Freescale Semiconductor Data Sheet: Advance Information
Document Number: MC9S08QE128 Rev. 3, 06/2007
MC9S08QE128 Series
Covers: MC9S08QE128, MC9S08QE96, MC9S08QE64
MC9S08QE128
80-LQFP Case 917A 14 mm2 48-QFN Case 1314 7 mm2 32-LQFP Case 873A 7 mm2 64-LQFP Case 840F 10 mm2 44-QFP Case 824A 10 mm2
• 8-Bit HCS08 Central Processor Unit (CPU) – Up to 50.33-MHz HCS08 CPU from 3.6V to 2.1V, and 20-MHz CPU at 2.1V to 1.8V across temperature range – HC08 instruction set with added BGND instruction – Support for up to 32 interrupt/reset sources • On-Chip Memory – Flash read/program/erase over full operating voltage and temperature – Random-access memory (RAM) – Security circuitry to prevent unauthorized access to RAM and flash contents • Power-Saving Modes – Two low power stop modes; reduced power wait mode – Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode – Very low power external oscillator can be used in stop3 mode to provide accurate clock to active peripherals – Very low power real time counter for use in run, wait, and stop modes with internal and external clock sources – 6 μs typical wake up time from stop modes • Clock Source Options – Oscillator (XOSC) — Loop-control Pierce oscillator; Crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz – Internal Clock Source (ICS) — FLL controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation; supports CPU freq. from 2 to 50.33 MHz • System Protection – Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus clock – Low-voltage detection with reset or interrupt; selectable trip points – Illegal opcode detection with reset – Flash block protection • Development Support – Single-wire background debug interface – Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints) – On-chip in-circuit emulator (ICE) debug module containing two comparators and nine trigger modes.
•
•
•
•
•
•
•
•
Eight deep FIFO for storing change-of-flow addresses and event-only data. Debug module supports both tag and force breakpoints. ADC — 24-channel, 12-bit resolution; 2.5 μs conversion time; automatic compare function; 1.7 mV/°C temperature sensor; internal bandgap reference channel; operation in stop3; fully functional from 3.6V to 1.8V ACMPx — Two analog comparators with selectable interrupt on rising, falling, or either edge of comparator output; compare option to fixed internal bandgap reference voltage; outputs can be optionally routed to TPM module; operation in stop3 SCIx — Two SCIs with full duplex non-return to zero (NRZ); LIN master extended break generation; LIN slave extended break detection; wake up on active edge SPIx— Two serial peripheral interfaces with Full-duplex or single-wire bidirectional; Double-buffered transmit and receive; MSB-first or LSB-first shifting IICx — Two IICs with; Up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10 bit addressing TPMx — One 6-channel and two 3-channel; Selectable input capture, output compare, or buffered edge- or center-aligned PWMs on each channel RTC — 8-bit modulus counter with binary or decimal based prescaler; External clock source for precise time base, time-of-day, calendar or task scheduling functions; Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components Input/Output – 70 GPIOs and 1 input-only and 1 output-only pin – 16 KBI interrupts with selectable polarity – Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins. – SET/CLR registers on 16 pins (PTC and PTE)
This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2007. All rights reserved.
Table of Contents
1 2 3 MC9S08QE128 Series Comparison . . . . . . . . . . . . . . . . . . . . .4 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .12 3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12 3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13 3.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .14 3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18 3.8 External Oscillator (XOSC) Characteristics . . . . . . . . .21 3.9 Internal Clock Source (ICS) Characteristics . . . . . . . . .22 3.10 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 3.10.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .24 3.10.2 TPM Module Timing . . . . . . . . . . . . . . . . . . . . . 3.10.3 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10.4 Analog Comparator (ACMP) Electricals . . . . . . 3.10.5 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . 3.10.6 Flash Specifications . . . . . . . . . . . . . . . . . . . . . 3.11 EMC Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . 3.11.2 Conducted Transient Susceptibility . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Device Numbering System . . . . . . . . . . . . . . . . . . . . . Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 27 30 30 33 33 34 34 35 36 36 36 50 50
4 5 6 7
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 2 Freescale Semiconductor
HCS08 CORE
BKGD/MS CPU
RESET
TPM1CH2-0 MODULE (TPM1) ANALOG COMPARATOR (ACMP1) TPM1CLK ACMP1O ACMP1+ ACMP1EXTAL XTAL 3
BDC
BKP INTERNAL CLOCK SOURCE (ICS) OSCILLATOR (XOSC)
PORT A
3-CHANNEL TIMER/PWM
PTA7/TPM2CH2/ADP9 PTA6/TPM1CH2/ADP8 PTA5/IRQ/TPM1CLK/RESET PTA4/ACMP1O/BKGD/MS PTA3/KBI1P3/SCL1/ADP3 PTA2/KBI1P2/SDA1/ADP2 PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ PTB7/SCL1/EXTAL PTB6/SDA1/XTAL PTB5/TPM1CH1/SS1 PTB4/TPM2CH1/MISO1 PTB3/KBI1P7/MOSI1/ADP7 PTB2/KBI1P6/SPSCK1/ADP6 PTB1/KBI1P5/TxD1/ADP5 PTB0/KBI1P4/RxD1/ADP4 PTC7/TxD2/ACMP2PTC6/RxD2/ACMP2+ PTC5/TPM3CH5/ACMP2O PTC4/TPM3CH4/RSTO PTC3/TPM3CH3 PTC2/TPM3CH2 PTC1/TPM3CH1 PTC0/TPM3CH0 PTD7/KBI2P7 PTD6/KBI2P6 PTD5/KBI2P5 PTD4/KBI2P4 PTD3/KBI2P3/SS2 PTD2/KBI2P2/MISO2 PTD1/KBI2P1/MOSI2 PTD0/KBI2P0/SPSCK2 PTE7/TPM3CLK PTE6 PTE5 PTE4 PTE3/SS1 PTE2/MISO1 PTE1/MOSI1 PTE0/TPM2CLK/SPSCK1 PTF7/ADP17 PTF6/ADP16 PTF5/ADP15 PTF4/ADP14 PTF3/ADP13 PTF2/ADP12 PTF1/ADP11 PTF0/ADP10 PTG7/ADP23 PTG6/ADP22 PTG5/ADP21 PTG4/ADP20 PTG3/ADP19 PTG2/ADP18 PTG1 PTG0
HCS08 SYSTEM CONTROL
RESETS AND INTERRUPTS MODES OF OPERATION POWER MANAGEMENT IRQ COP INT LVD IRQ
TPM2CH2-0 3-CHANNEL TIMER/PWM MODULE (TPM2) TPM2CLK SCL1 SDA1 ACMP2+ ACMP2O ACMP2TPM3CH5-0 6-CHANNEL TIMER/PWM MODULE (TPM3) 6 TPM3CLK 10 SERIAL COMMUNICATIONS INTERFACE (SCI1) TxD1 RxD1 SS2 MISO2 MOSI2 SPSCK2 TxD2 RxD2
IIC MODULE (IIC1) ANALOG COMPARATOR (ACMP2)
USER FLASH 128K / 96K / 64K
USER RAM 8K / 6K / 4K
DEBUG MODULE (DBG) SERIAL PERIPHERAL INTERFACE MODULE (SPI2)
REAL TIME COUNTER (RTC)
VREFH VREFL VDDA VSSA PTH7/SDA2 PTH6/SCL2 PTH5 PTH4 PTH3 PTH2 PTH1 PTH0 SDA2 SCL2 PORT H
IIC MODULE (IIC2)
- VREFH/VREFL internally connected to VDDA/VSSA in 48-pin and 32-pin packages - VDD and VSS pins are each internally connected to two pads in 32-pin package
Figure 1. MC9S08QE128 Series Block Diagram
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 3
PORT G
PORT F
PTJ7 PTJ6 PTJ5 PTJ4 PTJ3 PTJ2 PTJ1 PTJ0
PORT J
SERIAL PERIPHERAL INTERFACE MODULE (SPI1)
SS1 MISO1 MOSI1 SPSCK1
24-CHANNEL,12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)
PORT E
VDD VDD VSS VSS
VOLTAGE REGULATOR
SERIAL COMMUNICATIONS INTERFACE (SCI2)
PORT D
PORT C
PORT B
MC9S08QE128 Series Comparison
1
MC9S08QE128 Series Comparison
Table 1. MC9S08QE128 Series Features by MCU and Package
Feature Flash size (bytes) RAM size (bytes) Pin quantity ACMP1 ACMP2 ADC channels DBG ICS IIC1 IIC2 IRQ KBI Port I/O RTC SCI1 SCI2 SPI1 SPI2 TPM1 channels TPM2 channels TPM3 channels XOSC
1 1
The following table compares the various device derivatives available within the MC9S08QE128 series.
