0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC9S08SG32E1VTJR

MC9S08SG32E1VTJR

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MC9S08SG32E1VTJR - HCS08 Microcontrollers - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MC9S08SG32E1VTJR 数据手册
MC9S08SG32 MC9S08SG16 Data Sheet Now Includes High-Temperature (up to 150 °C) Devices! HCS08 Microcontrollers MC9S08SG32 Rev. 7 10/2009 freescale.com MC9S08SG32 Series Features 8-Bit HCS08 Central Processor Unit (CPU) • 40-MHz HCS08 CPU (central processor unit) • 36-MHz HCS08 CPU for temperatures greater than 125 °C • HC08 instruction set with added BGND instruction • Support for up to 32 interrupt/reset sources address and event-only data. Debug module supports both tag and force breakpoints Peripherals • ADC — 16-channel, 10-bit resolution, 2.5 μs conversion time, automatic compare function, temperature sensor, internal bandgap reference channel; runs in stop3 • ACMP — Analog comparators with selectable interrupt on rising, falling, or either edge of comparator output; compare option to fixed internal bandgap reference voltage; output can be optionally routed to TPM module; runs in stop3 • SCI — Full duplex non-return to zero (NRZ); LIN master extended break generation; LIN slave extended break detection; wake up on active edge • SPI — Full-duplex or single-wire bidirectional; Double-buffered transmit and receive; Master or Slave mode; MSB-first or LSB-first shifting • IIC — Up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10-bit addressing • MTIM — 8-bit modulo counter with 8-bit prescaler and overflow interrupt • TPMx — Two 2-channel timer pwm modules (TPM1, TPM2); Selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel • RTC — (Real-time counter) 8-bit modulus counter with binary or decimal based prescaler; External clock source for precise time base, time-of-day, calendar or task scheduling functions; Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components, runs in all MCU modes On-Chip Memory • FLASH read/program/erase over full operating voltage and temperature from –40 up to 150 °C • Random-access memory (RAM) • Security circuitry to prevent unauthorized access to RAM and FLASH contents Power-Saving Modes • Two very low power stop modes • Reduced power wait mode • Very low power real time counter for use in run, wait, and stop Clock Source Options • Oscillator (XOSC) — Loop-control Pierce oscillator; Crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz • Internal Clock Source (ICS) — Internal clock source module containing a frequency-locked loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and: • 1.5% deviation over temperature –40 to 125 °C • 3% deviation for temperature > 125 °C • ICS supports bus frequencies from 2 MHz to 20 MHz System Protection • Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus clock • Low-voltage detection with reset or interrupt; selectable trip points • Illegal opcode detection with reset • Illegal address detection with reset • FLASH block protect Input/Output • 22 general purpose I/O pins (GPIOs) • 8 interrupt pins with selectable polarity • Ganged output option for PTB[5:2] and PTC[3:0]; allows single write to change state of multiple pins • Hysteresis and configurable pull up device on all input pins; Configurable slew rate and drive strength on all output pins Development Support • Single-wire background debug interface • Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints in on-chip debug module) • On-chip, in-circuit emulation (ICE) debug module containing two comparators and 9 trigger modes. Eight-deep FIFO for storing change-of-flow Package Options • 28-TSSOP, 20-TSSOP, 16-TSSOP (20-pin package options not available on high-temperature rated devices). MC9S08SG32 Data Sheet Covers MC9S08SG32 MC9S08SG16 MC9S08SG32 Rev. 7 10/2009 Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. © Freescale Semiconductor, Inc., 2007-2009. All rights reserved. Revision History To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://freescale.com/ The following revision history table summarizes changes contained in this document. Revision Number 1 2 Revision Date 6/2007 10/2007 Description of Changes Updated the TPM module, incorporated minor revisions for the Tj, PTxSE slew rate, FPROT and Appendix B packaging information. -SAMPLES DRAFTQualify Draft includes updates to TPM module and the Electricals appendix. Also, revised the order numbering information. Updated some electricals and made some minor grammatical/formatting revisions. Corrected the SPI block module version. Removed incorrect ADC temperature sensor value from the Features section. Updated the package information with a special mask set identifier. Added the EMC Radiated Emissions data. Removed the Susceptibility Data. Updated the Corporate addresses on the back cover. Added the High Temperature Device Specifications and updated the charts. Updated ADC characteristics for Temp Sensor Slope to be a range of 25 C–150 Cadded Control Timing table row 2 to separate standard characteris, tics from the AEC Grade 0 characteristics, and included the text, “AEC Grade 0” to the text of footnote 3 for Table B-1 Device Numbering System. Added notes to the ADC chapter specifying that, for this device, there are only 16 analog input pins and consequently no APCTL3 register. Updated the Literature Request information on the back cover. Revised Table A-6 DC Characteristics, Row 24 Bandgap Voltage Reference for AEC Grade 0 from 1.21V to 1.22 V. Removed AEC Grade 0 (red diamond) from the Table A-9 ICS Frequency Specifications, Row 9 Total deviation of trimmed DCO output frequency over voltage and temperature so that it is not listed for AEC Grade 0. 3 5/2008 4 5 5/2008 03/2009 6 04/2009 7 10/2009 © Freescale Semiconductor, Inc., 2007-2009. All rights reserved. This product incorporates SuperFlash® Technology licensed from SST. MC9S08SG32 Data Sheet, Rev. 7 6 Freescale Semiconductor Contents Section Number Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Appendix A Appendix B Title Page Device Overview ...................................................................... 19 Pins and Connections ............................................................. 23 Modes of Operation ................................................................. 31 Memory ..................................................................................... 37 Resets, Interrupts, and General System Control.................. 59 Parallel Input/Output Control.................................................. 75 Central Processor Unit (S08CPUV3) ...................................... 93 Analog Comparator 5-V (S08ACMPV3)................................ 113 Analog-to-Digital Converter (S08ADC10V1)........................ 121 Inter-Integrated Circuit (S08IICV2) ....................................... 149 Internal Clock Source (S08ICSV2)........................................ 169 Modulo Timer (S08MTIMV1).................................................. 183 Real-Time Counter (S08RTCV1) ........................................... 193 Serial Communications Interface (S08SCIV4)..................... 203 Serial Peripheral Interface (S08SPIV3) ................................ 223 Timer Pulse-Width Modulator (S08TPMV3) ......................... 239 Development Support ........................................................... 267 Electrical Characteristics...................................................... 289 Ordering Information and Mechanical Drawings................ 323 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 7 Contents Section Number Title Chapter 1 Device Overview 1.1 1.2 1.3 Devices in the MC9S08SG32 Series............................................................................................... 19 MCU Block Diagram ...................................................................................................................... 20 System Clock Distribution .............................................................................................................. 22 Page Chapter 2 Pins and Connections 2.1 2.2 Device Pin Assignment ................................................................................................................... 23 Recommended System Connections ............................................................................................... 25 2.2.1 Power ................................................................................................................................ 25 2.2.2 Oscillator (XOSC) ............................................................................................................ 26 2.2.3 RESET .............................................................................................................................. 26 2.2.4 Background / Mode Select (BKGD/MS).......................................................................... 27 2.2.5 General-Purpose I/O and Peripheral Ports........................................................................ 27 Chapter 3 Modes of Operation 3.1 3.2 3.3 3.4 3.5 3.6 Introduction ..................................................................................................................................... 31 Features ........................................................................................................................................... 31 Run Mode........................................................................................................................................ 31 Active Background Mode................................................................................................................ 31 Wait Mode ....................................................................................................................................... 32 Stop Modes...................................................................................................................................... 32 3.6.1 Stop3 Mode....................................................................................................................... 33 3.6.2 Stop2 Mode....................................................................................................................... 34 3.6.3 On-Chip Peripheral Modules in Stop Modes.................................................................... 34 Chapter 4 Memory 4.1 4.2 4.3 4.4 4.5 MC9S08SG32 Series Memory Map ............................................................................................... 37 Reset and Interrupt Vector Assignments ......................................................................................... 38 Register Addresses and Bit Assignments........................................................................................ 39 RAM................................................................................................................................................ 46 FLASH ............................................................................................................................................ 46 4.5.1 Features ............................................................................................................................. 47 4.5.2 Program and Erase Times ................................................................................................. 47 4.5.3 Program and Erase Command Execution ......................................................................... 48 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 9 Section Number Title Page 4.6 4.7 4.5.4 Burst Program Execution.................................................................................................. 49 4.5.5 Access Errors .................................................................................................................... 51 4.5.6 FLASH Block Protection.................................................................................................. 51 4.5.7 Vector Redirection ............................................................................................................ 52 Security............................................................................................................................................ 52 FLASH Registers and Control Bits ................................................................................................. 54 4.7.1 FLASH Clock Divider Register (FCDIV) ........................................................................ 54 4.7.2 FLASH Options Register (FOPT and NVOPT)................................................................ 55 4.7.3 FLASH Configuration Register (FCNFG)........................................................................ 56 4.7.4 FLASH Protection Register (FPROT and NVPROT)....................................................... 56 4.7.5 FLASH Status Register (FSTAT)...................................................................................... 57 4.7.6 FLASH Command Register (FCMD)............................................................................... 58 Chapter 5 Resets, Interrupts, and General System Control 5.1 5.2 5.3 5.4 5.5 Introduction ..................................................................................................................................... 59 Features ........................................................................................................................................... 59 MCU Reset...................................................................................................................................... 59 Computer Operating Properly (COP) Watchdog............................................................................. 60 Interrupts ......................................................................................................................................... 61 5.5.1 Interrupt Stack Frame ....................................................................................................... 62 5.5.2 Interrupt Vectors, Sources, and Local Masks.................................................................... 63 Low-Voltage Detect (LVD) System ................................................................................................ 65 5.6.1 Power-On Reset Operation ............................................................................................... 65 5.6.2 Low-Voltage Detection (LVD) Reset Operation............................................................... 65 5.6.3 Low-Voltage Warning (LVW) Interrupt Operation........................................................... 65 Reset, Interrupt, and System Control Registers and Control Bits ................................................... 65 5.7.1 System Reset Status Register (SRS) ................................................................................. 66 5.7.2 System Background Debug Force Reset Register (SBDFR) ............................................ 67 5.7.3 System Options Register 1 (SOPT1) ................................................................................ 68 5.7.4 System Options Register 2 (SOPT2) ................................................................................ 69 5.7.5 System Device Identification Register (SDIDH, SDIDL) ................................................ 70 5.7.6 System Power Management Status and Control 1 Register (SPMSC1) ........................... 71 5.7.7 System Power Management Status and Control 2 Register (SPMSC2) ........................... 72 5.6 5.7 Chapter 6 Parallel Input/Output Control 6.1 6.2 6.3 6.4 Port Data and Data Direction .......................................................................................................... 75 Pull-up, Slew Rate, and Drive Strength........................................................................................... 76 Ganged Output ................................................................................................................................ 77 Pin Interrupts ................................................................................................................................... 78 6.4.1 Edge-Only Sensitivity ....................................................................................................... 78 MC9S08SG32 Data Sheet, Rev. 7 10 Freescale Semiconductor Section Number Title Page 6.5 6.6 6.4.2 Edge and Level Sensitivity................................................................................................ 79 6.4.3 Pull-up/Pull-down Resistors ............................................................................................. 79 6.4.4 Pin Interrupt Initialization................................................................................................. 79 Pin Behavior in Stop Modes............................................................................................................ 79 Parallel I/O and Pin Control Registers ............................................................................................ 80 6.6.1 Port A Registers ................................................................................................................ 81 6.6.2 Port B Registers ................................................................................................................ 85 6.6.3 Port C Registers ................................................................................................................ 89 Chapter 7 Central Processor Unit (S08CPUV3) 7.1 7.2 Introduction ..................................................................................................................................... 93 7.1.1 Features ............................................................................................................................. 93 Programmer’s Model and CPU Registers ....................................................................................... 94 7.2.1 Accumulator (A) ............................................................................................................... 