOF
6 TOIE
5 TSTOP
4 0 TRST
3 0
2 PS2
1 PS1 0 Bit9
Bit 0 PS0 0 Bit8
$000A
0 0 Bit15 0 Bit14 1 Bit13
0 Bit12
0 Bit11
0 Bit10
$000C
TIM Counter Register High (TCNTH)
Write: Reset: Read: 0 Bit7 0 Bit6 0 Bit5 0 Bit4 0 Bit3 0 Bit2 0 Bit1 0 Bit0
$000D
TIM Counter Register Low (TCNTL)
Write: Reset: 0 Bit15 Write: Reset: Read: Bit7 Write: Reset: Read: Write: Reset: Read: Bit15 Write: Reset: Read: Bit7 Write: Reset: Read: Write: Reset: CH1F CH1IE 0 0 0 0 0 0 0 0 0 0 MS1A ELS1B ELS1A TOV1
CH1MAX
0 Bit14 1 Bit6 1 CH0IE
0 Bit13 1 Bit5 1 MS0B 0 Bit13
0 Bit12 1 Bit4 1 MS0A 0 Bit12
0 Bit11 1 Bit3 1 ELS0B 0 Bit11
0 Bit10 1 Bit2 1 ELS0A 0 Bit10
0 Bit9 1 Bit1 1 TOV0 0 Bit9
0 Bit8 1 Bit0 1
CH0MAX
$000E
TIM Counter Modulo Register High (TMODH)
Read:
1
$000F
TIM Counter Modulo Register Low (TMODL)
1 CH0F 0 0
$0010
TIM Channel 0 Status and Control Register (TSC0)
0 Bit14
0 Bit8
$0011
TIM Channel 0 Register High (TCH0H)
Indeterminate after reset Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
$0012
TIM Channel 0 Register Low (TCH0L)
Indeterminate after reset
$0013
TIM Channel 1 Status and Control Register (TSC1)
= Unimplemented
Figure 11-2. TIM I/O Register Summary
Technical Data 180
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Functional Description
$0014
TIM Channel 1 Register High (TCH1H)
Read: Bit15 Write: Reset: Read: Bit7 Write: Reset: = Unimplemented Indeterminate after reset Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Indeterminate after reset Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8
$0015
TIM Channel 1 Register Low (TCH1L)
Figure 11-2. TIM I/O Register Summary 11.5.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs or the TIM clock pin, PTE0/TCLK. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register (TSC) select the TIM clock source.
11.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests.
11.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 181
Timer Interface Module (TIM)
11.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 11.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period.
•
Technical Data 182
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Functional Description
11.5.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the PTE1/TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the PTE1/TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, PTE2/TCH1, is available as a general-purpose I/O pin.
NOTE:
In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.
11.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 11-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 183
Timer Interface Module (TIM)
OVERFLOW PERIOD OVERFLOW OVERFLOW
PULSE WIDTH PTEx/TCHxA
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 11-3. PWM Period and Pulse Width The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is 000 (see 11.10.1 TIM Status and Control Register). The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 11.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 11.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.
Technical Data 184 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Functional Description
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: • When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
•
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.
11.5.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the PTE1/TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the PTE1/TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, PTE2/TCH1, is available as a general-purpose I/O pin.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 185
Timer Interface Module (TIM)
NOTE:
In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.
11.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use this initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 11-3.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 11-3.)
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.
Technical Data 186
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Interrupts
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 11.10.4 TIM Channel Status and Control Registers.)
11.6 Interrupts
The following TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register.
•
11.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 187
Timer Interface Module (TIM)
11.7.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.
11.7.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.
11.8 TIM During Break Interrupts
A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 8.8.3 Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.
Technical Data 188
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Signals
11.9 I/O Signals
Port E shares three of its pins with the TIM. PTE0/TCLK is an external clock input to the TIM prescaler. The two TIM channel I/O pins are PTE1/TCH0 and PTE2/TCH1. 11.9.1 TIM Clock Pin (PTE0/TCLK) PTE0/TCLK is an external clock input that can be the clock source for the TIM counter instead of the prescaled internal bus clock. Select the PTE0/TCLK input by writing logic 1s to the three prescaler select bits, PS[2:0]. (See 11.10.1 TIM Status and Control Register.) The minimum TCLK pulse width, TCLKLMIN or TCLKHMIN, is: 1 ------------------------------------ + t SU bus frequency The maximum TCLK frequency is: bus frequency ÷ 2 PTE0/TCLK is available as a general-purpose I/O pin when not used as the TIM clock input. When the PTE0/TCLK pin is the TIM clock input, it is an input regardless of the state of the DDRE0 bit in data direction register E. 11.9.2 TIM Channel I/O Pins (PTE1/TCH0:PTE2/TCH1) Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTE1/TCH0 can be configured as buffered output compare or buffered PWM pins.
11.10 I/O Registers
The following I/O registers control and monitor operation of the TIM: • • • • • TIM status and control register (TSC) TIM counter registers (TCNTH:TCNTL) TIM counter modulo registers (TMODH:TMODL) TIM channel status and control registers (TSC0 and TSC1) TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)
Technical Data 189
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Timer Interface Module (TIM)
11.10.1 TIM Status and Control Register The TIM status and control register: • • • • •
Address:
Enables TIM overflow interrupts Flags TIM overflows Stops the TIM counter Resets the TIM counter Prescales the TIM counter clock
$000A Bit 7 6 TOIE 5 TSTOP TRST 0 1 0 0 0 0 0 4 0 3 0 PS2 PS1 PS0 2 1 Bit 0
Read: Write: Reset:
TOF 0 0
= Unimplemented
Figure 11-4. TIM Status and Control Register (TSC) TOF — TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled
Technical Data 190 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Registers
TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. PS[2:0] — Prescaler Select Bits These read/write bits select either the PTE0/TCLK pin or one of the seven prescaler outputs as the input to the TIM counter as Table 11-2 shows. Reset clears the PS[2:0] bits. Table 11-2. Prescaler Selection
PS2 0 0 0 0 1 1 1 1 PS1 0 0 1 1 0 0 1 1 PS0 0 1 0 1 0 1 0 1 TIM Clock Source Internal Bus Clock ÷1 Internal Bus Clock ÷ 2 Internal Bus Clock ÷ 4 Internal Bus Clock ÷ 8 Internal Bus Clock ÷ 16 Internal Bus Clock ÷ 32 Internal Bus Clock ÷ 64 PTE0/TCLK
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 191
Timer Interface Module (TIM)
11.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.
NOTE:
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break.
TCNTH Address: $000C Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 Bit 15 6 Bit 14 5 Bit 13 4 Bit 12 3 Bit 11 2 Bit 10 1 Bit 9 Bit 0 Bit 8
TCNTL
Address: $000D Bit 7 6 Bit 6 5 Bit 5 4 Bit 4 3 Bit 3 2 Bit 2 1 Bit 1 Bit 0 Bit 0
Read: Write: Reset:
Bit 7
0
0
0
0
0
0
0
0
= Unimplemented
Figure 11-5. TIM Counter Registers (TCNTH:TCNTL)
Technical Data 192
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Registers
11.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.
TMODH Address: $000E Bit 7 Read: Bit 15 Write: Reset: 1 1 1 1 1 1 1 1 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 6 5 4 3 2 1 Bit 0
TMODL
Address: $000F Bit 7 6 Bit 6 1 5 Bit 5 1 4 Bit 4 1 3 Bit 3 1 2 Bit 2 1 1 Bit 1 1 Bit 0 Bit 0 1
Read: Bit 7 Write: Reset: 1
Figure 11-6. TIM Counter Modulo Registers (TMODH:TMODL)
NOTE:
Reset the TIM counter before writing to the TIM counter modulo registers.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 193
Timer Interface Module (TIM)
11.10.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers does the following: • • • • • • • •
TSC0
Flags input captures and output compares Enables input capture and output compare interrupts Selects input capture, output compare, or PWM operation Selects high, low, or toggling output on output compare Selects rising edge, falling edge, or any edge as the active input capture trigger Selects output toggling on TIM overflow Selects 0% and 100% PWM duty cycle Selects buffered or unbuffered output compare/PWM operation
Address: $0010 Bit 7 6 CH0IE 5 MS0B 0 4 MS0A 0 3 ELS0B 0 2 ELS0A 0 1 TOV0 0 Bit 0 CH0MAX 0
Read: Write: Reset:
CH0F 0 0 0
TSC1
Address: $0013 Bit 7 6 CH1IE 5 0 MS1A 0 0 ELS1B 0 ELS1A 0 TOV1 0 CH1MAX 0 4 3 2 1 Bit 0
Read: Write: Reset:
CH1F 0 0 0
= Unimplemented
Figure 11-7. TIM Channel Status and Control Registers (TSC0:TSC1)
Technical Data 194
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Registers
CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading the TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM channel 0 status and control register. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:ELSxA ≠ 0:0, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 11-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 195
Timer Interface Module (TIM)
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. (See Table 11-3.) Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to port E, and pin PTEx/TCHx is available as a general-purpose I/O pin. Table 11-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 11-3. Mode, Edge, and Level Selection
MSxB X X 0 0 0 0 0 0 1 1 1 MSxA 0 1 0 0 0 1 1 1 X X X ELSxB ELSxA 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 Output Compare or PWM Input Capture Mode Output Preset Configuration Pin under port control; initial output level high Pin under port control; initial output level low Capture on rising edge only Capture on falling edge only Capture on rising or falling edge Toggle output on compare Clear output on compare Set output on compare
Toggle output on compare Buffered Output Clear output on compare Compare or Buffered Set output on compare PWM
Technical Data 196
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Registers
NOTE:
Before enabling a TIM channel register for input capture operation, make sure that the PTEx/TCHx pin is stable for at least two bus clocks. TOVx — Toggle-On-Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow 0 = Channel x pin does not toggle on TIM counter overflow
NOTE:
When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 11-8 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.
OVERFLOW PERIOD PTEx/TCHx OVERFLOW OVERFLOW OVERFLOW OVERFLOW
OUTPUT COMPARE CHxMAX
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 11-8. CHxMAX Latency
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Timer Interface Module (TIM)
Technical Data 197
Timer Interface Module (TIM)
11.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.
TCH0H Address: Bit 7 Read: Write: Reset: TCH0L Address: Bit 7 Read: Write: Reset: TCH1H Address: Bit 7 Read: Write: Reset: TCH1L Address: Bit 7 Read: Write: Reset: Bit 7 $0015 6 Bit 6 5 Bit 5 4 Bit 4 3 Bit 3 2 Bit 2 1 Bit 1 Bit 0 Bit 0 Bit 15 $0014 6 Bit 14 5 Bit 13 4 Bit 12 3 Bit 11 2 Bit 10 1 Bit 9 Bit 0 Bit 8 Bit 7 $0012 6 Bit 6 5 Bit 5 4 Bit 4 3 Bit 3 2 Bit 2 1 Bit 1 Bit 0 Bit 0 Bit 15 $0011 6 Bit 14 5 Bit 13 4 Bit 12 3 Bit 11 2 Bit 10 1 Bit 9 Bit 0 Bit 8
Indeterminate after reset
Indeterminate after reset
Indeterminate after reset
Indeterminate after reset
Figure 11-9. TIM Channel Registers (TCH0H/L:TCH1H/L)
Technical Data 198
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Timer Interface Module (TIM) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 12. Input/Output Ports (I/O)
12.1 Contents
12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 203 12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 205 12.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.5.2 Data Direction Register C. . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 12.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . . 215 12.8 Port Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 12.8.1 Port Option Control Register . . . . . . . . . . . . . . . . . . . . . . .217
12.2 Introduction
Thirty-seven (37) bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or outputs.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O)
Technical Data 199
Input/Output Ports (I/O)
NOTE:
Connect any unused I/O pins to an appropriate logic level, either VREG or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage.