MC9S08QE128 131072 8064 80 64 48 44 80
MC9S08QE96 98304 6016 64 48 44 64
MC9S08QE64 65536 4096 48 44 32
yes yes 24 22 10 10 24 22 10 10 22 10 10 10
yes yes yes yes yes no no yes yes no no yes no no no
yes 16 70 16 54 16 38 16 34 16 70 16 54 16 38 16 34 16 54 16 38 16 34 12 26
yes yes yes yes yes 3 3 6 yes
Port I/O count does not include the input only PTA5/IRQ/TPM1CLK/RESET or the output only PTA4/ACMP1O/BKGD/MS.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 4 Freescale Semiconductor
Pin Assignments
2
Pin Assignments
PTC7/TxD2/ACMP2PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1-
This section describes the pin assignments for the available packages. See Table 2 for pin availability by package pin-count.
PTA5/IRQ/TPM1CLK/RESET PTC4/TPM3CH4/RSTO PTC5/TPM3CH5/ACMP2O
PTA4/ACMP1O/BKGD/MS
PTD1/KBI2P1/MOSI2 PTD0/KBI2P0/SPSCK2 PTH7/SDA2 PTH6/SCL2 PTH5 PTH4 PTE7/TPM3CLK VDD VDDAD VREFH VREFL VSSAD VSS PTB7/SCL1/EXTAL PTB6/SDA1/XTAL PTH3 PTH2 PTH1 PTH0 PTE6
Pins in bold are added from the next smaller package.
Figure 2. Pin Assignments in 80-Pin LQFP
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 5
PTD5/KBI2P5 PTJ7 PTJ6 PTJ5 PTJ4 PTC1/TPM3CH1 PTC0/TPM3CH0 PTF7/ADP17 PTF6/ADP16 PTF5/ADP15 PTF4/ADP14 PTB3/KBI1P7/MOSI1/ADP7 PTB2/KBI1P6/SPSCK1/ADP6
PTE5 PTB5/TPM1CH1/SS1 PTB4/TPM2CH1/MISO1 PTC3/TPM3CH3 PTC2/TPM3CH2 PTD7/KBI2P7 PTD6/KBI2P6
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
PTE0/TPM2CLK/SPSCK1 PTE1/MOSI1 PTG0 PTG1 PTG2/ADP18 PTG3/ADP19 PTE2/MISO1 PTE3/SS1 PTG4/ADP20 PTG5/ADP21 PTG6/ADP22 PTG7/ADP23 PTC6/RxD2/ACMP2+
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
PTA2/KBI1P2/SDA1/ADP2 PTA3/KBI1P3/SCL1/ADP3 PTD2/KBI2P2/MISO2 PTD3/KBI2P3/SS2 PTD4/KBI2P4 PTJ0 PTJ1 PTF0/ADP10 PTF1/ADP11 VSS VDD PTE4 PTA6/TPM1CH2/ADP8 PTA7/TPM2CH2/ADP9 PTF2/ADP12 PTF3/ADP13 PTJ2 PTJ3 PTB0/KBI1P4/RxD1/ADP4 PTB1/KBI1P5/TxD1/ADP5
Pin Assignments
PTC7/TxD2/ACMP2PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1-
PTA5/IRQ/TPM1CLK/RESET PTC4/TPM3CH4/RSTO PTC5/TPM3CH5/ACMP2O
PTA4/ACMP1O/BKGD/MS
PTE0/TPM2CLK/SPSCK1 PTE1/MOSI1 PTG0 PTG1 PTG2/ADP18 PTG3/ADP19 PTE2/MISO1 PTE3/SS1
PTD1/KBI2P1/MOSI2 PTD0/KBI2P0/SPSCK2 PTH7/SDA2 PTH6/SCL2 PTE7/TPM3CLK VDD VDDAD VREFH VREFL VSSAD VSS PTB7/SCL1/EXTAL PTB6/SDA1/XTAL PTH1 PTH0 PTE6
Pins in bold are added from the next smaller package.