94 7.2.2 Index Register (H:X)......................................................................................................... 94 7.2.3 Stack Pointer (SP) ............................................................................................................. 95 7.2.4 Program Counter (PC) ...................................................................................................... 95 7.2.5 Condition Code Register (CCR) ....................................................................................... 95 Addressing Modes........................................................................................................................... 97 7.3.1 Inherent Addressing Mode (INH)..................................................................................... 97 7.3.2 Relative Addressing Mode (REL)..................................................................................... 97 7.3.3 Immediate Addressing Mode (IMM)................................................................................ 97 7.3.4 Direct Addressing Mode (DIR) ........................................................................................ 97 7.3.5 Extended Addressing Mode (EXT) .................................................................................. 98 7.3.6 Indexed Addressing Mode ................................................................................................ 98 Special Operations........................................................................................................................... 99 7.4.1 Reset Sequence ................................................................................................................. 99 7.4.2 Interrupt Sequence ............................................................................................................ 99 7.4.3 Wait Mode Operation...................................................................................................... 100 7.4.4 Stop Mode Operation...................................................................................................... 100 7.4.5 BGND Instruction........................................................................................................... 101 HCS08 Instruction Set Summary .................................................................................................. 102 7.3 7.4 7.5 Chapter 8 Analog Comparator 5-V (S08ACMPV3) 8.1 Introduction ................................................................................................................................... 113 8.1.1 ACMP Configuration Information .................................................................................. 113 8.1.2 ACMP/TPM Configuration Information......................................................................... 113 Features ......................................................................................................................................... 115 Modes of Operation....................................................................................................................... 115 Block Diagram .............................................................................................................................. 115 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 11 8.2 8.3 8.4 Section Number 8.5 8.6 8.7 Title Page External Signal Description .......................................................................................................... 117 Memory Map ................................................................................................................................ 117 8.6.1 Register Descriptions ...................................................................................................... 117 Functional Description .................................................................................................................. 119 Chapter 9 Analog-to-Digital Converter (S08ADC10V1) 9.1 Introduction ................................................................................................................................... 121 9.1.1 Channel Assignments...................................................................................................... 121 9.1.2 Analog Power and Ground Signal Names ...................................................................... 122 9.1.3 Alternate Clock ............................................................................................................... 122 9.1.4 Hardware Trigger ............................................................................................................ 122 9.1.5 Temperature Sensor ........................................................................................................ 122 9.1.6 Features ........................................................................................................................... 125 9.1.7 ADC Module Block Diagram ......................................................................................... 125 External Signal Description .......................................................................................................... 126 9.2.1 Analog Power (VDDA) .................................................................................................... 127 9.2.2 Analog Ground (VSSA) ................................................................................................... 127 9.2.3 Voltage Reference High (VREFH) ................................................................................... 127 9.2.4 Voltage Reference Low (VREFL)..................................................................................... 127 9.2.5 Analog Channel Inputs (ADx) ........................................................................................ 127 Register Definition ........................................................................................................................ 127 9.3.1 Status and Control Register 1 (ADCSC1) ...................................................................... 128 9.3.2 Status and Control Register 2 (ADCSC2) ...................................................................... 129 9.3.3 Data Result High Register (ADCRH)............................................................................. 130 9.3.4 Data Result Low Register (ADCRL) .............................................................................. 130 9.3.5 Compare Value High Register (ADCCVH).................................................................... 131 9.3.6 Compare Value Low Register (ADCCVL) ..................................................................... 131 9.3.7 Configuration Register (ADCCFG) ................................................................................ 131 9.3.8 Pin Control 1 Register (APCTL1) .................................................................................. 133 9.3.9 Pin Control 2 Register (APCTL2) .................................................................................. 134 9.3.10 Pin Control 3 Register (APCTL3) .................................................................................. 135 Functional Description .................................................................................................................. 136 9.4.1 Clock Select and Divide Control .................................................................................... 136 9.4.2 Input Select and Pin Control ........................................................................................... 137 9.4.3 Hardware Trigger ............................................................................................................ 137 9.4.4 Conversion Control ......................................................................................................... 137 9.4.5 Automatic Compare Function......................................................................................... 140 9.4.6 MCU Wait Mode Operation............................................................................................ 141 9.4.7 MCU Stop3 Mode Operation.......................................................................................... 141 9.4.8 MCU Stop2 Mode Operation.......................................................................................... 142 Initialization Information .............................................................................................................. 142 MC9S08SG32 Data Sheet, Rev. 7 12 Freescale Semiconductor 9.2 9.3 9.4 9.5 Section Number 9.6 Title Page 9.5.1 ADC Module Initialization Example ............................................................................. 142 Application Information................................................................................................................ 144 9.6.1 External Pins and Routing .............................................................................................. 144 9.6.2 Sources of Error .............................................................................................................. 146 Chapter 10 Inter-Integrated Circuit (S08IICV2) 10.1 Introduction ................................................................................................................................... 149 10.1.1 Module Configuration..................................................................................................... 149 10.1.2 Features ........................................................................................................................... 151 10.1.3 Modes of Operation ........................................................................................................ 151 10.1.4 Block Diagram ................................................................................................................ 152 10.2 External Signal Description .......................................................................................................... 152 10.2.1 SCL — Serial Clock Line ............................................................................................... 152 10.2.2 SDA — Serial Data Line ................................................................................................ 152 10.3 Register Definition ........................................................................................................................ 152 10.3.1 IIC Address Register (IICA) ........................................................................................... 153 10.3.2 IIC Frequency Divider Register (IICF)........................................................................... 153 10.3.3 IIC Control Register (IICC1) .......................................................................................... 156 10.3.4 IIC Status Register (IICS)............................................................................................... 157 10.3.5 IIC Data I/O Register (IICD) .......................................................................................... 158 10.3.6 IIC Control Register 2 (IICC2) ....................................................................................... 158 10.4 Functional Description .................................................................................................................. 159 10.4.1 IIC Protocol..................................................................................................................... 159 10.4.2 10-bit Address................................................................................................................. 163 10.4.3 General Call Address ...................................................................................................... 164 10.5 Resets ............................................................................................................................................ 164 10.6 Interrupts ....................................................................................................................................... 164 10.6.1 Byte Transfer Interrupt.................................................................................................... 164 10.6.2 Address Detect Interrupt ................................................................................................. 164 10.6.3 Arbitration Lost Interrupt................................................................................................ 164 10.7 Initialization/Application Information .......................................................................................... 166 Chapter 11 Internal Clock Source (S08ICSV2) 11.1 Introduction ................................................................................................................................... 169 11.1.1 Module Configuration..................................................................................................... 169 11.1.2 Features ........................................................................................................................... 171 11.1.3 Block Diagram ................................................................................................................ 171 11.1.4 Modes of Operation ........................................................................................................ 172 11.2 External Signal Description .......................................................................................................... 173 11.3 Register Definition ........................................................................................................................ 173 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 13 Section Number Title Page 11.3.1 ICS Control Register 1 (ICSC1) ..................................................................................... 174 11.3.2 ICS Control Register 2 (ICSC2) ..................................................................................... 175 11.3.3 ICS Trim Register (ICSTRM)......................................................................................... 176 11.3.4 ICS Status and Control (ICSSC)..................................................................................... 176 11.4 Functional Description .................................................................................................................. 177 11.4.1 Operational Modes.......................................................................................................... 177 11.4.2 Mode Switching .............................................................................................................. 179 11.4.3 Bus Frequency Divider ................................................................................................... 180 11.4.4 Low Power Bit Usage ..................................................................................................... 180 11.4.5 Internal Reference Clock ................................................................................................ 180 11.4.6 Optional External Reference Clock ................................................................................ 180 11.4.7 Fixed Frequency Clock ................................................................................................... 181 Chapter 12 Modulo Timer (S08MTIMV1) 12.1 Introduction ................................................................................................................................... 183 12.1.1 MTIM Configuration Information .................................................................................. 183 12.1.2 Features ........................................................................................................................... 185 12.1.3 Modes of Operation ........................................................................................................ 185 12.1.4 Block Diagram ................................................................................................................ 186 12.2 External Signal Description .......................................................................................................... 186 12.3 Register Definition ........................................................................................................................ 187 12.3.1 MTIM Status and Control Register (MTIMSC) ............................................................. 188 12.3.2 MTIM Clock Configuration Register (MTIMCLK) ....................................................... 189 12.3.3 MTIM Counter Register (MTIMCNT)........................................................................... 190 12.3.4 MTIM Modulo Register (MTIMMOD).......................................................................... 190 12.4 Functional Description .................................................................................................................. 191 12.4.1 MTIM Operation Example ............................................................................................. 192 Chapter 13 Real-Time Counter (S08RTCV1) 13.1 Introduction ................................................................................................................................... 193 13.1.1 Features ........................................................................................................................... 195 13.1.2 Modes of Operation ........................................................................................................ 195 13.1.3 Block Diagram ................................................................................................................ 196 13.2 External Signal Description .......................................................................................................... 196 13.3 Register Definition ........................................................................................................................ 196 13.3.1 RTC Status and Control Register (RTCSC).................................................................... 197 13.3.2 RTC Counter Register (RTCCNT).................................................................................. 