Bit 7 PTA7 6 PTA6 5 PTA5 4 PTA4 3 PTA3 2 PTA2 1 PTA1 Bit 0 PTA0
Addr. $0000
Register Name Port A Data Register Read: (PTA) Write: Reset:
Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
$0001
Port B Data Register Read: (PTB) Write: Reset:
Unaffected by reset PTC7 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0
$0002
Port C Data Register Read: (PTC) Write: Reset:
Unaffected by reset PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0
$0003
Port D Data Register Read: (PTD) Write: Reset:
Unaffected by reset DDRA6 0 DDRA5 0 DDRA4 0 DDRA3 0 DDRA2 0 DDRA1 0 DDRA0 0
$0004 Data Direction Register A Read: DDRA7 (DDRA) Write: Reset: * DDRA7 bit is reset by POR or LVI reset only. $0005 Data Direction Register B Read: DDRB7 (DDRB) Write: Reset: 0 0*
DDRB6 0 DDRC6 0 DDRD6 0 0
DDRB5 0 DDRC5 0 DDRD5 0 0
DDRB4 0 DDRC4 0 DDRD4 0 PTE4
DDRB3 0 DDRC3 0 DDRD3 0 PTE3
DDRB2 0 DDRC2 0 DDRD2 0 PTE2
DDRB1 0 DDRC1 0 DDRD1 0 PTE1
DDRB0 0 DDRC0 0 DDRD0 0 PTE0
$0006 Data Direction Register C Read: DDRC7 (DDRC) Write: Reset: 0
$0007 Data Direction Register D Read: DDRD7 (DDRD) Write: Reset: $0008 Port E Data Register Read: (PTE) Write: Reset: 0 0
Unaffected by reset = Unimplemented
Figure 12-1. I/O Port Register Summary
Technical Data 200 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Input/Output Ports (I/O) Introduction
Addr.
Register Name
Bit 7 0
6 0
5 0
4 DDRE4 0 PTE4P 0
3 DDRE3 0 PTE3P 0
2 DDRE2 0 PCP 0
1 DDRE1 0 PBP 0
Bit 0 DDRE0 0 PAP 0
$0009 Data Direction Register E Read: (DDRE) Write: Reset: $001D
0
0
0
Read: Port Option Control PTE20P Register Write: (POCR) Reset: 0
PTDLDD PTDILDD 0 0
= Unimplemented
Figure 12-1. I/O Port Register Summary
Table 12-1. Port Control Register Bits Summary
Port Bit
0 1 2 3 A 4 5 6 7 B 0–7 DDRA4 DDRA5 DDRA6 DDRA7 DDRB[0:7] — —
DDR
DDRA0 DDRA1 DDRA2 DDRA3
Module Control Module Register Control Bit
KBIE0 KBIE1 KBIE2 KBIE3 KBI KBIER ($0017) KBIE4 KBIE5 KBIE6 KBIE7 —
Pin
PTA0/KBA0 PTA1/KBA1 PTA2/KBA2 PTA3/KBA3 PTA4/KBA4 PTA5/KBA5 PTA6/KBA6 PTA7/KBA7 PTB0–PTB7
C
0–7
DDRC[0:7]
—
—
—
PTC0–PTC7
D
0–7 0 1
DDRD[0:7] DDRE0 DDRE1 DDRE2 DDRE3
—
— TSC ($000A)
— PS[2:0] ELS0B:ELS0A ELS1B:ELS1A USBEN
PTD0–PTD7 PTE0/TCLK PTE1/TCH0 PTE2/TCH1 PTE3/D+
TIM
TSC0 ($0010) TSC1 ($0013)
E
2 3 4
USB DDRE4
UADDR ($0038)
PTE4/D–
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O)
Technical Data 201
Input/Output Ports (I/O) 12.3 Port A
Port A is an 8-bit general-purpose bidirectional I/O port with software configurable pullups, and it shares its pins with the keyboard interrupt module (KBI).
12.3.1 Port A Data Register The port A data register contains a data latch for each of the eight port A pins.
Address: $0000 Bit 7 Read: PTA7 Write: Reset: Alternativ e Function: KBA7 KBA6 Optional pullup KBA5 Optional pullup Unaffected by reset KBA4 Optional pullup KBA3 Optional pullup KBA2 Optional pullup KBA1 Optional pullup KBA0 Optional pullup PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 6 5 4 3 2 1 Bit 0
Additional Optional Function: pullup
Figure 12-2. Port A Data Register (PTA) PTA[7:0] — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. The port A pullup enable bit, PAP, in the port option control register (POCR) enables pullups on port A pins if the respective pin is configured as an input. (See 12.8 Port Options.) KBA7–KBA0 — Keyboard Interrupts The keyboard interrupt enable bits, KBIE7–KBIE0, in the keyboard interrupt enable register (KBIER), enable the port A pins as external interrupt pins. (See Section 14. Keyboard Interrupt Module (KBI).)
Technical Data 202
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Input/Output Ports (I/O) Port A
12.3.2 Data Direction Register A Data direction register A determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.
Address: $0004 Bit 7 Read: DDRA7 Write: Reset:
0*
6 DDRA6 0
5 DDRA5 0
4 DDRA4 0
3 DDRA3 0
2 DDRA2 0
1 DDRA1 0
Bit 0 DDRA0 0
* DDRA7 bit is reset by POR or LVI reset only.
Figure 12-3. Data Direction Register A (DDRA) DDRA[7:0] — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input
NOTE:
Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 12-4 shows the port A I/O logic.
READ DDRA ($0004)
WRITE DDRA ($0004) INTERNAL DATA BUS RESET WRITE PTA ($0000) PTAx PTAx DDRAx
READ PTA ($0000)
Figure 12-4. Port A I/O Circuit
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O) Technical Data 203
Input/Output Ports (I/O)
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 12-2 summarizes the operation of the port A pins. Table 12-2. Port A Pin Functions
DDRA Bit 0 1 PTA Bit I/O Pin Mode Accesses to DDRA Read/Write X(1) X Input, Hi-Z(2) Output DDRA[7:0] DDRA[7:0] Accesses to PTA Read Pin PTA[7:0] Write PTA[7:0](3) PTA[7:0]
NOTES: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input.
12.4 Port B
Port B is an 8-bit general-purpose bidirectional I/O port with software configurable pullups. 12.4.1 Port B Data Register The port B data register contains a data latch for each of the eight port B pins.
NOTE:
PTB7–PTB0 are not available in the 20-pin PDIP, 20-pin SOIC, and 28-pin SOIC packages.
Address: $0001 Bit 7 Read: PTB7 Write: Reset: Additional Optional Function: pullup Optional pullup Optional pullup Unaffected by reset Optional pullup Optional pullup Optional pullup Optional pullup Optional pullup PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 6 5 4 3 2 1 Bit 0
Figure 12-5. Port B Data Register (PTB)
Technical Data 204 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Input/Output Ports (I/O) Port B
PTB[7:0] — Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. The port B pullup enable bit, PBP, in the port option control register (POCR) enables pullups on port B pins if the respective pin is configured as an input. (See 12.8 Port Options.)
12.4.2 Data Direction Register B Data direction register B determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.
Address: $0005 Bit 7 Read: DDRB7 Write: Reset:
0 0 0 0 0 0 0 0
6 DDRB6
5 DDRB5
4 DDRB4
3 DDRB3
2 DDRB2
1 DDRB1
Bit 0 DDRB0
Figure 12-6. Data Direction Register B (DDRB) DDRB[7:0] — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input
NOTE: NOTE:
Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. For those devices packaged in a 20-pin PDIP, 20-pin SOIC, and 28-pin SOIC package, PTB7–PTB0 are not connected. DDRB7–DDRB0 should be set to a 1 to configure PTB7–PTB0 as outputs. Figure 12-7 shows the port B I/O logic.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O)
Technical Data 205
Input/Output Ports (I/O)
READ DDRB ($0005)
WRITE DDRB ($0005) INTERNAL DATA BUS RESET WRITE PTB ($0001) PTBx PTBx DDRBx
READ PTB ($0001)
Figure 12-7. Port B I/O Circuit When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 12-3 summarizes the operation of the port B pins. Table 12-3. Port B Pin Functions
DDRB Bit 0 1 PTB Bit I/O Pin Mode Accesses to DDRB Read/Write X(1) X Input, Hi-Z(2) Output DDRB[7:0] DDRB[7:0] Accesses to PTB Read Pin PTB[7:0] Write PTB[7:0](3) PTB[7:0]
NOTES: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input.
Technical Data 206
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Input/Output Ports (I/O) Port C
12.5 Port C
Port C is an 8-bit general-purpose bidirectional I/O port with software configurable pullups and current drive options.
12.5.1 Port C Data Register The port C data register contains a data latch for each of the eight port C pins.
NOTE:
PTC7–PTC1 are not available in the 20-pin PDIP, 20-pin SOIC, and 28-pin SOIC packages.
Address: $0002 Bit 7 Read: PTC7 Write: Reset: Additional Optional Function: pullup Optional pullup Optional pullup Unaffected by reset Optional pullup Optional pullup Optional pullup Optional pullup Optional pullup PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 6 5 4 3 2 1 Bit 0
Figure 12-8. Port C Data Register (PTC) PTC[7:0] — Port C Data Bits These read/write bits are software-programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data. The port C pullup enable bit, PCP, in the port option control register (POCR) enables pullups on port C pins if the respective pin is configured as an input. (See 12.8 Port Options.)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O)
Technical Data 207
Input/Output Ports (I/O)
12.5.2 Data Direction Register C Data direction register C determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer.
Address: $0006 Bit 7 Read: DDRC7 Write: Reset:
0 0 0 0 0 0 0 0
6 DDRC6
5 DDRC5
4 DDRC4
3 DDRC3
2 DDRC2
1 DDRC1
Bit 0 DDRC0
Figure 12-9. Data Direction Register C (DDRC) DDRC[7:0] — Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC[7:0], configuring all port C pins as inputs. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input
NOTE: NOTE:
Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. For those devices packaged in a 20-pin PDIP, 20-pin SOIC, and 28-pin SOIC package, PTC7–PTC1 are not connected. DDRC7–DDRC1 should be set to a 1 to configure PTC7–PTC1 as outputs. Figure 12-10 shows the port C I/O logic.
Technical Data 208
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Input/Output Ports (I/O) Port D
READ DDRC ($0006)
WRITE DDRC ($0006) INTERNAL DATA BUS RESET WRITE PTC ($0002) PTCx PTCx DDRCx
READ PTC ($0002)
Figure 12-10. Port C I/O Circuit When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 12-4 summarizes the operation of the port C pins. Table 12-4. Port C Pin Functions
DDRC Bit 0 1 PTC Bit I/O Pin Mode Accesses to DDRC Read/Write X(1) X Input, Hi-Z(2) Output DDRC[7:0] DDRC[7:0] Accesses to PTC Read Pin PTC[7:0] Write PTC[7:0](3) PTC[7:0]
NOTES: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input.
12.6 Port D
Port D is an 8-bit general-purpose bidirectional I/O port. In 20-pin package, PTD1 and PTD0 internal pads are bonded together to PTD0/1 pin. Port D pins are open-drain when configured as output, and can interface with 5V logic.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O)
Technical Data 209
Input/Output Ports (I/O)
12.6.1 Port D Data Register The port D data register contains a data latch for each of the eight port D pins.
NOTE:
PTD7–PTD2 are not available in the 20-pin PDIP and 20-pin SOIC packages. PTD7 is not available in the 28-pin SOIC package.