Figure 3. Pin Assignments in 64-Pin LQFP Package
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 6 Freescale Semiconductor
PTD5/KBI2P5 PTC1/TPM3CH1 PTC0/TPM3CH0 PTF7/ADP17 PTF6/ADP16 PTF5/ADP15 PTF4/ADP14 PTB3/KBI1P7/MOSI1/ADP7 PTB2/KBI1P6/SPSCK1/ADP6
PTE5 PTB5/TPM1CH1/SS1 PTB4/TPM2CH1/MISO1 PTC3/TPM3CH3 PTC2/TPM3CH2 PTD7/KBI2P7 PTD6/KBI2P6
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
PTC6/RxD2/ACMP2+
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
PTA2/KBI1P2/SDA11/ADP2 PTA3/KBI1P3/SCL1/ADP3 PTD2/KBI2P2/MISO2 PTD3/KBI2P3/SS2 PTD4/KBI2P4 PTF0/ADP10 PTF1/ADP11 VSS VDD PTE4 PTA6/TPM1CH2/ADP8 PTA7/TPM2CH2/ADP9 PTF2/ADP12 PTF3/ADP13 PTB0/KBI1P4/RxD1/ADP4 PTB1/KBI1P5/TxD1/ADP5
Pin Assignments
38 PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ PTB3/KBI1P7/MOSI1/ADP7 23 PTA1/KBI1P1/TPM2CH0/ADP1/ACMP137 PTA1/KBI1P1/TPM2CH0/AD 36 PTA2/KBI1P2/SDA1/ADP2 35 PTA3/KBI1P3/SCL1/ADP3 34 PTD2/KBI2P2/MISO2 33 PTD3/KBI2P3/SS2 32 PTD4/KBI2P4 31 VSS 30 VDD 29 PTE4 28 PTA6/TPM1CH2/ADP8 27 PTA7/TPM2CH2/ADP9 26 PTB0/KBI1P4/RxD1/ADP4 PTB5/TPM1CH1/SS1 14 PTB4/TPM2CH1/MISO1 15 PTC3/TPM3CH3 16 PTC2/TPM3CH2 17 PTD7/KBI2P7 18 PTD6/KBI2P6 19 PTD5/KBI2P5 20 PTC1/TPM3CH1 21 PTC0/TPM3CH0 22 PTB2/KBI1P6/SPSCK1/ADP6 24 25 PTB1/KBI1P5/TxD1/ADP5
47 PTA5/IRQ/TPM1CLK/RESET
45 PTC5/TPM3CH5/ACMP2O
48 PTA4/ACMP1O/BKGD/MS
44 PTE0/TPM2CLK/SPSCK1
46 PTC4/TPM3CH4/RSTO
40 PTC6/RxD2/ACMP2+
PTD1/KBI2P1/MOSI2 1 PTD0/KBI2P0/SPSCK2 2 PTE7/TPM3CLK 3 VDD 4 VDDAD 5 VREFH 6 VREFL 7 VSSAD 8 VSS 9 PTB7/SCL1/EXTAL 10 PTB6/SDA11/XTAL 11 PTE5 13 PTE6 12
Figure 4. Pin Assignments in 48-Pin QFN Package
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 7
39 PTC7/TxD2/ACMP2-
43 PTE1/MOSI1
42 PTE2/MISO1
41 PTE3/SS1
Pin Assignments
PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ 35
PTC6/RxD2/ACMP2+
43
42
41
44
40
39
38
37
36
PTC7/TxD2/ACMP2-
PTD1/KBI2P1/MOSI2 PTD0/KBI2P0/SPSCK2 PTE7/TPM3CLK VDD VDDAD VREFH VREFL VSSAD VSS PTB7/SCL1/EXTAL PTB6/SDA1/XTAL 11
34
PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1-
PTA5/IRQ/TPM1CLK/RESET
PTA4/ACMP1O/BKGD/MS
PTC5/TPM3CH5/ACMP2O
PTC4/TPM3CH4/RSTO
PTE0/TPM2CLK
PTE1
PTE2
1 2 3 4 5 6 7 8 9 10 13 14 15 16
33 32 31 30 29
PTA2/KBI1P2/SDA1/ADP2 PTA3/KBI1P3/SCL1/ADP3 PTD2/KBI2P2/MISO2 PTD3/KBI2P3/SS2 PTD4/KBI2P4 VSS VDD PTA6/TPM1CH2/ADP8 PTA7/TPM2CH2/ADP9 PTB0/KBI1P4/RxD1/ADP4 PTB1/KBI1P5/TxD1/ADP5
28 27 26 25 24 17 18 19 20 21 PTB3/KBI1P7/MOSI1/ADP7 22 PTB2/KBI1P6/SPSCK1/ADP6 23
12
PTB5/TPM1CH1/SS1
PTB4/TPM2CH1/MISO1
PTC3/TPM3CH3
PTC2/TPM3CH2
PTD7/KBI2P7
Figure 5. Pin Assignments in 44-Pin QFP Package
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 8 Freescale Semiconductor
PTC1/TPM3CH1
PTC0/TPM3CH0
PTD6/KBI2P6
PTD5/KBI2P5
Pin Assignments
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1 26 PTA1/KBIP1/TPM2CH0/ADP1/ACMP1 25 24 23 22 21 20 19 18 17 9 PTB5/TPM1CH1/SS1 10 PTB4/TPM2CH1/MISO1 PTA2/KBIP2/SDA1/ADP2 PTA3/KBIP3/SCL1/ADP3 PTD2/KBI2P2/MISO2 PTD3/KBI2P3/SS2 PTA6/TPM1CH2/ADP8 PTA7/TPM2CH2/ADP9 PTB0/KBI1P4/RxD1/ADP4 PTB1/KBI1P5/TxD1/ADP5 16 PTB2/KBI1P6/SPSCK1/ADP6
PTA5/IRQ/TPM1CLK/RESET
PTA4/ACMP1O/BKGD/MS
PTC5/TPM3CH5/ACMP2O
PTC4/TPM3CH4/RSTO
PTC6/RxD2/ACMP2+ 28
32 PTD1/KBI2P1/MOSI2 PTD0/KBI2P0/SPSCK2 VDD VREFH/VDDAD VREFL/VSSAD VSS PTB7/SCL1/EXTAL PTB6/SDA1/XTAL 1 2 3 4 5 6 7 8
31
30
29
27
PTC7/TxD2/ACMP214 PTC0/TPM3CH0
11
PTC3/TPM3CH3
12 PTC2/TPM3CH2
13 PTC1/TPM3CH1
15 PTB3/KBI1P7/MOSI1/ADP7
Figure 6. Pin Assignments 32-Pin LQFP Package
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 9
Pin Assignments
Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count
Pin Number 80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 64 1 2 3 4 — — 5 6 7 8 9 10 11 12 13 — — 14 15 16 17 18 19 20 21 22 23 24 — — — — 25 26 27 28 29 30 31 32 48 1 2 — — — — 3 4 5 6 7 8 9 10 11 — — — — 12 13 14 15 16 17 18 19 20 — — — — 21 22 — — — — 23 24 44 1 2 — — — — 3 4 5 6 7 8 9 10 11 — — — — — — 12 13 14 15 16 17 18 — — — — 19 20 — — — — 21 22 32 1 2 — — — — — 3 4 — — 5 6 7 8 — — — — — — 9 10 11 12 — — — — — — — 13 14 — — — — 15 16 PTB7 PTB6 PTH3 PTH2 PTH1 PTH0 PTE6 PTE5 PTB5 PTB4 PTC3 PTC2 PTD7 PTD6 PTD5 PTJ7 PTJ6 PTJ5 PTJ4 PTC1 PTC0 PTF7 PTF6 PTF5 PTF4 PTB3 PTB2 KBI1P7 KBI1P6 MOSI1 SPSCK1 TPM3CH1 TPM3CH0 ADP17 ADP16 ADP15 ADP14 ADP7 ADP6 TPM1CH1 SS1 TPM2CH1 MISO1 TPM3CH3 TPM3CH2 KBI2P7 KBI2P6 KBI2P5 SCL1 SDA1 Lowest Port Pin PTD1 PTD0 PTH7 PTH6 PTH5 PTH4 PTE7 TPM3CLK VDD VDDA VREFH VREFL VSSA VSS EXTAL XTAL ←⎯ Alt 1 KBI2P1 KBI2P0 SDA2 SCL2 Priority Alt 2 MOSI2 SPSCK2 ⎯→ Alt 3 Highest Alt 4
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 10 Freescale Semiconductor
Pin Assignments
Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count (continued)
Pin Number 80 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 64 33 34 — — 35 36 37 38 39 40 41 42 43 — — 44 45 46 47 48 49 50 51 52 — — — — 53 54 55 56 57 58 59 60 61 62 63 64 48 25 26 — — — — 27 28 29 30 31 — — — — 32 33 34 35 36 37 38 39 40 — — — — 41 42 — — — — 43 44 45 46 47 48 44 23 24 — — — — 25 26 — 27 28 — — — — 29 30 31 32 33 34 35 36 37 — — — — — 38 — — — — 39 40 41 42 43 44 32 17 18 — — — — 19 20 — — — — — — — — 21 22 23 24 25 26 27 28 — — — — — — — — — — — — 29 30 31 32 PTF1 PTF0 PTJ1 PTJ0 PTD4 PTD3 PTD2 PTA3 PTA2 PTA1 PTA0 PTC7 PTC6 PTG7 PTG6 PTG5 PTG4 PTE3 PTE2 PTG3 PTG2 PTG1 PTG0 PTE1 PTE0 PTC5 PTC4 PTA5 PTA4 MOSI1 TPM2CLK SPSCK1 TPM3CH5 TPM3CH4 RSTO IRQ ACMP1O TPM1CLK RESET BKGD MS ACMP2O SS1 MISO1 ADP19 ADP18 KBI2P4 KBI2P3 KBI2P2 KBI1P3 KBI1P2 KBI1P1 KBI1P0 TxD2 RxD2 SS2 MISO2 SCL1 SDA1 TPM2CH0 ADP1 TPM1CH0 ADP0 ADP3 ADP2 ACMP1ACMP1+ ACMP2ACMP2+ ADP23 ADP22 ADP21 ADP20 Lowest Port Pin PTB1 PTB0 PTJ3 PTJ2 PTF3 PTF2 PTA7 PTA6 PTE4 VDD VSS ADP11 ADP10 TPM2CH2 TPM1CH2 ADP13 ADP12 ADP9 ADP8 ←⎯ Alt 1 KBI1P5 KBI1P4 Priority Alt 2 TxD1 RxD1 ⎯→ Alt 3 Highest Alt 4 ADP5 ADP4