198 13.3.3 RTC Modulo Register (RTCMOD) ................................................................................ 198 13.4 Functional Description .................................................................................................................. 198 13.4.1 RTC Operation Example................................................................................................. 199 MC9S08SG32 Data Sheet, Rev. 7 14 Freescale Semiconductor Section Number Title Page 13.5 Initialization/Application Information .......................................................................................... 200 Chapter 14 Serial Communications Interface (S08SCIV4) 14.1 Introduction ................................................................................................................................... 203 14.1.1 Features ........................................................................................................................... 205 14.1.2 Modes of Operation ........................................................................................................ 205 14.1.3 Block Diagram ................................................................................................................ 206 14.2 Register Definition ........................................................................................................................ 208 14.2.1 SCI Baud Rate Registers (SCIBDH, SCIBDL) .............................................................. 208 14.2.2 SCI Control Register 1 (SCIC1) ..................................................................................... 209 14.2.3 SCI Control Register 2 (SCIC2) ..................................................................................... 210 14.2.4 SCI Status Register 1 (SCIS1) ........................................................................................ 211 14.2.5 SCI Status Register 2 (SCIS2) ........................................................................................ 213 14.2.6 SCI Control Register 3 (SCIC3) ..................................................................................... 214 14.2.7 SCI Data Register (SCID)............................................................................................... 215 14.3 Functional Description .................................................................................................................. 215 14.3.1 Baud Rate Generation ..................................................................................................... 215 14.3.2 Transmitter Functional Description ................................................................................ 216 14.3.3 Receiver Functional Description..................................................................................... 217 14.3.4 Interrupts and Status Flags.............................................................................................. 219 14.3.5 Additional SCI Functions ............................................................................................... 220 Chapter 15 Serial Peripheral Interface (S08SPIV3) 15.1 Introduction ................................................................................................................................... 223 15.1.1 Features ........................................................................................................................... 225 15.1.2 Block Diagrams .............................................................................................................. 225 15.1.3 SPI Baud Rate Generation .............................................................................................. 227 15.2 External Signal Description .......................................................................................................... 228 15.2.1 SPSCK — SPI Serial Clock............................................................................................ 228 15.2.2 MOSI — Master Data Out, Slave Data In ...................................................................... 228 15.2.3 MISO — Master Data In, Slave Data Out ...................................................................... 228 15.2.4 SS — Slave Select........................................................................................................... 228 15.3 Modes of Operation....................................................................................................................... 229 15.3.1 SPI in Stop Modes .......................................................................................................... 229 15.4 Register Definition ........................................................................................................................ 229 15.4.1 SPI Control Register 1 (SPIC1) ...................................................................................... 229 15.4.2 SPI Control Register 2 (SPIC2) ...................................................................................... 230 15.4.3 SPI Baud Rate Register (SPIBR).................................................................................... 231 15.4.4 SPI Status Register (SPIS) .............................................................................................. 232 15.4.5 SPI Data Register (SPID)................................................................................................ 233 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 15 Section Number Title Page 15.5 Functional Description .................................................................................................................. 234 15.5.1 SPI Clock Formats .......................................................................................................... 234 15.5.2 SPI Interrupts .................................................................................................................. 237 15.5.3 Mode Fault Detection ..................................................................................................... 237 Chapter 16 Timer Pulse-Width Modulator (S08TPMV3) 16.1 Introduction ................................................................................................................................... 239 16.1.1 TPM Configuration Information ..................................................................................... 239 16.1.2 TPM Pin Repositioning .................................................................................................. 239 16.1.3 Features ........................................................................................................................... 241 16.1.4 Modes of Operation ........................................................................................................ 241 16.1.5 Block Diagram ................................................................................................................ 242 16.2 Signal Description ......................................................................................................................... 244 16.2.1 Detailed Signal Descriptions........................................................................................... 244 16.3 Register Definition ........................................................................................................................ 248 16.3.1 TPM Status and Control Register (TPMxSC) ................................................................ 248 16.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL).................................................... 249 16.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL).................................... 250 16.3.4 TPM Channel n Status and Control Register (TPMxCnSC) .......................................... 251 16.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL) .......................................... 252 16.4 Functional Description .................................................................................................................. 254 16.4.1 Counter............................................................................................................................ 254 16.4.2 Channel Mode Selection ................................................................................................. 256 16.5 Reset Overview ............................................................................................................................. 259 16.5.1 General............................................................................................................................ 259 16.5.2 Description of Reset Operation....................................................................................... 259 16.6 Interrupts ....................................................................................................................................... 259 16.6.1 General............................................................................................................................ 259 16.6.2 Description of Interrupt Operation.................................................................................. 260 16.7 The Differences from TPM v2 to TPM v3.................................................................................... 261 Chapter 17 Development Support 17.1 Introduction ................................................................................................................................... 267 17.1.1 Forcing Active Background ............................................................................................ 267 17.1.2 Features ........................................................................................................................... 268 17.2 Background Debug Controller (BDC) .......................................................................................... 268 17.2.1 BKGD Pin Description ................................................................................................... 269 17.2.2 Communication Details .................................................................................................. 270 17.2.3 BDC Commands ............................................................................................................. 274 17.2.4 BDC Hardware Breakpoint............................................................................................. 276 MC9S08SG32 Data Sheet, Rev. 7 16 Freescale Semiconductor Section Number Title Page 17.3 On-Chip Debug System (DBG) .................................................................................................... 277 17.3.1 Comparators A and B...................................................................................................... 277 17.3.2 Bus Capture Information and FIFO Operation ............................................................... 277 17.3.3 Change-of-Flow Information .......................................................................................... 278 17.3.4 Tag vs. Force Breakpoints and Triggers ......................................................................... 278 17.3.5 Trigger Modes................................................................................................................. 279 17.3.6 Hardware Breakpoints .................................................................................................... 281 17.4 Register Definition ........................................................................................................................ 281 17.4.1 BDC Registers and Control Bits ..................................................................................... 281 17.4.2 System Background Debug Force Reset Register (SBDFR) .......................................... 283 17.4.3 DBG Registers and Control Bits..................................................................................... 284 Appendix A Electrical Characteristics A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 A.11 A.12 Introduction ....................................................................................................................................289 Parameter Classification.................................................................................................................289 Absolute Maximum Ratings...........................................................................................................289 Thermal Characteristics..................................................................................................................291 ESD Protection and Latch-Up Immunity .......................................................................................293 DC Characteristics..........................................................................................................................294 Supply Current Characteristics.......................................................................................................300 External Oscillator (XOSC) Characteristics ..................................................................................304 Internal Clock Source (ICS) Characteristics ..................................................................................306 Analog Comparator (ACMP) Electricals .......................................................................................307 ADC Characteristics.......................................................................................................................308 AC Characteristics..........................................................................................................................314 A.12.1 Control Timing ................................................................................................................314 A.12.2 TPM/MTIM Module Timing ...........................................................................................316 A.12.3 SPI....................................................................................................................................317 A.13 Flash Specifications........................................................................................................................321 A.14 EMC Performance..........................................................................................................................322 A.14.1 Radiated Emissions..........................................................................................................322 Appendix B Ordering Information and Mechanical Drawings B.1 Ordering Information .....................................................................................................................323 B.1.1 Device Numbering Scheme .............................................................................................324 B.2 Package Information and Mechanical Drawings ...........................................................................324 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 17 Chapter 1 Device Overview The MC9S08SG32 devices are members of the low-cost, high-performance HCS08 family of 8-bit microcontroller units (MCUs). The MC9S08SG32 Series high-temperature devices have been qualified to meet or exceed AEC Grade 0 requirements to allow them to operate up to 150 °C TA. All MCUs in the family use the enhanced HCS08 core and are available with a variety of modules, memory sizes, memory types, and package types. 1.1 Devices in the MC9S08SG32 Series Table 1-1. MC9S08SG32 Series Features by MCU and Package Feature FLASH size (bytes) RAM size (bytes) Pin quantity ACMP ADC channels DBG ICS IIC MTIM Pin Interrupts Pin I/O RTC SCI SPI TPM1 channels TPM2 channels XOSC 22 16 28 MC9S08SG32 32768 1024 20 yes 12 yes yes yes yes 8 16 yes yes yes yes yes yes 12 22 8 16 16 28 MC9S08SG16 16384 1024 20 yes 12 yes yes yes yes 8 16 yes yes yes yes yes yes 12 8 16 t Table 1-1 summarizes the feature set available in the MC9S08SG32 series of MCUs. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 19 Chapter 1 Device Overview 1.2 MCU Block Diagram The block diagram in Figure 1-1 shows the structure of the MC9S08SG32 Series MCU. BKGD/MS RESET HCS08 CORE DEBUG MODULE (DBG) CPU BDC 8-BIT MODULO TIMER MODULE (MTIM) TCLK PORT A PTA7/TPM2CH1 PTA6/TPM2CH0 HCS08 SYSTEM CONTROL RESETS AND INTERRUPTS MODES OF OPERATION POWER MANAGEMENT COP LVD SCL IIC MODULE (IIC) SDA SS MISO MOSI SPSCK PTA3/PIA3/SCL/ADP3 PTA2/PIA2/SDA/ACMPO/ADP2 PTA1/PIA1/TPM2CH0/ADP1/ACMP– PTA0/PIA0/TPM1CH0/TCLK/ADP0/ACMP+ USER FLASH (MC9S08SG32 = 32,768 BYTES)(MC9S08SG16 = 16,384 SERIAL PERIPHERAL INTERFACE MODULE (SPI) SERIAL COMMUNICATIONS INTERFACE MODULE (SCI) USER RAM (MC9S08SG32 = 1024 BYTES) (MC9S08SG16 = 1024 BYTES) REAL-TIME COUNTER (RTC) 40-MHz INTERNAL CLOCK SOURCE (ICS) LOW-POWER OSCILLATOR 31.25 kHz to 38.4 kHz 1 MHz to 16 MHz (XOSC) VSS EXTAL XTAL ANALOG COMPARATOR (ACMP) 16-BIT TIMER/PWM MODULE (TPM2) 16-BIT TIMER/PWM MODULE (TPM1) RxD TxD PORT B TCLK TPM1CH0 TPM1CH1 TCLK TPM2CH0 TPM2CH1 ACMPO ACMP– Δ Δ Δ Δ PTB7/SCL/EXTAL PTB6/SDA/XTAL PTB5/TPM1CH1/SS PTB4/TPM2CH1/MISO PTB3/PIB3/MOSI/ADP7 PTB2/PIB2/SPSCK/ADP6 PTB1/PIB1/TxD/ADP5 PTB0/PIB0/RxD/ADP4 ACMP+ PTC7/ADP15 PTC6/ADP14 PTC5/ADP13 PORT C PTC4/ADP12 PTC3/ADP11 :Q!A "D PTC1/TPM1CH1/ADP9 PTC0/TPM1CH0/ADP8 VDD VDDA/VREFH VSSA/VREFL VOLTAGE REGULATOR VDDA VSSA VREFH VREFL 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) ADP15-ADP0 Δ Δ Δ Δ NOTE • PTC7-PTC0 and PTA7-PTA6 are not available on 16-pin Packages • PTC7-PTC4 and PTA7-PTA6 are not available on 20-pin Packages • For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL are double bonded to VDD and VSS respectively. Δ = Pin can be enabled as part of the ganged output drive feature Figure 1-1. MC9S08SG32 Series Block Diagram MC9S08SG32 Data Sheet, Rev. 7 20 Freescale Semiconductor Chapter 1 Device Overview Table 1-2 provides the functional version of the on-chip modules. Table 1-2. Module Versions Module Analog Comparator (5V) Analog-to-Digital Converter Central Processor Unit Inter-Integrated Circuit Internal Clock Source Low Power Oscillator Modulo Timer On-Chip In-Circuit Emulator Real-Time Counter Serial Peripheral Interface Serial Communications Interface Timer Pulse Width Modulator (ACMP) (ADC10) (CPU) (IIC) (ICS) (XOSC) (MTIM) (DBG) (RTC) (SPI) (SCI) (TPM) Version 3 1 3 2 2 1 1 2 1 3 4 3 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 21 Chapter 1 Device Overview 1.3 System Clock Distribution Figure 1-2 shows a simplified clock connection diagram. Some modules in the MCU have selectable clock inputs as shown. The clock inputs to the modules indicate the clock(s) that are used to drive the module function. The following defines the clocks used in this MCU: • BUSCLK — The frequency of the bus is always half of ICSOUT. • ICSOUT — Primary output of the ICS and is twice the bus frequency. • ICSLCLK — Development tools can select this clock source to speed up BDC communications in systems where the bus clock is configured to run at a very slow frequency. • ICSERCLK — External reference clock can be selected as the RTC clock source and as the alternate clock for the ADC module. • ICSIRCLK — Internal reference clock can be selected as the RTC clock source. • ICSFFCLK — Fixed frequency clock can be selected as clock source for the TPM1, TPM2 and MTIM modules. • LPOCLK — Independent 1-kHz clock source that can be selected as the clock source for the COP and RTC modules. • TCLK — External input clock source for TPM1, TPM2 and MTIM and is referenced as TPMCLK in TPM chapters. TCLK 1 kHZ LPO LPOCLK ICSERCLK ICSIRCLK ICS RTC COP TPM1 TPM2 MTIM SCI SPI ICSFFCLK ÷2 ÷2 BUSCLK SYNC* FFCLK* ICSOUT ICSLCLK XOSC CPU BDC ADC IIC FLASH EXTAL XTAL * The fixed frequency clock (FFCLK) is internally synchronized to the bus clock and must not exceed one half of the bus clock frequency. ADC has min and max frequency requirements.See the ADC chapter and electricals appendix for details. FLASH has frequency requirements for program and erase operation. See the electricals appendix for details. Figure 1-2. System Clock Distribution Diagram MC9S08SG32 Data Sheet, Rev. 7 22 Freescale Semiconductor Chapter 2 Pins and Connections This section describes signals that connect to package pins. It includes pinout diagrams, recommended system connections, and detailed discussions of signals. 