Address: $0003 Bit 7 Read: PTD7 Write: Reset: Unaffected by reset PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 6 5 4 3 2 1 Bit 0
Additional Open-drain Open-drain Open-drain Open-drain Open-drain Open-drain Open-drain Open-drain Function: 10mA 10mA 10mA 10mA 25mA 25mA sink sink sink sink sink sink
Figure 12-11. Port D Data Register (PTD) PTD[7:0] — Port D Data Bits These read/write bits are software programmable. Data direction of each port D pin is under control of the corresponding bit in data direction register D. Reset has no effect on port D data. The LED direct drive bit, PTDLDD, in the port option control register (POCR) controls the drive options for the PTD5–PTD2 pins. The infrared LED drive bit, PTDILDD, in the POCR controls the drive options for the PTD1–PTD0 pins. (See 12.8 Port Options.)
NOTE:
In 20-pin package, PTD1 and PTD0 are bonded together to PTD0/1 pin, forming a 50mA high current sink pin. When both PTD1 and PTD0 are configured as output, the values of PTD0 and PTD1 should be written the same.
Technical Data 210
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Input/Output Ports (I/O) Port D
12.6.2 Data Direction Register D Data direction register D determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer.
Address: $0007 Bit 7 Read: DDRD7 Write: Reset:
0 0 0 0 0 0 0 0
6 DDRD6
5 DDRD5
4 DDRD4
3 DDRD3
2 DDRD2
1 DDRD1
Bit 0 DDRD0
Figure 12-12. Data Direction Register D (DDRD) DDRD[7:0] — Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input Port D pins are open-drain when configured as output.
NOTE: NOTE:
Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. For those devices packaged in a 20-pin PDIP and 20-pin SOIC package, PTD7–PTD2 are not connected. DDRD7–DDRD2 should be set to a 1 to configure PTD7–PTD2 as outputs. For those devices packaged in a 28-pin SOIC package, PTD7 is not connected. DDRD7 should be set to a 1 to configure PTD7 as output. Figure 12-13 shows the port D I/O circuit logic.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O)
Technical Data 211
Input/Output Ports (I/O)
READ DDRD ($0007)
WRITE DDRD ($0007) INTERNAL DATA BUS RESET WRITE PTD ($0003) PTDx PTDx DDRDx
READ PTD ($0003)
Figure 12-13. Port D I/O Circuit When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 12-5 summarizes the operation of the port D pins. Table 12-5. Port D Pin Functions
DDRD Bit 0 1 PTD Bit I/O Pin Mode Accesses to DDRD Read/Write X(1) X Input, Hi-Z(2) Output DDRD[7:0] DDRD[7:0] Accesses to PTD Read Pin PTD[7:0] Write PTD[7:0](3) PTD[7:0]
NOTES: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input.
12.7 Port E
Port E is a 5-bit special function port that shares three of its pins with the timer interface module (TIM) and two of its pins with the USB data pins D+ and D–. PTE4 and PTE3 are open drain when configured as output.
Technical Data 212
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Input/Output Ports (I/O) Port E
12.7.1 Port E Data Register The port E data register contains a data latch for each of the five port E pins.
NOTE:
PTE2 and PTE0 are not available in the 20-pin PDIP and 20-pin SOIC packages.
Address: $0008 Bit 7 Read: Write: Reset:
Alternative
6 0
5 0
4 PTE4
3 PTE3
2 PTE2
1 PTE1
Bit 0 PTE0
0
Unaffected by reset D– Optional pullup External interrupt
Open-drain Open-drain
Function: Additional Function: Additional Function:
D+ Optional pullup
TCH1 Optional pullup
TCH0 Optional pullup
TCLK Optional pullup
= Unimplemented
Figure 12-14. Port E Data Register (PTE) PTE[4:0] — Port E Data Bits PTE[4:0] are read/write, software-programmable bits. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. The PTE4 and PTE3 pullup enable bits, PTE4P and PTE3P, in the port option control register (POCR) enable 5kΩ pullups on PTE4 and PTE3 if the respective pin is configured as an input and the USB module is disabled. (See 12.8 Port Options.) The PTE[2:0] pullup enable bit, PTE20P, in the port option control register (POCR) enables pullups on PTE2–PTE0, regardless of the pin is configured as an input or an output. (See 12.8 Port Options.)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O)
Technical Data 213
Input/Output Ports (I/O)
PTE4 pin functions as an external interrupt when PTE4IE=1 in the IRQ option control register (IOCR) and USBEN=0 in the USB address register (USB disabled). (See 13.9 IRQ Option Control Register.) D– and D+ — USB Data Pins D– and D+ are the differential data lines used by the USB module. (See Section 9. Universal Serial Bus Module (USB).) The USB module enable bit, USBEN, in the USB address register (UADDR) controls the pin options for PTE4/D– and PTE3/D+. When the USB module is enabled, PTE4/D– and PTE3/D+ function as USB data pins D– and D+. When the USB module is disabled, PTE4/D– and PTE3/D+ function as 10mA open-drain pins for PS/2 clock and data use. The Pullup enable bit, PULLEN, in the USB control register 3 (UCR3) enables a 1.5kΩ pullup on D– pin when the USB module is enabled. (See 9.8.8 USB Control Register 3.)
NOTE:
PTE4/D– pin has two programmable pullup resistors. One is used for PTE4 when the USB module is disabled and another is used for D– when the USB module is enabled. TCH1–TCH0 — Timer Channel I/O Bits The PTE2/TCH1–PTE1/TCH0 pins are the TIM input capture/output compare pins. The edge/level select bits, ELSxB and ELSxA, determine whether the PTE2/TCH1–PTE1/TCH0 pins are timer channel I/O pins or general-purpose I/O pins. (See Section 11. Timer Interface Module (TIM).) TCLK — Timer Clock Input The PTE0/TCLK pin is the external clock input for the TIM. The prescaler select bits, PS[2:0], select PTE0/TCLK as the TIM clock input. When not selected as the TIM clock, PTE0/TCLK is available for general purpose I/O. (See Section 11. Timer Interface Module (TIM).)
NOTE:
Data direction register E (DDRE) does not affect the data direction of port E pins that are being used by the TIM. However, the DDRE bits always determine whether reading port E returns the states of the latches or the states of the pins.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Technical Data 214
Input/Output Ports (I/O) Port E
12.7.2 Data Direction Register E Data direction register E determines whether each port E pin is an input or an output. Writing a logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer.
Address: $0009 Bit 7 Read: Write: Reset:
0 0 0 0 0 0 0 0
6 0
5 0
4 DDRE4
3 DDRE3
2 DDRE2
1 DDRE1
Bit 0 DDRE0
0
= Unimplemented
Figure 12-15. Data Direction Register E (DDRE) DDRE[4:0] — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE[4:0], configuring all port E pins as inputs. 1 = Corresponding port E pin configured as output 0 = Corresponding port E pin configured as input PTE4 and PTE3 pins are open-drain when configured as output.
NOTE: NOTE:
Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. For those devices packaged in a 20-pin PDIP and 20-pin SOIC package, PTE2 and PTE0 are not connected. DDRE2 and DDRE0 should be set to a 1 to configure PTE2 and PTE0 as outputs. Figure 12-16 shows the port E I/O circuit logic.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O)
Technical Data 215
Input/Output Ports (I/O)
READ DDRE ($000C)
WRITE DDRE ($000C) INTERNAL DATA BUS RESET WRITE PTE ($0008) PTEx PTEx DDREx
READ PTE ($0008)
Figure 12-16. Port E I/O Circuit When bit DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a logic 0, reading address $0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 12-4 summarizes the operation of the port E pins. Table 12-6. Port E Pin Functions
DDRE Bit 0 1 PTE Bit X(1) X I/O Pin Mode Accesses to DDRE Read/Write Input, Hi-Z(2) Output DDRE[4:0] DDRE[4:0] Accesses to PTE Read Pin PTE[4:0] Write PTE[4:0](3) PTE[4:0]
NOTES: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input.
12.8 Port Options
All pins of port A, port B, port C, and port E have programmable pullup resistors. Port pins PTD5–PTD0 have LED drive capability. Port pins PTE4 and PTE3 have 10mA high current drive capability.
Technical Data 216
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Input/Output Ports (I/O) Port Options
12.8.1 Port Option Control Register The port option control register controls the pullup options for port A, B, C, and E pins. It also controls the drive configuration on port D.
Address: $001D Bit 7 Read: PTE20P Write: Reset:
0 0 0 0 0 0 0 0
6
5
4 PTE4P
3 PTE3P
2 PCP
1 PBP
Bit 0 PAP
PTDLDD PTDILDD
Figure 12-17. Port Option Control Register (POCR) PTE20P — Port PTE2–PTE0 Pullup Enable This read/write bit controls the pullup option for the PTE2–PTE0 pins, regardless whether the pins are input or output. 1 = Configure PTE2–PTE0 to have internal pullups to VREG 0 = Disconnect PTE2–PTE0 internal pullups PTDLDD — LED Direct Drive Control This read/write bit controls the output current capability of PTD5–PTD2 pins. When set, each port pin has 10mA current sink limit. An LED can be connected directly between the port pin and VDD without the need of a series resistor. 1 = PTD5–PTD2 configured for direct LED drive capability; when a pin is set as an output, the pin is an open-drain pin with 10mA current sink limit 0 = PTD5–PTD2 configured as standard open-drain I/O port pin PTDILDD — Infrared LED Drive Control This read/write bit controls the output current capability of PTD1 and PTD0 pins. When set, each port pin has 25mA current sink capability. An infrared LED can be connected directly between the port pin and VDD. 1 = PTD1 and PTD0 configured for infrared LED drive capability; when a pin is set as an output, the pin is an open-drain pin with 25mA current sink capability 0 = PTD1 and PTD0 configured as standard open-drain I/O port pins
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Input/Output Ports (I/O) Technical Data 217
Input/Output Ports (I/O)
PTE4P — Pin PTE4 Pullup Enable This read/write bit controls the pullup option for the PTE4 pin when the pin is configured as an input and the USB module is disabled. 1 = Configure PTE4 to have internal pullup to VDD 0 = Disconnect PTE4 internal pullup
NOTE:
When the USB module is enabled, the pullup controlled by PTE4P is disconnected; PTE4/D– pin functions as D– which has a 1.5kΩ programmable pullup resistor. (See 9.8.8 USB Control Register 3.) PTE3P — Pin PTE3 Pullup Enable This read/write bit controls the pullup option for the PTE3 pin when the pin is configured as an input and the USB module is disabled. 1 = Configure PTE3 to have internal pullup to VDD 0 = Disconnect PTE3 internal pullup PCP — Port C Pullup Enable This read/write bit controls the pullup option for the PTC7–PTC0 pins. When set, a pullup device is connected when a pin is configured as an input. 1 = Configure port C to have internal pullups to VREG 0 = Disconnect port C internal pullups PBP — Port B Pullup Enable This read/write bit controls the pullup option for the PTB7–PTB0 pins. When set, a pullup device is connected when a pin is configured as an input. 1 = Configure port B to have internal pullups to VREG 0 = Disconnect port B internal pullups PAP — Port A Pullup Enable This read/write bit controls the pullup option for the PTA7–PTA0 pins. When set, a pullup device is connected when a pin is configured as an input. 1 = Configure port A to have internal pullups to VREG 0 = Disconnect port A internal pullups
Technical Data 218
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Input/Output Ports (I/O) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 13. External Interrupt (IRQ)
13.1 Contents
13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 PTE4/D– Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 223 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 224 IRQ Option Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . 225
13.2 Introduction
The IRQ module provides two external interrupt inputs: one dedicated IRQ pin and one shared port pin, PTE4/D–.