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 11
Electrical Characteristics
3
3.1
Electrical Characteristics
Introduction
This section contains electrical and timing specifications for the MC9S08QE128 series of microcontrollers available at the time of publication.
3.2
Parameter Classification
Table 3. Parameter Classifications P C T D
Those parameters are guaranteed during production testing on each individual device. Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. Those parameters are derived mainly from simulations.
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:
NOTE
The classification is shown in the column labeled “C” in the parameter tables where appropriate.
3.3
Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pull-up resistor associated with the pin is enabled. Table 4. Absolute Maximum Ratings
Rating Supply voltage Maximum current into VDD Digital input voltage Instantaneous maximum current Single pin limit (applies to all port pins)1, 2, 3 Storage temperature range
1
Symbol VDD IDD VIn ID Tstg
Value –0.3 to +3.8 120 –0.3 to VDD + 0.3 ± 25 –55 to 150
Unit V mA V mA °C
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2 All functional non-supply pins are internally clamped to V SS and VDD.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 12 Freescale Semiconductor
Electrical Characteristics
3
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).
3.4
Thermal Characteristics
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 5. Thermal Characteristics
Rating Operating temperature range (packaged) Maximum junction temperature Thermal resistance Single-layer board 32-pin LQFP 44-pin LQFP 48-pin QFN 64-pin LQFP 80-pin LQFP Thermal resistance Four-layer board 32-pin LQFP 44-pin LQFP 48-pin QFN 64-pin LQFP 80-pin LQFP θJA θJA 54 47 26 50 47 °C/W °C/W θJA θJA 82 69 81 69 60 °C/W °C/W Symbol TA TJM Value TL to TH –40 to 85 95 Unit °C °C
The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined Eqn. 1
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 13
Electrical Characteristics
For most applications, PI/O 2.7 V VDD > 1.8 V VDD > 2.7 V VDD >1.8 V 0.70 x VDD 0.85 x VDD — — 0.06 x VDD VIn = VDD or VSS VIn = VDD or VSS — — 17.5 –0.2
Max total IOH for all ports All I/O pins, low-drive strength All I/O pins, high-drive strength
IOHT
VOL
2.7 V, ILoad = 10 mA 2.3 V, ILoad = 6 mA 1.8 V, ILoad = 3 mA
Max total IOL for all ports all digital inputs
IOLT VIH
P Input high voltage C P Input low voltage C C Input hysteresis P P P Input leakage current Hi-Z (off-state) leakage current Pull-up resistors
7 8 9 10 11
all digital inputs
VIL Vhys |IIn| |IOZ| RPU
all digital inputs all input only pins (Per pin) all input/output (per pin) all digital inputs, when enabled Single pin limit Total MCU limit, includes sum of all stressed pins
12 13 14 15 16 17
DC injection 2, 3, 4 D current
IIC CIn VRAM VPOR tPOR VLVDH
VIN < VSS, VIN > VDD
–5 — — 0.9 10
C Input Capacitance, all pins C RAM retention voltage C POR re-arm voltage D POR re-arm time P Low-voltage detection threshold — high range
5
VDD falling VDD rising
2.08 2.16
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 15
Electrical Characteristics
Table 8. DC Characteristics (continued)
Num C 18 19 20 21 22
1 2 3 4
Characteristic Low-voltage detection threshold — low range Low-voltage warning threshold — high range Low-voltage warning threshold — low range
Symbol VLVDL VLVWH VLVWL Vhys VBG
Condition VDD falling VDD rising VDD falling VDD rising VDD falling VDD rising
Min 1.80 1.88 2.36 2.36 2.08 2.16 — 1.19
Typ1 1.82 1.90 2.46 2.46 2.1 2.19 80 1.20
Max 1.91 1.99 2.56 2.56 2.2 2.27 — 1.21
Unit V V V mV V
P P P
P Low-voltage inhibit reset/recover hysteresis P Bandgap Voltage Reference
6
5 6
Typical values are measured at 25°C. Characterized, not tested All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). Maximum is highest voltage that POR is guaranteed. Factory trimmed at VDD = 3.0 V, Temp = 25°C
PULL-DOWN RESISTANCE (kΩ) PULL-UP RESISTOR TYPICALS 85°C 25°C –40°C
PULL-UP RESISTOR (kΩ)
40 35 30 25 20 1.8
40 35 30 25 20 1.8
PULL-DOWN RESISTOR TYPICALS 85°C 25°C –40°C
2
2.2
2.4
2.6 2.8 VDD (V)
3
3.2
3.4
3.6
2.3
2.8 VDD (V)
3.3
3.6
Figure 7. Pull-up and Pull-down Typical Resistor Values
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 16 Freescale Semiconductor
Electrical Characteristics
TYPICAL VOL VS IOL AT VDD = 3.0 V 1.2 1 0.8 VOL (V) VOL (V) 0.6 0.4 0.2 0 0 5 10 IOL (mA) 15 20 0 1 2 VDD (V) 3 4
85°C 25°C –40°C
0.2 0.15 0.1 0.05
TYPICAL VOL VS VDD
85°C, IOL = 2 mA 25°C, IOL = 2 mA –40°C, IOL = 2 mA
Figure 8. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0)
TYPICAL VOL VS IOL AT VDD = 3.0 V 1 0.8 VOL (V) 0.6 0.4 0.2 0 0 10 IOL (mA) 20 30
85°C 25°C –40°C
TYPICAL VOL VS VDD 0.4 0.3 VOL (V) 0.2 0.1 0 1 2 VDD (V) 3 4 IOL = 6 mA IOL = 3 mA
85°C 25°C –40°C
IOL = 10 mA
Figure 9. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V 1.2 VDD – VOH (V) 1 0.8 0.6 0.4 0.2 0 0 –5 –10 IOH (mA)) –15 –20 VDD – VOH (V)
85°C 25°C –40°C
TYPICAL VDD – VOH VS VDD AT SPEC IOH 0.25 0.2 0.15 0.1 0.05 0 1 2 VDD (V) 3 4
85°C, IOH = 2 mA 25°C, IOH = 2 mA –40°C, IOH = 2 mA
Figure 10. Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0)
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 17
Electrical Characteristics
TYPICAL VDD – VOH VS VDD AT SPEC IOH 0.4
0.8 0.6 0.4 0.2 0 0 –5 –10 –15 –20 IOH (mA) –25 –30 TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V
VDD – VOH (V)
85°C 25°C –40°C
VDD – VOH (V)
0.3 0.2 0.1 0 1