2.1 Device Pin Assignment The following figures show the pin assignments for the MC9S08SG32 Series devices. PTC5/ADP13 PTC4/ADP12 RESET BKGD/MS VDD VDDA/VREFH VSSA/VREFL VSS PTB7/SCL/EXTAL PTB6/SDA/XTAL PTB5/TPM1CH1/SS PTB4/TPM2CH1/MISO PTC3/ADP11 PTC2/ADP10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 PTC6/ADP14 PTC7/ADP15 PTA0/PIA0/TPM1CH0/TCLK/ADP0/ACMP+ PTA1/PIA1/TPM2CH0/ADP1/ACMP– PTA2/PIA2/SDA/ACMPO/ADP2 PTA3/PIA3/SCL/ADP3 PTA6/TPM2CH0 PTA7/TPM2CH1 PTB0/PIB0/RxD/ADP4 PTB1/PIB1/TxD/ADP5 PTB2/PIB2/SPSCK/ADP6 PTB3/PIB3/MOSI/ADP7 PTC0/TPM1CH0/ADP8 PTC1/TPM1CH1/ADP9 Figure 2-1. 28-Pin TSSOP RESET BKGD/MS VDD VSS PTB7/SCL/EXTAL PTB6/SDA/XTAL PTB5/TPM1CH1/SS PTB4/TPM2CH1/MISO PTC3/ADP11 PTC2/ADP10 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 PTA0/PIA0/TPM1CH0/TCLK/ADP0/ACMP+ PTA1/PIA1/TPM2CH0/ADP1/ACMP– PTA2/PIA2/SDA/ACMPO/ADP2 PTA3/PIA3/SCL/ADP3 PTB0/PIB0/RxD/ADP4 PTB1/PIB1/TxD/ADP5 PTB2/PIB2/SPSCK/ADP6 PTB3/PIB3/MOSI/ADP7 PTC0/TPM1CH0/ADP8 PTC1/TPM1CH1/ADP9 Figure 2-2. 20-Pin TSSOP1 1. 20-Pin TSSOP package not available for the high-temperature rated devices. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 23 Chapter 2 Pins and Connections RESET BKGD/MS VDD VSS PTB7/SCL/EXTAL PTB6/SDA/XTAL PTB5/TPM1CH1/SS PTB4/TPM2CH1/MISO 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 PTA0/PIA0/TPM1CH0/TCLK/ADP0/ACMP+ PTA1/PIA1/TPM2CH0/ADP1/ACMP– PTA2/PIA2/SDA/ACMPO/ADP2 PTA3/PIA3/SCL/ADP3 PTB0/PIB0/RxD/ADP4 PTB1/PIB1/TxD/ADP5 PTB2/PIB2/SPSCK/ADP6 PTB3/PIB3/MOSI/ADP7 Figure 2-3. 16-Pin TSSOP MC9S08SG32 Data Sheet, Rev. 7 24 Freescale Semiconductor Chapter 2 Pins and Connections 2.2 Recommended System Connections Figure 2-4 shows pin connections that are common to MC9S08SG32 Series application systems. BACKGROUND HEADER VDD VDD 4.7 kΩ–10 kΩ MC9S08SG32 BKGD/MS PTA0/PIA0/TPM1CH0/TCLK/ADP0/ACMP+ PTA1/PIA1/TPM2CH0/ADP1/ACMP– PTA2/PIA2/SDA/ACMPO/ADP2 PORT A RESET PTA3/PIA3/SCL/ADP3 OPTIONAL MANUAL RESET 0.1 μF PTA6/TPM2CH0 PTA7/TPM2CH1 PTB0/PIB0/RxD/ADP4 PTB1/PIB1/TxD/ADP5 PTB2/PIB2/SPSCK/ADP6 PORT B PORT C PTB3/PIB3/MOSI/ADP7 PTB4/TPM2CH1/MISO PTB5/TPM1CH1/SS PTB6/SDA/XTAL PTB7/SCL/EXTAL PTC0/TPM1CH0/ADP8 PTC1/TPM1CH1/ADP9 PTC2/ADP10 PTC3/ADP11 PTC4/ADP12 PTC5/ADP13 PTC6/ADP14 PTC7/ADP15 RF VDD + 5V CBLK + 10 μF CBY 0.1 μF VSS NOTE 1 SYSTEM POWER VDDA\VREFH CBY 0.1 μF VSSA\VREFL C1 X1 C2 RS NOTES: 1. External crystal circuit not required if using the internal clock option. 2. RESET pin can only be used to reset into user mode, you can not enter BDM using RESET pin. BDM can be entered by holding MS low during POR or writing a 1 to BDFR in SBDFR with MS low after issuing BDM command. 3. RC filter on RESET pin recommended for noisy environments. 4. For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL are double bonded to VDD and VSS respectively. Figure 2-4. Basic System Connections 2.2.1 Power VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides regulated lower-voltage source to the CPU and other internal circuitry of the MCU. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 25 Chapter 2 Pins and Connections Typically, application systems have two separate capacitors across the power pins. In this case, there should be a bulk electrolytic capacitor, such as a 10-μF tantalum capacitor, to provide bulk charge storage for the overall system and a 0.1-μF ceramic bypass capacitor located as near to the MCU power pins as practical to suppress high-frequency noise. Each pin must have a bypass capacitor for best noise suppression. VDDA and VSSA are the analog power supply pins for MCU. This voltage source supplies power to the ADC module. A 0.1 μF ceramic bypass capacitor should be located as near to the MCU power pins as practical to suppress high-frequency noise. The VREFH and VREFL pins are the voltage reference high and voltage reference low inputs, respectively for the ADC module. For this MCU, VDDA shares the VREFH pin and these pins are available only in the 28-pin packages. In the 16-pin and 20-pin packages, they are double bonded to the VDD pin. For this MCU, VSSA shares the VREFL pin and these pins are available only in the 28-pin packages. In the 16-pin and 20-pin packages, they are double bonded to the VSS pin. 2.2.2 Oscillator (XOSC) Immediately after reset, the MCU uses an internally generated clock provided by the clock source generator (ICS) module. For more information on the ICS, see Chapter 11, “Internal Clock Source (S08ICSV2).” The oscillator (XOSC) in this MCU is a Pierce oscillator that can accommodate a crystal or ceramic resonator. Rather than a crystal or ceramic resonator, an external oscillator can be connected to the EXTAL input pin. Refer to Figure 2-4 for the following discussion. RS (when used) and RF should be low-inductance resistors such as carbon composition resistors. Wire-wound resistors, and some metal film resistors, have too much inductance. C1 and C2 normally should be high-quality ceramic capacitors that are specifically designed for high-frequency applications. RF is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup; its value is not generally critical. Typical systems use 1 MΩ to 10 MΩ. Higher values are sensitive to humidity and lower values reduce gain and (in extreme cases) could prevent startup. C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to match the requirements of a specific crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and MCU pin capacitance when selecting C1 and C2. The crystal manufacturer typically specifies a load capacitance which is the series combination of C1 and C2 (which are usually the same size). As a first-order approximation, use 10 pF as an estimate of combined pin and PCB capacitance for each oscillator pin (EXTAL and XTAL). 2.2.3 RESET RESET is a dedicated pin with open-drain drive containing an internal pull-up device. Internal power-on reset and low-voltage reset circuitry typically make external reset circuitry unnecessary. This pin is normally connected to the standard 6-pin background debug connector so a development system can directly reset the MCU system. If desired, a manual external reset can be added by supplying a simple switch to ground (pull reset pin low to force a reset). MC9S08SG32 Data Sheet, Rev. 7 26 Freescale Semiconductor Chapter 2 Pins and Connections Whenever any reset is initiated (whether from an external signal or from an internal system), the RESET pin is driven low for about 66 bus cycles. The reset circuitry decodes the cause of reset and records it by setting a corresponding bit in the system reset status register (SRS). • • NOTE This pin does not contain a clamp diode to VDD and should not be driven above VDD. The voltage measured on the internally pulled up RESET pin will not be pulled to VDD. The internal gates connected to this pin are pulled to VDD. If the RESET pin is required to drive to a VDD level, an external pullup should be used. In EMC-sensitive applications, an external RC filter is recommended on the RESET. See Figure 2-4 for an example. • 2.2.4 Background / Mode Select (BKGD/MS) During a power-on-reset (POR) or background debug force reset (see Section 5.7.2, “System Background Debug Force Reset Register (SBDFR),” for more information), the BKGD/MS pin functions as a mode select pin. Immediately after any reset, the pin functions as the background pin and can be used for background debug communication. The BKGD/MS pin contains an internal pullup device. If nothing is connected to this pin, the MCU enters normal operating mode at the rising edge of the internal reset after a POR or force BDC reset. If a debug system is connected to the 6-pin standard background debug header, it can hold BKGD/MS low during a POR or immediately after issuing a background debug force reset, which will force the MCU to active background mode. The BKGD pin is used primarily for background debug controller (BDC) communications using a custom protocol that uses 16 clock cycles of the target MCU’s BDC clock per bit time. The target MCU’s BDC clock could be as fast as the maximum bus clock rate, so there must never be any significant capacitance connected to the BKGD/MS pin that could interfere with background serial communications. Although the BKGD pin is a pseudo open-drain pin, the background debug communication protocol provides brief, actively driven, high speedup pulses to ensure fast rise times. Small capacitances from cables and the absolute value of the internal pullup device play almost no role in determining rise and fall times on the BKGD pin. 2.2.5 General-Purpose I/O and Peripheral Ports The MC9S08SG32 Series of MCUs support up to 22 general-purpose I/O pins which are shared with on-chip peripheral functions (timers, serial I/O, ADC, etc.). When a port pin is configured as a general-purpose output or a peripheral uses the port pin as an output, software can select one of two drive strengths and enable or disable slew rate control. When a port pin is configured as a general-purpose input or a peripheral uses the port pin as an input, software can enable a pull-up device. Immediately after reset, all of these pins are configured as high-impedance general-purpose inputs with internal pull-up devices disabled. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 27 Chapter 2 Pins and Connections When an on-chip peripheral system is controlling a pin, data direction control bits still determine what is read from port data registers even though the peripheral module controls the pin direction by controlling the enable for the pin’s output buffer. For information about controlling these pins as general-purpose I/O pins, see Chapter 6, “Parallel Input/Output Control.” The MC9S08SG32 Series devices contain a ganged output drive feature that allows a safe and reliable method of allowing pins to be tied together externally to produce a higher output current drive. See Section 6.3, “Ganged Output” for more information for configuring the port pins for ganged output drive. NOTE To avoid extra current drain from floating input pins, the reset initialization routine in the application program should either enable on-chip pull-up devices or change the direction of unused pins to outputs so they do not float. When using the 20-pin devices, either enable on-chip pullup devices or change the direction of non-bonded PTC7-PTC4 and PTA7-PTA6 pins to outputs so the pins do not float. When using the 16-pin devices, either enable on-chip pullup devices or change the direction of non-bonded out PTC7-PTC0 and PTA7-PTA6 pins to outputs so the pins do not float. Table 2-1. Pin Availability by Package Pin-Count Priority Pin Number 28-pin 20-pin1 16-pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4 5 6 7 8 9 10 11 12 13 14 4 5 6 7 8 — — — — 9 10 PTB7 PTB6 PTB5 PTB4 PTC3 PTC2 PTC1 PTC0 PTB3 PTB2 PIB3 PIB2 TPM1CH1 TPM1CH0 MOSI SPSCK 4 4 Lowest Port Pin PTC5 PTC4 BKGD VDDA VSSA Highest Alt 2 Alt 3 Alt 4 Alt 5 ADP13 ADP12 RESET2 MS VDD VREFH VREFL VSS Alt 1 — — 1 2 3 — — 1 2 3 SCL3 SDA3 TPM1CH1 4 EXTAL XTAL SS MISO PTC05 PTC05 PTC05 PTC05 PTC05 PTC05 PTC0 5 TPM2CH16 ADP11 ADP10 ADP9 ADP8 ADP7 ADP6 PTC05 MC9S08SG32 Data Sheet, Rev. 7 28 Freescale Semiconductor Chapter 2 Pins and Connections Table 2-1. Pin Availability by Package Pin-Count (continued) Priority Pin Number 28-pin 20-pin1 16-pin 19 20 21 22 23 24 25 26 27 28 1 2 Lowest Port Pin PTB1 PTB0 PTA7 PTA6 PTA3 PTA2 PTA1 PTA0 PTC7 PTC6 Alt 1 PIB1 PIB0 TPM2CH16 TPM2CH06 PIA3 PIA2 PIA1 PIA0 SCL3 SDA 3 Highest Alt 2 TxD RxD Alt 3 Alt 4 ADP5 ADP4 Alt 5 15 16 — — 17 18 19 20 — — 11 12 — — 13 14 15 16 — — ADP3 ACMPO TCLK ADP2 ADP17 ADP07 ACMP-7 ACMP+7 ADP15 ADP14 TPM2CH06 TPM1CH04 The 20-pin package is not available for the high-temperature rated devices. Pin is open drain with an internal pullup that is always enabled. Pin does not contain a clamp diode to VDD and should not be driven above VDD. The voltage measured on the internally pulled up RESET will not be pulled to VDD. The internal gates connected to this pin are pulled to VDD. 3 IIC pins can be repositioned using IICPS in SOPT2, default reset locations are PTA2, PTA3. 4 5 TPM1CHx pins can be repositioned using T1CHxPS bits in SOPT2, default reset locations are PTA0, PTB5. This port pin is part of the ganged output feature. When pin is enabled for ganged output, it will have priority over all digital modules. The output data, drive strength and slew-rate control of this port pin will follow the configuration for the PTC0 pin, even in 16-pin packages where PTC0 doesn’t bond out. 6 TPM2CHx pins can be repositioned using T2CHxPS bits in SOPT2, default reset locations are PTA1, PTB4. 7 If ACMP and ADC are both enabled, both will have access to the pin. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 29 Chapter 2 Pins and Connections MC9S08SG32 Data Sheet, Rev. 7 30 Freescale Semiconductor Chapter 3 Modes of Operation 3.1 Introduction The operating modes of the MC9S08SG32 Series are described in this chapter. Entry into each mode, exit from each mode, and functionality while in each of the modes are described. 3.2 • • • Features Active background mode for code development Wait mode — CPU shuts down to conserve power; system clocks are running and full regulation is maintained Stop modes — System clocks are stopped and voltage regulator is in standby — Stop3 — All internal circuits are powered for fast recovery — Stop2 — Partial power down of internal circuits, RAM content is retained 3.3 Run Mode This is the normal operating mode for the MC9S08SG32 Series. This mode is selected upon the MCU exiting reset if the BKGD/MS pin is high. In this mode, the CPU executes code from internal memory with execution beginning at the address fetched from memory at 0xFFFE–0xFFFF after reset. 3.4 Active Background Mode The active background mode functions are managed through the background debug controller (BDC) in the HCS08 core. The BDC, together with the on-chip debug module (DBG), provide the means for analyzing MCU operation during software development. Active background mode is entered in any of the following ways: • When the BKGD/MS pin is low during POR or immediately after issuing a background debug force reset (see Section 5.7.2, “System Background Debug Force Reset Register (SBDFR)”) • When a BACKGROUND command is received through the BKGD/MS pin • When a BGND instruction is executed • When encountering a BDC breakpoint • When encountering a DBG breakpoint After entering active background mode, the CPU is held in a suspended state waiting for serial background commands rather than executing instructions from the user application program. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 31 Chapter 3 Modes of Operation Background commands are of two types: • Non-intrusive commands, defined as commands that can be issued while the user program is running. Non-intrusive commands can be issued through the BKGD/MS pin while the MCU is in run mode; non-intrusive commands can also be executed when the MCU is in the active background mode. Non-intrusive commands include: — Memory access commands — Memory-access-with-status commands — BDC register access commands — The BACKGROUND command • Active background commands, which can only be executed while the MCU is in active background mode. Active background commands include commands to: — Read or write CPU registers — Trace one user program instruction at a time — Leave active background mode to return to the user application program (GO) The active background mode is used to program a bootloader or user application program into the FLASH program memory before the MCU is operated in run mode for the first time. When the MC9S08SG32 Series is shipped from the Freescale Semiconductor factory, the FLASH program memory is erased by default unless specifically noted so there is no program that could be executed in run mode until the FLASH memory is initially programmed. The active background mode can also be used to erase and reprogram the FLASH memory after it has been previously programmed. For additional information about the active background mode, refer to the Development Support chapter. 