13.3 Features
Features of the IRQ module include: • • • • • • • Two external interrupt pins, IRQ (5V) and PTE4/D– (5V) IRQ interrupt control bits Hysteresis buffer Programmable edge-only or edge and level interrupt sensitivity Automatic interrupt acknowledge Low leakage IRQ pin for external RC wake up input Selectable internal pullup resistor
Technical Data 219
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor External Interrupt (IRQ)
External Interrupt (IRQ) 13.4 Functional Description
A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 13-1 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: • • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the IRQ latch. Software clear — Software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (ISCR). Writing a logic 1 to the ACK bit clears the IRQ latch. Reset — A reset automatically clears the interrupt latch.
•
The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or low-level-triggered. The MODE bit in the ISCR controls the triggering sensitivity of the IRQ pin. When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch, software clear, or reset occurs. When the interrupt pin is both falling-edge and low-level-triggered, the CPU interrupt request remains set until both of the following occur: • • Vector fetch or software clear Return of the interrupt pin to logic one
The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the ISCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear.
NOTE:
The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. (See 8.6 Exception Control.)
Technical Data 220
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 External Interrupt (IRQ) Freescale Semiconductor
External Interrupt (IRQ) Functional Description
INTERNAL ADDRESS BUS
ACK RESET VECTOR FETCH DECODER HIGH VOLTAGE DETECT TO MODE SELECT LOGIC TO CPU FOR BIL/BIH INSTRUCTIONS
VDD IRQPD "1"
INTERNAL
PULLUP DEVICE
IRQF D CLR Q SYNCHRONIZER
IRQ
CK IRQ FF IMASK
IRQ INTERRUPT REQUEST
TO PTE4 PULLUP ENABLE CIRCUITRY
MODE
"1" D PTE4 CLR Q
READ IOCR PTE4IF
CK
PTE4IE
Figure 13-1. IRQ Module Block Diagram
Addr. $001C Register Name IRQ Option Control Register Read: (IOCR) Write: Reset: $001E IRQ Status and Control Register Read: (ISCR) Write: Reset: Bit 7 0 6 0 5 0 4 0 3 0 2 PTE4IF PTE4IE 0 0 0 0 0 0 0 0 0 IRQF 0 0 IMASK ACK 0 0 0 0 0 0 0 0 MODE 0 IRQPD 0 1 Bit 0
= Unimplemented
Figure 13-2. IRQ I/O Register Summary
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor External Interrupt (IRQ) Technical Data 221
External Interrupt (IRQ)
13.5 IRQ Pin
The IRQ pin has a low leakage for input voltages ranging from 0V to VDD; suitable for applications using RC discharge circuitry to wake up the MCU. A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur to clear IRQ: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status and control register (ISCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFF8 and $FFF9. Return of the IRQ pin to logic one — As long as the IRQ pin is at logic zero, IRQ remains active.
•
The vector fetch or software clear and the return of the IRQ pin to logic one may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic zero. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the ISCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred.
Technical Data 222 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 External Interrupt (IRQ) Freescale Semiconductor
External Interrupt (IRQ) PTE4/D– Pin
Use the BIH or BIL instruction to read the logic level on the IRQ pin.
NOTE: NOTE:
When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. An internal pullup resistor to VDD is connected to IRQ pin; this can be disabled by setting the IRQPD bit in the IRQ option control register ($001C).
13.6 PTE4/D– Pin
The PTE4 pin is configured as an interrupt input to trigger the IRQ interrupt when the following conditions are satisfied: • • The USB module is disabled (USBEN = 0) PTE4 pin configured for external interrupt input (PTE4IE = 1)
Setting PTE4IE configures the PTE4 pin to an input pin with an internal pullup device. The PTE4 interrupt is "ORed" with the IRQ input to trigger the IRQ interrupt (see Figure 13-1 . IRQ Module Block Diagram). Therefore, the IRQ status and control register affects both the IRQ pin and the PTE pin. An interrupt on PTE4 also sets the PTE4 interrupt flag, PTE4IF, in the IRQ option control register (IOCR).
13.7 IRQ Module During Break Interrupts
The system integration module (SIM) controls whether the IRQ latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. (See Section 8. System Integration Module (SIM).) To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latches during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ latch.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor External Interrupt (IRQ) Technical Data 223
External Interrupt (IRQ) 13.8 IRQ Status and Control Register
The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module. The ISCR has the following functions: • • • •
Address:
Shows the state of the IRQ flag Clears the IRQ latch Masks IRQ interrupt request Controls triggering sensitivity of the IRQ pin
$001E Bit 7 6 0 5 0 4 0 3 IRQF 2 0 IMASK MODE
0
1
Bit 0
Read: Write: Reset:
0
ACK
0 0 0 0 0 0 0
= Unimplemented
Figure 13-3. IRQ Status and Control Register (ISCR) IRQF — IRQ Flag This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK — IRQ Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always reads as logic 0. Reset clears ACK. IMASK — IRQ Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE — IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE. 1 = IRQ interrupt requests on falling edges and low levels
Technical Data 224 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 External Interrupt (IRQ) Freescale Semiconductor
External Interrupt (IRQ) IRQ Option Control Register
0 = IRQ interrupt requests on falling edges only
13.9 IRQ Option Control Register
The IRQ option control register controls and monitors the external interrupt function available on the PTE4 pin. It also disables/enables the pullup resistor on the IRQ pin. • • •
Address:
Controls pullup option on IRQ pin Enables PTE4 pin for external interrupts to IRQ Shows the state of the PTE4 interrupt flag
$001C Bit 7 6 0 5 0 4 0 3 0 2 PTE4IF PTE4IE IRQPD
0
1
Bit 0
Read: Write: Reset:
0
0
0
0
0
0
0
0
= Unimplemented
Figure 13-4. IRQ Option Control Register (IOCR) PTE4IF — PTE4 Interrupt Flag This read-only status bit is high when a falling edge on PTE4 pin is detected. PTE4IF bit clears when the IOCR is read. 1 = Falling edge on PTE4 is detected and PTE4IE is set 0 = Falling edge on PTE4 is not detected or PTE4IE is clear PTE4IE — PTE4 Interrupt Enable This read/write bit enables or disables the interrupt function on the PTE4 pin to trigger the IRQ interrupt. Setting the PTE4IE bit and clearing the USBEN bit in the USB address register configure the PTE4 pin for interrupt function to the IRQ interrupt. Setting PTE4IE also enables the internal pullup on PTE4 pin. 1 = PTE4 interrupt enabled; triggers IRQ interrupt 0 = PTE4 interrupt disabled IRQPD — IRQ Pullup Disable
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor External Interrupt (IRQ) Technical Data 225
External Interrupt (IRQ)
This read/write bit controls the pullup option for the IRQ pin. 1 = Internal pullup is disconnected 0 = Internal pull-up is connected between IRQ pin and VDD
Technical Data 226
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 External Interrupt (IRQ) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 14. Keyboard Interrupt Module (KBI)
14.1 Contents
14.2 14.3 14.4 14.5 14.6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 14.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 14.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 14.8 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 233
14.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 14.9.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 233 14.9.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 235
14.2 Introduction
The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTA0–PTA7 pins.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Keyboard Interrupt Module (KBI)
Technical Data 227
Keyboard Interrupt Module (KBI) 14.3 Features
Features of the keyboard interrupt module include: • • • • Eight keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask Hysteresis buffers Programmable edge-only or edge- and level-interrupt sensitivity Exit from low-power modes
14.4 Pin Name Conventions
The KBI share eight I/O pins with eight port A I/O pins. The full name of the I/O pins are listed in Table 14-1. The generic pin name appear in the text that follows. Table 14-1. KBI Pin Name Conventions
Full KBI Pin Names: PTA7/KBA7 PTA7/KBA6 PTA7/KBA5 PTA7/KBA4 PTA7/KBA3 PTA7/KBA2 PTA7/KBA1 PTA7/KBA0 KBI Generic Pin Names: KBA7 KBA6 KBA5 KBA4 KBA3 KBA2 KBA1 KBA0
Technical Data 228
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Keyboard Interrupt Module (KBI) Pin Name Conventions
INTERNAL BUS
KBA0 VREG . KBIE0 TO PULLUP ENABLE . KBA7 . D CLR Q
ACKK RESET
VECTOR FETCH DECODER KEYF SYNCHRONIZER Keyboard Interrupt Request
CK
KEYBOARD INTERRUPT FF
IMASKK
MODEK KBIE7 TO PULLUP ENABLE
Figure 14-1. Keyboard Module Block Diagram
Table 14-2. I/O Register Summary
Addr. Register Name Bit 7 0 6 0 5 0 4 0 3 KEYF 2 0 IMASKK ACKK 0 KBIE7 0 0 KBIE6 0 0 KBIE5 0 0 KBIE4 0 0 KBIE3 0 0 KBIE2 0 0 KBIE1 0 0 KBIE0 0 MODEK 1 Bit 0
$0016 Keyboard Status and Control Read: Register (KBSCR) Write: Reset: $0017 Keyboard Interrupt Enable Read: Register (KBIER) Write: Reset:
= Unimplemented
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Keyboard Interrupt Module (KBI)
Technical Data 229
Keyboard Interrupt Module (KBI) 14.5 Functional Description
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. • If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low.
•
NOTE:
To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register (KBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine also can prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFF0 and $FFF1.
Technical Data 230
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Keyboard Interrupt Module (KBI) Keyboard Initialization
•
Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set.
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register.
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin.
14.6 Keyboard Initialization
When a keyboard interrupt pin is enabled, it takes time for the pullup device to reach a logic 1. Therefore, a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Keyboard Interrupt Module (KBI) Technical Data 231
Keyboard Interrupt Module (KBI)
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A. 2. Write logic 1s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
14.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.
14.7.1 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.
14.7.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.
Technical Data 232
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Keyboard Interrupt Module (KBI) Keyboard Module During Break Interrupts
14.8 Keyboard Module During Break Interrupts
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. (See 14.9.1 Keyboard Status and Control Register.)
14.9 I/O Registers
These registers control and monitor operation of the keyboard module: • • Keyboard status and control register (KBSCR) Keyboard interrupt enable register (KBIER)
14.9.1 Keyboard Status and Control Register The keyboard status and control register: • • • • Flags keyboard interrupt requests Acknowledges keyboard interrupt requests Masks keyboard interrupt requests Controls keyboard interrupt triggering sensitivity
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Keyboard Interrupt Module (KBI)
Technical Data 233
Keyboard Interrupt Module (KBI)
Address: $0016 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 6 0 5 0 4 0 3 KEYF 2 0 IMASKK ACKK 0 0 0 MODEK 1 Bit 0
= Unimplemented
Figure 14-2. Keyboard Status and Control Register (KBSCR) Bits 7–4 — Not used These read-only bits always read as logic 0s. KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK — Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only
Technical Data 234
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Keyboard Interrupt Module (KBI) I/O Registers
14.9.2 Keyboard Interrupt Enable Register The keyboard interrupt enable register enables or disables each port A pin to operate as a keyboard interrupt pin.
Address: $0017 Bit 7 Read: KBIE7 Write: Reset: 0 0 0 0 0 0 0 0 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 6 5 4 3 2 1 Bit 0
Figure 14-3. Keyboard Interrupt Enable Register (KBIER) KBIE7–KBIE0 — Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = PTAx pin enabled as keyboard interrupt pin 0 = PTAx pin not enabled as keyboard interrupt pin
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Keyboard Interrupt Module (KBI)
Technical Data 235
Keyboard Interrupt Module (KBI)
Technical Data 236
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 15. Computer Operating Properly (COP)
15.1 Contents
15.2 15.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.4.1 OSCXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 240 15.5 15.6 15.7 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242 15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242 15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 242
15.2 Introduction
The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG register.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Computer Operating Properly (COP) Technical Data 237
Computer Operating Properly (COP) 15.3 Functional Description
Figure 15-1 shows the structure of the COP module.
