0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC9328MX1_06

MC9328MX1_06

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MC9328MX1_06 - MX Family of applications processors - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MC9328MX1_06 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: MC9328MX1 Rev. 7, 12/2006 MC9328MX1 MC9328MX1 Package Information Plastic Package Case 1304B-01 (MAPBGA–225) Ordering Information See Table 1 on page 3 1 Introduction Contents 1 2 3 4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Signals and Connections . . . . . . . . . . . . . . . 4 Electrical Characteristics . . . . . . . . . . . . . . 22 Functional Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Pin-Out and Package Information . . . . . . . . 96 6 Product Documentation . . . . . . . . . . . . . . . . 98 Contact Information . . . . . . . . . . . . . . . Last Page The i.MX Family of applications processors provides a leap in performance with an ARM9™ microprocessor core and highly integrated system functions. The i.MX family specifically addresses the requirements of the personal, portable product market by providing intelligent integrated peripherals, an advanced processor core, and power management capabilities. The MC9328MX1 (i.MX1) processor features the advanced and power-efficient ARM920T™ core that operates at speeds up to 200 MHz. Integrated modules, which include a USB device, an LCD controller, and an MMC/SD host controller, support a suite of peripherals to enhance portable products seeking to provide a rich multimedia experience. It is packaged in a 256-contact Mold Array Process-Ball Grid Array (MAPBGA). Figure 1 shows the functional block diagram of the i.MX1 processor. Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © Freescale Semiconductor, Inc., 2004, 2005, 2006. All rights reserved. Introduction System Control JTAG/ICE Bootstrap Power Control CGM (DPLLx2) Standard System I/O GPIO Connectivity MMC/SD Memory Stick® Host Controller SPI 1 and SPI 2 UART 1 UART 2 & 3 SSI/I2S 1 & 2 I2C USB Device SmartCard I/F Bluetooth Accelerator AIPI 1 MC9328MX1 CPU Complex ARM9TDMI™ PWM Timer 1 & 2 RTC Watchdog I Cache D Cache Multimedia Multimedia Accelerator Video Port Human Interface Analog Signal Processor LCD Controller VMMU Interrupt Controller Bus Control AIPI 2 DMAC (11 Chnl) EIM & SDRAMC eSRAM (128K) Figure 1. i.MX1 Functional Block Diagram 1.1 • • • • • • • • • • • • • • • • • • • Features ARM920T™ Microprocessor Core AHB to IP Bus Interfaces (AIPIs) External Interface Module (EIM) SDRAM Controller (SDRAMC) DPLL Clock and Power Control Module Three Universal Asynchronous Receiver/Transmitters (UART 1, UART 2, and UART3) Two Serial Peripheral Interfaces (SPI1 and SPI2) Two General-Purpose 32-bit Counters/Timers Watchdog Timer Real-Time Clock/Sampling Timer (RTC) LCD Controller (LCDC) Pulse-Width Modulation (PWM) Module Universal Serial Bus (USB) Device Multimedia Card and Secure Digital (MMC/SD) Host Controller Module Memory Stick® Host Controller (MSHC) Direct Memory Access Controller (DMAC) Two Synchronous Serial Interfaces and an Inter-IC Sound (SSI1 and SSI2/I2S) Module Inter-IC (I2C) Bus Module Video Port MC9328MX1 Technical Data, Rev. 7 To support a wide variety of applications, the processor offers a robust array of features, including the following: 2 Freescale Semiconductor Introduction • • • • • • • • General-Purpose I/O (GPIO) Ports Bootstrap Mode Analog Signal Processing (ASP) Module Bluetooth™ Accelerator (BTA) Multimedia Accelerator (MMA) Power Management Features Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O 256-pin MAPBGA Package 1.2 Target Applications The i.MX1 processor is targeted for advanced information appliances, smart phones, Web browsers, based on the popular Palm OS platform, and messaging applications such as wireless cellular products, including the AccompliTM 008 GSM/GPRS interactive communicator. 1.3 Ordering Information Table 1. Ordering Information Package Type 256-lead MAPBGA Frequency 200 MHz Temperature 0°C to 70°C -30°C to 70°C 150 MHz 0°C to 70°C -30°C to 70°C -40°C to 85°C Solderball Type Pb-free Pb-free Pb-free Pb-free Pb-free Order Number MC9328MX1VM20(R2) MC9328MX1DVM20(R2) MC9328MX1VM15(R2) MC9328MX1DVM15(R2) MC9328MX1CVM15(R2) Table 1 provides ordering information. 1.4 • • • • • • • • Conventions OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET. Logic level one is a voltage that corresponds to Boolean true (1) state. Logic level zero is a voltage that corresponds to Boolean false (0) state. To set a bit or bits means to establish logic level one. To clear a bit or bits means to establish logic level zero. A signal is an electronic construct whose state conveys or changes in state convey information. A pin is an external physical connection. The same pin can be used to connect a number of signals. Asserted means that a discrete signal is in active logic state. — Active low signals change from logic level one to logic level zero. — Active high signals change from logic level zero to logic level one. This document uses the following conventions: MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 3 Signals and Connections • • • Negated means that an asserted discrete signal changes logic state. — Active low signals change from logic level zero to logic level one. — Active high signals change from logic level one to logic level zero. LSB means least significant bit or bits, and MSB means most significant bit or bits. References to low and high bytes or words are spelled out. Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x are hexadecimal. 2 Signals and Connections Table 2. i.MX1 Signal Descriptions Signal Name Function/Notes External Bus/Chip-Select (EIM) Table 2 identifies and describes the i.MX1 processor signals that are assigned to package pins. The signals are grouped by the internal module that they are connected to. A[24:0] D[31:0] EB0 EB1 EB2 EB3 OE CS [5:0] ECB LBA BCLK (burst clock) RW DTACK Address bus signals Data bus signals MSB Byte Strobe—Active low external enable byte signal that controls D [31:24]. Byte Strobe—Active low external enable byte signal that controls D [23:16]. Byte Strobe—Active low external enable byte signal that controls D [15:8]. LSB Byte Strobe—Active low external enable byte signal that controls D [7:0]. Memory Output Enable—Active low output enables external data bus. Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the Function Multiplexing Control Register (FMCR). By default CSD [1:0] is selected. Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an on-going burst sequence and initiate a new (long first access) burst sequence. Active low signal sent by a flash device causing the external burst device to latch the starting burst address. Clock signal sent to external synchronous memories (such as burst flash) during burst mode. RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE input signal by external DRAM. DTACK signal—The external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 clock counts have elapsed. Bootstrap BOOT [3:0] System Boot Mode Select—The operational system boot mode of the i.MX1 processor upon system reset is determined by the settings of these pins. SDRAM Controller SDBA [4:0] SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals are logically equivalent to core address p_addr [25:21] in SDRAM cycles. MC9328MX1 Technical Data, Rev. 7 4 Freescale Semiconductor Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name SDIBA [3:0] MA [11:10] MA [9:0] DQM [3:0] CSD0 CSD1 Function/Notes SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles. SDRAM address signals SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on SDRAM cycles. SDRAM data enable SDRAM Chip-select signal which is multiplexed with the CS2 signal. These two signals are selectable by programming the system control register. SDRAM Chip-select signal which is multiplexed with CS3 signal. These two signals are selectable by programming the system control register. By default, CSD1 is selected, so it can be used as boot chip-select by properly configuring BOOT [3:0] input pins. SDRAM Row Address Select signal SDRAM Column Address Select signal SDRAM Write Enable signal SDRAM Clock Enable 0 SDRAM Clock Enable 1 SDRAM Clock Not Used Clocks and Resets EXTAL16M XTAL16M EXTAL32K XTAL32K CLKO RESET_IN RESET_OUT POR Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut down. Crystal output 32 kHz crystal input 32 kHz crystal output Clock Out signal selected from internal clock signals. Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all modules (except the reset module and the clock control module) are reset. Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out. Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally generated by an external RC circuit designed to detect a power-up event. JTAG TRST TDO TDI TCK TMS Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller. Serial Output for test instructions and data. Changes on the falling edge of TCK. Serial Input for test instructions and data. Sampled on the rising edge of TCK. Test Clock to synchronize test logic and control register access through the JTAG port. Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge of TCK. RAS CAS SDWE SDCKE0 SDCKE1 SDCLK RESET_SF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 5 Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name DMA DMA_REQ BIG_ENDIAN DMA Request—external DMA request signal. Multiplexed with SPI1_SPI_RDY. Big Endian—Input signal that determines the configuration of the external chip-select space. If it is driven logic-high at reset, the external chip-select space will be configured to big endian. If it is driven logic-low at reset, the external chip-select space will be configured to little endian. This input must not change state after power-on reset negates or during chip operation. ETM ETMTRACESYNC ETMTRACECLK ETMPIPESTAT [2:0] ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode. ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode. ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM mode. Function/Notes ETMTRACEPKT [7:0] ETM packet signals which are multiplexed with ECB, LBA, BCLK (burst clock), PA17, A [19:16]. ETMTRACEPKT [7:0] are selected in ETM mode. CMOS Sensor Interface CSI_D [7:0] CSI_MCLK CSI_VSYNC CSI_HSYNC CSI_PIXCLK Sensor port data Sensor port master clock Sensor port vertical sync Sensor port horizontal sync Sensor port data latch clock LCD Controller LD [15:0] FLM/VSYNC LP/HSYNC LSCLK ACD/OE CONTRAST SPL_SPR PS CLS REV LCD Data Bus—All LCD signals are driven low after reset and when LCD is off. Frame Sync or Vsync—This signal also serves as the clock signal output for the gate driver (dedicated signal SPS for Sharp panel HR-TFT). Line pulse or H sync Shift clock Alternate crystal direction/output enable. This signal is used to control the LCD bias voltage as contrast control. Program horizontal scan direction (Sharp panel dedicated signal). Control signal output for source driver (Sharp panel dedicated signal). Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated signal). Signal for common electrode driving signal preparation (Sharp panel dedicated signal). SIM SIM_CLK SIM_RST SIM_RX SIM Clock SIM Reset Receive Data MC9328MX1 Technical Data, Rev. 7 6 Freescale Semiconductor Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name SIM_TX SIM_PD SIM_SVEN Transmit Data Presence Detect Schmitt trigger input SIM Vdd Enable SPI 1 and SPI 2 SPI1_MOSI SPI1_MISO SPI1_SS SPI1_SCLK SPI1_SPI_RDY SPI2_TXD Master Out/Slave In Slave In/Master Out Slave Select (Selectable polarity) Serial Clock Serial Data Ready SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin. SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin. SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin. SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin. General Purpose Timers TIN TMR2OUT Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers simultaneously. Timer 2 Output USB Device USBD_VMO USBD_VPO USBD_VM USBD_VP USBD_SUSPND USBD_RCV USBD_ROE USBD_AFE USB Minus Output USB Plus Output USB Minus Input USB Plus Input USB Suspend Output USB Receive Data USB OE USB Analog Front End Enable Secure Digital Interface SD_CMD SD Command—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable register, a 4.7K–69K external pull up resistor must be added. Function/Notes SPI2_RXD SPI2_SS SPI2_SCLK MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 7 Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name SD_CLK SD_DAT [3:0] MMC Output Clock Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable register, a 50K–69K external pull up resistor must be added. Memory Stick Interface MS_BS MS_SDIO MS_SCLKO MS_SCLKI MS_PI0 MS_PI1 Memory Stick Bus State (Output)—Serial bus control signal Memory Stick Serial Data (Input/Output) Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test purposes, not for use in application mode. General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect UARTs – IrDA/Auto-Bauding UART1_RXD UART1_TXD UART1_RTS UART1_CTS UART2_RXD UART2_TXD UART2_RTS UART2_CTS UART2_DSR UART2_RI UART2_DCD UART2_DTR UART3_RXD UART3_TXD UART3_RTS UART3_CTS UART3_DSR UART3_RI UART3_DCD UART3_DTR Receive Data Transmit Data Request to Send Clear to Send Receive Data Transmit Data Request to Send Clear to Send Data Set Ready Ring Indicator Data Carrier Detect Data Terminal Ready Receive Data Transmit Data Request to Send Clear to Send Data Set Ready Ring Indicator Data Carrier Detect Data Terminal Ready Serial Audio Port – SSI (configurable to I2S protocol) SSI_TXDAT SSI_RXDAT Transmit Data Receive Data Function/Notes MC9328MX1 Technical Data, Rev. 7 8 Freescale Semiconductor Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name SSI_TXCLK SSI_RXCLK SSI_TXFS SSI_RXFS SSI2_TXDAT SSI2_RXDAT SSI2_TXCLK SSI2_RXCLK SSI2_TXFS SSI2_RXFS Transmit Serial Clock Receive Serial Clock Transmit Frame Sync Receive Frame Sync TxD RxD Transmit Serial Clock Receive Serial Clock Transmit Frame Sync Receive Frame Sync I2C I2C_SCL I2C_SDA I2C Clock I2C Data PWM PWMO PWM Output ASP UIN UIP PX1 PY1 PX2 PY2 R1A R1B R2A R2B RVP RVM AVDD AGND Positive U analog input (for low voltage, temperature measurement) Negative U analog input (for low voltage, temperature measurement) Positive pen-X analog input Positive pen-Y analog input Negative pen-X analog input Negative pen-Y analog input Positive resistance input (a) Positive resistance input (b) Negative resistance input (a) Negative resistance input (b) Positive reference for pen ADC Negative reference for pen ADC Analog power supply Analog ground BlueTooth BT1 BT2 BT3 I/O clock signal Output Input Function/Notes MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 9 Signals and Connections Table 2. i.MX1 Signal Descriptions (Continued) Signal Name BT4 BT5 BT6 BT7 BT8 BT9 BT10 BT11 BT12 BT13 BTRF VDD BTRF GND Input Output Output Output Output Output Output Output Output Output Power supply from external BT RFIC Ground from external BT RFIC Test Function TRISTATE Forces all I/O signals to high impedance for test purposes. For normal operation, terminate this input with a 1 k ohm resistor to ground. (TRI-STATE® is a registered trademark of National Semiconductor.) Digital Supply Pins NVDD NVSS Digital Supply for the I/O pins Digital Ground for the I/O pins Supply Pins – Analog Modules AVDD Supply for analog blocks Internal Power Supply QVDD QVSS Power supply pins for silicon internal circuitry Ground pins for silicon internal circuitry Function/Notes 2.1 I/O Pads Power Supply and Signal Multiplexing Scheme This section describes detailed information about both the power supply for each I/O pin and its function multiplexing scheme. The user can reference information provided in Table 6 on page 23 to configure the power supply scheme for each device in the system (memory and external peripherals). The function multiplexing information also shown in Table 6 allows the user to select the function of each pin by configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions. MC9328MX1 Technical Data, Rev. 7 10 Freescale Semiconductor reescale Semiconductor MC9328MX1 Technical Data, Rev. 7 11 Table 3. MC9328MX1 Signal Multiplexing Scheme I/O Supply BGA Voltage Pin NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 K8 B1 C2 C1 D2 D1 D3 E2 E3 E1 F2 F4 E4 A1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 H5 F1 F3 G2 G3 F5 G4 G1 H2 H3 Primary Signal NVDD1 A24 D31 A23 D30 A22 D29 A21 D28 A20 D27 A19 D26 VSS NVDD1 A18 D25 A17 D24 A16 D23 A15 D22 A14 Dir Static O I/O O I/O O I/O O I/O O I/O O I/O Static Static O I/O O I/O O I/O O I/O O 69K 69K 69K ETMTRACEPKT0 O PA24 69K 69K ETMTRACEPKT1 O PA25 69K ETMTRACEPKT2 O PA26 69K L Pull-H L Pull-H Signals and Connections Alternate Pull-up Signal Dir Mux Pull-up GPIO Ain Bin Aout RESE Default State (At/After) ETMTRACESYN C 69K ETMTRACECLK 69K ETMPIPESTAT2 69K ETMPIPESTAT1 69K ETMPIPESTAT0 69K ETMTRACEPKT3 69K O PA0 69K SPI2_CLK L Pull-H A24 O PA31 69K L Pull-H A23 O PA30 69K L Pull-H A22 O PA29 69K L Pull-H A21 O PA28 69K L Pull-H A20 O PA27 69K L Pull-H A19 A18 A17 L Pull-H L Pull-H L A16 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin NVDD1 NVDD1 NVDD1 G5 H1 H4 T1 QVDD1 H9 H8 NVDD1 J5 J1 J4 J2 J3 K1 K4 K3 K2 L1 L4 L2 L5 K6 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 K5 M4 L3 M1 M2 Primary Signal D21 A13 D20 VSS QVDD1 VSS NVDD1 A12 D19 A11 D18 A10 D17 A9 D16 A8 D15 A7 D14 VSS NVDD1 A6 D13 A5 D12 Dir I/O O I/O Static Static Static Static O I/O O I/O O I/O O I/O O I/O O I/O Static Static O I/O O I/O 69K 69K L Pull-H L Pull-H 69K 69K 69K 69K 69K 69K L Pull-H L Pull-H L Pull-H L Pull-H L Pull-H L Pull-H 69K Pull-up 69K Alternate Signal Dir Mux Pull-up GPIO Ain Bin Aout RESE Default State (At/After) Pull-H L Pull-H Signals and Connections 12 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 N1 M3 P3 N3 P1 N2 P2 R1 M6 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 H6 T2 R2 R5 T3 R3 T4 N4 R4 N5 P4 P5 T5 H7 NVDD1 NVDD1 J6 M5 Primary Signal A4 D11 EB0 D10 A3 EB1 D9 EB2 VSS NVDD1 A2 EB3 D8 OE A1 CS5 D7 CS4 A0 CS3 D6 CS2 VSS NVDD1 SDCLK Dir O I/O O I/O O O I/O O Static Static O O I/O O O O I/O O O O I/O O Static Static O H 69K CSD0 CSD1 69K PA22 PA21 69K 69K PA23 69K 69K L H Pull-H H L Pull-H Pull-H Pull-H L H Pull-H H CSD0 PA22 A0 CSD1 Signals and Connections reescale Semiconductor MC9328MX1 Technical Data, Rev. 7 13 Alternate Pull-up Signal Dir Mux Pull-up GPIO Ain Bin Aout RESE Default State (At/After) L 69K Pull-H H 69K Pull-H L H 69K Pull-H H NVDD1 PA23 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 T6 T7 R6 P6 N6 R7 P8 R8 P7 J7 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 L6 N7 N8 M7 T8 M8 R9 K7 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 P9 T9 N9 R10 M9 L8 J8 Primary Signal CS1 CS0 D5 ECB D4 LBA D3 BCLK D2 VSS NVDD1 DTACK D1 RW MA11 MA10 D0 VSS DQM3 DQM2 DQM1 DQM0 RAS CAS NVDD1 O O I/O Static O O O O O O Static L L L L H H 69K I/O Static Static I I/O 69K ETMTRACEPKT4 PA17 69K SPI2_SS A25 Pull-H Pull-H H L L Pull-H PA17 69K Dir O O I/O I I/O O I/O 69K ETMTRACEPKT5 PA18 69K 69K ETMTRACEPKT6 PA19 69K 69K ETMTRACEPKT7 PA20 69K Pull-up Alternate Signal Dir Mux Pull-up GPIO Ain Bin Aout RESE Default State (At/After) H H1 Pull-H Pull-H Pull-H H Pull-H L Pull-H BCLK LBA ECB Signals and Connections 14 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin NVDD1 NVDD1 NVDD1 NVDD1 NVDD1 T10 R11 P10 N10 T11 L7 AVDD1 T12 M10 N11 R12 M11 P11 N12 R13 P12 T13 P13 R15 T16 AVDD1 AVDD1 AVDD1 AVDD1 NVDD2 T14 T15 R16 P16 K10 Primary Signal SDWE SDCKE0 SDCKE1 RESET_SF CLKO VSS AVDD1 RESET_IN RESET_OUT POR BIG_ENDIAN BOOT3 BOOT2 BOOT1 BOOT0 TRISTATE TRST QVDD2 VSS EXTAL16M XTAL16M EXTAL32K XTAL32K NVDD2 Dir O O O O O Static Static I O I I I I I I I I Static Static Signals and Connections reescale Semiconductor MC9328MX1 Technical Data, Rev. 7 15 Alternate Pull-up Signal Dir Mux Pull-up GPIO Ain Bin Aout RESE Default State (At/After) H H H L/H L AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 QVDD2 69K L/H2 L/H H/L2 Hiz3 Hiz4 Hiz4 Hiz4 Hiz4 Hiz4 69K H I O I O Static Hiz Hiz Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 R14 N15 L9 N16 P14 P15 N13 M13 M14 N14 M15 M16 J10 M12 L16 L15 L14 L13 L12 L11 L10 K15 K16 K14 K13 Primary Signal TDO TMS TCK TDI I2C_SCL I2C_SDA CSI_PIXCLK CSI_HSYNC CSI_VSYNC CSI_D7 CSI_D6 CSI_D5 VSS CSI_D4 CSI_D3 CSI_D2 CSI_D1 CSI_D0 CSI_MCLK PWMO TIN TMR2OUT LD15 LD14 LD13 Dir O I I I O I/O I I I I I I Static I I I I I O O I O O O O PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PD31 PD30 PD29 PD28 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K SPI2_TxD SPI2_RxD Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PD31 PD30 PD29 PD28 69K 69K 69K PA16 PA15 PA14 PA13 PA12 PA11 PA10 PA9 69K 69K 69K 69K 69K 69K 69K 69K Pull-up Alternate Signal Dir Mux Pull-up GPIO Ain Bin Aout RESE Default State (At/After) Hiz5 Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H PA16 PA15 PA14 PA13 PA12 PA11 PA10 PA9 Signals and Connections 16 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin NVDD2 QVDD3 K12 J15 J16 NVDD2 NVDD2 NVDD2 NVDD2 K9 J14 K11 H15 J13 J12 J11 H14 H13 H16 H12 G16 H11 G15 G14 G13 G12 F16 H10 G11 F12 F15 Primary Signal LD12 QVDD3 VSS NVDD2 LD11 LD10 LD9 LD8 LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0 FLM/VSYNC LP/HSYNC ACD/OE CONTRAST SPL_SPR PS CLS REV LSCLK Dir O Static Static Static O O O O O O O O O O O O O O O O O O O O O UART2_DSR UART2_RI UART2_DCD UART2_DTR O O O I PD26 PD25 PD24 PD23 PD22 PD21 PD20 PD19 PD18 PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K SPI2_SS SPI2_CLK SPI2_TxD SPI2_RxD SPI2_SS2 reescale Semiconductor MC9328MX1 Technical Data, Rev. 7 17 Alternate Pull-up Signal Dir Mux PD27 Pull-up 69K GPIO Ain Bin Aout RESE Default State (At/After) Pull-H PD27 Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H PD26 PD25 PD24 PD23 PD22 PD21 PD20 PD19 PD18 PD17 PD16 PD15 PD14 PD13 PD12 PD11 Signals and Connections NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 NVDD2 PD10 PD9 PD8 PD7 PD6 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin J9 QVDD6 QVDD6 QVDD6 QVDD6 QVDD6 E16 D16 F14 F13 E15 E14 D15 C16 C15 AVDD26 QVDD6 QVDD6 QVDD6 QVDD6 QVDD6 QVDD6 QVDD6 QVDD6 QVDD6 QVDD6 QVDD6 C14 B16 A16 B15 A15 E13 D14 B14 A14 D13 C13 E12 Primary Signal VSS R2A R2B PX1 PY1 PX2 PY2 R1A R1B VSS AVDD2 NC NC UIN UIP NC NC RVM RVP NC NC NC Dir Static I I I I I I I I Static Static I I I I I I I I I I O qvdd Pull-up Alternate Signal Dir Mux Pull-up GPIO Ain Bin Aout RESE Default State (At/After) Signals and Connections 18 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor QVDD6 QVDD6 QVDD6 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin QVDD6 QVDD4 D12 A13 B13 BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD BTRFVDD C12 B12 F11 A12 E11 A11 D11 B11 C11 G10 F10 B10 E10 D10 C10 NVDD3 NVDD3 NVDD3 NVDD3 NVDD3 NVDD3 NVDD3 A10 G9 F9 E9 B9 D9 A9 Primary Signal NC QVDD4 VSS BTRFVDD BT1 BT2 BT3 BT4 BT5 BT6 BT7 BT8 BT9 BT10 BT11 BT12 BT13 BTRFGND NVDD3 SPI1_MOSI SPI1_MISO SPI1_SS SPI1_SCLK SPI1_SPI_RDY UART1_RXD Dir O Static Static Static I O I I I/O O O O O O O O O Static Static I/O I/O I/O I/O I I PC17 PC16 PC15 PC14 PC13 PC12 69K 69K 69K 69K 69K 69K DMA_Req reescale Semiconductor MC9328MX1 Technical Data, Rev. 7 19 Alternate Pull-up Signal Dir Mux Pull-up GPIO Ain Bin Aout RESE Default State (At/After) PC31 PC30 PC29 PC28 PC27 PC26 PC25 SSI2_RXFS SSI2_RX SSI2_TX SSI2_TXCLK SSI2_TXFS SSI2_RXCLK PC24 PC23 PC22 PC21 PC20 PC19 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K UART3_CTS UART3_DCD SPI2_SS3 UART3_DSR UART3_TX UART3_RX Pull-H Hiz PC31 PC30 PC29 PC28 PC27 PC26 PC25 PC24 PC23 PC22 PC21 PC20 PC19 UART3_RTS Pull-H Pull-H Pull-H UART3_DTR L L Hiz L H H Hiz L UART3_RI Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H PC17 Signals and Connections PC16 PC15 PC14 PC13 PC12 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin NVDD3 NVDD3 NVDD3 NVDD3 NVDD3 NVDD3 NVDD3 C9 A8 G8 B8 F8 E8 D8 B7 C8 A7 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 C7 F7 E7 C6 D7 D6 E6 B6 D5 C5 B5 A5 A4 NVDD4 NVDD4 A6 G7 Primary Signal UART1_TXD UART1_RTS UART1_CTS SSI_TXCLK SSI_TXFS SSI_TXDAT SSI_RXDAT SSI_RXCLK SSI_RXFS VSS UART2_RXD UART2_TXD UART2_RTS UART2_CTS USBD_VMO USBD_VPO USBD_VM USBD_VP USBD_SUSPND Signals and Connections 20 Dir O I O I/O I/O O I I/O I/O Static I O I O O O I I O I/O O O Static Static O Alternate Pull-up Signal Dir Mux PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 Pull-up 69K 69K 69K 69K 69K 69K 69K 69K 69K GPIO Ain Bin Aout RESE Default State (At/After) Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor NVDD3 NVDD3 PB31 PB30 PB29 PB28 PB27 PB26 PB25 PB24 PB23 PB22 PB21 PB20 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K 69K Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H PB31 PB30 PB29 PB28 PB27 PB26 PB25 PB24 PB23 PB22 PB21 PB20 USBD_RCV USBD_ROE USBD_AFE VSS NVDD4 SIM_CLK SSI_TXCLK I/O PB19 69K Pull-H PB19 Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued) I/O Supply BGA Voltage Pin NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 NVDD4 F6 G6 B4 C4 D4 B3 A3 A2 E5 B2 C3 Primary Signal SIM_RST SIM_RX SIM_TX SIM_PD SIM_SVEN SD_CMD SD_CLK SD_DAT3 SD_DAT2 SD_DAT1 SD_DAT0 Dir O I I/O I O I/O O I/O I/O I/O I/O Pull-up Alternate Signal SSI_TXFS SSI_TXDAT SSI_RXDAT SSI_RXCLK SSI_RXFS MS_BS MS_SCLKO MS_SDIO MS_SCLKI MS_PI1 MS_PI0 Dir Mux Pull-up 69K 69K 69K 69K 69K 69K 69K 69K (pull down) 69K 69K 69K GPIO Ain Bin Aout RESE Default State (At/After) Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-H Pull-L Pull-H Pull-H Pull-H PB18 PB17 PB16 PB15 PB14 PB13 PB12 PB11 PB10 PB9 PB8 reescale Semiconductor MC9328MX1 Technical Data, Rev. 7 21 I/O PB18 O I PB17 PB16 I/O PB15 I/O PB14 O O PB13 PB12 NVDD4 NVDD4 NVDD4 NVDD4 1 2 3 4 5 6 I/O PB11 I I I PB10 PB9 PB8 After reset, CS0 goes H/L depends on BOOT[3:0]. Need external circuitry to drive the signal. Need external pull-up. External resistor is needed. Need external pull-up or pull-down. ASP signals are clamped by AVDD2 to prevent ESD (electrostatic discharge) damage. AVDD2 must be greater than QVDD to keep diodes reverse-biased. Signals and Connections Electrical Characteristics 3 3.1 Electrical Characteristics Maximum Ratings This section contains the electrical specifications and timing diagrams for the i.MX1 processor. Table 4 provides information on maximum ratings which are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits listed in Recommended Operating Range Table 5 on page 23 or the DC Characteristics table. Table 4. Maximum Ratings Symbol NVDD QVDD QVDD AVDD BTRFVDD VESD_HBM VESD_MM ILatchup Test Pmax 1 Rating DC I/O Supply Voltage DC Internal (core = 150 MHz) Supply Voltage DC Internal (core = 200 MHz) Supply Voltage DC Analog Supply Voltage DC Bluetooth Supply Voltage ESD immunity with HBM (human body model) ESD immunity with MM (machine model) Latch-up immunity Storage temperature Power Consumption Minimum -0.3 -0.3 -0.3 -0.3 -0.3 – – – -55 8001 Maximum 3.3 1.9 2.0 3.3 3.3 2000 100 200 150 13002 Unit V V V V V V V mA °C mW A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM® core-that is, 7x GPIO, 15x Data bus, and 8x Address bus. 2 A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS application at MHz, and where the whole image is running out of SDRAM. QVDD at V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA. 3.2 Recommended Operating Range Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MX1 processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system. Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the AVDD pins from other VDD pins. BTRFVDD is the supply voltage for the Bluetooth interface signals. It is quite sensitive to the data transmit/receive accuracy. Please refer to Bluetooth RF spec for special handling. If Bluetooth is not used MC9328MX1 Technical Data, Rev. 7 22 Freescale Semiconductor Electrical Characteristics in the system, these Bluetooth pins can be used as general purpose I/O pins and BTRFVDD can be used as other NVDD pins. For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4. Table 5. Recommended Operating Range Symbol TA TA TA NVDD NVDD QVDD QVDD AVDD Rating Operating temperature range MC9328MX1VM20\MC9328MX1VM15 Operating temperature range MC9328MX1DVM20\MC9328MX1DVM15 Operating temperature range MC9328MX1CVM15 I/O supply voltage (if using MSHC, CSI, SPI, BTA, LCD, and USBd which are only 3 V interfaces) I/O supply voltage (if not using the peripherals listed above) Internal supply voltage (Core = 150 MHz) Internal supply voltage (Core = 200 MHz) Analog supply voltage Minimum 0 -30 -40 2.70 1.70 1.70 1.80 1.70 Maximum 70 70 85 3.30 3.30 1.90 2.00 3.30 Unit °C °C °C V V V V V 3.3 Power Sequence Requirements For required power-up and power-down sequencing, please refer to the “Power-Up Sequence” section of application note AN2537 on the i.MX applications processor website. 3.4 DC Electrical Characteristics Table 6. Maximum and Minimum DC Characteristics Table 6 contains both maximum and minimum DC characteristics of the i.MX1 processor. Number or Symbol Iop Parameter Full running operating current at 1.8V for QVDD, 3.3V for NVDD/AVDD (Core = 96 MHz, System = 96 MHz, MPEG4 decoding playback from external memory card to both external SSI audio decoder and driving TFT display panel, and OS with MMU enabled memory system is running on external SDRAM). Standby current (Core = 150 MHz, QVDD = 1.8V, temp = 25°C) Standby current (Core = 150 MHz, QVDD = 1.8V, temp = 55°C) Standby current (Core = 150 MHz, QVDD = 2.0V, temp = 25°C) Min – Typical QVDD at 1.8V = 120mA; NVDD+AVDD at 3.0V = 30mA Max – Unit mA Sidd1 Sidd2 Sidd3 – – – 25 45 35 – – – μA μA μA MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 23 Electrical Characteristics Table 6. Maximum and Minimum DC Characteristics (Continued) Number or Symbol Sidd4 VIH VIL VOH VOL IIL IIH IOH IOL IOZ Ci Co Parameter Standby current (Core = 150 MHz, QVDD = 2.0V, temp = 55°C) Input high voltage Input low voltage Output high voltage (IOH = 2.0 mA) Output low voltage (IOL = -2.5 mA) Input low leakage current (VIN = GND, no pull-up or pull-down) Input high leakage current (VIN = VDD, no pull-up or pull-down) Output high current (VOH = 0.8VDD, VDD = 1.8V) Output low current (VOL = 0.4V, VDD = 1.8V) Output leakage current (Vout = VDD, output is high impedance) Input capacitance Output capacitance Min – 0.7VDD – 0.7VDD – – – 4.0 -4.0 – – – Typical 60 – – – – – – – – – – – Max – Vdd+0.2 0.4 Vdd 0.4 ±1 ±1 – – ±5 5 5 Unit μA V V V V μA μA mA mA μA pF pF 3.5 AC Electrical Characteristics The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of other signals. All timing specifications are specified at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an operating supply voltage from VDD min to VDD max under an operating temperature from TL to TH. All timing is measured at 30 pF loading. Table 7. Tristate Signal Timing Pin TRISTATE Parameter Time from TRISTATE activate until I/O becomes Hi-Z Minimum – Maximum 20.8 Unit ns Table 8. 32k/16M Oscillator Signal Timing Parameter EXTAL32k input jitter (peak to peak) EXTAL32k startup time Minimum – 800 RMS 5 – Maximum 20 – Unit ns ms MC9328MX1 Technical Data, Rev. 7 24 Freescale Semiconductor Functional Description and Application Information Table 8. 32k/16M Oscillator Signal Timing (Continued) Parameter EXTAL16M input jitter (peak to peak) 1 EXTAL16M startup time 1 1 Minimum – TBD RMS TBD – Maximum TBD – Unit – – The 16 MHz oscillator is not recommended for use in new designs. 4 Functional Description and Application Information This section provides the electrical information including and timing diagrams for the individual modules of the i.MX1. 4.1 Embedded Trace Macrocell All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following: • 32-bit data field • 7-bit address field • A read/write bit The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit. A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used in Figure 2. 2a 3a TRACECLK 1 2b 3b TRACECLK (Half-Rate Clocking Mode) Output Trace Port Valid Data Valid Data 4a 4b Figure 2. Trace Port Timing Diagram MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 25 Functional Description and Application Information Table 9. Trace Port Timing Diagram Parameter Table 1.8 ± 0.1 V Ref No. Parameter Minimum 1 2a 2b 3a 3b 4a 4b CLK frequency Clock high time Clock low time Clock rise time Clock fall time Output hold time Output setup time 0 1.3 3 – – 2.28 3.42 Maximum 85 – – 4 3 – – Minimum 0 2 2 – – 2 3 Maximum 100 – – 3 3 – – MHz ns ns ns ns ns ns 3.0 ± 0.3 V Unit 4.2 DPLL Timing Specifications Parameters of the DPLL are given in Table 10. In this table, Tref is a reference clock period after the pre-divider and Tdck is the output double clock period. Table 10. DPLL Specifications Parameter DPLL input clock freq range Pre-divider output clock freq range DPLL output clock freq range Pre-divider factor (PD) Total multiplication factor (MF) MF integer part MF numerator MF denominator Pre-multiplier lock-in time Freq lock-in time after full reset Freq lock-in time after partial reset Phase lock-in time after full reset Phase lock-in time after partial reset Freq jitter (p-p) Vcc = 1.8V Vcc = 1.8V Vcc = 1.8V – Includes both integer and fractional parts – Should be less than the denominator – – FOL mode for non-integer MF (does not include pre-multi lock-in time) FOL mode for non-integer MF (does not include pre-multi lock-in time) FPL mode and integer MF (does not include pre-multi lock-in time) FPL mode and integer MF (does not include pre-multi lock-in time) – Test Conditions Minimum 5 5 80 1 5 5 0 1 – 250 220 300 270 – Typical – – – – – – – – – 280 (56 μs) 250 (50 μs) 350 (70 μs) 320 (64 μs) 0.005 (0.01%) Maximum 100 30 220 16 15 15 1022 1023 312.5 300 270 400 370 0.01 Unit MHz MHz MHz – – – – – μsec Tref Tref Tref Tref 2•Tdck MC9328MX1 Technical Data, Rev. 7 26 Freescale Semiconductor Functional Description and Application Information Table 10. DPLL Specifications (Continued) Parameter Phase jitter (p-p) Power supply voltage Power dissipation Test Conditions Integer MF, FPL mode, Vcc=1.8V – FOL mode, integer MF, fdck = MHz, Vcc = 1.8V Minimum – 1.7 – Typical 1.0 (10%) – – Maximum 1.5 2.5 4 Unit ns V mW 4.3 Reset Module The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and Figure 4. NOTE Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent forward biasing. 90% AVDD 1 POR 10% AVDD RESET_POR 2 Exact 300ms RESET_DRAM 3 7 cycles @ CLK32 HRESET RESET_OUT 4 14 cycles @ CLK32 CLK32 HCLK Figure 3. Timing Relationship with POR MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 27 Functional Description and Application Information 5 RESET_IN 14 cycles @ CLK32 HRESET RESET_OUT 4 6 CLK32 HCLK Figure 4. Timing Relationship with RESET_IN Table 11. Reset Module Timing Parameter Table Ref No. 1 2 3 4 5 6 1 1.8 ± 0.1 V Parameter Min Width of input POWER_ON_RESET Width of internal POWER_ON_RESET (9600 *CLK32 at 32 kHz) 7K to 32K-cycle stretcher for SDRAM reset 14K to 32K-cycle stretcher for internal system reset HRESERT and output reset at pin RESET_OUT Width of external hard-reset RESET_IN 4K to 32K-cycle qualifier note1 300 7 14 4 4 Max – 300 7 14 – 4 3.0 ± 0.3 V Unit Min note1 300 7 14 4 4 Max – 300 7 14 – 4 – ms Cycles of CLK32 Cycles of CLK32 Cycles of CLK32 Cycles of CLK32 POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals. Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal. If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in calculating timing for the start-up process. 4.4 External Interface Module The External Interface Module (EIM) handles the interface to devices external to the i.MX1 processor, including the generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals. MC9328MX1 Technical Data, Rev. 7 28 Freescale Semiconductor Functional Description and Application Information (HCLK) Bus Clock 1a 1b Address Chip-select 2a 2b 3a 3b Read (Write) OE (rising edge) OE (falling edge) EB (rising edge) EB (falling edge) 6a 5a 4a 4b 4c 4d 5b 5c 5d LBA (negated falling edge) 6b LBA (negated rising edge) 6a 6c 7a 7b BCLK (burst clock) - rising edge BCLK (burst clock) - falling edge 7c 7d 8b Read Data 9a 8a 9b Write Data (negated falling) 9a 9c Write Data (negated rising) DTACK_B 10a 10a Figure 5. EIM Bus Timing Diagram Table 12. EIM Bus Timing Parameter Table 1.8 ± 0.1 V Ref No. Parameter Min 1a 1b 2a 2b 3a 3b Clock fall to address valid Clock fall to address invalid Clock fall to chip-select valid Clock fall to chip-select invalid Clock fall to Read (Write) Valid Clock fall to Read (Write) Invalid 2.48 1.55 2.69 1.55 1.35 1.86 Typical 3.31 2.48 3.31 2.48 2.79 2.59 Max 9.11 5.69 7.87 6.31 6.52 6.11 Min 2.4 1.5 2.6 1.5 1.3 1.8 Typical 3.2 2.4 3.2 2.4 2.7 2.5 Max 8.8 5.5 7.6 6.1 6.3 5.9 ns ns ns ns ns ns 3.0 ± 0.3 V Unit MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 29 Functional Description and Application Information Table 12. EIM Bus Timing Parameter Table (Continued) 1.8 ± 0.1 V Ref No. Parameter Min 4a 4b 4c 4d 5a 5b 5c 5d 6a 6b 6c 7a 7b 7c 7d 8a 8b 9a 9b 9c 10a 1 3.0 ± 0.3 V Unit Max 6.85 6.55 7.04 6.73 5.54 5.24 5.69 5.38 6.73 6.83 6.45 5.64 5.84 5.59 5.80 – – 6.85 5.69 – – Min 2.3 2.1 2.3 2.1 1.9 1.8 1.9 1.7 2.0 1.9 1.9 1.6 1.6 1.5 1.5 5.5 0 1.8 1.4 1.62 2.5 Typical 2.6 2.5 2.6 2.5 2.5 2.4 2.5 2.4 2.7 2.7 2.6 2.6 2.6 2.4 2.5 – – 2.7 2.4 – – Max 6.8 6.5 6.8 6.5 5.5 5.2 5.5 5.2 6.5 6.6 6.4 5.6 5.8 5.4 5.6 – – 6.8 5.5 – – ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Typical 2.62 2.52 2.69 2.59 2.52 2.42 2.59 2.48 2.79 2.79 2.62 2.62 2.62 2.48 2.59 – – 2.72 2.48 – – Clock1 rise to Output Enable Valid Clock rise to Output Enable Invalid Clock1 fall to Output Enable Valid Clock fall to Output Enable Invalid Clock1 rise to Enable Bytes Valid Clock rise to Enable Bytes Invalid Clock1 fall to Enable Bytes Valid Clock1 fall to Enable Bytes Invalid 1 1 1 2.32 2.11 2.38 2.17 1.91 1.81 1.97 1.76 2.07 1.97 1.91 1.61 1.61 1.55 1.55 5.54 0 1.81 1.45 1.63 2.52 Clock1 fall to Load Burst Address Valid Clock1 fall to Load Burst Address Invalid Clock1 rise to Load Burst Address Invalid Clock1 rise to Burst Clock rise Clock1rise to Burst Clock fall Clock1 fall to Burst Clock rise Clock1 fall to Burst Clock fall Read Data setup time Read Data hold time Clock1 rise to Write Data Valid Clock1 fall to Write Data Invalid Clock1 rise to Write Data Invalid DTACK setup time Clock refers to the system clock signal, HCLK, generated from the System DPLL 4.4.1 DTACK Signal Description The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group supports DTACK signal function when the external DTACK signal is used for data acknowledgement. 