3.5 Wait Mode Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and resumes processing, beginning with the stacking operations leading to the interrupt service routine. While the MCU is in wait mode, there are some restrictions on which background debug commands can be used. Only the BACKGROUND command and memory-access-with-status commands are available when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access, but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND command can be used to wake the MCU from wait mode and enter active background mode. 3.6 Stop Modes One of two stop modes is entered upon execution of a STOP instruction when STOPE in SOPT1. In any stop mode, the bus and CPU clocks are halted. The ICS module can be configured to leave the reference clocks running. See Chapter 11, “Internal Clock Source (S08ICSV2),” for more information. MC9S08SG32 Data Sheet, Rev. 7 32 Freescale Semiconductor Chapter 3 Modes of Operation Table 3-1 shows all of the control bits that affect stop mode selection and the mode selected under various conditions. The selected mode is entered following the execution of a STOP instruction. Table 3-1. Stop Mode Selection STOPE 0 1 1 1 1 1 ENBDM 1 x 1 0 0 0 LVDE x x LVDSE PPDC x x x 0 1 Stop Mode Stop modes disabled; illegal opcode reset if STOP instruction executed Stop3 with BDM enabled 2 Stop3 with voltage regulator active Stop3 Stop2 Both bits must be 1 Either bit a 0 Either bit a 0 ENBDM is located in the BDCSCR, which is only accessible through BDC commands, see Section 17.4.1.1, “BDC Status and Control Register (BDCSCR)”. 2 When in Stop3 mode with BDM enabled, The S IDD will be near RIDD levels because internal clocks are enabled. 3.6.1 Stop3 Mode Stop3 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. The states of all of the internal registers and logic, RAM contents, and I/O pin states are maintained. Stop3 can be exited by asserting RESET, or by an interrupt from one of the following sources: the real-time counter (RTC), LVD system, ACMP, ADC, SCI or any pin interrupts. If stop3 is exited by means of the RESET pin, then the MCU is reset and operation will resume after taking the reset vector. Exit by means of one of the internal interrupt sources results in the MCU taking the appropriate interrupt vector. 3.6.1.1 LVD Enabled in Stop3 Mode The LVD system is capable of generating either an interrupt or a reset when the supply voltage drops below the LVD voltage. For configuring the LVD system for interrupt or reset, refer to Section 5.6, “Low-Voltage Detect (LVD) System”. If the LVD is enabled in stop (LVDE and LVDSE bits in SPMSC1 both set) at the time the CPU executes a STOP instruction, then the voltage regulator remains active during stop mode. For the ADC to operate in stop mode, the LVD must be enabled when entering stop3. For the ACMP to operate in stop mode with compare to internal bandgap option, the LVD must be enabled when entering stop3. 3.6.1.2 Active BDM Enabled in Stop3 Mode Entry into the active background mode from run mode is enabled if ENBDM in BDCSCR is set. This register is described in Chapter 17, “Development Support.” If ENBDM is set when the CPU executes a STOP instruction, the system clocks to the background debug logic remain active when the MCU enters stop mode. Because of this, background debug communication remains possible. In addition, the voltage regulator does not enter its low-power standby state but maintains full internal regulation. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 33 Chapter 3 Modes of Operation Most background commands are not available in stop mode. The memory-access-with-status commands do not allow memory access, but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND command can be used to wake the MCU from stop and enter active background mode if the ENBDM bit is set. After entering background debug mode, all background commands are available. 3.6.2 Stop2 Mode Stop2 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. Most of the internal circuitry of the MCU is powered off in stop2 with the exception of the RAM. Upon entering stop2, all I/O pin control signals are latched so that the pins retain their states during stop2. Exit from stop2 is performed by asserting the wake-up pin (RESET) on the MCU. In addition, the real-time counter (RTC) can wake the MCU from stop2, if enabled. Upon wake-up from stop2 mode, the MCU starts up as from a power-on reset (POR): • All module control and status registers are reset • The LVD reset function is enabled and the MCU remains in the reset state if VDD is below the LVD trip point (low trip point selected due to POR) • The CPU takes the reset vector In addition to the above, upon waking up from stop2, the PPDF bit in SPMSC2 is set. This flag is used to direct user code to go to a stop2 recovery routine. PPDF remains set and the I/O pin states remain latched until a 1 is written to PPDACK in SPMSC2. To maintain I/O states for pins that were configured as general-purpose I/O before entering stop2, the user must restore the contents of the I/O port registers, which have been saved in RAM, to the port registers before writing to the PPDACK bit. If the port registers are not restored from RAM before writing to PPDACK, then the pins will switch to their reset states when PPDACK is written. For pins that were configured as peripheral I/O, the user must reconfigure the peripheral module that interfaces to the pin before writing to the PPDACK bit. If the peripheral module is not enabled before writing to PPDACK, the pins will be controlled by their associated port control registers when the I/O latches are opened. 3.6.3 On-Chip Peripheral Modules in Stop Modes When the MCU enters any stop mode, system clocks to the internal peripheral modules are stopped. Even in the exception case (ENBDM = 1), where clocks to the background debug logic continue to operate, clocks to the peripheral systems are halted to reduce power consumption. Refer to Section 3.6.2, “Stop2 Mode,” and Section 3.6.1, “Stop3 Mode,” for specific information on system behavior in stop modes. MC9S08SG32 Data Sheet, Rev. 7 34 Freescale Semiconductor Chapter 3 Modes of Operation Table 3-2. Stop Mode Behavior Mode Peripheral Stop2 CPU RAM FLASH Parallel Port Registers ADC ACMP BDM ICS IIC LVD/LVW MTIM RTC SCI SPI TPM Voltage Regulator XOSC I/O Pins 1 2 3 4 5 6 7 Stop3 Standby Standby Standby Standby Optionally On1 Optionally On2 Optionally On Optionally On4 Standby Optionally On Standby Optionally On Standby Standby Standby Optionally On6 Optionally On7 States Held Off Standby Off Off Off Off Off3 Off Off Off 5 Off Optionally On Off Off Off Standby Off States Held Requires the asynchronous ADC clock and LVD to be enabled, else in standby. Requires the LVD to be enabled when compare to internal band-up reference option is enabled. If ENBDM is set when entering stop2, the MCU will actually enter stop3. IRCLKEN and IREFSTEN set in ICSC1, else in standby. If LVDSE is set when entering stop2, the MCU will actually enter stop3. Voltage regulator will be on if BDM is enabled or if LVD is enabled when entering stop3. ERCLKEN and EREFSTEN set in ICSC2, else in standby. For high frequency range (RANGE in ICSC2 set) requires the LVD to also be enabled in stop3. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 35 Chapter 3 Modes of Operation MC9S08SG32 Data Sheet, Rev. 7 36 Freescale Semiconductor Chapter 4 Memory 4.1 MC9S08SG32 Series Memory Map As shown in Figure 4-1, on-chip memory in the MC9S08SG32 Series series of MCUs consists of RAM, FLASH program memory for nonvolatile data storage, and I/O and control/status registers. The registers are divided into three groups: • Direct-page registers (0x0000 through 0x007F) • High-page registers (0x1800 through 0x185F) • Nonvolatile registers (0xFFB0 through 0xFFBF) 0x0000 0x007F 0x0080 0x0000 DIRECT PAGE REGISTERS 0x007F 0x0080 DIRECT PAGE REGISTERS RAM 1024 BYTES 0x047F 0x0480 0x17FF 0x1800 0x047F 0x0480 0x17FF 0x1800 RAM 1024 BYTES UNIMPLEMENTED 4992 BYTES HIGH PAGE REGISTERS UNIMPLEMENTED 4992 BYTES HIGH PAGE REGISTERS 0x185F 0x1860 UNIMPLEMENTED 0x7FFF 0x8000 26,528 BYTES 0x185F 0x1860 UNIMPLEMENTED 0x7FFF 0x8000 26,538 BYTES UNIMPLEMENTED 16,384 BYTES FLASH 32768 BYTES 0xBFFF 0xC000 FLASH 16,384 BYTES 0xFFFF 0xFFFF MC9S08SG32 MC9S08SG16 Figure 4-1. MC9S08SG32/MC9S08SG16 Memory Map MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 37 Chapter 4 Memory 4.2 Reset and Interrupt Vector Assignments Table 4-1 shows address assignments for reset and interrupt vectors. The vector names shown in this table are the labels used in the Freescale Semiconductor provided equate file for the MC9S08SG32 Series. Table 4-1. Reset and Interrupt Vectors Address (High/Low) 0xFFC0:0xFFC1 0xFFC2:0xFFC3 0xFFC4:0xFFC5 0xFFC6:0xFFC7 0xFFC8:0xFFC9 0xFFCA:0xFFCB 0xFFCC:0xFFCD 0xFFCE:0xFFCF 0xFFD0:0xFFD1 0xFFD2:0xFFD3 0xFFD4:0xFFD5 0xFFD6:0xFFD7 0xFFD8:0xFFD9 0xFFDA:0xFFDB 0xFFDC:0xFFDD 0xFFDE:0xFFDF 0xFFE0:0xFFE1 0xFFE2:0xFFE3 0xFFE4:0xFFE5 0xFFE6:0xFFE7 0xFFE8:0xFFE9 0xFFEA:0xFFEB 0xFFEC:0xFFED 0xFFEE:0xFFEF 0xFFF0:0xFFF1 0xFFF2:0xFFF3 0xFFF4:0xFFF5 0xFFF6:0xFFF7 0xFFF8:0xFFF9 0xFFFA:0xFFFB 0xFFFC:0xFFFD 0xFFFE:0xFFFF Vector Reserved ACMP Reserved Reserved Reserved MTIM Overflow RTC IIC ADC Conversion Reserved Port B Pin Interrupt Port A Pin Interrupt Reserved SCI Transmit SCI Receive SCI Error SPI TPM2 Overflow TPM2 Channel 1 TPM2 Channel 0 TPM1 Overflow Reserved Reserved Reserved Reserved TPM1 Channel 1 TPM1 Channel 0 Reserved Low Voltage Detect Reserved SWI Reset Vector Name — Vacmp — — — Vmtim Vrtc Viic Vadc — Vportb Vporta — Vscitx Vscirx Vsc1err Vspi Vtpm2ovf Vtpm2ch1 Vtpm2ch0 Vtpm1ovf — — — — Vtpm1ch1 Vtpm1ch0 — Vlvd — Vswi Vreset MC9S08SG32 Data Sheet, Rev. 7 38 Freescale Semiconductor Chapter 4 Memory 4.3 Register Addresses and Bit Assignments The registers in the MC9S08SG32 Series are divided into these groups: • Direct-page registers are located in the first 128 locations in the memory map; these are accessible with efficient direct addressing mode instructions. • High-page registers are used much less often, so they are located above 0x1800 in the memory map. This leaves more room in the direct page for more frequently used registers and RAM. • The nonvolatile register area consists of a block of 16 locations in FLASH memory at 0xFFB0–0xFFBF. Nonvolatile register locations include: — NVPROT and NVOPT are loaded into working registers at reset — An 8-byte backdoor comparison key that optionally allows a user to gain controlled access to secure memory Because the nonvolatile register locations are FLASH memory, they must be erased and programmed like other FLASH memory locations. Direct-page registers can be accessed with efficient direct addressing mode instructions. Bit manipulation instructions can be used to access any bit in any direct-page register. Table 4-2 is a summary of all user-accessible direct-page registers and control bits. The direct page registers in Table 4-2 can use the more efficient direct addressing mode, which requires only the lower byte of the address. Because of this, the lower byte of the address in column one is shown in bold text. In Table 4-3 and Table 4-4, the whole address in column one is shown in bold. In Table 4-2, Table 4-3, and Table 4-4, the register names in column two are shown in bold to set them apart from the bit names to the right. Cells that are not associated with named bits are shaded. A shaded cell with a 0 indicates this unused or reserved bit always reads as a 0 and should be written as 0. A shaded cell with a 1 indicates this unused or reserved bit always reads as a 1and should be written as 1. Shaded cells with dashes indicate unused or reserved bit locations that could read as 1s or 0s. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 39 Chapter 4 Memory Table 4-2. Direct-Page Register Summary (Sheet 1 of 3) Address Register Name Bit 7 PTAD7 PTADD7 PTBD7 PTBDD7 PTCD7 PTCDD7 — — — — ACME — COCO ADACT 0 ADR7 0 ADCV7 ADLPC ADPC7 ADPC15 — — TOF 0 ADPC6 ADPC14 — — TOIE 0 6 PTAD6 PTADD6 PTBD6 PTBDD6 PTCD6 PTCDD6 — — — — ACBGS — AIEN ADTRG 0 ADR6 0 ADCV6 ADIV ADPC5 ADPC13 — — TRST CLKS CNT MOD TOF Bit 15 Bit 7 Bit 15 Bit 7 CH0F Bit 15 Bit 7 CH1F Bit 15 Bit 7 TOIE 14 6 14 6 CH0IE 14 6 CH1IE 14 6 CPWMS 13 5 13 5 MS0B 13 5 MS1B 13 5 CLKSB 12 4 12 4 MS0A 12 4 MS1A 12 4 CLKSA 11 3 11 3 ELS0B 11 3 ELS1B 11 3 PS2 10 2 10 2 ELS0A 10 2 ELS1A 10 2 PS1 9 1 9 1 0 9 1 0 9 1 PS0 Bit 8 Bit 0 Bit 8 Bit 0 0 Bit 8 Bit 0 0 Bit 8 Bit 0 5 — — PTBD5 PTBDD5 PTCD5 PTCDD5 — — — — ACF — ADCO ACFE 0 ADR5 0 ADCV5 ACFGT 0 ADR4 0 ADCV4 ADLSMP ADPC4 ADPC12 — — TSTP — 0 ADR3 0 ADCV3 ADPC3 ADPC11 — — 0 MODE ADPC2 ADPC10 — — 0 PS 4 — — PTBD4 PTBDD4 PTCD4 PTCDD4 — — — — ACIE — 3 PTAD3 PTADD3 PTBD3 PTBDD3 PTCD3 PTCDD3 — — — — ACO — 2 PTAD2 PTADD2 PTBD2 PTBDD2 PTCD2 PTCDD2 — 0 — — ACOPE — ADCH — 0 ADR2 0 ADCV2 — ADR9 ADR1 ADCV9 ADCV1 ADPC1 ADPC9 — — 0 — ADR8 ADR0 ADCV8 ADCV0 ADPC0 ADPC8 — — 0 1 PTAD1 PTADD1 PTBD1 PTBDD1 PTCD1 PTCDD1 — 0 — — ACMOD1 — Bit 0 PTAD0 PTADD0 PTBD0 PTBDD0 PTCD0 PTCDD0 — 0 — — ACMOD0 — 0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008–0 x000D 0x000E 0x000F 0x0010 0x0011 0x0012 0x0013 0x0014 0x0015 0x0016 0x0017 0x0018 0x0019–0 x001B 0x001C 0x001D 0x001E 0x001F 0x0020 0x0021 0x0022 0x0023 0x0024 0x0025 0x0026 0x0027 0x0028 0x0029 0x002A PTAD PTADD PTBD PTBDD PTCD PTCDD Reserved Reserved Reserved ACMPSC Reserved ADCSC1 ADCSC2 ADCRH ADCRL ADCVH ADCVL ADCCFG APCTL1 APCTL2 Reserved MTIMSC MTIMCLK MTIMCNT MTIMMOD TPM1SC TPM1CNTH TPM1CNTL TPM1MODH TPM1MODL TPM1C0SC TPM1C0VH TPM1C0VL TPM1C1SC TPM1C1VH TPM1C1VL ADICLK MC9S08SG32 Data Sheet, Rev. 7 40 Freescale Semiconductor Chapter 4 Memory Table 4-2. Direct-Page Register Summary (Sheet 2 of 3) Address Register Name Bit 7 — — LBKDIE SBR7 LOOPS TIE TDRE LBKDIF R8 Bit 7 — — CLKS BDIV 0 — — SPIE 0 0 SPRF 0 Bit 7 — — AD7 MULT IICEN TCF GCAEN — — TOF Bit 15 Bit 7 Bit 15 Bit 7 CH0F IICIE IAAS ADEXT — — TOIE 14 6 14 6 CH0IE MST BUSY 0 — — CPWMS 13 5 13 5 MS0B TX ARBL DATA 0 — — CLKSB 12 4 12 4 MS0A 0 — — CLKSA 11 3 11 3 ELS0B AD10 — — PS2 10 2 10 2 ELS0A AD9 — — PS1 9 1 9 1 0 AD8 — — PS0 Bit 8 Bit 0 Bit 8 Bit 0 0 TXAK 0 0 — — SPE 0 SPPR2 0 0 6 — — AD6 RANGE 0 — — SPTIE 0 SPPR1 SPTEF 0 5 — — AD5 6 — — RXEDGIE SBR6 SCISWAI TCIE TC RXEDGIF T8 6 — — 5 — — 0 SBR5 RSRC RIE RDRF 0 TXDIR 5 — — 4 — — SBR12 SBR4 M ILIE IDLE RXINV TXINV 4 — — RDIV HGO TRIM IREFST — — MSTR MODFEN SPPR0 MODF 0 4 — — AD4 — — CPOL BIDIROE 0 0 0 3 — — AD3 ICR RSTA SRW 0 IICIF 0 RXAK CLKST — — CPHA 0 SPR2 0 0 2 — — AD2 OSCINIT — — SSOE SPISWAI SPR1 0 0 1 — — AD1 FTRIM — — LSBFE SPC0 SPR0 0 0 Bit 0 — — 0 LP 3 — — SBR11 SBR3 WAKE TE OR RWUID ORIE 3 — — 2 — — SBR10 SBR2 ILT RE NF BRK13 NEIE 2 — — IREFS EREFS 1 — — SBR9 SBR1 PE RWU FE LBKDE FEIE 1 — — IRCLKEN Bit 0 — — SBR8 SBR0 PT SBK PF RAF PEIE Bit 0 — — IREFSTEN 0x002B–0 x0037 0x0038 0x0039 0x003A 0x003B 0x003C 0x003D 0x003E 0x003F 0x0040–0 x0047 0x0048 0x0049 0x004A 0x004B 0x004C–0 x004F 0x0050 0x0051 0x0052 0x0053 0x0054 0x0055 0x0056–0 x0057 0x0058 0x0059 0x005A 0x005B 0x005C 0x005D 0x005E–0 x005F 0x0060 0x0061 0x0062 0x0063 0x0064 0x0065 Reserved SCIBDH SCIBDL SCIC1 SCIC2 SCIS1 SCIS2 SCIC3 SCID Reserved ICSC1 ICSC2 ICSTRM ICSSC Reserved SPIC1 SPIC2 SPIBR SPIS Reserved SPID Reserved IICA IICF IICC1 IICS IICD IICC2 Reserved TPM2SC TPM2CNTH TPM2CNTL TPM2MODH TPM2MODL TPM2C0SC ERCLKEN EREFSTEN MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 41 Chapter 4 Memory Table 4-2. Direct-Page Register Summary (Sheet 3 of 3) Address Register Name Bit 7 Bit 15 Bit 7 CH1F Bit 15 Bit 7 — RTIF 6 14 6 CH1IE 14 6 — RTCLKS 5 13 5 MS1B 13 5 — 4 12 4 MS1A 12 4 — RTIE RTCCNT RTCMOD — — — — — — — — — — — — — — — — 3 11 3 ELS1B 11 3 — 2 10 2 ELS1A 10 2 — RTCPS 1 9 1 0 9 1 — Bit 0 Bit 8 Bit 0 0 Bit 8 Bit 0 — 0x0066 0x0067 0x0068 0x0069 0x006A 0x006B 0x006C 0x006D 0x006E 0x006F 0x007F TPM2C0VH TPM2C0VL TPM2C1SC TPM2C1VH TPM2C1VL Reserved RTCSC RTCCNT RTCMOD Reserved MC9S08SG32 Data Sheet, Rev. 7 42 Freescale Semiconductor Chapter 4 Memory High-page registers, shown in Table 4-3, are accessed much less often than other I/O and control registers so they have been located outside the direct addressable memory space, starting at 0x1800. Table 4-3. High-Page Register Summary (Sheet 1 of 2) Address Register Name Bit 7 POR 0 COPT COPCLKS — — 1 ID7 — LVWF 0 — — Bit 15 Bit 7 Bit 15 Bit 7 Bit 15 Bit 7 DBGEN TRGSEL AF — — DIVLD KEYEN — 0 FCBEF — — PTAPE7 PTASE7 PTADS7 — 0 COPW — — — ID6 — LVWACK 0 — — 14 6 14 6 14 6 ARM BEGIN BF — — PRDIV8 FNORED — 0 FCCF — — PTAPE6 PTASE6 PTADS6 — 0 0 — KEYACC FPVIOL — — — — — — 0 0 — 0 FPS FACCERR FCMD — — — — — — 0 — — PTAPE3 PTASE3 PTADS3 — PTAIF — — PTAPE2 PTASE2 PTADS2 — PTAACK — — PTAPE1 PTASE1 PTADS1 — PTAIE — — PTAPE0 PTASE0 PTADS0 — PTAMOD 0 FBLANK 0 0 — 0 6 PIN 0 5 COP 0 STOPE 0 — — — ID5 — LVWIE LVDV — — 13 5 13 5 13 5 TAG 0 ARMF — — 4 ILOP 0 0 ACIC — — — ID4 — LVDRE LVWV — — 12 4 12 4 12 4 BRKEN 0 0 — — 3 ILAD 0 0 — — ID11 ID3 — LVDSE PPDF — — 11 3 11 3 11 3 RWA TRG3 CNT3 — — DIV 0 — 0 — 0 SEC — 0 FPDIS 0 2 0 0 IICPS — — ID10 ID2 — LVDE PPDACK — — 10 2 10 2 10 2 RWAEN TRG2 CNT2 — — 1 LVD 0 0 — — ID9 ID1 — 0 — — — 9 1 9 1 9 1 RWB TRG1 CNT1 — — Bit 0 0 BDFR 0 — — ID8 ID0 — BGBE PPDC — — Bit 8 Bit 0 Bit 8 Bit 0 Bit 8 Bit 0 RWBEN TRG0 CNT0 — — 0x1800 0x1801 0x1802 0x1803 0x1804 – 0x1805 0x1806 0x1807 0x1808 0x1809 0x180A 0x180B–0 x180F 0x1810 0x1811 0x1812 0x1813 0x1814 0x1815 0x1816 0x1817 0x1818 0x1819–0x 181F 0x1820 0x1821 0x1822 0x1823 0x1824 0x1825 0x1826 0x1827– 0x183F 0x1840 0x1841 0x1842 0x1843 0x1844 SRS SBDFR SOPT1 SOPT2 Reserved SDIDH SDIDL Reserved SPMSC1 SPMSC2 Reserved DBGCAH DBGCAL DBGCBH DBGCBL DBGFH DBGFL DBGC DBGT DBGS Reserved FCDIV FOPT Reserved FCNFG FPROT FSTAT FCMD Reserved PTAPE PTASE PTADS Reserved PTASC T2CH1PS T2CH0PS T1CH1PS T1CH0PS MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 43 Chapter 4 Memory Table 4-3. High-Page Register Summary (Sheet 2 of 2) Address Register Name Bit 7 0 0 — PTBPE7 PTBSE7 PTBDS7 — 0 0 0 — PTCPE7 PTCSE7 PTCDS7 GNGPS7 — — — — — 6 0 0 — PTBPE6 PTBSE6 PTBDS6 — 0 0 0 — PTCPE6 PTCSE6 PTCDS6 GNGPS6 — — — — — 5 0 0 — PTBPE5 PTBSE5 PTBDS5 — 0 0 0 — PTCPE5 PTCSE5 PTCDS5 GNGPS5 — — — — — 4 0 0 — PTBPE4 PTBSE4 PTBDS4 — 0 0 0 — PTCPE4 PTCSE4 PTCDS4 GNGPS4 — — — — — 3 PTAPS3 PTAES3 — PTBPE3 PTBSE3 PTBDS3 — PTBIF PTBPS3 PTBES3 — PTCPE3 PTCSE3 PTCDS3 GNGPS3 — — — — — 2 PTAPS2 PTAES2 — PTBPE2 PTBSE2 PTBDS2 — PTBACK PTBPS2 PTBES2 — PTCPE2 PTCSE2 PTCDS2 GNGPS2 1 1 0 — — 1 PTAPS1 PTAES1 — PTBPE1 PTBSE1 PTBDS1 — PTBIE PTBPS1 PTBES1 — PTCPE1 PTCSE1 PTCDS1 GNGPS1 1 1 0 — — Bit 0 PTAPS0 PTAES0 — PTBPE0 PTBSE0 PTBDS0 — PTBMOD PTBPS0 PTBES0 — PTCPE0 PTCSE0 PTCDS0 GNGEN 1 1 0 — — 0x1845 0x1846 0x1847 0x1848 0x1849 0x184A 0x184B 0x184C 0x184D 0x184E 0x184F 0x1850 0x1851 0x1852 0x1853 0x1854 0x1855 0x1856 0x1857– 0x185F PTAPS PTAES Reserved PTBPE PTBSE PTBDS Reserved PTBSC PTBPS PTBES Reserved PTCPE PTCSE PTCDS GNGC Reserved Reserved Reserved Reserved MC9S08SG32 Data Sheet, Rev. 7 44 Freescale Semiconductor Chapter 4 Memory Nonvolatile FLASH registers, shown in Table 4-4, are located in the FLASH memory. These registers include an 8-byte backdoor key, NVBACKKEY, which can be used to gain access to secure memory resources. During reset events, the contents of NVPROT and NVOPT in the nonvolatile register area of the FLASH memory are transferred into corresponding FPROT and FOPT working registers in the high-page registers to control security and block protection options. Table 4-4. Nonvolatile Register Summary Address Register Name Bit 7 0 6 0 5 0 4 0 3 0 2 0 1 0 Bit 0 FTRIM 0xFFAE 0xFFAF 0xFFB0 – 0xFFB7 0xFFB8 – 0xFFBC 0xFFBD 0xFFBE 0xFFBF NVFTRIM NVTRIM NVBACKKEY Reserved NVPROT Reserved NVOPT TRIM 8-Byte Comparison Key — — — KEYEN — — — FNORED — — — 0 — — FPS — 0 — 0 — 0 — SEC — — — — — — — — FPDIS — Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key can be used to temporarily disengage memory security. This key mechanism can be accessed only through user code running in secure memory. (A security key cannot be entered directly through background debug commands.) This security key can be disabled completely by programming the KEYEN bit to 0. If the security key is disabled, the only way to disengage security is by mass erasing the FLASH if needed (normally through the background debug interface) and verifying that FLASH is blank. To avoid returning to secure mode after the next reset, program the security bits (SEC) to the unsecured state (1:0). MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 45 Chapter 4 Memory 4.4 RAM The MC9S08SG32 Series includes static RAM. The locations in RAM below 0x0100 can be accessed using the more efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program variables in this area of RAM is preferred. The RAM retains data when the MCU is in low-power wait, stop2, or stop3 mode. At power-on the contents of RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop below the minimum value for RAM retention (VRAM). For compatibility with M68HC05 MCUs, the HCS08 resets the stack pointer to 0x00FF. In the MC9S08SG32 Series, it is usually best to reinitialize the stack pointer to the top of the RAM so the direct page RAM can be used for frequently accessed RAM variables and bit-addressable program variables. Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated to the highest address of the RAM in the Freescale Semiconductor-provided equate file). LDHX TXS #RamLast+1 ;point one past RAM ;SP fADCK Subsequent continuous 10-bit; fBUS > fADCK Subsequent continuous 8-bit; fBUS > fADCK/11 Subsequent continuous 10-bit; fBUS > fADCK/11 ADICLK 0x, 10 0x, 10 0x, 10 0x, 10 11 11 11 11 xx xx xx xx ADLSMP 0 0 1 1 0 0 1 1 0 0 1 1 Max Total Conversion Time 20 ADCK cycles + 5 bus clock cycles 23 ADCK cycles + 5 bus clock cycles 40 ADCK cycles + 5 bus clock cycles 43 ADCK cycles + 5 bus clock cycles 5 μs + 20 ADCK + 5 bus clock cycles 5 μs + 23 ADCK + 5 bus clock cycles 5 μs + 40 ADCK + 5 bus clock cycles 5 μs + 43 ADCK + 5 bus clock cycles 17 ADCK cycles 20 ADCK cycles 37 ADCK cycles 40 ADCK cycles The maximum total conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is selectable by the ADICLK bits, and the divide ratio is specified by the ADIV bits. For example, in 10-bit mode, with the bus clock selected as the input clock source, the input clock divide-by-1 ratio selected, and a bus frequency of 8 MHz, then the conversion time for a single conversion is: Conversion time = 23 ADCK cyc 8 MHz/1 + 5 bus cyc 8 MHz = 3.5 μs Number of bus cycles = 3.5 μs x 8 MHz = 28 cycles NOTE The ADCK frequency must be between fADCK minimum and fADCK maximum to meet ADC specifications. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 129 Chapter 8 Analog-to-Digital Converter (S08ADC10V1) 9.4.5 Automatic Compare Function The compare function is enabled by the ACFE bit. The compare function can be configured to check for an upper or lower limit. After the input is sampled and converted, the compare value (ADCCVH and ADCCVL) is subtracted from the conversion result. When comparing to an upper limit (ACFGT = 1), if the conversion result is greater-than or equal-to the compare value, COCO is set. When comparing to a lower limit (ACFGT = 0), if the result is less than the compare value, COCO is set. An ADC interrupt is generated upon the setting of COCO if the ADC interrupt is enabled (AIEN = 1). The subtract operation of two positive values (the conversion result less the compare value) results in a signed value that is 1-bit wider than the bit-width of the two terms. The final value transferred to the ADCRH and ADCRL registers is the result of the subtraction operation, excluding the sign bit. The value of the sign bit can be derived based on ACFGT control setting. When ACFGT=1, the sign bit of any value stored in ADCRH and ADCRL is always 0, indicating a positive result for the subtract operation. When ACFGT = 1, the sign bit of any result is always 1, indicating a negative result for the subtract operation. Upon completion of a conversion while the compare function is enabled, if the compare condition is not true, COCO is not set and no data is transferred to the result registers. NOTE The compare function can monitor the voltage on a channel while the MCU is in wait or stop3 mode. The ADC interrupt wakes the MCU when the compare condition is met. An example of compare operation eases understanding of the compare feature. If the ADC is configured for 10-bit operation, ACFGT=0, and ADCCVH:ADCCVL= 0x200, then a conversion result of 0x080 causes the compare condition to be met and the COCO bit is set. A value of 0x280 is stored in ADCRH:ADCRL. This is signed data without the sign bit and must be combined with a derived sign bit to have meaning. The value stored in ADCRH:ADCRL is calculated as follows. The value to interpret from the data is (Result – Compare Value) = (0x080 – 0x200) = –0x180. A standard method for handling subtraction is to convert the second term to its 2’s complement, and then add the two terms. First calculate the 2’s complement of 0x200 by complementing each bit and adding 1. Note that prior to complementing, a sign bit of 0 is added so that the 10-bit compare value becomes a 11-bit signed value that is always positive. %101 1111 1111 B) — A trigger occurs when the address is either less than the value in comparator A or greater than the value in comparator B. MC9S08SG32 Data Sheet, Rev. 7 280 Freescale Semiconductor Chapter 17 Development Support 17.3.6 Hardware Breakpoints The BRKEN control bit in the DBGC register may be set to 1 to allow any of the trigger conditions described in Section 17.3.5, “Trigger Modes,” to be used to generate a hardware breakpoint request to the CPU. TAG in DBGC controls whether the breakpoint request will be treated as a tag-type breakpoint or a force-type breakpoint. A tag breakpoint causes the current opcode to be marked as it enters the instruction queue. If a tagged opcode reaches the end of the pipe, the CPU executes a BGND instruction to go to active background mode rather than executing the tagged opcode. A force-type breakpoint causes the CPU to finish the current instruction and then go to active background mode. If the background mode has not been enabled (ENBDM = 1) by a serial WRITE_CONTROL command through the BKGD pin, the CPU will execute an SWI instruction instead of going to active background mode. 17.4 Register Definition This section contains the descriptions of the BDC and DBG registers and control bits. Refer to the high-page register summary in the device overview chapter of this data sheet for the absolute address assignments for all DBG registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses. 17.4.1 BDC Registers and Control Bits The BDC has two registers: • The BDC status and control register (BDCSCR) is an 8-bit register containing control and status bits for the background debug controller. • The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address. These registers are accessed with dedicated serial BDC commands and are not located in the memory space of the target MCU (so they do not have addresses and cannot be accessed by user programs). Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written at any time. For example, the ENBDM control bit may not be written while the MCU is in active background mode. (This prevents the ambiguous condition of the control bit forbidding active background mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS, WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial BDC command. The clock switch (CLKSW) control bit may be read or written at any time. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 281 Chapter 17 Development Support 17.4.1.1 BDC Status and Control Register (BDCSCR) This register can be read or written by serial BDC commands (READ_STATUS and WRITE_CONTROL) but is not accessible to user programs because it is not located in the normal memory map of the MCU. 7 6 5 4 3 2 1 0 R ENBDM W Normal Reset Reset inActive BDM: 0 1 BDMACT BKPTEN 0 1 0 0 FTS 0 0 CLKSW 0 1 WS WSF DVF 0 0 0 0 0 0 = Unimplemented or Reserved Figure 17-5. BDC Status and Control Register (BDCSCR) Table 17-2. BDCSCR Register Field Descriptions Field 7 ENBDM Description Enable BDM (Permit Active Background Mode) — Typically, this bit is written to 1 by the debug host shortly after the beginning of a debug session or whenever the debug host resets the target and remains 1 until a normal reset clears it. 0 BDM cannot be made active (non-intrusive commands still allowed) 1 BDM can be made active to allow active background mode commands Background Mode Active Status — This is a read-only status bit. 0 BDM not active (user application program running) 1 BDM active and waiting for serial commands BDC Breakpoint Enable — If this bit is clear, the BDC breakpoint is disabled and the FTS (force tag select) control bit and BDCBKPT match register are ignored. 0 BDC breakpoint disabled 1 BDC breakpoint enabled Force/Tag Select — When FTS = 1, a breakpoint is requested whenever the CPU address bus matches the BDCBKPT match register. When FTS = 0, a match between the CPU address bus and the BDCBKPT register causes the fetched opcode to be tagged. If this tagged opcode ever reaches the end of the instruction queue, the CPU enters active background mode rather than executing the tagged opcode. 0 Tag opcode at breakpoint address and enter active background mode if CPU attempts to execute that instruction 1 Breakpoint match forces active background mode at next instruction boundary (address need not be an opcode) Select Source for BDC Communications Clock — CLKSW defaults to 0, which selects the alternate BDC clock source. 0 Alternate BDC clock source 1 MCU bus clock 6 BDMACT 5 BKPTEN 4 FTS 3 CLKSW MC9S08SG32 Data Sheet, Rev. 7 282 Freescale Semiconductor Chapter 17 Development Support Table 17-2. BDCSCR Register Field Descriptions (continued) Field 2 WS Description Wait or Stop Status — When the target CPU is in wait or stop mode, most BDC commands cannot function. However, the BACKGROUND command can be used to force the target CPU out of wait or stop and into active background mode where all BDC commands work. Whenever the host forces the target MCU into active background mode, the host should issue a READ_STATUS command to check that BDMACT = 1 before attempting other BDC commands. 0 Target CPU is running user application code or in active background mode (was not in wait or stop mode when background became active) 1 Target CPU is in wait or stop mode, or a BACKGROUND command was used to change from wait or stop to active background mode Wait or Stop Failure Status — This status bit is set if a memory access command failed due to the target CPU executing a wait or stop instruction at or about the same time. The usual recovery strategy is to issue a BACKGROUND command to get out of wait or stop mode into active background mode, repeat the command that failed, then return to the user program. (Typically, the host would restore CPU registers and stack values and re-execute the wait or stop instruction.) 0 Memory access did not conflict with a wait or stop instruction 1 Memory access command failed because the CPU entered wait or stop mode Data Valid Failure Status — This status bit is not used in the MC9S08SG32 Series because it does not have any slow access memory. 0 Memory access did not conflict with a slow memory access 1 Memory access command failed because CPU was not finished with a slow memory access 1 WSF 0 DVF 17.4.1.2 BDC Breakpoint Match Register (BDCBKPT) This 16-bit register holds the address for the hardware breakpoint in the BDC. The BKPTEN and FTS control bits in BDCSCR are used to enable and configure the breakpoint logic. Dedicated serial BDC commands (READ_BKPT and WRITE_BKPT) are used to read and write the BDCBKPT register but is not accessible to user programs because it is not located in the normal memory map of the MCU. Breakpoints are normally set while the target MCU is in active background mode before running the user application program. For additional information about setup and use of the hardware breakpoint logic in the BDC, refer to Section 17.2.4, “BDC Hardware Breakpoint.” 17.4.2 System Background Debug Force Reset Register (SBDFR) This register contains a single write-only control bit. A serial background mode command such as WRITE_BYTE must be used to write to SBDFR. Attempts to write this register from a user program are ignored. Reads always return 0x00. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 283 Chapter 17 Development Support 7 6 5 4 3 2 1 0 R W Reset 0 0 0 0 0 0 0 0 BDFR1 0 0 0 0 0 0 0 0 = Unimplemented or Reserved 1 BDFR is writable only through serial background mode debug commands, not from user programs. Figure 17-6. System Background Debug Force Reset Register (SBDFR) Table 17-3. SBDFR Register Field Description Field 0 BDFR Description Background Debug Force Reset — A serial active background mode command such as WRITE_BYTE allows an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot be written from a user program. 17.4.3 DBG Registers and Control Bits The debug module includes nine bytes of register space for three 16-bit registers and three 8-bit control and status registers. These registers are located in the high register space of the normal memory map so they are accessible to normal application programs. These registers are rarely if ever accessed by normal user application programs with the possible exception of a ROM patching mechanism that uses the breakpoint logic. 17.4.3.1 Debug Comparator A High Register (DBGCAH) This register contains compare value bits for the high-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1. 17.4.3.2 Debug Comparator A Low Register (DBGCAL) This register contains compare value bits for the low-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1. 17.4.3.3 Debug Comparator B High Register (DBGCBH) This register contains compare value bits for the high-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1. 17.4.3.4 Debug Comparator B Low Register (DBGCBL) This register contains compare value bits for the low-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1. MC9S08SG32 Data Sheet, Rev. 7 284 Freescale Semiconductor Chapter 17 Development Support 17.4.3.5 Debug FIFO High Register (DBGFH) This register provides read-only access to the high-order eight bits of the FIFO. Writes to this register have no meaning or effect. In the event-only trigger modes, the FIFO only stores data into the low-order byte of each FIFO word, so this register is not used and will read 0x00. Reading DBGFH does not cause the FIFO to shift to the next word. When reading 16-bit words out of the FIFO, read DBGFH before reading DBGFL because reading DBGFL causes the FIFO to advance to the next word of information. 17.4.3.6 Debug FIFO Low Register (DBGFL) This register provides read-only access to the low-order eight bits of the FIFO. Writes to this register have no meaning or effect. Reading DBGFL causes the FIFO to shift to the next available word of information. When the debug module is operating in event-only modes, only 8-bit data is stored into the FIFO (high-order half of each FIFO word is unused). When reading 8-bit words out of the FIFO, simply read DBGFL repeatedly to get successive bytes of data from the FIFO. It isn’t necessary to read DBGFH in this case. Do not attempt to read data from the FIFO while it is still armed (after arming but before the FIFO is filled or ARMF is cleared) because the FIFO is prevented from advancing during reads of DBGFL. This can interfere with normal sequencing of reads from the FIFO. Reading DBGFL while the debugger is not armed causes the address of the most-recently fetched opcode to be stored to the last location in the FIFO. By reading DBGFH then DBGFL periodically, external host software can develop a profile of program execution. After eight reads from the FIFO, the ninth read will return the information that was stored as a result of the first read. To use the profiling feature, read the FIFO eight times without using the data to prime the sequence and then begin using the data to get a delayed picture of what addresses were being executed. The information stored into the FIFO on reads of DBGFL (while the FIFO is not armed) is the address of the most-recently fetched opcode. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 285 Chapter 17 Development Support 17.4.3.7 Debug Control Register (DBGC) This register can be read or written at any time. 7 6 5 4 3 2 1 0 R DBGEN W Reset 0 0 0 0 0 0 0 0 ARM TAG BRKEN RWA RWAEN RWB RWBEN Figure 17-7. Debug Control Register (DBGC) Table 17-4. DBGC Register Field Descriptions Field 7 DBGEN 6 ARM Description Debug Module Enable — Used to enable the debug module. DBGEN cannot be set to 1 if the MCU is secure. 0 DBG disabled 1 DBG enabled Arm Control — Controls whether the debugger is comparing and storing information in the FIFO. A write is used to set this bit (and ARMF) and completion of a debug run automatically clears it. Any debug run can be manually stopped by writing 0 to ARM or to DBGEN. 0 Debugger not armed 1 Debugger armed Tag/Force Select — Controls whether break requests to the CPU will be tag or force type requests. If BRKEN = 0, this bit has no meaning or effect. 0 CPU breaks requested as force type requests 1 CPU breaks requested as tag type requests Break Enable — Controls whether a trigger event will generate a break request to the CPU. Trigger events can cause information to be stored in the FIFO without generating a break request to the CPU. For an end trace, CPU break requests are issued to the CPU when the comparator(s) and R/W meet the trigger requirements. For a begin trace, CPU break requests are issued when the FIFO becomes full. TRGSEL does not affect the timing of CPU break requests. 0 CPU break requests not enabled 1 Triggers cause a break request to the CPU R/W Comparison Value for Comparator A — When RWAEN = 1, this bit determines whether a read or a write access qualifies comparator A. When RWAEN = 0, RWA and the R/W signal do not affect comparator A. 0 Comparator A can only match on a write cycle 1 Comparator A can only match on a read cycle Enable R/W for Comparator A — Controls whether the level of R/W is considered for a comparator A match. 0 R/W is not used in comparison A 1 R/W is used in comparison A R/W Comparison Value for Comparator B — When RWBEN = 1, this bit determines whether a read or a write access qualifies comparator B. When RWBEN = 0, RWB and the R/W signal do not affect comparator B. 0 Comparator B can match only on a write cycle 1 Comparator B can match only on a read cycle Enable R/W for Comparator B — Controls whether the level of R/W is considered for a comparator B match. 0 R/W is not used in comparison B 1 R/W is used in comparison B 5 TAG 4 BRKEN 3 RWA 2 RWAEN 1 RWB 0 RWBEN MC9S08SG32 Data Sheet, Rev. 7 286 Freescale Semiconductor Chapter 17 Development Support 17.4.3.8 Debug Trigger Register (DBGT) This register can be read any time, but may be written only if ARM = 0, except bits 4 and 5 are hard-wired to 0s. 7 6 5 4 3 2 1 0 R TRGSEL W Reset 0 0 BEGIN 0 0 TRG3 TRG2 0 TRG1 0 TRG0 0 0 0 0 = Unimplemented or Reserved Figure 17-8. Debug Trigger Register (DBGT) Table 17-5. DBGT Register Field Descriptions Field 7 TRGSEL Description Trigger Type — Controls whether the match outputs from comparators A and B are qualified with the opcode tracking logic in the debug module. If TRGSEL is set, a match signal from comparator A or B must propagate through the opcode tracking logic and a trigger event is only signalled to the FIFO logic if the opcode at the match address is actually executed. 0 Trigger on access to compare address (force) 1 Trigger if opcode at compare address is executed (tag) Begin/End Trigger Select — Controls whether the FIFO starts filling at a trigger or fills in a circular manner until a trigger ends the capture of information. In event-only trigger modes, this bit is ignored and all debug runs are assumed to be begin traces. 0 Data stored in FIFO until trigger (end trace) 1 Trigger initiates data storage (begin trace) Select Trigger Mode — Selects one of nine triggering modes, as described below. 0000 A-only 0001 A OR B 0010 A Then B 0011 Event-only B (store data) 0100 A then event-only B (store data) 0101 A AND B data (full mode) 0110 A AND NOT B data (full mode) 0111 Inside range: A ≤ address ≤ B 1000 Outside range: address < A or address > B 1001 – 1111 (No trigger) 6 BEGIN 3:0 TRG[3:0] MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 287 Chapter 17 Development Support 17.4.3.9 Debug Status Register (DBGS) This is a read-only status register. 7 6 5 4 3 2 1 0 R W Reset AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0 0 0 0 0 0 0 0 0 = Unimplemented or Reserved Figure 17-9. Debug Status Register (DBGS) Table 17-6. DBGS Register Field Descriptions Field 7 AF Description Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A condition was met since arming. 0 Comparator A has not matched 1 Comparator A match Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B condition was met since arming. 0 Comparator B has not matched 1 Comparator B match Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1 to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC. 0 Debugger not armed 1 Debugger armed FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO. The external debug host is responsible for keeping track of the count as information is read out of the FIFO. 0000 Number of valid words in FIFO = No valid data 0001 Number of valid words in FIFO = 1 0010 Number of valid words in FIFO = 2 0011 Number of valid words in FIFO = 3 0100 Number of valid words in FIFO = 4 0101 Number of valid words in FIFO = 5 0110 Number of valid words in FIFO = 6 0111 Number of valid words in FIFO = 7 1000 Number of valid words in FIFO = 8 6 BF 5 ARMF 3:0 CNT[3:0] MC9S08SG32 Data Sheet, Rev. 7 288 Freescale Semiconductor Appendix A Electrical Characteristics A.1 Introduction This section contains electrical and timing specifications for the MC9S08SG32 Series of microcontrollers available at the time of publication. The MC9S08SG32 Series includes both: • Standard (STD)— devices that are standard-temperature rated. Table rows marked with a♦ indicate electrical characteristics that apply to these devices. • AEC Grade 0 — devices that are high-temperature rated. Table rows marked with a♦ indicate electrical characteristics that apply to AEC Grade 0 devices. A.2 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table A-1. Parameter Classifications P C Those parameters are guaranteed during production testing on each individual device. Those parameters are achieved through the design characterization by measuring a statistically relevant sample size across process variations. Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. Those parameters are derived mainly from simulations. T D NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. A.3 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table A-2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 289 Appendix A Electrical Characteristics This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pull-up resistor associated with the pin is enabled. Table A-2. Absolute Maximum Ratings Temp Rated AEC Grade 0 Standard # Rating Symbol Value Unit 1 2 3 4 5 1 Supply voltage Maximum current into VDD Digital input voltage Instantaneous maximum current Single pin limit (applies to all port pins)1, 2, 3 Storage temperature range VDD IDD VIn ID Tstg –0.3 to +5.8 120 –0.3 to VDD + 0.3 ± 25 –55 to 150 V mA V mA °C ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2 All functional non-supply pins except RESET are internally clamped to V SS and VDD. 3 Power supply must maintain regulation within operating V DD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption). MC9S08SG32 Data Sheet, Rev. 7 290 Freescale Semiconductor Appendix A Electrical Characteristics A.4 Thermal Characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table A-3. Thermal Characteristics Temp Rated Standard — — °C # C Rating Symbol Value Unit AEC Grade 0 — Operating temperature range (packaged) Temperature Code W Temperature Code J –40 to 150 –40 to 140 TA –40 to 125 –40 to 105 –40 to 85 1 Temperature Code M Temperature Code V Temperature Code C Thermal resistance, Single-layer board ♦ ♦ — — — ♦ ♦ ♦ Airflow @200 ft/min D 2 20-pin TSSOP 16-pin TSSOP Thermal resistance, Four-layer board Airflow @200 ft/min D 3 20-pin TSSOP 16-pin TSSOP 28-pin TSSOP θJA 51 68 78 135 4 D Maximum junction temperature TJ 155 28-pin TSSOP θJA 71 94 108 Natural Convection 91 114 133 °C/W ♦ ♦ ♦ ♦ — ♦ Natural Convection 58 75 92 °C °C/W ♦ ♦ ♦ ♦ — ♦ — ♦ — ♦ MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 291 Appendix A Electrical Characteristics The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) Eqn. A-1 where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined For most applications, PI/O VSS 5V 3V 0 0.65 x VDD 0.7 x VDD — — 0.06 x VDD Output D high current C P C 4 C voltage P C 5 Output D low current AllI/O pins high-drive strength Max total IOL for all ports 5 V, ILoad = 10 mA 3 V, ILoad = 5 mA P Input high voltage; all digital inputs 6 C P 7 C 8 C Input hysteresis Input low voltage; all digital inputs VIL 5V 3V Vhys — MC9S08SG32 Data Sheet, Rev. 7 294 Freescale Semiconductor AEC Grade 0 Appendix A Electrical Characteristics Table A-6. DC Characteristics (continued) Temp Rated Standard # C Characteristic Symbol Condition Min Typ1 Max Unit AEC Grade 0 — 9 P Input leakage current (per pin) Hi-Z (off-state) leakage current (per pin) P input/output port pins RESET Input/Output Port pins |IIn| VIn = VDD or VSS temperature > 125 C — — — — 1 2 μA μA ♦ — ♦ |IOZ| VIn = VDD or VSS; temperature VIn = VDD or VSS VIn = VDD or VSS; temperature > 125 C — — — — 1 2 μA μA ♦ ♦ — — — 10 — 0.2 2 μA ♦ Pullup or Pulldown2 resistors; when enabled 11 P C I/O pins R ,R PU PD RESET3 DC injection current 4, 5, 6, 7 Single pin limit 12 D Total MCU limit, includes sum of all stressed pins 13 D Input Capacitance, all pins 14 D RAM retention voltage 15 D POR re-arm 16 D POR re-arm voltage8 time9 CIn VRAM VPOR tPOR IIC VIN > VDD VIN < VSS, VIN > VDD VIN < VSS, — — — — 0 0 0 0 — — 0.9 10 — — — — — 0.6 1.4 — 2 –0.2 25 –5 8 1.0 2.0 — mA mA mA mA pF V V μs RPU — — 17 17 37 37 52 52 kΩ kΩ ♦♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦♦ Low-voltage detection threshold — high range 17 P VDD falling VDD rising — VLVD1 — 3.9 4.0 3.88 3.98 4.0 4.1 4.0 4.1 4.1 4.2 4.12 4.22 V V ♦ MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 295 Appendix A Electrical Characteristics Table A-6. DC Characteristics (continued) Temp Rated Standard # C Characteristic Symbol Condition Min Typ1 Max Unit AEC Grade 0 — Low-voltage detection threshold — low range 18 P VDD falling VDD rising VLVD0 — 2.48 2.54 2.56 2.62 2.64 2.70 V ♦♦ ♦ Low-voltage warning threshold — high range 1 19 P VDD falling VDD rising VLVW3 — 4.5 4.6 4.6 4.7 4.7 4.8 V 4.48 4.58 4.6 4.7 4.72 4.82 V — ♦ Low-voltage warning threshold — high range 0 20 P VDD falling VDD rising VLVW2 — 4.2 4.3 4.3 4.4 4.4 4.5 V ♦ — 4.18 4.28 Low-voltage warning threshold low range 1 21 P VDD falling VDD rising Low-voltage warning threshold — low range 0 22 P VDD falling VDD rising 23 Low-voltage inhibit reset/recover T hysteresis 4.3 4.4 4.42 4.52 V — ♦ VLVW1 — 2.84 2.90 2.92 2.98 3.00 3.06 V ♦♦ ♦♦ ♦♦ ♦♦ ♦— —♦ VLVW0 — 2.66 2.72 — — 1.18 2.74 2.80 100 60 1.202 1.202 2.82 2.88 — — 1.21 1.22 V mV mV V V 5V Vhys 3V — 24 1 2 P Bandgap Voltage Reference10 VBG 1.17 Typical values are measured at 25°C. Characterized, not tested When IRQ or a pin interrupt is configured to detect rising edges, pulldown resistors are used in place of pullup resistors. 3 The specified resistor value is the actual value internal to the device. The pullup value may measure higher when measured externally on the pin. MC9S08SG32 Data Sheet, Rev. 7 296 Freescale Semiconductor Appendix A Electrical Characteristics 4 Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). 5 All functional non-supply pins except RESET are internally clamped to VSS and VDD. 6 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. 7 The RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD. 8 Maximum is highest voltage that POR is guaranteed. 9 Simulated, not tested. 10 Factory trimmed at VDD = 5.0 V, Temp = 25°C. 2 150˚C 25˚C –40˚C 1.0 Max 1.5V@20mA 0.8 VOL (V) 0.6 0.4 0.2 0 150˚C 25˚C –40˚C Max 0.8V@5mA 1.5 VOL (V) 1 0.5 0 0 5 10 15 IOL (mA) a) VDD = 5V, High Drive 20 25 0 2 4 6 IOL (mA) b) VDD = 3V, High Drive 8 10 Figure A-1. Typical VOL vs IOL, High Drive Strength MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 297 Appendix A Electrical Characteristics 2 150˚C 25˚C –40˚C 1.0 Max 1.5V@4mA 0.8 VOL (V) 0.6 0.4 0.2 0 150˚C 25˚C –40˚C Max 0.8V@1mA 1.5 VOL (V) 1 0.5 0 0 1 2 3 IOL (mA) a) VDD = 5V, Low Drive 4 5 0 0.4 0.8 1.2 IOL (mA) b) VDD = 3V, Low Drive 1.6 2.0 Figure A-2. Typical VOL vs IOL, Low Drive Strength 2 150˚C 25˚C –40˚C 1.0 Max 1.5V@20mA 0.8 VDD – VOH (V) 0.6 0.4 0.2 0 150˚C 25˚C –40˚C Max 0.8V@5mA 1.5 VDD – VOH (V) 1 0.5 0 0 –5 –10 –15 –20 IOH (mA) a) VDD = 5V, High Drive –25 0 –2 –4 –6 –8 IOH (mA) b) VDD = 3V, High Drive –10 Figure A-3. Typical VDD – VOH vs IOH, High Drive Strength MC9S08SG32 Data Sheet, Rev. 7 298 Freescale Semiconductor Appendix A Electrical Characteristics 2 150˚C 25˚C –40˚C 1.0 Max 1.5V@4mA 0.8 VDD – VOH (V) 0.6 0.4 0.2 0 150˚C 25˚C –40˚C Max 0.8V@1mA 1.5 VDD – VOH (V) 1 0.5 0 0 –1 –2 –3 IOH (mA) a) VDD = 5V, Low Drive –4 –5 0 –0.4 –0.8 –1.2 –1.6 IOH (mA) b) VDD = 3V, Low Drive –2.0 Figure A-4. Typical VDD – VOH vs IOH, Low Drive Strength MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 299 Appendix A Electrical Characteristics A.7 Supply Current Characteristics This section includes information about power supply current in various operating modes. Table A-7. Supply Current Characteristics Temp Rated Standard # C Parameter Symbol Typ1 Max2 Unit AEC Grade 0 VDD (V) C 1 C P 2 C C 3 C Run supply current measured at (CPU clock = 4 MHz, fBus = 2 MHz) Run supply current3 measured at (CPU clock = 16 MHz, fBus = 8 MHz) Run supply current measured at (CPU clock = 32 MHz, fBus = 16MHz) Stop3 mode supply current 4 3 5 RIDD 3 5 RIDD 3 5 RIDD 3 1.4 1.3 4.7 4.6 8.9 8.7 3 2.5 7.5 7 10 9.6 mA mA mA mA mA mA ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — — — — — — — — — — C P P5 P5 4 P5 C P P5 P5 P5 –40°C (C,V, and M suffix) 25°C (All parts) 85°C (C suffix only) 105°C (V suffix only) 125°C (M suffix only) –40°C (C,V, and M suffix) 25°C (All parts) 85°C (C suffix only) 105°C (V suffix only) 125°C (M suffix only) 3 S3IDD 5 0.96 1.3 16.9 37 84 0.85 1.2 14.8 32.7 75 – – 35 90 150 – – 30 80 130 μA μA μA μA μA μA μA μA μA μA MC9S08SG32 Data Sheet, Rev. 7 300 Freescale Semiconductor Appendix A Electrical Characteristics Table A-7. Supply Current Characteristics (continued) Temp Rated Standard # C Parameter Symbol Typ1 Max2 Unit AEC Grade 0 — — — — — — — — — — — — — — — 301 VDD (V) Stop2 mode supply current C P P5 P5 5 P5 C P P5 P5 P5 6 C LVD adder to stop3 (LVDE = LVDSE = 1) 7 C Adder to stop3 for oscillator enabled7 (EREFSTEN =1) S3IDDLVD S3IDDOS C –40°C (C,M, and V suffix) 25°C (All parts) 85°C (C suffix only) 105°C (V suffix only) 125°C (M suffix only) –40°C (C,M, and V suffix) 25°C (All parts) 85°C (C suffix only) 105°C (V suffix only) 125°C (M suffix only) RTC adder to stop2 or stop36 S23IDDR TI 0.94 1.25 5 13.4 30 S2IDD 65 0.83 1.1 3 11.5 25 57 5 3 5 3 5,3 300 300 110 90 5 – – 30 65 120 – – 25 55 100 500 500 180 160 8 μA μA μA μA μA μA μA μA μA μA nA nA μA μA μA ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 8 1 2 3 4 5 C 6 7 Typical values are based on characterization data at 25°C. See Figure A-5 through Figure A-7 for typical curves across temperature and voltage. Max values in this column apply for the full operating temperature range of the device unless otherwise noted. All modules except ADC active, ICS configured for FBELP, and does not include any dc loads on port pins All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins Stop Currents are tested in production for 25 Con all parts. Tests at other temperatures depend upon the part number suffix and maturity of the product. Freescale may eliminate a test insertion at a particular temperature from the production test flow once sufficient data has been collected and is approved. Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal and low power mode (HGO = 0). MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor Appendix A Electrical Characteristics 12 FEI FBELP 10 8 Run IDD (mA) 6 4 2 0 012 4 8 fbus (MHz) 16 20 Figure A-5. Typical Run IDD vs. Bus Frequency (VDD = 5V) 6 5 4 Run IDD (mA) 3 2 1 0 –40 WAIT RUN 0 25 Temperature (˚C) 85 105 125 150 Figure A-6. Typical Run and Wait IDD vs. Temperature (VDD = 5V; fbus = 8MHz) MC9S08SG32 Data Sheet, Rev. 7 302 Freescale Semiconductor Appendix A Electrical Characteristics 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 –40 STOP2 STOP3 STOP IDD ( A) 0 25 Temperature (˚C) 85 105 125 150 Figure A-7. Typical Stop IDD vs. Temperature (VDD = 5V) MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 303 Appendix A Electrical Characteristics A.8 External Oscillator (XOSC) Characteristics Table A-8. Oscillator Electrical Specifications (Temperature Range = –40 to 125°C Ambient) Temp Rated # C Rating Symbol Min Max Unit Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) 1 C High range (RANGE = 1) FEE or FBE mode 2 flo fhi fhi-hgo fhi-lp C1, C2 32 1 1 1 — — — — 38.4 5 16 8 kHz MHz MHz MHz High range (RANGE = 1, HGO = 1) FBELP mode High range (RANGE = 1, HGO = 0) FBELP mode 2 — Load capacitors Feedback resistor 3 — Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz) Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) 4 — High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz Crystal start-up time 3 Low range, low gain (RANGE = 0, HGO = 0) 5 T Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0)4 t t t ♦ ♦ ♦ ♦ Standard Typ1 ♦ ♦ ♦ ♦ See crystal or resonator manufacturer’s recommendation. RF — — 10 1 — — MΩ MΩ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — — — RS — — — 0 100 0 — — — kΩ kΩ kΩ 0 0 0 0 10 20 kΩ kΩ kΩ CSTL-LP — — — — 200 400 5 20 — — — — ms ms ms ms CSTL-HGO t CSTH-LP High range, high gain (RANGE = 1, HGO = 1)4 Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode 2 6 T FBELP mode FBELP mode CSTH-HGO 0.03125 fextal 0 0 — — — 5 40 36 MHz MHz MHz ♦♦ ♦— —♦ MC9S08SG32 Data Sheet, Rev. 7 304 Freescale Semiconductor AEC Grade 0 Appendix A Electrical Characteristics 1 2 Typical data was characterized at 5.0 V, 25°C or is recommended value. The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz. 3 Characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. 