SIM OSCXCLK 12-BIT SIM COUNTER SIM RESET CIRCUIT RESET STATUS REGISTER
CLEAR STAGES 5–12
CLEAR ALL STAGES
INTERNAL RESET SOURCES(1) RESET VECTOR FETCH COPCTL WRITE
COP CLOCK COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COPD (FROM CONFIG) RESET COPCTL WRITE COP RATE SEL (COPRS FROM CONFIG) NOTE: 1. See SIM section for more details. CLEAR COP COUNTER
Figure 15-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by a 12-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 – 24 or 213 – 24 OSCXCLK cycles, depending on the state of the COP rate select bit, COPRS in the configuration register. With a 218 – 24 OSCXCLK cycle overflow option (COPRS = 0), a 12MHz OSCXCLK clock (6MHz crystal) gives a COP timeout period of 21.84 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the SIM counter.
Technical Data 238
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Computer Operating Properly (COP) Freescale Semiconductor
COP TIMEOUT
Computer Operating Properly (COP) I/O Signals
NOTE:
Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. A COP reset pulls the RST pin low for 32 OSCXCLK cycles and sets the COP bit in the reset status register (RSR). In monitor mode, the COP is disabled if the RST pin or the IRQ is held at VDD + VHI. During the break state, VDD + VHI on the RST pin disables the COP.
NOTE:
Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.
15.4 I/O Signals
The following paragraphs describe the signals shown in Figure 15-1.
15.4.1 OSCXCLK OSCXCLK is the clock doubler output signal. OSCXCLK frequency is double of the crystal frequency.
15.4.2 STOP Instruction The STOP instruction clears the COP prescaler.
15.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see 15.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the SIM counter. Reading the COP control register returns the low byte of the reset vector.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Computer Operating Properly (COP)
Technical Data 239
Computer Operating Properly (COP)
15.4.4 Power-On Reset The power-on reset (POR) circuit in the SIM clears the COP prescaler 4096 OSCXCLK cycles after power-up.
15.4.5 Internal Reset An internal reset clears the SIM counter and the COP counter.
15.4.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler.
15.4.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG).
15.4.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register (CONFIG).
Address: $001F Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 URSTD LVID SSREC COPRS STOP COPD 5 4 3 2 1 Bit 0
= Unimplemented
Figure 15-2. Configuration Register (CONFIG)
Technical Data 240
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Computer Operating Properly (COP) Freescale Semiconductor
Computer Operating Properly (COP) COP Control Register
COPRS — COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. 1 = COP timeout period is (213 – 24) × OSCXOUT cycles 0 = COP timeout period is (218 – 24) × OSCXOUT cycles COPD — COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled
15.5 COP Control Register
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector.
Address: $FFFF Bit 7 Read: Write: Reset: 6 5 4 3 2 1 Bit 0
Low byte of reset vector Clear COP counter Unaffected by reset
Figure 15-3. COP Control Register (COPCTL)
15.6 Interrupts
The COP does not generate CPU interrupt requests.
15.7 Monitor Mode
The COP is disabled in monitor mode when VDD + VHI is present on the IRQ pin or on the RST pin.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Computer Operating Properly (COP)
Technical Data 241
Computer Operating Properly (COP) 15.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.
15.8.1 Wait Mode The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine.
15.8.2 Stop Mode Stop mode turns off the OSCXCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. The STOP bit in the configuration register (CONFIG) enables the STOP instruction. To prevent inadvertently turning off the COP with a STOP instruction, disable the STOP instruction by clearing the STOP bit.
15.9 COP Module During Break Mode
The COP is disabled during a break interrupt when VDD + VHI is present on the RST pin.
Technical Data 242
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Computer Operating Properly (COP) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 16. Low Voltage Inhibit (LVI)
16.1 Contents
16.2 16.3 16.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 LVI Control Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . .244
16.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 16.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244 16.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
16.2 Introduction
This section describes the low-voltage inhibit module (LVI), which monitors the voltage on the VDD pin and generates a reset when the VDD voltage falls to the LVI trip (VLVR) voltage.
16.3 Functional Description
Figure 16-1 shows the structure of the LVI module. The LVI is enabled after a reset. The LVI module contains a bandgap reference circuit and comparator. Setting LVI disable bit (LVID) disables the LVI to monitor VDD voltage. The LVI module generates one output signal: LVI Reset — an reset signal will be generated to reset the CPU when VDD drops to below the set trip point.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Low Voltage Inhibit (LVI)
Technical Data 243
Low Voltage Inhibit (LVI)
VDD
LVID
LOW VDD DETECTOR
VDD > VLVR = 0 VDD < VLVR = 1
LVI RESET
Figure 16-1. LVI Module Block Diagram
16.4 LVI Control Register (CONFIG)
Address: $001F Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 URSTD LVID SSREC COPRS STOP COPD 5 4 3 2 1 Bit 0
One-time writable register after each reset. URSTD and LVID bits are reset by POR or LVI reset only.
= Unimplemented
Figure 16-2. Configuration Register (CONFIG) LVID —þLow Voltage Inhibit Disable Bit 1 = Low voltage inhibit disabled 0 = Low voltage inhibit enabled
16.5 Low-Power Modes
The STOP and WAIT instructions put the MCU in low-power consumption standby modes. 16.5.1 Wait Mode The LVI module, when enabled, will continue to operate in WAIT Mode. 16.5.2 Stop Mode The LVI module, when enabled, will continue to operate in STOP Mode.
Technical Data 244 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Low Voltage Inhibit (LVI) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 17. Break Module (BREAK)
17.1 Contents
17.2 17.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246 17.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 248 17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .248 17.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 248 17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 248 17.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 17.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 17.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 17.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 249 17.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.6.4 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 252
17.2 Introduction
This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Break Module (BREAK)
Technical Data 245
Break Module (BREAK) 17.3 Features
Features of the break module include the following: • • • • Accessible i/o registers during the break interrupt CPU-generated break interrupts Software-generated break interrupts COP disabling during break interrupts
17.4 Functional Description
When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (BKPT) to the SIM. The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). These events can cause a break interrupt to occur: • • A CPU-generated address (the address in the program counter) matches the contents of the break address registers. Software writes a logic 1 to the BRKA bit in the break status and control register.
When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 17-1 shows the structure of the break module.
Technical Data 246
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Break Module (BREAK) Freescale Semiconductor
Break Module (BREAK) Functional Description
IAB[15:8]
BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB[15:0] CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW BKPT (TO SIM)
IAB[7:0]
Figure 17-1. Break Module Block Diagram
Addr. $FE00
Register Name Break Status Register Read: (BSR) Write: Reset:
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 SBSW See note 0
Bit 0 R
$FE03
Break Flag Control Read: Register Write: (BFCR) Reset: Break Address High Read: Register Write: (BRKH) Reset: Break Address low Read: Register Write: (BRKL) Reset:
BCFE 0 Bit15 0 Bit7 0 BRKE 0
R
R
R
R
R
R
R
$FE0C
Bit14 0 Bit6 0 BRKA 0
Bit13 0 Bit5 0 0
Bit12 0 Bit4 0 0
Bit11 0 Bit3 0 0
Bit10 0 Bit2 0 0
Bit9 0 Bit1 0 0
Bit8 0 Bit0 0 0
$FE0D
$FE0E Break Status and Control Read: Register Write: (BRKSCR) Reset: Note: Writing a logic 0 clears SBSW.
0
0 R
0
0
0
0
= Unimplemented
= Reserved
Figure 17-2. Break I/O Register Summary
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Break Module (BREAK)
Technical Data 247
Break Module (BREAK)
17.4.1 Flag Protection During Break Interrupts The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. 17.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • • Loading the instruction register with the SWI instruction Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 17.4.3 TIM During Break Interrupts A break interrupt stops the timer counter. 17.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VREG + VHI is present on the RST pin.
17.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes.
17.5.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set (see 8.7 Low-Power Modes). Clear the SBSW bit by writing logic 0 to it.
Technical Data 248
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Break Module (BREAK) Freescale Semiconductor
Break Module (BREAK) Break Module Registers
17.5.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. See 8.8 SIM Registers.
17.6 Break Module Registers
These registers control and monitor operation of the break module: • • • • • Break status and control register (BRKSCR) Break address register high (BRKH) Break address register low (BRKL) Break status register (BSR) Break flag control register (BFCR)
17.6.1 Break Status and Control Register The break status and control register contains break module enable and status bits.
Address: $FE0E Bit 7 Read: BRKE Write: Reset:
0 0 0 0 0 0 0 0
6 BRKA
5 0
4 0
3 0
2 0
1 0
Bit 0 0
= Unimplemented
Figure 17-3. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Break Module (BREAK)
Technical Data 249
Break Module (BREAK)
BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = Break address match 0 = No break address match
17.6.2 Break Address Registers The break address registers contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.
Address: $FE0C Bit 7 Read: Bit 15 Write: Reset: 0 0 0 0 0 0 0 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Figure 17-4. Break Address Register High (BRKH)
Address: $FE0D Bit 7 Read: Bit 7 Write: Reset: 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 17-5. Break Address Register Low (BRKL)
17.6.3 Break Status Register The break status register (BSR) contains a flag to indicate that a break caused an exit from stop or wait mode. This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt.
Technical Data 250
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Break Module (BREAK) Freescale Semiconductor
Break Module (BREAK) Break Module Registers
Address:
$FE00 Bit 7 6 R 5 R 4 R 3 R 2 R 1 SBSW R Note(1) 0 R = Reserved 1. Writing a logic zero clears SBSW. R Bit 0
Read: Write: Reset:
Figure 17-6. Break Status Register (BSR) SBSW — SIM Break Stop/Wait This read/write bit is set when a break interrupt causes an exit from wait or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. This code works if the H register was stacked in the break interrupt routine. Execute this code at the end of the break interrupt routine.
HIBYTE LOBYTE ; EQU EQU 5 6
If not SBSW, do RTI BRCLR TST BNE DEC DOLO RETURN DEC PULH RTI SBSW,BSR, RETURN LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP ; See if wait mode or stop mode ; was exited by break. ; If RETURNLO is not zero, ; then just decrement low byte. ; Else deal with high byte, too. ; Point to WAIT/STOP opcode. ; Restore H register.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Break Module (BREAK)
Technical Data 251
Break Module (BREAK)
17.6.4 Break Flag Control Register (BFCR) The break control register contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: BCFE Write: Reset: 0 R = Reserved R R R R R R R 6 5 4 3 2 1 Bit 0
Figure 17-7. Break Flag Control Register High (BFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
Technical Data 252
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Break Module (BREAK) Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 18. Electrical Specifications
18.1 Contents
18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 255 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 256 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 USB DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 258
18.10 USB Low-Speed Source Electrical Characteristics . . . . . . . . 259 18.11 USB Signaling Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.12 TImer Interface Module Characteristics . . . . . . . . . . . . . . . . . 260 18.13 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
18.2 Introduction
This section contains electrical and timing specifications.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Electrical Specifications
Technical Data 253
Electrical Specifications 18.3 Absolute Maximum Ratings
Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.
NOTE:
This device is not guaranteed to operate properly at the maximum ratings. Refer to 18.6 DC Electrical Characteristics for guaranteed operating conditions.