4.4.2 DTACK Signal Timing Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units of measure for this figure are found in the associated tables. MC9328MX1 Technical Data, Rev. 7 30 Freescale Semiconductor Functional Description and Application Information 4.4.2.1 WAIT Read Cycle without DMA 3 Address 2 CS5 8 1 EB programmable min 0ns 9 5 OE 4 WAIT 7 DATABUS X1) 6 10 11 Figure 6. WAIT Read Cycle without DMA Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz 3.0 ± 0.3 V Number 1 2 3 4 5 6 7 8 9 10 11 Characteristic Minimum OE and EB assertion time CS5 pulse width OE negated to address inactive Wait asserted after OE asserted Wait asserted to OE negated Data hold timing after OE negated Data ready after wait asserted OE negated to CS negated OE negated after EB negated Become low after CS5 asserted Wait pulse width See note 2 3T 56.81 – 2T+2.2 T-1.86 0 1.5T+0.24 0.5 0 1T Maximum – – – 1020T 3T+7.17 – T 1.5T+0.85 1.5 1019T 1020T ns ns ns ns ns ns ns ns ns ns ns Unit Note: 1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns) 2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear. 3. Address becomes valid and CS asserts at the start of read access cycle. 4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 31 Functional Description and Application Information 4.4.2.2 WAIT Read Cycle DMA Enabled 4 Address 2 CS5 9 10 3 6 1 EB programmable min 0ns OE RW (logic high) WAIT 5 7 11 8 12 nput to MX1) DATABUS Figure 7. DTACK WAIT Read Cycle DMA Enabled Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz 3.0 ± 0.3 V Number 1 2 3 4 5 6 7 8 9 10 11 Characteristic Minimum OE and EB assertion time CS pulse width OE negated before CS5 is negated Address inactived before CS negated Wait asserted after CS5 asserted Wait asserted to OE negated Data hold timing after OE negated Data ready after wait is asserted CS deactive to next CS active OE negate after EB negate Wait becomes low after CS5 asserted See note 2 3T 1.5T+0.24 – – 2T+2.2 T-1.86 – T 0.5 0 Maximum – – 1.5T+0.85 0.93 1020T 3T+7.17 – T – 1.5 1019T ns ns ns ns ns ns ns ns ns ns ns Unit MC9328MX1 Technical Data, Rev. 7 32 Freescale Semiconductor Functional Description and Application Information Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued) 3.0 ± 0.3 V Number 12 Wait pulse width Characteristic Minimum 1T Maximum 1020T ns Unit Note: 1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns) 2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear. 3. Address becomes valid and CS asserts at the start of read access cycle. 4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. 4.4.2.3 WAIT Write Cycle without DMA 5 Address 1 CS5 programmable min 0ns 2 3 10 EB programmable min 0ns 7 4 RW OE (logic high) WAIT 6 DATABUS (output from i.MX1) 9 11 12 8 Figure 8. WAIT Write Cycle without DMA Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz 3.0 ± 0.3 V Number 1 2 3 4 5 6 Characteristic Minimum CS5 assertion time EB assertion time CS5 pulse width RW negated before CS5 is negated RW negated to Address inactive Wait asserted after CS5 asserted See note 2 See note 2 3T 2.5T-0.29 67.28 – Maximum – – – 2.5T+0.68 – 1020T ns ns ns ns ns ns Unit MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 33 Functional Description and Application Information Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued) 3.0 ± 0.3 V Number 7 8 9 10 11 12 Characteristic Minimum Wait asserted to RW negated Data hold timing after RW negated Data ready after CS5 is asserted EB negated after CS5 is negated Wait becomes low after CS5 asserted Wait pulse width 1T+2.15 2.5T-1.18 – 1.5T+0.74 0 1T Maximum 2T+7.34 – T 1.5T+2.35 1019T 1020T ns ns ns ns ns ns Unit Note: 1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns) 2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register. 3. Address becomes valid and RW asserts at the start of write access cycle. 4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. 4.4.2.4 WAIT Write Cycle DMA Enabled 5 Address 1 CS5 programmable min 0ns programmable min 0ns 3 10 2 EB 11 7 RW 4 OE (logic high) WAIT 6 12 9 DATABUS 13 8 Figure 9. WAIT Write Cycle DMA Enabled MC9328MX1 Technical Data, Rev. 7 34 Freescale Semiconductor Functional Description and Application Information Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz 3.0 ± 0.3 V Number 1 2 3 4 5 6 7 8 9 10 11 12 13 Characteristic Minimum CS5 assertion time EB assertion time CS5 pulse width RW negated before CS5 is negated Address inactived after CS negated Wait asserted after CS5 asserted Wait asserted to RW negated Data hold timing after RW negated Data ready after CS5 is asserted CS deactive to next CS active EB negate after CS negate Wait becomes low after CS5 asserted Wait pulse width See note 2 See note 2 3T 2.5T-0.29 – – T+2.15 24.87 – T 1.5T+0.74 0 1T Maximum – – – 2.5T+0.68 0.93 1020T 2T+7.34 – T – 1.5T+2.35 1019T 1020T ns ns ns ns ns ns ns ns ns ns ns ns Unit Note: 1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns) 2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register. 3. Address becomes valid and RW asserts at the start of write access cycle. 4.The external wait input requirement is eliminated when CS5 is programmed to use internal wait state. 4.4.3 EIM External Bus Timing The External Interface Module (EIM) is the interface to devices external to the i.MX1, including generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 35 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[0] htrans Seq/Nonseq hwrite Read haddr hready weim_hrdata weim_hready V1 Last Valid Data V1 BCLK (burst clock) ADDR CS2 R/W Last Valid Address V1 Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA V1 Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 10. WSC = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 36 Freescale Semiconductor Functional Description and Application Information hclk hsel_weim_cs[0] Internal signals - shown only for illustrative purposes htrans hwrite haddr Nonseq Write V1 hready hwdata weim_hrdata Last Valid Data Write Data (V1) Unknown Last Valid Data weim_hready BCLK (burst clock) ADDR CS0 R/W LBA Write Last Valid Address V1 OE EB DATA Last Valid Data Write Data (V1) Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 37 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[0] htrans hwrite haddr Nonseq Read V1 hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR CS0 Last Valid Addr Address V1 Address V1 + 2 R/W LBA OE Read EBx1 (EBC2=0) EBx1 (EBC2=1) DATA 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 38 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[0] Nonseq htrans hwrite haddr Write V1 hready hwdata weim_hrdata Last Valid Data Write Data (V1 Word) Last Valid Data weim_hready BCLK (burst clock) ADDR CS0 Last Valid Addr Address V1 Address V1 + 2 R/W LBA OE Write EB DATA 1/2 Half Word 2/2 Half Word Figure 13. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 39 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[3] htrans hwrite haddr Nonseq Read V1 hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR Last Valid Addr CS[3] R/W Read Address V1 Address V1 + 2 LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 14. WSC = 3, OEA = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 40 Freescale Semiconductor Functional Description and Application Information hclk hsel_weim_cs[3] htrans hwrite haddr hready hwdata Last Valid Data weim_hrdata Nonseq Internal signals - shown only for illustrative purposes Write V1 Write Data (V1 Word) Last Valid Data weim_hready BCLK (burst clock) ADDR Last Valid Addr CS3 R/W LBA OE Write Address V1 Address V1 + 2 EB DATA Last Valid Data 1/2 Half Word 2/2 Half Word Figure 15. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 41 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans Nonseq Read hwrite haddr V1 hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR CS2 R/W Read Last Valid Addr Address V1 Address V1 + 2 LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) weim_data_in 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 16. WSC = 3, OEA = 4, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 42 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans Nonseq hwrite haddr Write V1 hready hwdata Last Valid Data weim_hrdata Write Data (V1 Word) Last Valid Data weim_hready BCLK (burst clock) ADDR CS2 Last Valid Addr Address V1 Address V1 + 2 R/W LBA OE Write EB DATA Last Valid Data 1/2 Half Word 2/2 Half Word Figure 17. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 43 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans Nonseq Read V1 hwrite haddr hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V1 + 2 CS2 Read R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 18. WSC = 3, OEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 44 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans Nonseq Read hwrite haddr V1 hready weim_hrdata Last Valid Data V1 Word weim_hready BCLK (burst clock) ADDR CS2 Read Last Valid Addr Address V1 Address V1 + 2 R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA 1/2 Half Word 2/2 Half Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 19. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 45 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans Nonseq Write hwrite haddr V1 hready Last Valid Data hwdata weim_hrdata Write Data (V1 Word) Unknown Last Valid Data weim_hready BCLK (burst clock) ADDR CS2 Last Valid Addr Address V1 Address V1 + 2 R/W Write LBA OE EB DATA Last Valid Data 1/2 Half Word 2/2 Half Word Figure 20. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 46 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans Nonseq Write hwrite haddr V1 hready hwdata Last Valid Data weim_hrdata Write Data (V1 Word) Last Valid Data Unknown weim_hready BCLK (burst clock) ADDR CS2 Last Valid Addr Address V1 Address V1 + 2 R/W Write LBA OE EB DATA Last Valid Data 1/2 Half Word 2/2 Half Word Figure 21. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 47 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] Nonseq Read Nonseq Write htrans hwrite haddr V1 V8 hready hwdata weim_hrdata Last Valid Data Last Valid Data Write Data Read Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V8 CS2 R/W LBA Read Write OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA Read Data DATA Last Valid Data Write Data Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 22. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 48 Freescale Semiconductor Functional Description and Application Information Read hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] Idle Write htrans Nonseq Read Nonseq Write hwrite haddr V1 V8 hready hwdata Last Valid Data Write Data weim_hrdata Last Valid Data Read Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V8 CS2 R/W LBA Read Write OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA DATA Read Data Last Valid Data Write Data Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 23. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 49 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[4] htrans Nonseq Write hwrite haddr V1 hready hwdata Last Valid Data weim_hrdata Write Data (Word) Last Valid Data weim_hready BCLK (burst clock) ADDR CS Last Valid Addr Address V1 Address V1 + 2 R/W Write LBA OE EB DATA Last Valid Data Write Data (1/2 Half Word) Write Data (2/2 Half Word) Figure 24. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 50 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[4] htrans Nonseq Read Nonseq Write hwrite haddr V1 V8 hready hwdata weim_hrdata weim_hready Last Valid Data Last Valid Data Write Data Read Data BCLK (burst clock) ADDR CS4 Last Valid Addr Address V1 Address V8 R/W LBA Read Write OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA Read Data DATA Last Valid Data Write Data Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 25. WSC = 3, CSA = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 51 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[4] htrans Nonseq Read Idle Seq Read hwrite haddr V1 V2 hready weim_hrdata weim_hready Last Valid Data Read Data (V1) Read Data (V2) BCLK (burst clock) ADDR Last Valid Address V1 CNC Address V2 CS4 Read R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) DATA Read Data (V1) Read Data (V2) Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 26. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 52 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[4] htrans Nonseq Read Idle Nonseq Write hwrite haddr V1 V8 hready hwdata weim_hrdata Last Valid Data Last Valid Data Write Data Read Data weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 CNC CS4 R/W LBA OE Address V8 Read Write EBx1 (EBC2=0) EBx1 (EBC2=1) DATA DATA Read Data Last Valid Data Write Data Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 27. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 53 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans hwrite haddr Nonseq Read V1 Nonse Read V5 Idle hready weim_hrdata weim_hready BCLK (burst clock) ADDR Last Valid Addr Address V1 Address V5 CS2 Read R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) ECB DATA V1 Word V2 Word V5 Word V6 Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 28. WSC = 3, SYNC = 1, A.HALF/E.HALF MC9328MX1 Technical Data, Rev. 7 54 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans hwrite haddr Idle Nonseq Read V1 Seq Read V2 Seq Read V3 Seq Read V4 hready weim_hrdata weim_hready BCLK (burst clock) Last Valid Data V1 Word V2 Word V3 Word V4 Word ADDR Last Valid Addr CS2 R/W Address V1 Read LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) ECB DATA V1 Word V2 Word V3 Word V4 Word Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 29. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 55 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans Idle Nonseq Seq hwrite haddr Read V1 Read V2 hready weim_hrdata Last Valid Data V1 Word V2 Word weim_hready BCLK (burst clock) ADDR CS2 Read Last Valid Address V1 Address V2 R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) ECB DATA V1 1/2 V1 2/2 V2 1/2 V2 2/2 Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 30. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 56 Freescale Semiconductor Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] Non seq Read htrans Seq Idle hwrite haddr Read V1 V2 hready weim_hrdata Last Valid Data V1 Word V2 Word weim_hready BCLK (burst clock) Last ADDR CS2 Address V1 R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) Read ECB DATA V1 1/2 V1 2/2 V2 1/2 V2 2/2 Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 31. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 57 Functional Description and Application Information hclk Internal signals - shown only for illustrative purposes hsel_weim_cs[2] htrans Non seq Read V1 Seq Idle hwrite haddr Read V2 hready weim_hrdata Last Valid Data V1 Word V2 Word weim_hready BCLK (burst clock) ADDR CS2 Last Address V1 R/W LBA OE EBx1 (EBC2=0) EBx1 (EBC2=1) Read ECB DATA V1 1/2 V1 2/2 V2 1/2 V2 2/2 Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register Figure 32. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF MC9328MX1 Technical Data, Rev. 7 58 Freescale Semiconductor Functional Description and Application Information 4.4.4 Non-TFT Panel Timing T1 VSYN T1 T2 HSYN SCLK T3 XMAX T4 T2 Ts LD[15:0] Figure 33. Non-TFT Panel Timing Table 17. Non TFT Panel Timing Diagram Symbol T1 T2 T3 T4 1 2 Parameter HSYN to VSYN delay3 HSYN pulse width VSYN to SCLK SCLK to HSYN Allowed Register Minimum Value1, 2 0 0 – 0 Actual Value HWAIT2+2 HWIDTH+1 0 ≤ T3 ≤ Ts5 HWAIT1+1 Unit Tpix4 Tpix – Tpix Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register. Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong. 3 VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all these 3 signals are active high. 4 Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1). 5 Ts is the shift clock period. Ts = Tpix * (panel data bus width). 4.5 Pen ADC Specifications Table 18. Pen ADC System Performance Full Range Resolution1 Non-Linearity Error1 Accuracy 1 1 The specifications for the pen ADC are shown in Table 18 through Table 20. 13 bits 4 bits 9 bits Tested under input = 0~1.8V at 25°C MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 59 Functional Description and Application Information Table 19. Pen ADC Test Conditions Vp max Vp min Vn 1800 mV GND GND ip max ip min in 12 MHz 1.2 KHz 100 Hz 0–1800 mV +7 µA 1.5 µA 1.5 µA Sample frequency Sample rate Input frequency Input range Note: Ru1 = Ru2 = 200K Table 20. Pen ADC Absolute Rating ip max ip min in max in min +9.5 µA -2.5 µA +9.5 µA -2.5 µA 4.6 ASP Touch Panel Controller The following sections contain the electrical specifications of the ASP touch panel controller. The value of parameters and their corresponding measuring conditions are mentioned as well. 4.6.1 Electrical Specifications Table 21. ASP Touch Panel Controller Electrical Spec Parameter Offset Offset Error Gain Gain Error DNL INL Accuracy (without missing code) Operating Voltage Range (Pen) Operating Voltage Range (U) On-resistance of switches SW[8:1] Minimum – – – – 8 – 8 – Negative QVDD – Typical 32768 – 13.65 – 9 0 9 – – 10 Maximum – 8199 – 33% – – – QVDD QVDD – Unit – – mV-1 – Bits Bits Bits mV mV Ohm Test conditions: Temperature = 25º C, QVDD = 1800mV. Note that QVDD should be 1800mV. MC9328MX1 Technical Data, Rev. 7 60 Freescale Semiconductor Functional Description and Application Information 4.6.2 Gain Calculations Sample 65535 Smax G0 The ideal mapping of input voltage to output digital sample is defined as follows: C0 Vi -2400 1800 2400 Figure 34. Gain Calculations In general, the mapping function is: S=G*V+C Where V is input, S is output, G is the slope, and C is the y-intercept. Nominal Gain G0 = 65535 / 4800 = 13.65mV-1 Nominal Offset C0 = 65535 / 2 = 32767 4.6.3 Offset Calculations Sample 65535 Smax G0 The ideal mapping of input voltage to output digital sample is defined as: C0 Vi -2400 1800 2400 Figure 35. Offset Calculations In general, the mapping function is: S=G*V+C Where V is input, S is output, G is the slope, and C is the y-intercept. Nominal Gain G0 = 65535 / 4800 = 13.65mV-1 Nominal Offset C0 = 65535 / 2 = 32767 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 61 Functional Description and Application Information 4.6.4 Gain Error Calculations Sample Gmax 65535 Smax G0 Gain error calculations are made using the information in this section. C0 Vi - 2400 1800 2400 Figure 36. Gain Error Calculations Assuming the offset remains unchanged, the mapping is rotated around y-intercept to determine the maximum gain allowed. This occurs when the sample at 1800mV has just reached the ceiling of the 16-bit range, 65535. Maximum Offset Gmax, Gmax = (65535 - C0) / 1800 = (65535 - 32767) / 1800 = 18.20 = (Gmax - G0) / G0 * 100% = (18.20 - 13.65) / 13.65 * 100% = 33% Gain Error Gr, Gr 4.7 Bluetooth Accelerator CAUTION On-chip accelerator hardware is not supported by software. An external Bluetooth chip interfaced to a UART is recommended. The Bluetooth Accelerator (BTA) radio interface supports the Wireless RF Transceiver, MC13180 using an SPI interface. This section provides the data bus timing diagrams and SPI interface timing diagrams shown in Figure 37 and Figure 38, and the associated parameters shown in Table 22 and Table 23. MC9328MX1 Technical Data, Rev. 7 62 Freescale Semiconductor Functional Description and Application Information 2 BT CLK (BT1) 7 FS (BT5) Receive 1 PKT DATA (BT3) 3 4 RXTX_EN (BT9) 8 PKT DATA (BT2) 5 6 Transmit Figure 37. MC13180 Data Bus Timing Diagram Table 22. MC13180 Data Bus Timing Parameter Table Ref No. 1 2 3 4 5 6 7 8 1 2 Parameter FrameSync setup time relative to BT CLK rising edge1 FrameSync hold time relative to BT CLK rising edge1 Receive Data setup time relative to BT CLK rising edge1 Minimum – – – – 172.5 Typical 4 12 6 13 – 1000 +/- 0.02 Maximum – – – – 192.5 Unit ns ns ns ns µs ns Receive Data hold time relative to BT CLK rising edge1 Transmit Data setup time relative to RXTX_EN rising TX DATA period BT CLK duty cycle Transmit Data hold time relative to RXTX_EN falling edge edge2 40 4 – – 60 10 % µs Please refer to 2.4 GHz RF Transceiver Module (MC13180) Technical Data documentation. The setup and hold times of RX_TX_EN can be adjusted by programming Time_A_B register (0x00216050) and RF_Status (0x0021605C) registers. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 63 Functional Description and Application Information 1 4 5 6 SPI CLK (BT13) 9 SPI_EN (BT11) 8 SPI_DATA_OUT (BT12) 3 SPI_DATA_IN (BT4) 7 2 Figure 38. SPI Interface Timing Diagram Using MC13180 Table 23. SPI Interface Timing Parameter Table Using MC13180 Ref No. 1 2 3 4 5 6 7 8 9 1 Parameter SPI_EN setup time relative to rising edge of SPI_CLK Transmit data delay time relative to rising edge of SPI_CLK Transmit data hold time relative to rising edge of SPI_EN SPI_CLK rise time SPI_CLK fall time SPI_EN hold time relative to falling edge of SPI_CLK Receive data setup time relative to falling edge of SPI_CLK1 Receive data hold time relative to falling edge of SPI_CLK1 SPI_CLK frequency, 50% duty cycle required1 Minimum 15 0 0 0 0 15 15 15 – Maximum – 15 15 25 25 – – – 20 Unit ns ns ns ns ns ns ns ns MHz The SPI_CLK clock frequency and duty cycle, setup and hold times of receive data can be set by programming SPI_Control (0x00216138) register together with system clock. 4.8 SPI Timing Diagrams To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a master, two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY signal (input). The SPI1 Sample Period Control Register (PERIODREG1) and the SPI2 Sample Period Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI1 Control Register (CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS becomes an input signal, and is used to latch data into or load data out to the internal data shift registers, as well as to increment the data FIFO. Figure 39 through Figure 43 show the timing relationship of the master SPI using different triggering mechanisms. MC9328MX1 Technical Data, Rev. 7 64 Freescale Semiconductor Functional Description and Application Information 2 SS 1 SPIRDY 3 5 4 SCLK, MOSI, MISO Figure 39. Master SPI Timing Diagram Using SPI_RDY Edge Trigger SS SPIRDY SCLK, MOSI, MISO Figure 40. Master SPI Timing Diagram Using SPI_RDY Level Trigger SS (output) SCLK, MOSI, MISO Figure 41. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger SS (input) SCLK, MOSI, MISO Figure 42. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT SS (input) 6 SCLK, MOSI, MISO 7 Figure 43. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 65 Functional Description and Application Information Table 24. Timing Parameter Table for Figure 39 through Figure 43 3.0 ± 0.3 V Ref No. Parameter Minimum 1 2 3 4 5 6 7 1 2 Unit Maximum – – – – – – – ns ns ns ns ns ns ns SPI_RDY to SS output low SS output low to first SCLK edge Last SCLK edge to SS output high SS output high to SPI_RDY low SS output pulse width SS input low to first SCLK edge SS input pulse width 2T1 3 • Tsclk2 2 • Tsclk 0 Tsclk + WAIT 3 T T T = CSPI system clock period (PERCLK2). Tsclk = Period of SCLK. 3 WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register. 8 SCLK 9 9 Figure 44. SPI SCLK Timing Diagram Table 25. Timing Parameter Table for SPI SCLK 3.0 ± 0.3 V Ref No. Parameter Minimum 8 9 SCLK frequency SCLK pulse width 0 100 Maximum 10 – MHz ns Unit 4.9 LCD Controller This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD controller with various display configurations, refer to the LCD controller chapter of the MC9328MX1 Reference Manual. LSCLK 1 LD[15:0] Figure 45. SCLK to LD Timing Diagram MC9328MX1 Technical Data, Rev. 7 66 Freescale Semiconductor Functional Description and Application Information Table 26. LCDC SCLK Timing Parameter Table 3.0 ± 0.3 V Ref No. 1 Parameter SCLK to LD valid Non-display T1 T3 Minimum – Maximum 2 Display region Unit ns T4 VSYN HSYN OE LD[15:0] T2 Line Y Line 1 Line Y T5 HSYN SCLK OE LD[15:0] VSYN T6 XMAX T7 T8 (1,1) (1,2) (1,X) T9 T10 Figure 46. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing Table 27. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing Symbol T1 T2 T3 T4 T5 T6 T7 Description End of OE to beginning of VSYN HSYN period VSYN pulse width End of VSYN to beginning of OE HSYN pulse width End of HSYN to beginning to T9 End of OE to beginning of HSYN Minimum T5+T6 +T7+T9 XMAX+5 T2 2 1 1 1 Corresponding Register Value (VWAIT1·T2)+T5+T6+T7+T9 XMAX+T5+T6+T7+T9+T10 VWIDTH·(T2) VWAIT2·(T2) HWIDTH+1 HWAIT2+1 HWAIT1+1 Unit Ts Ts Ts Ts Ts Ts Ts MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 67 Functional Description and Application Information Table 27. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing (Continued) Symbol T8 T9 T9 T10 T10 Note: Description SCLK to valid LD data End of HSYN idle2 to VSYN edge (for non-display region) End of HSYN idle2 to VSYN edge (for Display region) VSYN to OE active (Sharp = 0) when VWAIT2 = 0 VSYN to OE active (Sharp = 1) when VWAIT2 = 0 Minimum -3 2 1 1 2 Corresponding Register Value 3 2 1 1 2 Unit ns Ts Ts Ts Ts • • • • • • Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns. VSYN, HSYN and OE can be programmed as active high or active low. In Figure 46, all 3 signals are active low. The polarity of SCLK and LD[15:0] can also be programmed. SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period. In Figure 46, SCLK is always active. For T9 non-display region, VSYN is non-active. It is used as an reference. XMAX is defined in pixels. 4.10 Multimedia Card/Secure Digital Host Controller The DMA interface block controls all data routing between the external data bus (DMA access), internal MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the MMC/SD module (inner system) and the application (user programming). 3a 3b Bus Clock 1 2 4b 4a 5a CMD_DAT Input Valid Data 5b Valid Data 7 CMD_DAT Output Valid Data Valid Data 6a 6b Figure 47. Chip-Select Read Cycle Timing Diagram MC9328MX1 Technical Data, Rev. 7 68 Freescale Semiconductor Functional Description and Application Information Table 28. SDHC Bus Timing Parameter Table Ref No. 1 2 3a 3b 4a 1.8 ± 0.1 V Parameter Minimum CLK frequency at Data transfer Mode (PP)1—10/30 cards CLK frequency at Identification Mode2 Clock high time —10/30 cards Clock low time1—10/30 cards Clock fall time —10/30 cards Clock rise time1—10/30 cards Input hold time3—10/30 cards Input setup time3—10/30 cards 1 1 3.0 ± 0.3 V Unit Minimum 0 0 10/50 10/50 – Maximum 25/5 400 – – 10/50 MHz kHz ns ns ns Maximum 25/5 400 – – 10/50 (5.00)3 14/67 (6.67)3 – – – – 16 0 0 6/33 15/75 – 4b – – 10/50 ns 5a 5b 6a 6b 7 1 2 10.3/10.3 10.3/10.3 5.7/5.7 5.7/5.7 0 9/9 9/9 5/5 5/5 0 – – – – 14 ns ns ns ns ns Output hold time3—10/30 cards Output setup time3—10/30 cards Output delay time3 CL ≤ 100 pF / 250 pF (10/30 cards) CL ≤ 250 pF (21 cards) 3 C ≤ 25 pF (1 card) L 4.10.1 Command Response Timing on MMC/SD Bus The card identification and card operation conditions timing are processed in open-drain mode. The card response to the host command starts after exactly NID clock cycles. For the card address assignment, SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and card response is NCR clock cycles as illustrated in Figure 48. The symbols for Figure 48 through Figure 52 are defined in Table 29. Table 29. State Signal Parameters for Figure 48 through Figure 52 Card Active Symbol Z D * CRC Definition High impedance state Data bits Repetition Cyclic redundancy check bits (7 bits) Symbol S T P E Host Active Definition Start bit (0) Transmitter bit (Host = 1, Card = 0) One-cycle pull-up (1) End bit (1) MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 69 Functional Description and Application Information NID cycles Host Command CMD S T Content CRC E Z ****** Z ST CID/OCR Content ZZZ Identification Timing NCR cycles Host Command CMD S T Content CRC E Z ****** Z ST CID/OCR Content ZZZ SET_RCA Timing Figure 48. Timing Diagrams at Identification Mode After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in Figure 49, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the responding card. The other two diagrams show the separating periods NRC and NCC. NCR cycles Host Command CMD S T Content CRC E Z Z P ****** PST Response Content CRC E Z Z Z Command response timing (data transfer mode) NRC cycles Response CMD S T Content CRC E Z ****** Z ST Host Command Content CRC E Z Z Z Timing response end to next CMD start (data transfer mode) NCC cycles Host Command CMD S T Content CRC E Z ****** Z ST Host Command Content CRC E Z Z Z Timing of command sequences (all modes) Figure 49. Timing Diagrams at Data Transfer Mode Figure 50 shows basic read operation timing. In a read operation, the sequence starts with a single block read command (which specifies the start address in the argument field). The response is sent on the SD_CMD lines as usual. Data transmission from the card starts after the access time delay NAC , beginning from the last bit of the read command. If the system is in multiple block read mode, the card sends a continuous flow of data blocks with distance NAC until the card sees a stop transmission command. The data stops two clock cycles after the end bit of the stop command. MC9328MX1 Technical Data, Rev. 7 70 Freescale Semiconductor Functional Description and Application Information NCR cycles Host Command CMD S T Content CRC E Z Z P ****** P S T Response Content CRC E Z DAT Z****Z Z Z P ****** P S D D D D ***** NAC cycles Read Data Timing of single block read NCR cycles Host Command CMD S T Content CRC E Z Z P ****** P S T Response Content CRC E Z DAT Z****Z ZZP ****** P S DDDD ***** P ***** P S DDDD ***** Read Data NAC cycles NAC cycles Read Data Timing of multiple block read NCR cycles Host Command CMD S T Content CRC E Z Z P ****** P S T NST DAT D D D D ***** DDDDE Z Z Z ***** Timing of stop command (CMD12, data transfer mode) Response Content CRC E Z Valid Read Data Figure 50. Timing Diagrams at Data Read Figure 51 shows the basic write operation timing. As with the read operation, after the card response, the data transfer starts after NWR cycles. The data is suffixed with CRC check bits to allow the card to check for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple block mode, with the flow terminated by a stop transmission command. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 71 Functional Description and Application Information The stop transmission command may occur when the card is in different states. Figure 52 shows the different scenarios on the bus. 72 NCR cycles Host Command Response ****** PST Content CRC E Z Z P ****** PP P CMD S T Content CRC E Z Z P DAT Z****Z Z ZZPPS Z ZZPPS Write Data Timing of the block write command NWR cycles CRC status Content Content Z****Z CRC E Z Z S DAT Status ES L*L EZ CRC E Z Z X X X X X X X X X X X X X X X X Z Busy CMD E Z Z P ****** Content CRC E Z Z S EZPPS Status Content CRC E Z Z S Status ES L*L DAT Z Z P P S PPP EZ DAT Z Z P P S Content Write Data CRC status CRC E Z Z X X X X X X X X Z P P S Content Write Data CRC status NWR cycles CRC E Z Z X X X X X X X X X X X X X X X X Z Busy NWR cycles Timing of the multiple block write command Figure 51. Timing Diagrams at Data Write MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor Freescale Semiconductor NCR cycles Host Command Card Response ****** PST CRC E Z Z Z Content ST CMD S T Content CRC E Z Z P Host Command Content CRC E DAT D D D D D D D D D D D D D E Z Z S L ****** Write Data Busy (Card is programming) DAT D D D D D D D Z Z S CRC E Z Z S L ****** EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ Stop transmission during data transfer from the host. EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ Stop transmission during CRC status transfer from the card. DAT S L ****** EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ Stop transmission received after last data block. Card becomes busy programming. DAT Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z S L ****** EZZ Z Z Z ZZ ZZ ZZ ZZ ZZ Z Z ZZ Z ZZ ZZ ZZ Stop transmission received after last data block. Card becomes busy programming. Access time delay cycle Command response cycle Parameter Identification response cycle NID Symbol NCR NAC Minimum 2 2 5 MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL) Table 30. Timing Values for Figure 48 through Figure 52 Figure 52. Stop Transmission During Different Scenarios MC9328MX1 Technical Data, Rev. 7 Maximum 64 5 Functional Description and Application Information TAAC + NSAC Unit Clock cycles Clock cycles Clock cycles 73 Functional Description and Application Information Table 30. Timing Values for Figure 48 through Figure 52 (Continued) Parameter Command read cycle Command-command cycle Command write cycle Stop transmission cycle Symbol NRC NCC NWR NST Minimum 8 8 2 2 Maximum – – – 2 Unit Clock cycles Clock cycles Clock cycles Clock cycles TAAC: Data read access time -1 defined in CSD register bit[119:112] NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register bit[111:104] 4.10.2 SDIO-IRQ and ReadWait Service Handling In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data in this mode. The memory controller generates an interrupt according to this low and the system interrupt continues until the source is removed (SD_DAT[1] returns to its high level). In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the “Interrupt Period” during the data access, and the controller must sample SD_DAT[1] during this short period to determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each block (512 bytes). CMD ST Content CRC E Z Z P S Response EZZZ ****** ZZZ DAT[1] For 4-bit Interrupt Period S Block Data E IRQ S Block Data E IRQ LH DAT[1] For 1-bit Interrupt Period Figure 53. SDIO IRQ Timing Diagram ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps the clock running, and allows the user to submit commands as normal. After all commands are submitted, the user can switch back to the data transfer operation and all counter and status values are resumed as access continues. MC9328MX1 Technical Data, Rev. 7 74 Freescale Semiconductor Functional Description and Application Information CMD ****** P S T CMD52 CRC E Z Z Z ****** DAT[1] For 4-bit DAT[2] For 4-bit S Block Data EZZL H S Block Data E S Block Data E Z Z L L L L L L L L L L L L L L L L L L L L L HZ S Block Data E Figure 54. SDIO ReadWait Timing Diagram 4.11 Memory Stick Host Controller The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS, MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in either four-state or two-state access mode. The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1, BS2, and BS3 states are regarded as one packet length and one communication transfer is always completed within one packet length (in four-state access mode). The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0 and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 75 Functional Description and Application Information 2 1 4 3 5 MS_SCLKI 6 7 8 MS_SCLKO 11 9 10 11 MS_BS 12 12 MS_SDIO(output) 14 13 MS_SDIO (input) (RED bit = 0) 15 16 MS_SDIO (input) (RED bit = 1) Figure 55. MSHC Signal Timing Diagram Table 31. MSHC Signal Timing Parameter Table Ref No. 1 2 3 4 5 6 7 8 9 10 11 MS_SCLKI frequency MS_SCLKI high pulse width MS_SCLKI low pulse width MS_SCLKI rise time MS_SCLKI fall time MS_SCLKO frequency 1 3.0 ± 0.3 V Parameter Minimum – 20 20 – – – 20 15 – – – Maximum 25 – – 3 3 25 – – 5 5 3 MHz ns ns ns ns MHz ns ns ns ns ns Unit MS_SCLKO high pulse width1 MS_SCLKO low pulse MS_SCLKO rise time1 MS_SCLKO fall time1 width1 MS_BS delay time1 MC9328MX1 Technical Data, Rev. 7 76 Freescale Semiconductor Functional Description and Application Information Table 31. MSHC Signal Timing Parameter Table (Continued) Ref No. 12 13 14 15 16 1 2 3.0 ± 0.3 V Parameter Minimum MS_SDIO output delay time1,2 MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0) MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0)3 MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1) MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1)4 4 3 Unit Maximum 3 – – – – ns ns ns ns ns – 18 0 23 0 Loading capacitor condition is less than or equal to 30pF. An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the MS_SDIO pin, because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick SDIO pin when the pin direction changes. 3 If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge. 4 If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge. 4.12 Pulse-Width Modulator The PWM can be programmed to select one of two clock signals as its source frequency. The selected clock signal is passed through a divider and a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in Figure 56 and the parameters are listed in Table 32. 