4 4 MHz crystal EXTAL MCU XTAL RS RF C1 Crystal or Resonator C2 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 305 Appendix A Electrical Characteristics A.9 Internal Clock Source (ICS) Characteristics Table A-9. ICS Frequency Specifications (Temperature Range = –40 to 125°C Ambient) Temp Rated # C Rating Symbol Min Typical Max Unit 1 Internal reference frequency — factory P trimmed at VDD = 5 V and temperature = 25°C T Internal reference frequency — untrimmed1 fint_ft — 31.25 — kHz ♦ ♦ ♦ ♦ ♦ ♦ — ♦ ♦ ♦ — ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦ ♦ ♦ — ♦ ♦ ♦ ♦ 2 3 4 5 fint_ut fint_t tirefst fdco_ut 25 31.25 — 25.6 32 36 — 55 36.86 — — ± 0.1 41.66 39.0625 100 42.66 40 36 ± 0.2 kHz kHz μs MHz MHz MHz %fdco P Internal reference frequency — trimmed D Internal reference startup time DCO output frequency range — — untrimmed1 value provided for reference: fdco_ut = 1024 x fint_ut D DCO output frequency range — trimmed 6 fdco_t 32 7 Resolution of trimmed DCO output D frequency at fixed voltage and temperature Δfdco_res_t (using FTRIM) Resolution of trimmed DCO output D frequency at fixed voltage and temperature Δfdco_res_t (not using FTRIM) Total deviation of trimmed DCO output D frequency over voltage and temperature Total deviation of trimmed DCO output D frequency over fixed voltage and temperature range of 0°C to 70 °C D FLL acquisition time 2 D DCO output clock long term jitter (over 2 ms interval) 3 Δfdco_t — 8 — — — ± 0.2 + 0.5 – 1.0 + 0.5 – 1.0 ± 0.5 ± 0.4 ± 1.5 ±3 ±1 1 %fdco %fdco %fdco %fdco ms %fdco 9 10 11 12 1 Δfdco_t tacquire CJitter — — — 0.02 0.2 TRIM register at default value (0x80) and FTRIM control bit at default value (0x0). This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 3 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. 2 MC9S08SG32 Data Sheet, Rev. 7 306 Freescale Semiconductor AEC Grade 0 Standard Appendix A Electrical Characteristics Deviation from Trimmed Frequency +2% +1% 0 –1% –2% –40 0 25 Temperature (˚C) 85 105 125 150 Figure A-8. Typical Frequency Deviation vs Temperature (ICS Trimmed to 16MHz bus@25˚C, 5V, FEI)1 A.10 Analog Comparator (ACMP) Electricals Table A-10. Analog Comparator Electrical Specifications Temp Rated AEC Grade 0 Standard # C Rating Symbol Min Typical Max Unit 1 2 3 4 5 6 7 — C/T D D D D D Supply voltage Supply current (active) Analog input voltage Analog input offset voltage Analog Comparator hysteresis Analog input leakage current Analog Comparator initialization delay VDD IDDAC VAIN VAIO VH IALKG tAINIT 2.7 — VSS – 0.3 — 3.0 — — — 20 — 20 6.0 — — 5.5 35 VDD 40 20.0 1.0 1.0 V μA V mV mV μA μs ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 1. Based on the average of several hundred units from a typical characterization lot. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 307 Appendix A Electrical Characteristics A.11 ADC Characteristics Table A-11. ADC Operating Conditions Temp Rated Standard # Characteristic Conditions Symb Min Typ1 Max Unit AEC Grade 0 Comment 1 2 3 4 Supply voltage Input Voltage Input Capacitance Input Resistance Analog Source Resistance Absolute VDDAD VADIN CADIN RADIN 2.7 VREFL — — — — 4.5 3 5.5 VREF H V V pF kΩ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ External to MCU 5.5 5 5 10 bit mode fADCK > 4MHz fADCK < 4MHz 8 bit mode (all valid fADCK) RAS — — — 0.4 — — — — — 5 10 10 8.0 4.0 kΩ kΩ MHz MHz 6 1 ADC Conversion Clock Freq. High Speed (ADLPC=0) Low Power (ADLPC=1) fADCK 0.4 Typical values assume VDDAD = VDD = 5.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production. MC9S08SG32 Data Sheet, Rev. 7 308 Freescale Semiconductor Appendix A Electrical Characteristics SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZAS RAS Pad leakage due to input protection ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN ADC SAR ENGINE + VADIN VAS + – CAS – RADIN INPUT PIN RADIN INPUT PIN RADIN CADIN INPUT PIN Figure A-9. ADC Input Impedance Equivalency Diagram MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 309 Appendix A Electrical Characteristics Table A-12. ADC Characteristics Temp Rated Standard # Characteristic Conditions C Symb Min Typ1 Max Unit AEC Grade 0 Comment ADLPC=1 ADLSMP=1 ADCO=1 ADLPC=1 ADLSMP=0 ADCO=1 1 Supply current ADLPC=0 ADLSMP=1 ADCO=1 ADLPC=0 ADLSMP=0 ADCO=1 ADC asynchronous clock source Conversion time (including sample time) High speed (ADLPC=0) T IDD + IDDAD — 133 — μA ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ADC current only T IDD + IDDAD — 218 — μA ADC current only T IDD + IDDAD — 327 — μA ADC current only P IDD + IDDAD — 0.58 2 1 mA ADC current only 2 P Low power (ADLPC=1) Short sample (ADLSMP=0) D Long sample (ADLSMP=1) Short sample (ADLSMP=0) D Long sample (ADLSMP=1) 2 fADACK 1.25 — tADC — — tADS — 3.3 2 20 40 3.5 23.5 5 MHz 3.3 — ADCK cycles — — ADCK cycles — tADACK = 1/fADACK 3 Sample time 4 See ADC Chapter for conversion time variances MC9S08SG32 Data Sheet, Rev. 7 310 Freescale Semiconductor Appendix A Electrical Characteristics Table A-12. ADC Characteristics (continued) Temp Rated Standard # Characteristic Conditions C Symb Min Typ1 Max Unit AEC Grade 0 — Comment 28-pin packages only Total unadjusted error (includes quantization) 10-bit mode 8-bit mode 20-pin packages 5 10-bit mode P 8-bit mode 16-pin and packages 10-bit mode P 8-bit mode Differential Non-Linearity 6 10-bit mode P 8-bit mode DNL — ±0.3 ±0.5 ETUE — — — ±.5 ±0.7 ±0.5 ±3.5 LSB2 ±1.5 ±1.0 LSB2 ETUE — — ±.5 ±0.7 ±3.5 LSB2 ±1.5 P ETUE — — ±1 ±0.5 ±2.5 LSB ±1 2 ♦♦ ♦♦ ♦ ♦ — ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ Monotonicity and No-Missing-Codes guaranteed Integral non-linearity 10-bit mode T 8-bit mode INL — ±0.3 ±0.5 — ±0.5 ±1.0 LSB2 7 MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 311 Appendix A Electrical Characteristics Table A-12. ADC Characteristics (continued) Temp Rated Standard # Characteristic Conditions C Symb Min Typ1 Max Unit AEC Grade 0 — Comment 28-pin packages only 10-bit mode Zero-scale error 8-bit mode 20-pin packages 10-bit mode 8 8-bit mode 16-pin packages 10-bit mode 8-bit mode P EZS — — ±1.5 ±0.5 ±2.5 ±0.7 LSB2 P EZS — — ±1.5 ±0.5 ±2.5 ±0.7 LSB2 P EZS — — ±0.5 ±0.5 ±1.5 ±0.5 LSB2 ♦♦ ♦♦ ♦ ♦ — ♦♦ ♦♦ MC9S08SG32 Data Sheet, Rev. 7 312 Freescale Semiconductor Appendix A Electrical Characteristics Table A-12. ADC Characteristics (continued) Temp Rated Standard # Characteristic Conditions C Symb Min Typ1 Max Unit AEC Grade 0 — Comment 28-pin packages only 10-bit mode T Full-scale error 8-bit mode 20-pin packages 10-bit mode T 8-bit mode 16-pin packages 10-bit mode T 8-bit mode Quantization error 10-bit mode D 8-bit mode Input leakage error 10-bit mode D 8-bit mode Temp sensor slope -40°C to 25°C 25°C to 125°C Temp sensor voltage 1 0 EFS 0 ±0.5 ±0.5 ±1 ±0.5 LSB2 LSB2 ♦♦ ♦♦ ♦ ♦ 0 EFS 0 ±1.0 ±0.5 ±1.5 ±0.5 LSB2 LSB2 — 0 EFS 0 — EQ — 0 EIL 0 — D m — D VTEMP 25 ±1.0 ±0.5 — — ±0.2 ±0.1 3.26 6 3.63 8 1.39 6 ±1.5 ±0.5 ±0.5 ±0.5 ±2.5 ±1 — — — LSB2 LSB2 LSB2 LSB2 LSB2 LSB2 mV/°C mV/°C V ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ Pad leakage3 * RAS 25°C — Typical values assume VDD = 5.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 1 LSB = (V N REFH - VREFL)/2 3 Based on input pad leakage current. Refer to pad electricals. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 313 Appendix A Electrical Characteristics A.12 AC Characteristics This section describes ac timing characteristics for each peripheral system. A.12.1 Control Timing Table A-13. Control Timing Temp Rated Standard Num C Rating Symbol Min Typ1 Max Unit 1 D Bus frequency (tcyc = 1/fBus) -40 C to 125 C > 125 C fBus dc dc — — 20 18 1500 1500 — — MHz MHz μs μs ns ns ♦ — — ♦ — 2 D Internal low power oscillator period -40 C to 125 C > 125 C tLPO textrst trstdrv 700 600 100 66 x tcyc 100 1.5 x tcyc ♦ — 3 4 5 D D D External reset pulse width2 Reset low drive3 Pin interrupt pulse width Asynchronous path2 Synchronous path4 Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF)5 Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) ♦ ♦♦ ♦♦ ♦♦ tILIH, tIHIL — — ns tRise, tFall — — 40 75 — — ns ♦♦ ♦♦ 6 C Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF)5 Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) tRise, tFall tRise, tFall — — 11 35 — ns — ♦♦ ♦♦ Typical values are based on characterization data at VDD = 5.0V, 25°C unless otherwise stated. This is the shortest pulse that is guaranteed to be recognized as a reset pin request. 3 When any reset is initiated, internal circuitry drives the reset pin low for about 66 cycles of t . After POR reset, the bus clock cyc frequency changes to the untrimmed DCO frequency (freset = (fdco_ut)/4) because TRIM is reset to 0x80 and FTRIM is reset to 0, and there is an extra divide-by-two because BDIV is reset to 0:1. After other resets trim stays at the pre-reset value. 4 This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case. 5 Timing is shown with respect to 20% V DD and 80% VDD levels. Temperature range –40°C to 125°C. 2 1 MC9S08SG32 Data Sheet, Rev. 7 314 Freescale Semiconductor AEC Grade 0 Appendix A Electrical Characteristics textrst RESET PIN Figure A-10. Reset Timing tIHIL Pin Interrupts Pin Interrupts tILIH Figure A-11. Pin Interrupt Timing MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 315 Appendix A Electrical Characteristics A.12.2 TPM/MTIM Module Timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table A-14. TPM Input Timing Temp Rated Standard # C Rating Symbol Min Max Unit AEC Grade 0 1 2 3 4 5 — — — — — External clock frequency (1/tTCLK) External clock period External clock high time External clock low time Input capture pulse width fTCLK tTCLK tclkh tclkl tICPW dc 4 1.5 1.5 1.5 fBus/4 — — — — MHz tcyc tcyc tcyc tcyc ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ tTCLK tclkh TCLK tclkl Figure A-12. Timer External Clock tICPW TPMCHn TPMCHn tICPW Figure A-13. Timer Input Capture Pulse MC9S08SG32 Data Sheet, Rev. 7 316 Freescale Semiconductor Appendix A Electrical Characteristics A.12.3 SPI Table A-15. SPI Electrical Characteristic Temp Rated Standard Table A-15 and Figure A-14 through Figure A-17 describe the timing requirements for the SPI system. Num1 C Rating2 Symbol Min Max Unit 1 D Cycle time Master Slave tSCK tSCK 2 4 — 1/2 2048 — 1/2 — tcyc tcyc ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ 2 D Enable lead time Master Slave tLead tLead tLag tLag tSCKH tSCKL tSCK tSCK tSCK tSCK ns ns ns ns 3 D Enable lag time Master Slave — 1/2 1/2 tSCK – 25 1/2 tSCK – 25 30 30 1/2 — — — — — 4 5 6 D D D Clock (SPSCK) high time Master and Slave Clock (SPSCK) low time Master and Slave Data setup time (inputs) Master Slave tSI(M) tSI(S) tHI(M) tHI(S) tA tdis tSO tSO tHO tHO fop fop 7 D Data hold time (inputs) Master Slave 30 30 0 — — — 40 40 ns ns ns ns 8 9 10 D D D Access time, slave3 Disable time, slave4 Data setup time (outputs) Master Slave Data hold time (outputs) Master Slave — — 25 25 ns ns 11 D –10 –10 — — ns ns D 12 1 2 Operating frequency Master Slave fBus/2048 dc 55 fBus/4 MHz Refer to Figure A-14 through Figure A-17. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 317 AEC Grade 0 Appendix A Electrical Characteristics 3 4 Time to data active from high-impedance state. Hold time to high-impedance state. 5 Maximum baud rate must be limited to 5 MHz due to input filter characteristics. SS1 (OUTPUT) 2 SCK (CPOL = 0) (OUTPUT) SCK (CPOL = 1) (OUTPUT) 6 MISO (INPUT) MSB IN2 10 MOSI (OUTPUT) MSB OUT2 7 BIT 6 . . . 1 10 BIT 6 . . . 1 LSB OUT LSB IN 11 1 5 4 3 5 4 NOTES: 1. SS output mode (MODFEN = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-14. SPI Master Timing (CPHA = 0) MC9S08SG32 Data Sheet, Rev. 7 318 Freescale Semiconductor Appendix A Electrical Characteristics SS(1) (OUTPUT) 1 2 SCK (CPOL = 0) (OUTPUT) SCK (CPOL = 1) (OUTPUT) MISO (INPUT) 10 MOSI (OUTPUT) MSB OUT(2) 5 4 5 4 6 7 MSB IN(2) BIT 6 . . . 1 11 BIT 6 . . . 1 LSB OUT LSB IN 3 NOTES: 1. SS output mode (MODFEN = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-15. SPI Master Timing (CPHA = 1) SS (INPUT) 1 SCK (CPOL = 0) (INPUT) 2 SCK (CPOL = 1) (INPUT) 8 MISO (OUTPUT) SLAVE 6 MOSI (INPUT) NOTE: 3 5 4 5 4 10 MSB OUT 7 MSB IN BIT 6 . . . 1 LSB IN BIT 6 . . . 1 11 SLAVE LSB OUT SEE NOTE 9 1. Not defined but normally MSB of character just received Figure A-16. SPI Slave Timing (CPHA = 0) MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 319 Appendix A Electrical Characteristics SS (INPUT) 1 2 SCK (CPOL = 0) (INPUT) SCK (CPOL = 1) (INPUT) MISO (OUTPUT) SEE NOTE 8 MOSI (INPUT) 5 4 5 4 10 SLAVE 6 MSB IN MSB OUT 7 BIT 6 . . . 1 LSB IN 11 BIT 6 . . . 1 SLAVE LSB OUT 9 3 NOTE: 1. Not defined but normally LSB of character just received Figure A-17. SPI Slave Timing (CPHA = 1) MC9S08SG32 Data Sheet, Rev. 7 320 Freescale Semiconductor Appendix A Electrical Characteristics A.13 Flash Specifications This section provides details about program/erase times and program-erase endurance for the Flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Memory section. Table A-16. Flash Characteristics Temp Rated Standard # C Characteristic Symbol Min Typical Max Unit AEC Grade 0 1 2 3 4 5 6 7 8 9 10 1 2 — — — — — — — — C C Supply voltage for program/erase Supply voltage for read operation Internal FCLK frequency1 Internal FCLK period (1/fFCLK) Byte program time (random location)2 Byte program time (burst mode)2 Page erase time2 Vprog/era se 2.7 2.7 150 5 — — — — 9 4 4000 20,000 5.5 5.5 200 6.67 V V kHz μs tFcyc tFcyc tFcyc tFcyc ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ VRead fFCLK tFcyc tprog tBurst tPage tMass nFLPE tD_ret Mass erase time2 Program/erase endurance3 TL to TH = –40°C to +125°C T = 25°C Data retention4 10,000 15 — 100,000 100 — — — cycles years The frequency of this clock is controlled by a software setting. These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. 3 Typical endurance for Flash is based upon the intrinsic bit cell performance. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory. 4 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory. MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 321 Appendix A Electrical Characteristics A.14 EMC Performance Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance. A.14.1 Radiated Emissions Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels. Table A-17. Radiated Emissions, Electric Field Temp Rated Standard Parameter Symbol Conditions Frequency fOSC/fBUS Unit AEC Grade 0 Level1 (Max) 0.15 – 50 MHz 50 – 150 MHz Radiated emissions, electric field VDD = 5 V TA = +25oC package type 28 TSSOP 150 – 500 MHz 500 – 1000 MHz IEC Level2 SAE Level3 1 12 12 dBμV 4 MHz crystal 20 MHz bus 6 –8 N 2 — — ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ ♦♦ VRE_TEM Data based on qualification test results. IEC Level Maximums: N ≤ 12dBμV, L ≤ 24dBμV, I ≤ 36dBμV 3 SAE Level Maximums: 1 ≤ 10dBμV, 2 ≤ 20dBμV, 3 ≤ 30dBμV, 4 ≤ 40dBμV 2 MC9S08SG32 Data Sheet, Rev. 7 322 Freescale Semiconductor Appendix B Ordering Information and Mechanical Drawings B.1 Ordering Information Table B-1. Device Numbering System Part Number1 Memory Temp Rated AEC Grade 0 Standard Available Packages2 This section contains ordering information for MC9S08SG32 and MC9S08SG16 devices. Flash RAM 28-Pin 20-Pin 16-Pin MC9S08SG32 MC9S08SG16 1 2 32K 1K 16K ♦ ♦ ♦ ♦ 28 TSSOP 20 TSSOP3 16 TSSOP See Table 1-1 for a complete description of modules included on each device. See Table B-2 for package information. 3 20-pin TSSOP package is not available on the AEC Grade 0 high-temperature rated devices. Jennifer MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 323 Appendix B Ordering Information and Mechanical Drawings B.1.1 Device Numbering Scheme This device uses a smart numbering system. Refer to the following diagram to understand what each element of the device number represents. S Status - S = Auto Qualified - MC = Fully Qualified Main Memory Type - 9 = Flash-based Core Family - SG 9 S08 SG n E1 C xx R Tape and Reel Suffix (optional) - R = Tape and Reel Package Designator Two letter descriptor (refer to Table B-2). Temperature Option - C = –40 to 85 °C - V = –40 to 105 °C - M = –40 to 125 °C - J = –40 to 140 °C - W = –40 to 150 °C Mask Set Identifier — this field only appears in “Auto Qualified” part numbers - Alpha character references wafer fab. - Numeric character identifies mask. Memory Size - 32 Kbytes - 16 Kbytes Figure B-1. MC9S08SG32 Device Numbering Scheme B.2 Package Information and Mechanical Drawings Table B-2 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08SG32 Series Product Summary pages at http://www.freescale.com. To view the latest drawing, either: • Click on the appropriate link in Table B-2, or • Open a browser to the Freescale® website (http://www.freescale.com), and enter the appropriate document number (from Table B-2) in the “Enter Keyword” search box at the top of the page. MC9S08SG32 Data Sheet, Rev. 7 324 Freescale Semiconductor Appendix B Ordering Information and Mechanical Drawings The following pages are mechanical specifications for MC9S08SG32 Series package options. See Table B-2 for the document number for each package type. is Table B-2. Package Information Pin Count 28 20 16 Type TSSOP TSSOP TSSOP Designator TL TJ TG Document No. 98ARS23923W 98ASH70169A 98ASH70247A MC9S08SG32 Data Sheet, Rev. 7 Freescale Semiconductor 325 Appendix B Ordering Information and Mechanical Drawings MC9S08SG32 Data Sheet, Rev. 7 326 Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 1-303-675-2140 Fax: 1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2009. All rights reserved. MC9S08SG32 Rev. 7, 10/2009
MC9S08SG32E1VTJR 价格&库存

很抱歉,暂时无法提供与“MC9S08SG32E1VTJR”相匹配的价格&库存,您可以联系我们找货

免费人工找货