Characteristic(1) Supply voltage Input voltage PTE4/D–, PTE3/D+ RST, IRQ Others Mode entry voltage, IRQ pin Maximum current per pin excluding VDD and VSS Storage temperature Maximum current of PTD0/1 (20-pin package) Maximum current out of VSS Maximum current into VDD
NOTES: 1. Voltages referenced to VSS
Symbol VDD
Value –0.3 to +6.0 VSS – 1.0 to VDD + 0.3 VSS – 0.3 to VDD + 0.3 VSS – 0.3 to VREG + 0.3 VSS –0.3 to +11 ± 25 –55 to +150 –25 to +50 100 100
Unit V
VIN
V
VDD +VHI
V mA °C mA mA mA
I TSTG IOL IMVSS IMVDD
NOTE:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS ≤ (VIN or VOUT) ≤ VREG. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VREG).
Technical Data 254
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Electrical Specifications Freescale Semiconductor
Electrical Specifications Functional Operating Range
18.4 Functional Operating Range
Characteristic Operating temperature range Operating voltage range Symbol TA VDD Value 0 to 70 4.0 to 5.5 Unit °C V
18.5 Thermal Characteristics
Characteristic Thermal Resistance QFP (44 pins) SOIC (28 pins) SOIC (20 pins) PDIP (20 pins) I/O pin power dissipation Power dissipation(1) Constant(2) Average junction temperature Maximum junction temperature Symbol Value 95 70 70 70 User determined PD = (IDD × VDD) + PI/O = K/(TJ + 273 °C) PD x (TA + 273 °C) + PD2 × θJA TA + (PD × θJA) 100 Unit
θJA
°C/W
PI/O PD K TJ TJM
W W W/°C °C °C
NOTES: 1. Power dissipation is a function of temperature. 2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Electrical Specifications
Technical Data 255
Electrical Specifications 18.6 DC Electrical Characteristics
Characteristic(1) Regulator output voltage Output high voltage (ILoad = – 2.0 mA) PTA0–PTA7, PTB0–PTB7, PTC0–PTC7, PTE0–PTE2 Output low voltage (ILoad = 1.6 mA) All I/O pins (ILoad = 25 mA) PTD0–PTD1 in ILDD mode (ILoad = 10 mA) PTE3–PTE4 with USB disabled Input high voltage All ports, OSC1 IRQ, RST Input low voltage All ports, OSC1 IRQ, RST Output low current (VOL = 2.0 V) PTD2–PTD5 in LDD mode VDD supply current, VDD = 5.25V, fOP = 3 MHz Run, with low speed USB(3) Run, with USB suspended(3) Wait, with low speed USB(4) Wait, with USB suspended(4) Stop(5) 0 °C to 70°C I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR re-arm voltage(6) POR rise-time ramp rate(7) Monitor mode entry voltage Pullup resistors Port A, port B, port C, PTE0–PTE2, RST, IRQ PTE3–PTE4 (with USB module disabled) D– (with USB module enabled) LVI reset — — — — — IIL IIN COut CIn VPOR RPOR VDD+VHI RPU VLVR — — — — 0 0.035 1.4 × VDD 25 4 1.2 2.8 5.0 4.5 3.0 2.5 300 — — — — — — — 40 5 1.5 3.3 7.5 6.5 5.0 4.0 350 ± 10 ±1 12 8 100 — 2 × VDD 55 6 2 3.8 mA mA mA mA µA µA µA pF mV V/ms V kΩ Symbol VREG VOH Min 3.0 VREG –0.8 Typ(2) 3.3 — Max 3.6 — Unit V V
VOL
— — — 0.7 × VREG 0.7 × VDD VSS VSS 10
— — — — — — — 13
0.4 0.5 0.4 VREG VDD 0.3 × VREG 0.3 × VDD 20
V
VIH
V
VIL
V
IOL
mA
IDD
V
Technical Data 256
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Electrical Specifications Freescale Semiconductor
Electrical Specifications Control Timing
NOTES: 1. VDD = 4.0 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source (fXCLK = 6 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fXCLK = 6 MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. CL = 20 pF on OSC2; 15 kΩ ± 5% termination resistors on D+ and D– pins; all ports configured as inputs; OSC2 capacitance linearly affects wait IDD 5. STOP IDD measured with USB in suspend mode; OSC1 grounded; transceiver pullup resistor of 1.5 kΩ ± 5% between VREG and D– and 15 kΩ ± 5% termination resistors on D+ and D– pins; no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VREG is not reached before the internal POR reset is released, RST must be driven low externally until minimum VREG is reached.
18.7 Control Timing
Characteristic(1) Internal operating frequency(2) RST input pulse width low(3) Symbol fOP tIRL Min — 125 Max 3 — Unit MHz ns
NOTES: 1. VDD = 4.0 to 5.5 Vdc; VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
18.8 Oscillator Characteristics
Characteristic Crystal frequency(1) External clock Reference frequency(1), (2) Crystal load capacitance(3) Crystal fixed capacitance(3) Crystal tuning capacitance(3) Feedback bias resistor Series resistor(3), (4) Symbol fXCLK fXCLK CL C1 C2 RB RS Min 1 dc — — — — — Typ — — — 2 × CL 2 × CL 10 MΩ — Max 6 6 — — — — — Unit MHz MHz
NOTES: 1. The USB module is designed to function at fXCLK = 6 MHz. 2. No more than 10% duty cycle deviation from 50%. 3. Consult crystal vendor data sheet. 4. Not required for high-frequency crystals.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Electrical Specifications
Technical Data 257
Electrical Specifications 18.9 USB DC Electrical Characteristics
Characteristic(1) Hi-Z state data line leakage Voltage input high (driven) Voltage input high (floating) Voltage input low Differential input sensitivity Differential common mode range Static output low Static output high Output signal crossover voltage Regulator bypass capacitor Regulator bulk capacitor Symbol ILO VIH VIHZ VIL VDI VCM VOL VOH VCRS
CREGBYPASS
Conditions 0 V VOH (min) and D– < VOL (max) D+ and D– < VOL (max) Differential 0 Differential 1 NA Differential 1 Data lines switch from Idle to K State SE0 for approximately 2 bit times(1) followed by a J state for 1 bit time NA SE0 for ≥ 1 bit time(2) followed by a J state for 1 bit time D+ and D– < VIL (max) for ≥ 8 µs Receive (D+) – (D–) > 200 mV (D–) – (D+) > 200 mV D+ and D– < VIL (max) Differential 0 Differential 1 D– > VIHZ (min) and D+ < VIL (max) Differential 1
NOTES: 1. The width of EOP is defined in bit times relative to the speed of transmission. 2. The width of EOP is defined in bit times relative to the device type receiving the EOP. The bit time is approximate.
18.12 TImer Interface Module Characteristics
Characteristic Input capture pulse width Input clock pulse width Symbol tTIH, tTIL tTCH, tTCL Min 1/fOP (1/fOP) + 5ns Max — — Unit
Technical Data 260
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Electrical Specifications Freescale Semiconductor
Electrical Specifications Memory Characteristics
18.13 Memory Characteristics
Characteristic RAM data retention voltage FLASH block size FLASH programming size FLASH read bus clock frequency FLASH block erase time FLASH mass erase time FLASH PGM/ERASE to HVEN set up time FLASH high-voltage hold time FLASH high-voltage hold time (mass erase) FLASH program hold time FLASH program time FLASH return to read time FLASH cumulative program hv period FLASH row erase endurance(6) FLASH row program endurance(7) FLASH data retention time(8) Symbol VRDR — — fRead(1) tErase(2) tMErase(3) tnvs tnvh tnvhl tpgs tPROG trcv(4) tHV(5) — — — 32 k 2 2 5 5 100 10 20 1 — 10k 10k 10 Min 1.3 512 64 8.4 M — — — — — — — — 25 — — — Max — Unit V Bytes Bytes Hz ms ms µs µs µs µs µs µs ms Cycles Cycles Years
NOTES: 1. fREAD is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduced the endurance of the flash memory 3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduced the endurance of the flash memory 4. trcv is defined as the time it need before start the read of the flash after turn off the HVEN bit 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Electrical Specifications
Technical Data 261
Electrical Specifications
Technical Data 262
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Electrical Specifications Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 19. Mechanical Specifications
19.1 Contents
19.2 19.3 19.4 19.5 19.6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 264 28-Pin Small Outline Integrated Circuit (SOIC) . . . . . . . . . . . 265 20-Pin Dual In-Line Package (PDIP) . . . . . . . . . . . . . . . . . . . 265 20-Pin Small Outline Integrated Circuit (SOIC) . . . . . . . . . . . 266
19.2 Introduction
This section gives the dimensions for: • • • • 44-pin plastic quad flat pack (case 824A) 28-pin small outline integrated circuit package (case 751F) 20-pin plastic dual in-line package (case 738) 20-pin small outline integrated circuit package (case 751D)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Mechanical Specifications
Technical Data 263
Mechanical Specifications 19.3 44-Pin Plastic Quad Flat Pack (QFP)
B L B
33 34
23 22 S
–A–, –B–, –D– D D
S
DETAIL A F
BASE METAL
S
H A–B
0.05 (0.002) A–B
–A– L
–B– B
M
V
0.20 (0.008)
0.20 (0.008)
M
C A–B
S
J D
N
DETAIL A
44 1 11 12
0.20 (0.008)
M
C A–B
S
D
S
SECTION B–B
VIEW ROTATED 90°
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS –A–, –B– AND –D– TO BE DETERMINED AT DATUM PLANE –H–. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE –C–. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE –H–. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MILLIMETERS MIN MAX 9.90 10.10 9.90 10.10 2.10 2.45 0.30 0.45 2.00 2.10 0.30 0.40 0.80 BSC — 0.25 0.13 0.23 0.65 0.95 8.00 REF 5° 10° 0.13 0.17 0° 7° 0.13 0.30 12.95 13.45 0.13 — 0° — 12.95 13.45 0.40 — 1.6 REF INCHES MIN MAX 0.390 0.398 0.390 0.398 0.083 0.096 0.012 0.018 0.079 0.083 0.012 0.016 0.031 BSC — 0.010 0.005 0.009 0.026 0.037 0.315 REF 5° 10° 0.005 0.007 0° 7° 0.005 0.012 0.510 0.530 0.005 — 0° — 0.510 0.530 0.016 — 0.063 REF
–D– A 0.20 (0.008)
M
H A–B
S
D
S
0.05 (0.002) A–B S 0.20 (0.008)
M
C A–B
S
D M
S
DETAIL C
CE –C–
SEATING PLANE
–H– H
DATUM PLANE
0.10 (0.004) G M
M T
DATUM PLANE
–H–
R
K W X DETAIL C
Q
DIM A B C D E F G H J K L M N Q R S T U V W X
Figure 19-1. 44-Pin QFP (Case 824A)
Technical Data 264 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Mechanical Specifications Freescale Semiconductor
Mechanical Specifications 28-Pin Small Outline Integrated Circuit (SOIC)
19.4 28-Pin Small Outline Integrated Circuit (SOIC)
-A28 15 14X NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. DIM A B C D F G J K M P R MILLIMETERS MIN MAX 17.80 18.05 7.40 7.60 2.35 2.65 0.35 0.49 0.41 0.90 1.27 BSC 0.23 0.32 0.13 0.29 0° 8° 10.01 10.55 0.25 0.75 INCHES MIN MAX 0.701 0.711 0.292 0.299 0.093 0.104 0.014 0.019 0.016 0.035 0.050 BSC 0.009 0.013 0.005 0.011 0° 8° 0.395 0.415 0.010 0.029
-B1 14
P 0.010 (0.25)
M
B
M
28X
D
M
0.010 (0.25)
TA
S
B
S
M R C
X 45
26X
G K
-TSEATING PLANE
F J
Figure 19-2. 28-Pin SOIC (Case 751F)
19.5 20-Pin Dual In-Line Package (PDIP)
–A–
20 11 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. INCHES MIN MAX 1.010 1.070 0.240 0.260 0.150 0.180 0.015 0.022 0.050 BSC 0.050 0.070 0.100 BSC 0.008 0.015 0.110 0.140 0.300 BSC 0_ 15 _ 0.020 0.040 MILLIMETERS MIN MAX 25.66 27.17 6.10 6.60 3.81 4.57 0.39 0.55 1.27 BSC 1.27 1.77 2.54 BSC 0.21 0.38 2.80 3.55 7.62 BSC 0_ 15_ 0.51 1.01
B
1 10
C
L
–T–
SEATING PLANE
K M E G F D
20 PL
N J 0.25 (0.010)
M 20 PL
0.25 (0.010) TA
M
M
TB
M
DIM A B C D E F G J K L M N
Figure 19-3. 20-Pin PDIP (Case 738)
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Mechanical Specifications
Technical Data 265
Mechanical Specifications 19.6 20-Pin Small Outline Integrated Circuit (SOIC)
–A–
20 11
–B–
1 10
10X
P 0.010 (0.25)
M
B
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.150 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. DIM A B C D F G J K M P R MILLIMETERS MIN MAX 12.65 12.95 7.40 7.60 2.35 2.65 0.35 0.49 0.50 0.90 1.27 BSC 0.25 0.32 0.10 0.25 0_ 7_ 10.05 10.55 0.25 0.75 INCHES MIN MAX 0.499 0.510 0.292 0.299 0.093 0.104 0.014 0.019 0.020 0.035 0.050 BSC 0.010 0.012 0.004 0.009 0_ 7_ 0.395 0.415 0.010 0.029
20X
D
M
0.010 (0.25)
TA
S
B
J
S
F R X 45 _ C –T–
18X SEATING PLANE
G
K
M
Figure 19-4. 20-Pin SOIC (Case 751D)
Technical Data 266
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Mechanical Specifications Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Section 20. Ordering Information
20.1 Contents
20.2 20.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
20.2 Introduction
This section contains ordering numbers for the MC68HC908JB8.