85°C 25°C –40°C
IOH = –10 mA IOH = –6 mA IOH = –3 mA 2 VDD (V) 3 4
Figure 11. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1)
3.7
Supply Current Characteristics
Table 9. Supply Current Characteristics
This section includes information about power supply current in various operating modes.
Num
C P
Parameter Run supply current FEI mode, all modules on
Symbol
Bus Freq 25.165 MHz
VDD (V)
Typ1 17.5
Max TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
Unit
Temp (°C)
1
T T T C
RIDD
20 MHz 8 MHz 1 MHz
3
14.4 6.5 1.4 11.5
mA
–40 to 85°C
2
T T T T
Run supply current FEI mode, all modules off RIDD
25.165 MHz 20 MHz 8 MHz 1 MHz 3
9.5 4.6 1.0 152
mA
–40 to 85°C
3 T
Run supply current LPS=0, all modules off
RIDD
16 kHz FBILP 16 kHz FBELP
3 115
μA
–40 to 85°C
T 4 T C 5 T T T
Run supply current LPS=1, all modules off, running from Flash Run supply current LPS=1, all modules off, running from RAM Wait mode supply current FEI mode, all modules off
0 to 70°C μA –40 to 85°C 0 to 70°C –40 to 85°C
21.9 RIDD 16 kHz FBELP 3 7.3 25.165 MHz WIDD 20 MHz 8 MHz 1 MHz 3 5740 4570 2000 730
TBD TBD TBD TBD TBD TBD TBD μA
–-40 to 85°C
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 18 Freescale Semiconductor
Electrical Characteristics
Table 9. Supply Current Characteristics (continued)
Num C Parameter Stop2 mode supply current 6 P S2IDD n/a 2 Stop3 mode supply current No clocks active S3IDD n/a 3 3 2 2 EREFSTEN=1 32 kHz 250 Symbol Bus Freq VDD (V) 3 Typ1 Max TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD nA nA nA Unit Temp (°C) 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C
350
C
7
P
450
C 8 T
350
500
9
T
IREFSTEN=1
32 kHz
70
μA μA μA
10
T
TPM PWM
100 Hz
12
11
T Low power mode adders:
SCI, SPI, or IIC
300 bps 3
15
12
T
RTC using LPO RTC using ICSERCLK LVD
1 kHz
200
nA
13
T
32 kHz
1
μA μA μA
14
T
n/a
100
15
1
T
ACMP
n/a
20
Data in Typical column was characterized at 3.0 V, 25˚C or is typical recommended value.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 19
Electrical Characteristics
TBD
Figure 12. Typical Run IDD for FBE and FEI, IDD vs. VDD (ACMP and ADC off, All Other Modules Enabled)
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 20 Freescale Semiconductor
Electrical Characteristics
3.8
External Oscillator (XOSC) Characteristics
Table 10. XOSC and ICS Specifications (Temperature Range = –40 to 85°C Ambient)
Reference Figure 13 and Figure 14 for crystal or resonator circuits.
Num
C
Characteristic
Symbol flo fhi fhi C1,C2
Min
Typ1
Max
Unit
1
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) C High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0) D Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings
32 1 1
— — —
38.4 16 8
kHz MHz MHz
2
See Note2 See Note3 — — — — — — — — — — 10 1 — 0 100 0 0 0 200 400 5 15 — — — — — — — — 0 10 20 — — — — 50.33 50.33
3
Feedback resistor Low range, low power (RANGE=0, HGO=0)2 D Low range, High Gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X) Series resistor — Low range, low power (RANGE = 0, HGO = 0)2 Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) D High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz Crystal start-up time 4 Low range, low power C Low range, high power High range, low power High range, high power D Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode
RF
MΩ
4
RS
kΩ
t CSTL t CSTH
5
— — — — 0.03125 0
ms
6
1 2
fextal
MHz MHz
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0. 3 See crystal or resonator manufacturer’s recommendation. 4 Proper PC board layout procedures must be followed to achieve specifications.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 21
Electrical Characteristics
XOSC EXTAL XTAL RS
RF
C1
Crystal or Resonator C2
Figure 13. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain
XOSC EXTAL XTAL
Crystal or Resonator
Figure 14. Typical Crystal or Resonator Circuit: Low Range/Low Gain
3.9
Num 1 2 3 C P P T P 4
Internal Clock Source (ICS) Characteristics
Table 11. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient)
Characteristic Average internal reference frequency — factory trimmed at VDD = 3.6 V and temperature = 25°C Internal reference frequency — user trimmed Internal reference start-up time Low range (DRS=00) Mid range (DRS=01) High range (DRS=10) Low range (DRS=00) Mid range (DRS=01) High range (DRS=10) Δfdco_res_t Δfdco_res_t fdco_DMX32 fdco_u Symbol fint_ft fint_ut tIRST Min — 31.25 — 16 32 48 — — — — — Typ1 32.768 — 60 — — — 19.92 39.85 59.77 ± 0.1 ± 0.2 Max — 39.06 100 20 40 60 — — — ± 0.2 ± 0.4 %fdco %fdco MHz MHz Unit kHz kHz μs
DCO output frequency range — C trimmed 2 P P DCO output frequency 2 Reference = 32768 Hz and DMX32 = 1
5
P P
6 7
C C
Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM) Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 22 Freescale Semiconductor
Electrical Characteristics
Table 11. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient) (continued)
Num 8 9 10 11
1 2
C C C
Characteristic Total deviation of trimmed DCO output frequency over voltage and temperature Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0°C to 70 °C
Symbol Δfdco_t Δfdco_t tAcquire CJitter
Min — — — —
Typ1 + 0.5 -1.0 ± 0.5 — 0.02
Max ±2 ±1 1 0.2
Unit %fdco %fdco ms %fdco
C FLL acquisition time 3 C Long term jitter of DCO output clock (averaged over 2-ms interval)
4
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value. The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device. 3 This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 4 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f Bus. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval.