2a System Clock 1 3b 2b 3a 4a PWM Output 4b Figure 56. PWM Output Timing Diagram Table 32. PWM Output Timing Parameter Table 1.8 ± 0.1 V Ref No. Parameter Minimum 1 2a 2b 3a System CLK frequency1 Clock high time1 Clock low time 1 3.0 ± 0.3 V Unit Minimum 0 5/10 5/10 – Maximum 100 – – 5/10 MHz ns ns ns Maximum 87 – – 5 0 3.3 7.5 – Clock fall time1 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 77 Functional Description and Application Information Table 32. PWM Output Timing Parameter Table (Continued) 1.8 ± 0.1 V Ref No. Parameter Minimum 3b 4a 4b 1 3.0 ± 0.3 V Unit Minimum – 5 5 Maximum 5/10 – – ns ns ns Maximum 6.67 – – Clock rise time1 Output delay time 1 – 5.7 5.7 Output setup time1 CL of PWMO = 30 pF 4.13 SDRAM Controller This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic random access memory) Controller. 1 SDCLK 2 3S CS 3 3S RAS 3S 3H CAS 3S 3H WE 4S ADDR 4H COL/BA 8 DQ 3H 3H ROW/BA 5 6 Data 7 3S DQM 3H Note: CKE is high during the read/write cycle. Figure 57. SDRAM Read Cycle Timing Diagram MC9328MX1 Technical Data, Rev. 7 78 Freescale Semiconductor Functional Description and Application Information Table 33. SDRAM Read Timing Parameter Table Ref No. 1 2 3 3S 3H 4S 4H 5 5 5 6 7 7 7 8 1 1.8 ± 0.1 V Parameter Minimum SDRAM clock high-level width SDRAM clock low-level width SDRAM clock cycle time CS, RAS, CAS, WE, DQM setup time CS, RAS, CAS, WE, DQM hold time Address setup time Address hold time SDRAM access time (CL = 3) SDRAM access time (CL = 2) SDRAM access time (CL = 1) Data out hold time Data out high-impedance time (CL = 3) Data out high-impedance time (CL = 2) Data out high-impedance time (CL = 1) Active to read/write command period (RC = 1) 2.67 6 11.4 3.42 2.28 3.42 2.28 – – – 2.85 – – – tRCD1 Maximum – – – – – – – 6.84 6.84 22 – 6.84 6.84 22 – 3.0 ± 0.3 V Unit Minimum 4 4 10 3 2 3 2 – – – 2.5 – – – tRCD1 Maximum – – – – – – – 6 6 22 – 6 6 22 – ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns tRCD = SDRAM clock cycle time. This settings can be found in the MC9328MX1 reference manual. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 79 Functional Description and Application Information SDCLK 1 CS 3 2 RAS 6 CAS WE 4 ADDR / BA 5 7 ROW/BA 8 COL/BA 9 DATA DQ DQM Figure 58. SDRAM Write Cycle Timing Diagram Table 34. SDRAM Write Timing Parameter Table 1.8 ± 0.1 V Ref No. 1 2 3 4 5 6 7 8 9 1 2 3.0 ± 0.3 V Unit Minimum 4 4 10 3 2 tRP2 tRCD2 2 2 Maximum – – – – – – – – – ns ns ns ns ns ns ns ns ns Parameter Minimum SDRAM clock high-level width SDRAM clock low-level width SDRAM clock cycle time Address setup time Address hold time Precharge cycle period1 2.67 6 11.4 3.42 2.28 tRP2 tRCD2 4.0 2.28 Maximum – – – – – – – – – Active to read/write command delay Data setup time Data hold time Precharge cycle timing is included in the write timing diagram. tRP and tRCD = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference manual. MC9328MX1 Technical Data, Rev. 7 80 Freescale Semiconductor Functional Description and Application Information SDCLK 1 3 2 CS RAS 6 CAS 7 7 WE 4 ADDR BA 5 ROW/BA DQ DQM Figure 59. SDRAM Refresh Timing Diagram Table 35. SDRAM Refresh Timing Parameter Table 1.8 ± 0.1 V Ref No. Parameter Minimum 1 2 3 4 5 6 7 1 3.0 ± 0.3 V Unit Minimum 4 4 10 3 2 tRP1 tRC1 Maximum – – – – – – – ns ns ns ns ns ns ns Maximum – – – – – – – SDRAM clock high-level width SDRAM clock low-level width SDRAM clock cycle time Address setup time Address hold time Precharge cycle period Auto precharge command period 2.67 6 11.4 3.42 2.28 tRP1 tRC1 tRP and tRC = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference manual. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 81 Functional Description and Application Information SDCLK CS RAS CAS WE ADDR BA DQ DQM CKE Figure 60. SDRAM Self-Refresh Cycle Timing Diagram 4.14 USB Device Port Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and how they work from the ground up. Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is no end-of-transfer. MC9328MX1 Technical Data, Rev. 7 82 Freescale Semiconductor Functional Description and Application Information USBD_AFE (Output) 1 USBD_ROE (Output) tPERIOD USBD_VPO (Output) 6 3 tVPO_ROE t ROE_VPO t VMO_ROE 4 USBD_VMO (Output) USBD_SUSPND (Output) USBD_RCV (Input) USBD_VP (Input) USBD_VM (Input) tROE_VMO 2 tFEOPT 5 Figure 61. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX) Table 36. USB Device Timing Parameters for Data Transfer to USB Transceiver (TX) Ref No. 1 2 3 4 5 6 3.0 ± 0.3 V Parameter Minimum tROE_VPO; USBD_ROE active to USBD_VPO low tROE_VMO; USBD_ROE active to USBD_VMO high tVPO_ROE; USBD_VPO high to USBD_ROE deactivated tVMO_ROE; USBD_VMO low to USBD_ROE deactivated (includes SE0) tFEOPT; SE0 interval of EOP tPERIOD; Data transfer rate 83.14 81.55 83.54 248.90 160.00 11.97 Maximum 83.47 81.98 83.80 249.13 175.00 12.03 ns ns ns ns ns Mb/s Unit MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 83 Functional Description and Application Information USBD_AFE (Output) USBD_ROE (Output) USBD_VPO (Output) USBD_VMO (Output) USBD_SUSPND (Output) USBD_RCV (Input) 1 tFEOPR USBD_VP (Input) USBD_VM (Input) Figure 62. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX) Table 37. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX) 3.0 ± 0.3 V Ref No. Parameter Minimum 1 tFEOPR; Receiver SE0 interval of EOP 82 Maximum – ns Unit 4.15 I2C Module The I2C communication protocol consists of seven elements: START, Data Source/Recipient, Data Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP. SDA 5 SCL 1 2 6 3 4 Figure 63. Definition of Bus Timing for I2C MC9328MX1 Technical Data, Rev. 7 84 Freescale Semiconductor Functional Description and Application Information Table 38. I2C Bus Timing Parameter Table 1.8 ± 0.1 V Ref No. Parameter Minimum 1 2 3 4 5 6 Hold time (repeated) START condition Data hold time Data setup time HIGH period of the SCL clock LOW period of the SCL clock Setup time for STOP condition 182 0 11.4 80 480 182.4 Maximum – 171 – – – – Minimum 160 0 10 120 320 160 Maximum – 150 – – – – ns ns ns ns ns ns 3.0 ± 0.3 V Unit 4.16 Synchronous Serial Interface The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and frame synchronization signals. Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external clock timing diagrams are shown in Figure 65 through Figure 67. Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices. 1 STCK Output 2 STFS (bl) Output 4 6 STFS (wl) Output 8 12 10 11 STXD Output 31 SRXD Input 32 Note: SRXD input in synchronous mode only. Figure 64. SSI Transmitter Internal Clock Timing Diagram MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 85 Functional Description and Application Information 1 SRCK Output 3 SRFS (bl) Output 5 7 SRFS (wl) Output 9 13 14 SRXD Input Figure 65. SSI Receiver Internal Clock Timing Diagram 15 16 STCK Input 17 18 STFS (bl) Input 20 22 STFS (wl) Input 24 26 STXD Output 27 28 33 SRXD Input Note: SRXD Input in Synchronous mode only 34 Figure 66. SSI Transmitter External Clock Timing Diagram MC9328MX1 Technical Data, Rev. 7 86 Freescale Semiconductor Functional Description and Application Information 15 16 SRCK Input 17 19 SRFS (bl) Input 21 23 SRFS (wl) Input 25 29 SRXD Input 30 Figure 67. SSI Receiver External Clock Timing Diagram Table 39. SSI (Port C Primary Function) Timing Parameter Table 1.8 ± 0.1 V Ref No. Parameter Minimum Maximum Minimum Maximum 3.0 ± 0.3 V Unit Internal Clock Operation1 (Port C Primary Function2) 1 2 3 4 5 6 7 8 9 10 11a 11b 12 13 14 STCK/SRCK clock period1 STCK high to STFS (bl) high3 SRCK high to SRFS (bl) high3 95 1.5 -1.2 2.5 0.1 1.48 -1.1 2.51 0.1 14.25 0.91 0.57 12.88 21.1 0 – 4.5 -1.7 4.3 -0.8 4.45 -1.5 4.33 -0.8 15.73 3.08 3.19 13.57 – – 83.3 1.3 -1.1 2.2 0.1 1.3 -1.1 2.2 0.1 12.5 0.8 0.5 11.3 18.5 0 – 3.9 -1.5 3.8 -0.8 3.9 -1.5 3.8 -0.8 13.8 2.7 2.8 11.9 – – ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns STCK high to STFS (bl) low3 SRCK high to SRFS (bl) low3 STCK high to STFS (wl) high3 SRCK high to SRFS (wl) high STCK high to STFS (wl) low3 SRCK high to SRFS (wl) low 3 3 STCK high to STXD valid from high impedance STCK high to STXD high STCK high to STXD low STCK high to STXD high impedance SRXD setup time before SRCK low SRXD hold time after SRCK low External Clock Operation (Port C Primary Function2) 15 16 17 STCK/SRCK clock period1 STCK/SRCK clock high period STCK/SRCK clock low period 92.8 27.1 61.1 – – – 81.4 40.7 40.7 – – – ns ns ns MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 87 Functional Description and Application Information Table 39. SSI (Port C Primary Function) Timing Parameter Table (Continued) 1.8 ± 0.1 V Ref No. Parameter Minimum 18 19 20 21 22 23 24 25 26 27a 27b 28 29 30 STCK high to STFS (bl) high3 SRCK high to SRFS (bl) high STCK high to STFS (bl) low3 SRCK high to SRFS (bl) low 3 3 3.0 ± 0.3 V Unit Minimum 0 0 0 0 0 0 0 0 15.8 7.0 8.0 16.2 1.0 0 Maximum 81.4 81.4 81.4 81.4 81.4 81.4 81.4 81.4 24.7 15.9 16.0 25.0 – – ns ns ns ns ns ns ns ns ns ns ns ns ns ns Maximum 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8 28.16 18.13 18.24 28.5 – – – – – – – – – – 18.01 8.98 9.12 18.47 1.14 0 STCK high to STFS (wl) high3 SRCK high to SRFS (wl) high STCK high to STFS (wl) low3 SRCK high to SRFS (wl) low3 3 STCK high to STXD valid from high impedance STCK high to STXD high STCK high to STXD low STCK high to STXD high impedance SRXD setup time before SRCK low SRXD hole time after SRCK low Synchronous Internal Clock Operation (Port C Primary Function2) 31 32 SRXD setup before STCK falling SRXD hold after STCK falling 15.4 0 – – 13.5 0 – – ns ns Synchronous External Clock Operation (Port C Primary Function2) 33 34 1 SRXD setup before STCK falling SRXD hold after STCK falling 1.14 0 – – 1.0 0 – – ns ns All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. 2 There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as input, the SSI module selects the input based on status of the FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function. 3 bl = bit length; wl = word length. MC9328MX1 Technical Data, Rev. 7 88 Freescale Semiconductor Functional Description and Application Information Table 40. SSI (Port B Alternate Function) Timing Parameter Table Ref No. 1.8 ± 0.1 V Parameter Minimum Maximum Minimum Maximum 3.0 ± 0.3 V Unit Internal Clock Operation1 (Port B Alternate Function2) 1 2 3 4 5 6 7 8 9 10 11a 11b 12 13 14 STCK/SRCK clock period1 STCK high to STFS (bl) high3 SRCK high to SRFS (bl) high3 STCK high to STFS (bl) low3 SRCK high to SRFS (bl) low3 STCK high to STFS (wl) high3 SRCK high to SRFS (wl) high3 STCK high to STFS (wl) low3 SRCK high to SRFS (wl) low3 STCK high to STXD valid from high impedance STCK high to STXD high STCK high to STXD low STCK high to STXD high impedance SRXD setup time before SRCK low SRXD hold time after SRCK low 95 1.7 -0.1 3.08 1.25 1.71 -0.1 3.08 1.25 14.93 1.25 2.51 12.43 20 0 – 4.8 1.0 5.24 2.28 4.79 1.0 5.24 2.28 16.19 3.42 3.99 14.59 – – 83.3 1.5 -0.1 2.7 1.1 1.5 -0.1 2.7 1.1 13.1 1.1 2.2 10.9 17.5 0 – 4.2 1.0 4.6 2.0 4.2 1.0 4.6 2.0 14.2 3.0 3.5 12.8 – – ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns External Clock Operation (Port B Alternate Function2) 15 16 17 18 19 20 21 22 23 24 25 26 27a 27b STCK/SRCK clock period1 STCK/SRCK clock high period STCK/SRCK clock low period STCK high to STFS (bl) high3 SRCK high to SRFS (bl) high STCK high to STFS (bl) low3 SRCK high to SRFS (bl) low3 3 92.8 27.1 61.1 – – – – – – – – 18.9 9.23 10.60 – – – 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8 29.07 20.75 21.32 81.4 40.7 40.7 0 0 0 0 0 0 0 0 16.6 8.1 9.3 – – – 81.4 81.4 81.4 81.4 81.4 81.4 81.4 81.4 25.5 18.2 18.7 ns ns ns ns ns ns ns ns ns ns ns ns ns ns STCK high to STFS (wl) high3 SRCK high to SRFS (wl) high3 STCK high to STFS (wl) low3 SRCK high to SRFS (wl) low3 STCK high to STXD valid from high impedance STCK high to STXD high STCK high to STXD low MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 89 Functional Description and Application Information Table 40. SSI (Port B Alternate Function) Timing Parameter Table (Continued) Ref No. 28 29 30 1.8 ± 0.1 V Parameter Minimum STCK high to STXD high impedance SRXD setup time before SRCK low SRXD hold time after SRCK low 17.90 1.14 0 Maximum 29.75 – – Minimum 15.7 1.0 0 Maximum 26.1 – – ns ns ns 3.0 ± 0.3 V Unit Synchronous Internal Clock Operation (Port B Alternate Function2) 31 32 SRXD setup before STCK falling SRXD hold after STCK falling 18.81 0 – – 16.5 0 – – ns ns Synchronous External Clock Operation (Port B Alternate Function2) 33 34 1 SRXD setup before STCK falling SRXD hold after STCK falling 1.14 0 – – 1.0 0 – – ns ns All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. 