20.3 MC Order Numbers
Table 20-1. MC Order Numbers
MC Order Number MC68HC908JB8JP MC68HC908JB8JDW MC68HC908JB8ADW MC68HC908JB8FB MC68HC908JB8JPE MC908JB8JDWE MC908JB8ADWE MC908JB8FBE Package 20-pin PDIP 20-pin SOIC 28-pin SOIC 44-pin QFP 20-pin PDIP 20-pin SOIC 28-pin SOIC 44-pin QFP Operating Temperature Range 0 to +70 °C 0 to +70 °C 0 to +70 °C 0 to +70 °C 0 to +70 °C 0 to +70 °C 0 to +70 °C 0 to +70 °C Pb-Free and RoHS compliant. — Compliance
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor Ordering Information
Technical Data 267
Ordering Information
Technical Data 268
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Ordering Information Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Appendix A. MC68HC08JB8
A.1 Contents
A.2 A.3 A.4 A.5 A.6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
A.7 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 A.7.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . .274 A.7.2 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 A.8 MC68HC08JB8 Order Numbers . . . . . . . . . . . . . . . . . . . . . . . 275
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor MC68HC08JB8
Technical Data 269
MC68HC08JB8 A.2 Introduction
This section introduces the MC68HC08JB8, the ROM part equivalent to the MC68HC908JB8. The entire data book apply to this ROM device, with exceptions outlined in this appendix. Table A-1. Summary of MC68HC08JB8 and MC68HC908JB8 Differences
MC68HC08JB8 Memory ($DC00–$FBFF) User vectors ($FFF0–$FFFF) Registers at $FE08 and $FF09 8,192 bytes ROM 16 bytes ROM Not used; locations are reserved. $FC00–$FDFF: Not used. $FE10–$FFDF: Used for testing purposes only. MC68HC908JB8 8,192 bytes FLASH 16 bytes FLASH FLASH related registers. $FE08 — FLCR $FF09 — FLBPR Used for testing and FLASH programming/erasing.
Monitor ROM ($FC00–$FDFF and $FE10–$FFDF)
A.3 MCU Block Diagram
Figure A-1 shows the block diagram of the MC68HC08JB8.
A.4 Memory Map
The MC68HC08JB8 has 8,192 bytes of user ROM from $DC00 to $FBFF, and 16 bytes of user ROM vectors from $FFF0 to $FFFF. On the MC68HC908JB8, these memory locations are FLASH memory. Figure A-2 shows the memory map of the MC68HC08JB8.
Technical Data 270
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 MC68HC08JB8 Freescale Semiconductor
DDRC
PTC
DDRD
PTD
DDRE
PTE
USB MODULE VDD POWER VSS USB ENDPOINT 0, 1, 2
VREG (3.3 V)
INTERNAL VOLTAGE REGULATOR
(1) Pins have 5V logic. (2) Pins have integrated pullup device. (3) Pins have software configurable pull-up device. (4) Pins are open-drain when configured as output. (5) Pins have 10mA sink capability. (6) Pins have 25mA sink capability.
LS USB TRANSCEIVER
Freescale Semiconductor MC68HC08JB8 271
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Technical Data
INTERNAL BUS DDRA M68HC08 CPU CPU REGISTERS ARITHMETIC/LOGIC UNIT (ALU) KEYBOARD INTERRUPT MODULE PTB CONTROL AND STATUS REGISTERS — 64 BYTES TIMER INTERFACE MODULE USER ROM — 8,192 BYTES DDRB PTB7–PTB0 (3) PTA7/KBA7 (3) : PTA0/KBA0 (3) PTA
USER RAM — 256 BYTES
BREAK MODULE
PTC7–PTC0 (3)
MONITOR ROM — 464 BYTES LOW VOLTAGE INHIBIT MODULE
USER ROM VECTORS — 16 BYTES OSC1 OSC2
PTD7–PTD6 (4) PTD5–PTD2 (4) (5) PTD1–PTD0 (4) (6) PTE4/D– (3) (4) (5)
OSCILLATOR
POWER-ON RESET MODULE
(1), (2)
RST
SYSTEM INTEGRATION MODULE IRQ MODULE
PTE3/D+ COMPUTER OPERATING PROPERLY MODULE
(3) (4) (5)
PTE2/TCH1 (3) PTE1/TCH0 (3) PTE0/TCLK (3)
(1), (3) IRQ
MC68HC08JB8
Shaded blocks indicate differences to MC68HC908JB8
Figure A-1. MC68HC08JB8 Block Diagram
MC68HC08JB8
$0000 ↓ $003F $0040 ↓ $013F $0140 ↓ $DBFF $DC00 ↓ $FBFF $FC00 ↓ $FDFF $FE00 $FE01 $FE02 $FE03 $FE04 $FE05 $FE06 $FE07 $FE08 $FE09 $FE0A $FE0B $FE0C $FE0D $FE0E $FE0F $FE10 ↓ $FFDF $FFE0 ↓ $FFEF $FFF0 ↓ $FFFF
I/O Registers 64 Bytes RAM 256 Bytes Unimplemented 56,000 Bytes ROM 8,192 Bytes Unimplemented 512 Bytes Break Status Register (BSR) Reset Status Register (RSR) Reserved Break Flag Control Register (BFCR) Interrupt Status Register 1 (INT1) Reserved Reserved Reserved Reserved Reserved Reserved Reserved Break Address High Register (BRKH) Break Address Low Register (BRKL) Break Status and Control Register (BRKSCR) Reserved Monitor ROM 464 Bytes Reserved 16 Bytes ROM Vectors 16 Bytes
Figure A-2. MC68HC08JB8 Memory Map
Technical Data 272
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 MC68HC08JB8 Freescale Semiconductor
MC68HC08JB8
A.5 Reserved Registers
The two registers at $FE08 and $FE09 are reserved locations on the MC68HC08JB8. On the MC68HC908JB8, these two locations are the FLASH control register and the FLASH block protect register respectively.
A.6 Monitor ROM
The monitor program (monitor ROM: $FE10–$FFDF) on the MC68HC08JB8 is for device testing only. $FC00–$FDFF are unused.
A.7 Electrical Specifications
Electrical specifications for the MC68HC908JB8 apply to the MC68HC08JB8, except for the parameters indicated below.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor MC68HC08JB8
Technical Data 273
MC68HC08JB8
A.7.1 DC Electrical Characteristics
Characteristic(1) Regulator output voltage Output high voltage (ILoad = – 2.0 mA) PTA0–PTA7, PTB0–PTB7, PTC0–PTC7, PTE0–PTE2 Output low voltage (ILoad = 1.6 mA) All I/O pins (ILoad = 25 mA) PTD0–PTD1 in ILDD mode (ILoad = 10 mA) PTE3–PTE4 with USB disabled Input high voltage All ports, OSC1 IRQ, RST Input low voltage All ports, OSC1 IRQ, RST Output low current (VOL = 2.0 V) PTD2–PTD5 in LDD mode VDD supply current, VDD = 5.25V, fOP = 3 MHz Run, with low speed USB(3) Run, with USB suspended(3) Wait, with low speed USB(4) Wait, with USB suspended(4) Stop(5) 0 °C to 70°C I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR re-arm voltage(6) POR rise-time ramp rate(7) Monitor mode entry voltage Pullup resistors Port A, port B, port C, PTE0–PTE2, RST, IRQ PTE3–PTE4 (with USB module disabled) D– (with USB module enabled) LVI reset
Symbol VREG VOH
Min 3.0 VREG –0.8
Typ(2) 3.3 —
Max 3.6 —
Unit V V
VOL
— — — 0.7 × VREG 0.7 × VDD VSS VSS 17
— — — — — — — 22
0.4 0.5 0.4 VREG VDD 0.3 × VREG 0.3 × VDD 27
V
VIH
V
VIL
V
IOL
mA
IDD
— — — — —
5.0 4.5 3.0 2.5 30 — — — — — —
7.5 6.5 5.0 4.0 100 ± 10 ±1 12 8 100 — 2 × VDD
mA mA mA mA µA µA µA pF mV V/ms V kΩ
IIL IIN COut CIn VPOR RPOR VDD+VHI RPU VLVR
— — — — 0 0.035 1.4 × VDD 25 4 1.2 2.4
40 5 1.5 2.7
55 6 2.0 3.0
V
Technical Data 274
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 MC68HC08JB8 Freescale Semiconductor
MC68HC08JB8
NOTES: 1. VDD = 4.0 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source (fXCLK = 6 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fXCLK = 6 MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. CL = 20 pF on OSC2; 15 kΩ ± 5% termination resistors on D+ and D– pins; all ports configured as inputs; OSC2 capacitance linearly affects wait IDD 5. STOP IDD measured with USB in suspend mode; OSC1 grounded; transceiver pullup resistor of 1.5 kΩ ± 5% between VREG and D– pins and 15 kΩ ± 5% termination resistor on D+ pin; no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VREG is not reached before the internal POR reset is released, RST must be driven low externally until minimum VREG is reached.
A.7.2 Memory Characteristics
Characteristic RAM data retention voltage Symbol VRDR Min 1.3 Max — Unit V
Notes: Since MC68HC08JB8 is a ROM device, FLASH memory electrical characteristics do not apply.