TBD
Figure 15. Deviation of DCO Output from Trimmed Frequency (50.33 MHz, 3.0 V)
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 23
Electrical Characteristics
TBD
Figure 16. Deviation of DCO Output from Trimmed Frequency (50.33 MHz, 25°C)
3.10
AC Characteristics
This section describes timing characteristics for each peripheral system.
3.10.1
Num 1 2 3 4 5 6 C D D D D D D
Control Timing
Table 12. Control Timing
Rating Bus frequency (tcyc = 1/fBus) VDD ≤ 2.1V VDD > 2.1V Internal low power oscillator period External reset pulse width Reset low drive BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes 3 IRQ pulse width Asynchronous path2 Synchronous path4
2
Symbol fBus tLPO textrst trstdrv tMSSU tMSH
Min dc dc 700 100 34 x tcyc 500 100
Typ1 — — — — — — —
Max 10 25.165 1300 — — — —
Unit MHz μs ns ns ns μs
7
D
tILIH, tIHIL
100 1.5 x tcyc
— —
— —
ns
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 24 Freescale Semiconductor
Electrical Characteristics
Table 12. Control Timing (continued)
Num 8 C D Rating Keyboard interrupt pulse width Asynchronous path2 Synchronous path4 Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF)5 Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) Stop3 recovery time, from interrupt event to vector fetch Symbol tILIH, tIHIL Min 100 1.5 x tcyc Typ1 — — Max — — Unit
ns
tRise, tFall
9
C
— —
TBD TBD
— —
ns
tRise, tFall
— — —
TBD TBD 6
— — 10
ns
10
1 2
C
tSTPREC
μs
Typical values are based on characterization data at VDD = 3.0V, 25°C unless otherwise stated. This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t MSH after VDD rises above VLVD. 4 This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case. 5 Timing is shown with respect to 20% V DD and 80% VDD levels. Temperature range –40°C to 85°C.
textrst RESET PIN
Figure 17. Reset Timing
tIHIL KBIPx
IRQ/KBIPx tILIH
Figure 18. IRQ/KBIPx Timing
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 25
Electrical Characteristics
3.10.2
TPM Module Timing
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 13. TPM Input Timing
No. 1 2 3 4 5 C D D D D D Function External clock frequency External clock period External clock high time External clock low time Input capture pulse width Symbol fTCLK tTCLK tclkh tclkl tICPW
tTCLK tclkh
Min 0 4 1.5 1.5 1.5
Max fBus/4 — — — —
Unit Hz tcyc tcyc tcyc tcyc
TCLK tclkl
Figure 19. Timer External Clock
tICPW TPMCHn
TPMCHn tICPW
Figure 20. Timer Input Capture Pulse
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 26 Freescale Semiconductor
Electrical Characteristics
3.10.3
SPI Timing
Table 14. SPI Timing
Table 14 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.
No. —
C D
Function Operating frequency Master Slave SPSCK period Master Slave Enable lead time Master Slave Enable lag time Master Slave Clock (SPSCK) high or low time Master Slave Data setup time (inputs) Master Slave Data hold time (inputs) Master Slave Slave access time Slave MISO disable time Data valid (after SPSCK edge) Master Slave Data hold time (outputs) Master Slave Rise time Input Output Fall time Input Output
Symbol fop
Min fBus/2048 0
Max fBus/2 fBus/4 2048 — — — — — 1024 tcyc — — — — — 1 1 25 25 — — tcyc – 25 25 tcyc – 25 25
Unit Hz Hz tcyc tcyc tSPSCK tcyc tSPSCK tcyc ns ns ns ns ns ns tcyc tcyc ns ns ns ns ns ns ns ns
tSPSCK 2 4 tLead 1/2 1 1/2 1 tcyc – 30 tcyc – 30 tSU 15 15 tHI 0 25 ta tdis tv — — tHO 0 0 tRI tRO tFI tFO — — — — — —
1
D
2
D
tLag
3
D
tWSPSCK
4
D
5
D
6 7 8 9
D D D D
10
D
11
D
12
D
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 27
Electrical Characteristics
SS1 (OUTPUT) 2 SPSCK (CPOL = 0) (OUTPUT) SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 9 MOSI (OUTPUT) MSB OUT2 6 MSB IN2 BIT 6 . . . 1 9 BIT 6 . . . 1 LSB OUT LSB IN
10
1 4 4
11
3
12
NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 21. SPI Master Timing (CPHA = 0)
SS(1) (OUTPUT) 1 2 SPSCK (CPOL = 0) (OUTPUT) 4 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 9 MOSI (OUTPUT) PORT DATA MASTER MSB OUT(2) 6 MSB IN(2) BIT 6 . . . 1
10 12 11
3
4
11
12
LSB IN
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 22. SPI Master Timing (CPHA =1)
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 28 Freescale Semiconductor
Electrical Characteristics
SS (INPUT) 1 SPSCK (CPOL = 0) (INPUT) 2 SPSCK (CPOL = 1) (INPUT) 7 MISO (OUTPUT) SLAVE 5 MOSI (INPUT)
NOTE:
12
11
3
4
4
11
12
8 9 MSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN BIT 6 . . . 1
10 10
SLAVE LSB OUT
SEE NOTE
1. Not defined but normally MSB of character just received
Figure 23. SPI Slave Timing (CPHA = 0)
SS (INPUT) 1 2 SPSCK (CPOL = 0) (INPUT) 4 SPSCK (CPOL = 1) (INPUT) 9 MISO (OUTPUT) SEE NOTE 7 MOSI (INPUT) SLAVE 5 MSB IN MSB OUT 6 BIT 6 . . . 1 LSB IN 4
11 12 12
3
11
10
8 SLAVE LSB OUT
BIT 6 . . . 1
NOTE: 1. Not defined but normally LSB of character just received
Figure 24. SPI Slave Timing (CPHA = 1)
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 29
Electrical Characteristics
3.10.4
C D P D P C P C
Analog Comparator (ACMP) Electricals
Table 15. Analog Comparator Electrical Specifications