2 There are 2 set of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as inputs, the SSI module selects the input based on FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function. 3 bl = bit length; wl = word length. Table 41. SSI 2 (Port C Alternate Function) Timing Parameter Table Ref No. 1.8V +/- 0.10V Parameter Minimum Maximum Minimum Maximum 3.0V +/- 0.30V Unit Internal Clock Operation1 (Port C Alternate Function)2 1 2 3 4 5 6 7 8 9 10 11a STCK/SRCK clock period1 STCK high to STFS (bl) high3 SRCK high to SRFS (bl) high STCK high to STFS (bl) low3 SRCK high to SRFS (bl) low 3 3 95 1.7 -0.1 3.08 1.25 1.71 -0.1 3.08 1.25 14.93 1.25 – 4.8 1.0 5.24 2.28 4.79 1.0 5.24 2.28 16.19 3.42 83.3 1.5 -0.1 2.7 1.1 1.5 -0.1 2.7 1.1 13.1 1.1 – 4.2 1.0 4.6 2.0 4.2 1.0 4.6 2.0 14.2 3.0 ns ns ns ns ns ns ns ns ns ns ns STCK high to STFS (wl) high3 SRCK high to SRFS (wl) high STCK high to STFS (wl) low3 SRCK high to SRFS (wl) low 3 3 STCK high to STXD valid from high impedance STCK high to STXD high MC9328MX1 Technical Data, Rev. 7 90 Freescale Semiconductor Functional Description and Application Information Table 41. SSI 2 (Port C Alternate Function) Timing Parameter Table (Continued) Ref No. 11b 12 13 14 1.8V +/- 0.10V Parameter Minimum STCK high to STXD low STCK high to STXD high impedance SRXD setup time before SRCK low SRXD hold time after SRCK low 2.51 12.43 20 0 Maximum 3.99 14.59 – – Minimum 2.2 10.9 17.5 0 Maximum 3.5 12.8 – – ns ns ns ns 3.0V +/- 0.30V Unit External Clock Operation (Port C Alternate Function)2 15 16 17 18 19 20 21 22 23 24 25 26 27a 27b 28 29 30 STCK/SRCK clock period1 STCK/SRCK clock high period STCK/SRCK clock low period STCK high to STFS (bl) high3 SRCK high to SRFS (bl) high3 92.8 27.1 61.1 – – – – – – – – 18.9 9.23 10.60 17.90 1.14 0 – – – 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8 29.07 20.75 21.32 29.75 – – 81.4 40.7 40.7 0 0 0 0 0 0 0 0 16.6 8.1 9.3 15.7 1.0 0 – – – 81.4 81.4 81.4 81.4 81.4 81.4 81.4 81.4 25.5 18.2 18.7 26.1 – – ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns STCK high to STFS (bl) low3 SRCK high to SRFS (bl) low3 STCK high to STFS (wl) high3 SRCK high to SRFS (wl) high3 STCK high to STFS (wl) low3 SRCK high to SRFS (wl) low3 STCK high to STXD valid from high impedance STCK high to STXD high STCK high to STXD low STCK high to STXD high impedance SRXD setup time before SRCK low SRXD hole time after SRCK low Synchronous Internal Clock Operation (Port C Alternate Function)2 31 32 SRXD setup before STCK falling SRXD hold after STCK falling 18.81 0 – – 16.5 0 – – ns ns Synchronous External Clock Operation (Port C Alternate Function)2 33 34 1 SRXD setup before STCK falling SRXD hold after STCK falling 1.14 0 – – 1.0 0 – – ns ns All the timings for both SSI modules are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 91 Functional Description and Application Information 2 There is one set of I/O signals for the SSI2 module. They are from Port C alternate function (PC19 – PC24). When SSI signals are configured as outputs, they can be viewed at Port C alternate function a. When SSI signals are configured as inputs, the SSI module selects the input based on FMCR register bits in the Clock controller module (CRM). By default, the input is selected from Port C alternate function. 3 bl = bit length; wl = word length 4.17 CMOS Sensor Interface The CMOS Sensor Interface (CSI) module consists of a control register to configure the interface timing, a control register for statistic data generation, a status register, interface logic, a 32 × 32 image data receive FIFO, and a 16 × 32 statistic data FIFO. 4.17.1 Gated Clock Mode Figure 68 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the CSI is programmed to received data on the positive edge. Figure 69 shows the timing diagram when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative edge. The parameters for the timing diagrams are listed in Table 42. 1 VSYNC 7 HSYNC 5 2 6 PIXCLK DATA[7:0] Valid Data Valid Data Valid Data 3 4 Figure 68. Sensor Output Data on Pixel Clock Falling Edge CSI Latches Data on Pixel Clock Rising Edge MC9328MX1 Technical Data, Rev. 7 92 Freescale Semiconductor Functional Description and Application Information 1 VSYNC 7 HSYNC 6 2 5 PIXCLK DATA[7:0] Valid Data Valid Data Valid Data 3 4 Figure 69. Sensor Output Data on Pixel Clock Rising Edge CSI Latches Data on Pixel Clock Falling Edge Table 42. Gated Clock Mode Timing Parameters Ref No. 1 2 3 4 5 6 7 Parameter csi_vsync to csi_hsync csi_hsync to csi_pixclk csi_d setup time csi_d hold time csi_pixclk high time csi_pixclk low time csi_pixclk frequency Min 180 1 1 1 10.42 10.42 0 Max – – – – – – 48 Unit ns ns ns ns ns ns MHz The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to: Rising-edge latch data max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time) In most of case, duty cycle is 50 / 50, therefore max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time) For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns. positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 93 Functional Description and Application Information Falling-edge latch data max fall time allowed = (negative duty cycle - hold time) max rise time allowed = (positive duty cycle - setup time) 4.17.2 Non-Gated Clock Mode Figure 70 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the CSI is programmed to received data on the positive edge. Figure 71 shows the timing diagram when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative edge. The parameters for the timing diagrams are listed in Table 43. 1 VSYNC 6 4 5 PIXCLK DATA[7:0] Valid Data Valid Data Valid Data 2 3 Figure 70. Sensor Output Data on Pixel Clock Falling Edge CSI Latches Data on Pixel Clock Rising Edge 1 VSYNC 6 5 4 PIXCLK DATA[7:0] Valid Data Valid Data Valid Data 2 3 Figure 71. Sensor Output Data on Pixel Clock Rising Edge CSI Latches Data on Pixel Clock Falling Edge Table 43. Non-Gated Clock Mode Parameters Ref No. 1 2 Parameter csi_vsync to csi_pixclk csi_d setup time Min 180 1 Max – – Unit ns ns MC9328MX1 Technical Data, Rev. 7 94 Freescale Semiconductor Functional Description and Application Information Table 43. Non-Gated Clock Mode Parameters (Continued) Ref No. 3 4 5 6 Parameter csi_d hold time csi_pixclk high time csi_pixclk low time csi_pixclk frequency Min 1 10.42 10.42 0 Max – – – 48 Unit ns ns ns MHz The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to: max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time) In most of case, duty cycle is 50 / 50, therefore: max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time) For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns. positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns Falling-edge latch data max fall time allowed = (negative duty cycle - hold time) max rise time allowed = (positive duty cycle - setup time) MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 95 5 Pin-Out and Package Information Table 44. i.MX1 256 MAPBGA Pin Assignments 1 2 SD_DAT3 3 SD_CLK 4 NVSS 5 USBD_ AFE USBD_ ROE USBD_ RCV USBD_ SUSPND SD_DAT2 6 NVDD4 7 NVSS 8 UART1_ RTS 9 UART1_ RXD SPI1_ SCLK UART1_ TXD SPI1_ SPI_RDY SPI1_SS SPI1_ MISO SPI1_ MOSI QVDD1 NVSS NVDD2 TCK RAS 10 NVDD3 11 BT5 12 BT3 13 QVDD4 14 RVP 15 UIP 16 N.C. A Pin-Out and Package Information 96 MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor Table 44 illustrates the package pin assignments for the 256-pin MAPBGA package. For a complete listing of signals, see the Signal Multiplexing Table 3 on page 11. A NVSS B A24 SD_DAT1 SD_CMD SIM_TX USBD_VP UART2_ CTS USBD_ VPO USBD_VM SSI_RXCLK SSI_TXCLK UART2_ RXD USBD_ VMO UART2_ RTS UART2_ TXD SIM_CLK NVSS NVSS NVSS NVSS RW SSI_ RXFS SSI_RXDAT BT11 BT7 BT1 QVSS RVM AVDD21 N.C. UIN VSS N.C. B C A23 D31 SD_DAT0 SIM_PD BTRFGND BT8 BTRFVDD N.C. R1B C D A22 D30 D29 SIM_SVEN BT13 BT6 N.C. N.C. R1A R2B R2A SPL_SPR D E A20 A21 D28 D26 SSI_TXDAT BT12 BT4 N.C. N.C. PY2 PX2 E F A18 D27 D25 A19 A16 SIM_RST SSI_TXFS UART1_ CTS QVSS NVDD1 NVDD1 CAS MA10 BT10 BT2 REV PY1 PX1 LP/ HSYNC LD5 LD11 LD14 CSI_D1 CSI_VSYNC LSCLK FLM/ VSYNC LD9 QVDD3 TMR2OUT CSI_D2 CSI_D6 F G H J K L M A15 A13 A12 A10 A8 A5 A17 D22 A11 D16 A7 D12 D24 A14 D18 A9 D13 D11 D23 D20 D19 D17 D15 A6 D21 NVDD1 NVDD1 NVDD1 D14 SDCLK SIM_RX NVDD1 NVDD1 NVSS NVDD1 NVSS BT9 PS NVSS NVDD2 TIN RESET_IN RESET_SF2 SDCKE1 DQM0 SDWE 10 CLS LD0 LD6 LD10 PWMO BIG_ ENDIAN RESET_ OUT BOOT3 SDCKE0 CLKO 11 CONTRAST LD2 LD7 LD12 CSI_MCLK CSI_D4 ACD/OE LD4 LD8 LD13 CSI_D0 CSI_ HSYNC CSI_ PIXCLK TRST BOOT1 TRISTATE 13 LD1 LD3 QVSS LD15 CSI_D3 CSI_D5 G H J K L M N P R T A4 A3 EB2 NVSS 1 EB1 D9 EB3 A2 2 D10 EB0 A1 OE 3 D7 CS3 CS4 CS5 4 A0 D6 D8 CS2 5 D4 ECB D5 CS1 6 PA17 D2 LBA CS0 7 D1 D3 BCLK3 MA11 8 DQM1 DQM3 D0 DQM2 9 BOOT2 BOOT0 POR AVDD1 12 CSI_D7 I2C_SCL TDO EXTAL16M 14 TMS I2C_SDA QVDD2 XTAL16M 15 TDI XTAL32K EXTAL32K QVSS 16 N P R T 1 2 ASP signals are clamped by AVDD2 to prevent ESD (Electrostatic Discharge) damage. AVDD2 must be greater than QVDD to keep diodes reversed-biased. This signal is not used and should be floated in an actual application. burst clock 3 Pin-Out and Package Information 5.1 MAPBGA 256 Package Dimensions Figure 72 illustrates the 256 MAPBGA 14 mm × 14 mm × 1.30 mm package, with an 0.8 mm pad pitch. The device designator for the MAPBGA package is VH. Case Outline 1367 TOP VIEW BOTTOM VIEW SIDE VIEW NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2.INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994. 3.MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A. 4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS. Figure 72. i.MXL 256 MAPBGA Mechanical Drawing MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 97 Product Documentation 6 6.1 Product Documentation Revision History Table 45 provides revision history for this release. This history includes technical content revisions only and not stylistic or grammatical changes. Table 45. i.MX1 Data Sheet Revision History Rev. 7 Location Table 1 on page 3 Signal Names and Descriptions Revision • Added the DMA_REQ signal to table. • Corrected signal name from USBD_OE to USBD_ROE • Corrected signal names From: C10 BTRFGN, To: BTRFGND From: G6 SIM_RST, To: SIM_RX From: G7 UART2_TXD, To: SIM_CLK Added Signal Multiplex table from Reference Manual with the following changes: • Changed I/O Supply Voltage, PB31–14, from NVDD3 to NVDD4 • Corrected footnotes 1–5. • Changed AVDD2 references to QVDD, except for C14. Added footnote regarding ESD. • Changed occurrence of SD_SCLK to SD_CLK. • Removed 69K pull-up resistor from EB1, EB2, and added to D9 Changed first and second parameters descriptions: From: Reference Clock freq range, To: DPLL input clock freq range From: Double clock freq range, To: DPLL output freq range Added Signal Multiplex table. Table 3 on page 11 Signal Multiplex Table i.MX1 Table 10 on page 26 Table 3 on page 11 6.2 Reference Documents The following documents are required for a complete description of the MC9328MX1 and are necessary to design properly with the device. Especially for those not familiar with the ARM920T processor or previous i.MX processor products, the following documents are helpful when used in conjunction with this document. ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100) ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029) ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C) EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E) MC9328MX1 Product Brief (order number MC9328MX1P) MC9328MX1 Reference Manual (order number MC9328MX1RM) The Freescale manuals are available on the Freescale Semiconductors Web site at http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web site, or printed versions may be ordered. The ARM Ltd. documentation is available from http://www.arm.com. MC9328MX1 Technical Data, Rev. 7 98 Freescale Semiconductor NOTES MC9328MX1 Technical Data, Rev. 7 Freescale Semiconductor 99 How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the ARM POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and ARM9TDMI are the trademarks of ARM Limited. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Document Number: M C9328MX1 Rev. 7 12/2006
MC9328MX1_06 价格&库存

很抱歉,暂时无法提供与“MC9328MX1_06”相匹配的价格&库存,您可以联系我们找货

免费人工找货