A.8 MC68HC08JB8 Order Numbers
These part numbers are generic numbers only. To place an order, ROM code must be submitted to the ROM Processing Center (RPC). Table A-2. MC68HC08JB8 Order Numbers
MC Order Number MC68HC08JB8JP MC68HC08JB8JDW MC68HC08JB8ADW MC68HC08JB8FB Package 20-pin PDIP 20-pin SOIC 28-pin SOIC 44-pin QFP Operating Temperature Range 0 to +70 °C 0 to +70 °C 0 to +70 °C 0 to +70 °C
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor MC68HC08JB8
Technical Data 275
MC68HC08JB8
Technical Data 276
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 MC68HC08JB8 Freescale Semiconductor
Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8
Appendix B. MC68HC08JT8
B.1 Contents
B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Reserved Register Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282 Universal Serial Bus Module. . . . . . . . . . . . . . . . . . . . . . . . . . 282
B.10 Low-Voltage Inhibit Module . . . . . . . . . . . . . . . . . . . . . . . . . . 282 B.11 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 B.11.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . 282 B.11.2 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . .283 B.11.3 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . .283 B.11.4 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 B.11.5 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 B.12 MC68HC08JT8 Order Numbers . . . . . . . . . . . . . . . . . . . . . . . 284
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor MC68HC08JT8
Technical Data 277
MC68HC08JT8 B.2 Introduction
This section introduces the MC68HC08JT8, a low-voltage ROM part version to the MC68HC908JB8. The entire data book apply to this ROM device, with exceptions outlined in this appendix. Table B-1. Summary of MC68HC08JT8 and MC68HC908JB8 Differences
MC68HC08JT8 Memory ($DC00–$FBFF) User vectors ($FFF0–$FFFF) Registers at $FE08 and $FF09 8,192 bytes ROM 16 bytes ROM Not used; locations are reserved Not used; bit is reserved. $FC00–$FDFF: Not used. $FE10–$FFDF: Used for testing purposes only. Not available (disabled) Not available. User should set the SUSPND bit to logic 1 to reduce power consumption. Not available (disabled) 2.0 to 3.6V fOPMAX = 2.5MHz at 2V fOPMAX = 3 MHz at 3V MC68HC908JB8 8,192 bytes FLASH 16 bytes FLASH FLASH related registers. $FE08 — FLCR $FF09 — FLBPR LVID: low-voltage inhibit disable bit Used for testing and FLASH programming/erasing. Available Available Available 4.0 to 5.5V 3MHz
Bit 4 at CONFIG ($001F) Monitor ROM ($FC00–$FDFF and $FE10–$FFDF) Low voltage inhibit module Universal Serial Bus (USB) module On-chip 3.3V regulator Operating voltage Operating frequency
B.3 MCU Block Diagram
Figure B-1 shows the block diagram of the MC68HC08JT8.
B.4 Memory Map
The MC68HC08JT8 has 8,192 bytes of user ROM from $DC00 to $FBFF, and 16 bytes of user ROM vectors from $FFF0 to $FFFF. On the MC68HC908JB8, these memory locations are FLASH memory. Figure B-2 shows the memory map of the MC68HC08JT8.
Technical Data 278 MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 MC68HC08JT8 Freescale Semiconductor
DDRC
PTC
DDRD
PTD
DDRE
PTE
USB MODULE VDD POWER VSS DISABLED VREG (3.3 V) INTERNAL VOLTAGE REGULATOR USB ENDPOINT 0, 1, 2
(1) Pins have 5V logic. (2) Pins have integrated pullup device. (3) Pins have software configurable pull-up device. (4) Pins are open-drain when configured as output. (5) Pins have 10mA sink capability. (6) Pins have 25mA sink capability.
LS USB TRANSCEIVER
Freescale Semiconductor MC68HC08JT8 279
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Technical Data
INTERNAL BUS DDRA M68HC08 CPU CPU REGISTERS ARITHMETIC/LOGIC UNIT (ALU) KEYBOARD INTERRUPT MODULE PTB CONTROL AND STATUS REGISTERS — 64 BYTES TIMER INTERFACE MODULE USER ROM — 8,192 BYTES DDRB PTB7–PTB0 (3) PTA7/KBA7 (3) : PTA0/KBA0 (3) PTA
USER RAM — 256 BYTES
BREAK MODULE DISABLED LOW VOLTAGE INHIBIT MODULE
PTC7–PTC0 (3)
MONITOR ROM — 464 BYTES
USER ROM VECTORS — 16 BYTES OSC1 OSC2
PTD7–PTD6 (4) PTD5–PTD2 (4) (5) PTD1–PTD0 (4) (6) PTE4 (3) (4) (5)
OSCILLATOR
POWER-ON RESET MODULE
(1), (2)
RST
SYSTEM INTEGRATION MODULE IRQ MODULE
PTE3 COMPUTER OPERATING PROPERLY MODULE NOT AVAILABLE
(3) (4) (5)
PTE2/TCH1 (3) PTE1/TCH0 (3) PTE0/TCLK (3)
(1), (3) IRQ
MC68HC08JT8
Shaded blocks indicate differences to MC68HC908JB8
Figure B-1. MC68HC08JT8 Block Diagram
MC68HC08JT8
$0000 ↓ $003F $0040 ↓ $013F $0140 ↓ $DBFF $DC00 ↓ $FBFF $FC00 ↓ $FDFF $FE00 $FE01 $FE02 $FE03 $FE04 $FE05 $FE06 $FE07 $FE08 $FE09 $FE0A $FE0B $FE0C $FE0D $FE0E $FE0F $FE10 ↓ $FFDF $FFE0 ↓ $FFEF $FFF0 ↓ $FFFF
I/O Registers 64 Bytes RAM 256 Bytes Unimplemented 56,000 Bytes ROM 8,192 Bytes Unimplemented 512 Bytes Break Status Register (BSR) Reset Status Register (RSR) Reserved Break Flag Control Register (BFCR) Interrupt Status Register 1 (INT1) Reserved Reserved Reserved Reserved Reserved Reserved Reserved Break Address High Register (BRKH) Break Address Low Register (BRKL) Break Status and Control Register (BRKSCR) Reserved Monitor ROM 464 Bytes Reserved 16 Bytes ROM Vectors 16 Bytes
Figure B-2. MC68HC08JT8 Memory Map
Technical Data 280
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 MC68HC08JT8 Freescale Semiconductor
MC68HC08JT8
B.5 Power Supply Pins
The MC68HC08JT8 is design for low voltage operation. Connect VDD and VREG for normal operation. The VREG voltage regulator is disabled on the MC68HC08JT8. MCU
VDD VREG VSS
CBYPASS 0.1 µF + CBULK 10 µF
VDD NOTE: Values shown are typical values.
Figure B-3. Power Supply Bypassing
B.6 Reserved Register Bit
Bit 4 of the configuration register ($001F) is a reserved bit on the MC68HC08JT8. The bit will always read as zero. On the MC68HC908JB8, bit 4 of the configuration register is the lowvoltage inhibit disable bit, LVID.
B.7 Reserved Registers
The two registers at $FE08 and $FE09 are reserved locations on the MC68HC08JT8. On the MC68HC908JB8, these two locations are the FLASH control register and the FLASH block protect register respectively.
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor MC68HC08JT8
Technical Data 281
MC68HC08JT8 B.8 Monitor ROM
The monitor program (monitor ROM: $FE10–$FFDF) on the MC68HC08JT8 is for device testing only. $FC00–$FDFF are unused.
B.9 Universal Serial Bus Module
The USB module is designed for operation with VDD = 4 V to 5.5V, therefore, it should not be used on the MC68HC08JT8 device. To further reduce current consumption in stop mode, set the SUSPND bit in the USB interrupt register 0 (UIR0) to logic 1. Other USB registers should be left in their default state.
B.10 Low-Voltage Inhibit Module
The LVI module is disabled on the MC68HC08JT8.
B.11 Electrical Specifications
Electrical specifications for the MC68HC908JB8 apply to the MC68HC08JT8, except for the parameters indicated below. B.11.1 Absolute Maximum Ratings
Characteristic(1) Supply voltage Input voltage Maximum current per pin excluding VDD and VSS Storage temperature Maximum current of PTD0/1 (20-pin package) Maximum current out of VSS Maximum current into VDD
NOTES: 1. Voltages referenced to VSS.
Symbol VDD VIN I TSTG IOL IMVSS IMVDD
Value –0.3 to +3.9 VSS – 0.3 to VDD + 0.3 ± 25 –55 to +150 –15 to +30 100 100
Unit V V mA °C mA mA mA
Technical Data 282
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 MC68HC08JT8 Freescale Semiconductor
MC68HC08JT8
B.11.2 Functional Operating Range
Characteristic Operating temperature range Operating voltage range Symbol TA VDD Value 0 to 70 2.0 to 3.6 Unit °C V
B.11.3 DC Electrical Characteristics
Characteristic(1) Output high voltage (ILoad = – 1.6 mA) PTA0–PTA7, PTB0–PTB7, PTC0–PTC7, PTE0–PTE2 Output low voltage (ILoad = 1.6 mA) All I/O pins (ILoad = 15 mA) PTD0–PTD1 in ILDD mode (ILoad = 5 mA) PTE3–PTE4 Input high voltage All ports, OSC1, IRQ, RST Input low voltage All ports, OSC1, IRQ, RST Output low current (VOL = 2.0 V)(3) PTD2–PTD5 in LDD mode (VDD = 2 V) PTD2–PTD5 in LDD mode (VDD = 3 V) VDD supply current, VDD = 3 V, fOP = 3 MHz Run(4) Wait(5) Stop(6) 0 °C to 70°C I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR re-arm voltage(7) POR rise-time ramp rate Monitor mode entry voltage Pullup resistors Port A, port B, port C, PTE0–PTE2, RST, IRQ PTE3–PTE4 IDD — — — IIL IIN COut CIn VPOR RPOR VDD+VHI RPU — — — — 0 0.02 1.4 × VDD 25 4 40 5 3.5 2.5 20 — — — — — — 6.5 4.5 30 ± 10 ±1 12 8 100 — 2 × VDD 55 6 mA mA µA µA µA pF mV V/ms V kΩ kΩ Symbol VOH Min VDD –0.4 Typ(2) — Max — Unit V
VOL
— — — 0.7 × VDD VSS
— — — — —
0.4 0.5 0.4 VDD 0.3 × VDD
V
VIH VIL
V V
IOL
— —
6 16
— —
mA
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 Freescale Semiconductor MC68HC08JT8
Technical Data 283
MC68HC08JT8
NOTES: 1. VDD = 2.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at 3V, 25 °C only. 3. In LDD mode, the specified IOL is achieved when the external pullup voltage is equal to or higher than the voltage: VOL + voltage dropped across LED. 4. Run (operating) IDD measured using external square wave clock source (fXCLK = 6 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 5. Wait IDD measured using external square wave clock source (fXCLK = 6 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 6. Stop IDD measured with OSC1 grounded; no port pins sourcing current. 7. Maximum is highest voltage that POR is guaranteed.
B.11.4 Control Timing
Characteristic Internal operating frequency VDD = 2.0V VDD = 3.0V Symbol fOP Min — — Max 2.5 3.0 Unit MHz MHz
B.11.5 Memory Characteristics
Characteristic RAM data retention voltage Symbol VRDR Min 1.3 Max — Unit V
NOTES: Since MC68HC08JT8 is a ROM device, FLASH memory electrical characteristics do not apply.
B.12 MC68HC08JT8 Order Numbers
These part numbers are generic numbers only. To place an order, ROM code must be submitted to the ROM Processing Center (RPC). Table B-2. MC68HC08JT8 Order Numbers
MC Order Number MC68HC08JT8ADW MC68HC08JT8FB MC68HC08JT8FBE Package 28-pin SOIC 44-pin QFP 44-pin QFP Operating Temperature Range 0 to +70 °C 0 to +70 °C 0 to +70 °C — Pb-Free and RoHS compliant. Compliance
Technical Data 284
MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3 MC68HC08JT8 Freescale Semiconductor
How to Reach Us:
Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp.
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.
MC68HC908JB8/D Rev. 2.3, 9/2005