Characteristic Supply voltage Supply current (active) Analog input voltage Analog input offset voltage Analog comparator hysteresis Analog input leakage current Analog comparator initialization delay Symbol VDD IDDAC VAIN VAIO VH IALKG tAINIT 3.0 — — Min 1.80 — VSS – 0.3 Typical — 20 — 20 9.0 — — Max 3.6 35 VDD 40 15.0 1.0 1.0 Unit V μA V mV mV μA μs
3.10.5
C D D D D D C C
ADC Characteristics
Table 16. 12-bit ADC Operating Conditions
Conditions Absolute Delta to VDD (VDD-VDDAD)2 Symb VDDAD ΔVDDAD ΔVSSAD VREFH VREFL VADIN CADIN RADIN 12 bit mode fADCK > 4MHz fADCK < 4MHz 10 bit mode fADCK > 4MHz fADCK < 4MHz 8 bit mode (all valid fADCK) RAS — — — — — fADCK 0.4 0.4 — — — — — — — 2 5 5 10 10 8.0 4.0 MHz VSS (VSS-VSSAD)2 Min 1.8 -100 -100 1.8 VSSAD VREFL — — Typ1 — 0 0 VDDAD VSSAD — 4.5 5 Max 3.6 +100 +100 VDDAD VSSAD VREFH 5.5 7 Unit V mV mV V V V pF kΩ kΩ External to MCU Comment
Characteristic Supply voltage
Ground voltage Ref Voltage High Ref Voltage Low Input Voltage Input Capacitance Input Resistance Analog Source Resistance
Delta to
C
D
1
ADC Conversion High Speed (ADLPC=0) Clock Freq. Low Power (ADLPC=1)
Typical values assume VDDAD = 3.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 DC potential difference.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 30 Freescale Semiconductor
Electrical Characteristics
SIMPLIFIED INPUT PIN EQUIVALENT ZADIN CIRCUIT ZAS RAS Pad leakage due to input protection SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN
ADC SAR ENGINE
+
VADIN VAS
+ –
CAS
–
RADIN INPUT PIN
RADIN
INPUT PIN
RADIN CADIN
INPUT PIN
Figure 25. ADC Input Impedance Equivalency Diagram Table 17. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD)
Characteristic Supply Current ADLPC=1 ADLSMP=1 ADCO=1 Supply Current ADLPC=1 ADLSMP=0 ADCO=1 Supply Current ADLPC=0 ADLSMP=1 ADCO=1 Supply Current ADLPC=0 ADLSMP=0 ADCO=1 Supply Current ADC Asynchronous Clock Source Stop, Reset, Module Off High Speed (ADLPC=0) Low Power (ADLPC=1) P C Conditions C T Symb IDDAD Min — Typ1 120 Max — Unit μA Comment
T
IDDAD
—
202
—
μA
T
IDDAD
—
288
—
μA
P
IDDAD
—
0.532
1
mA
IDDAD fADACK
— 2 1.25
0.007 3.3 2
0.8 5 3.3
μA MHz tADACK = 1/fADACK
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 31
Electrical Characteristics
Table 17. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued)
Characteristic Conditions C P C P C T P T T P T T P T T P T T P T D EQ EFS EZS INL DNL ETUE tADS Symb tADC Min — — — — — — — — — — — — — — — — — — — — — — D EIL — — — D m — — D VTEMP2
5
Typ1 20 40 3.5 23.5 ±3.0 ±1 ±0.5 ±1.75 ±0.5 ±0.3 ±1.5 ±0.5 ±0.3 ±1.5 ±0.5 ±0.5 ±1.0 ±0.5 ±0.5 -1 to 0 — — ±2 ±0.2 ±0.1 1.646 1.769 701.2
Max — — — — — ±2.5 1.0 — ±1.0 ±0.5 — ±1.0 ±0.5 — ±1.5 ±0.5 — ±1 ±0.5 — ±0.5 ±0.5 — ±4 ±1.2 — — —
Unit ADCK cycles ADCK cycles LSB2
Comment See the ADC chapter in the MC9S08QE128 Reference Manual for conversion time variances Includes Quantization
Conversion Time Short Sample (ADLSMP=0) (Including Long Sample (ADLSMP=1) sample time) Sample Time Short Sample (ADLSMP=0) Long Sample (ADLSMP=1) Total Unadjusted 12 bit mode Error 10 bit mode 8 bit mode Differential Non-Linearity 12 bit mode 10 bit mode3 8 bit mode3 Integral Non-Linearity 12 bit mode 10 bit mode 8 bit mode Zero-Scale Error 12 bit mode 10 bit mode 8 bit mode Full-Scale Error 12 bit mode 10 bit mode 8 bit mode Quantization Error 12 bit mode 10 bit mode 8 bit mode Input Leakage Error 12 bit mode 10 bit mode 8 bit mode Temp Sensor Slope Temp Sensor Voltage
1
LSB2
LSB2
LSB2
VADIN = VSSAD
LSB2
VADIN = VDDAD
LSB2
LSB2
Pad leakage4 * RAS
-40°C to 25°C 25°C to 85°C 25°C
mV/°C
—
mV
Typical values assume VDDAD = 3.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 1 LSB = (V N REFH - VREFL)/2 3 Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes 4 Based on input pad leakage current. Refer to pad electricals.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 32 Freescale Semiconductor
Electrical Characteristics
3.10.6
Flash Specifications
This section provides details about program/erase times and program-erase endurance for the flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Memory section of the MC9S08QE128 Reference Manual. Table 18. Flash Characteristics
C D D D D P P P P Characteristic Supply voltage for program/erase -40°C to 85°C Supply voltage for read operation Internal FCLK frequency
1
Symbol Vprog/erase VRead fFCLK tFcyc tprog tBurst tPage tMass RIDDBP RIDDPE
Min 1.8 1.8 150 5
Typical
Max 3.6 3.6 200 6.67
Unit V V kHz μs tFcyc tFcyc tFcyc tFcyc
Internal FCLK period (1/FCLK) Byte program time (random location)(2) Byte program time (burst Page erase time2 mode)(2)
9 4 4000 20,000 — — 10,000 — 4 6 — 100,000 100 — — — — —
Mass erase time(2) Byte program current3 Page erase current
3 4
mA mA cycles years
C C
1 2
Program/erase endurance TL to TH = –40°C to + 85°C T = 25°C Data retention5 tD_ret
15
The frequency of this clock is controlled by a software setting. These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. 3 The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures with VDD = 3.0 V, bus frequency = 4.0 MHz. 4 Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory. 5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.
3.11
EMC Performance
Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 33
Electrical Characteristics
3.11.1
Radiated Emissions
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels. Table 19. Radiated Emissions, Electric Field
Parameter Symbol Conditions Frequency 0.15 – 50 MHz 50 – 150 MHz Radiated emissions, electric field VRE_TEM VDD = TBD TA = +25oC package type TBD 150 – 500 MHz 500 – 1000 MHz IEC Level SAE Level
1
fOSC/fBUS
Level1 (Max) TBD TBD
Unit
TBD crystal TBD bus
TBD TBD TBD TBD
dBμV
— —
Data based on qualification test results.
3.11.2
Conducted Transient Susceptibility
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 20. Table 20. Conducted Susceptibility, EFT/B
Parameter Symbol Conditions fOSC/fBUS Result A Conducted susceptibility, electrical fast transient/burst (EFT/B) VDD = TBD TA = +25oC package type TBD TBD crystal TBD bus B C D
1
Amplitude1 (Min) TBD TBD
Unit
VCS_EFT
kV TBD TBD
Data based on qualification test results. Not tested in production.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 34 Freescale Semiconductor
Ordering Information
The susceptibility performance classification is described in Table 21. Table 21. Susceptibility Performance Classification
Result A B No failure Self-recovering failure Soft failure Performance Criteria The MCU performs as designed during and after exposure. The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed. The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted. The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled. The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation.
C
D
Hard failure
E
Damage
4
Ordering Information
Table 22. Ordering Information
Freescale Part Number1 Flash MC9S08QE128CLK MC9S08QE128CLH MC9S08QE128CFT MC9S08QE128CQD MC9S08QE96CLK MC9S08QE96CLH MC9S08QE96CFT MC9S08QE96CQD MC9S08QE64CLH MC9S08QE64CFT MC9S08QE64CQD MC9S08QE64CLC
1
This section contains ordering information for MC9S08QE128, MC9S08QE96, and MC9S08QE64 devices.
Memory RAM
Package2 80 LQFP
128K
8K
64 LQFP 48 QFN 44 QFP 80 LQFP 64 LQFP 48 QFN 44 QFP 64 LQFP 48 QFN 44 QFP 32 LQFP
96K
6K
64K
4K
See the reference manual, MC9S08QE128RM, for a complete description of modules included on each device. 2 See Table 23 for package information.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 35
Package Information
4.1
Device Numbering System
MC 9 S08 QE 128 C XX Status (MC = Fully Qualified) Memory (9 = Flash-based) Core Family
Example of the device numbering system:
Package designator (see Table 23) Temperature range (C = –40°C to 85°C) Approximate flash size in Kbytes
5
Package Information
Table 23. Package Descriptions
Pin Count 80 64 48 44 32 Package Type Low Quad Flat Package Low Quad Flat Package Quad Flat No-Leads Quad Flat Package Low Quad Flat Package Abbreviation LQFP LQFP QFN QFP LQFP Designator LK LH FT QD LC Case No. 917A 840F 1314 824A 873A Document No. 98ASS23237W 98ASS23234W 98ARH99048A 98ASB42839B 98ASH70029A
The below table details the various packages available.
5.1
Mechanical Drawings
The following pages are mechanical drawings for the packages described in Table 23. For the latest available drawings please visit our web site (http://www.freescale.com) and enter the package’s document number into the keyword search box.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 36 Freescale Semiconductor
Package Information
4X
4X 20 TIPS
–X–
X= L, M, N
0.20 (0.008) H L–M N
80 1 61 60
0.20 (0.008) T L–M N C L AB AB –M– VIEW Y B V J
PLATING
P
G
–L–
3X
VIEW Y B1
F
V1
BASE METAL
20 21 40
41
–N– A1 S1 A S
0.13 (0.005)
ROTATED 90_ CLOCKWISE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS –L–, –M– AND –N– TO BE DETERMINED AT DATUM PLANE –H–. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE –T–. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE –H–. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.460 (0.018). MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07 (0.003). DIM A A1 B B1 C C1 C2 D E F G J K P R1 S S1 U V V1 W Z 0 01 02 MILLIMETERS MIN MAX 14.00 BSC 7.00 BSC 14.00 BSC 7.00 BSC ––– 1.60 0.04 0.24 1.30 1.50 0.22 0.38 0.40 0.75 0.17 0.33 0.65 BSC 0.09 0.27 0.50 REF 0.325 BSC 0.10 0.20 16.00 BSC 8.00 BSC 0.09 0.16 16.00 BSC 8.00 BSC 0.20 REF 1.00 REF 0_ 10_ 0_ ––– 9_ 14_ INCHES MIN MAX 0.551 BSC 0.276 BSC 0.551 BSC 0.276 BSC ––– 0.063 0.002 0.009 0.051 0.059 0.009 0.015 0.016 0.030 0.007 0.013 0.026 BSC 0.004 0.011 0.020 REF 0.013 REF 0.004 0.008 0.630 BSC 0.315 BSC 0.004 0.006 0.630 BSC 0.315 BSC 0.008 REF 0.039 REF 0_ 10_ 0_ ––– 9_ 14_
SECTION AB–AB
C –H– –T–
SEATING PLANE
8X
q2
0.10 (0.004) T
VIEW AA (W) C2 0.05 (0.002)
S
q1
2X R R1
0.25 (0.010)
GAGE PLANE
(K) C1 E (Z)
q
VIEW AA
DATE 09/21/95
CASE 917A-02 ISSUE C
Figure 26. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 37
ÍÇÍÇ Í ÍÇÇÍ ÍÇÇ ÍÍ
D U
M
T L–M
S
N
S
Package Information
Figure 27. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 1 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 38 Freescale Semiconductor
Package Information
Figure 28. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 2 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 39
Package Information
Figure 29. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 3 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 40 Freescale Semiconductor
Package Information
Figure 30. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 1 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 41
Package Information
Figure 31. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 2 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 42 Freescale Semiconductor
Package Information
Figure 32. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 3 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 43
Package Information
Figure 33. 44-pin QFP Package Drawing (Case 824A, Doc #98ASB42839B), Sheet 1 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 44 Freescale Semiconductor
Package Information
Figure 34. 44-pin QFP Package Drawing (Case 824A, Doc #98ASB42839B), Sheet 2 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 45
Package Information
Figure 35. 44-pin QFP Package Drawing (Case 824A, Doc #98ASB42839B), Sheet 3 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 46 Freescale Semiconductor
Package Information
Figure 36. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 1 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 47
Package Information
Figure 37. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 2 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 48 Freescale Semiconductor
Package Information
Figure 38. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 3 of 3
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 49
Product Documentation
6
Product Documentation
Reference Manual (MC9S08QE128RM) Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.
Find the most current versions of all documents at: http://www.freescale.com
7
Revision History
To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://www.freescale.com The following revision history table summarizes changes contained in this document. Table 24. Revision History
Revision 3 Date 25 Jun 2007 Description of Changes Initial public Advance Information release.
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 50 Freescale Semiconductor
Revision History
MC9S08QE128 Series Advance Information Data Sheet, Rev. 3 Freescale Semiconductor 51
How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved.
D ocument Number: MC9S08QE128
Rev. 3 06/2007