MC9S12DT128
Device User Guide Covers MC9S12DT128E, MC9S12DG128E, MC9S12DJ128E, MC9S12DG128, MC9S12DJ128, MC9S12DB128, MC9S12A128, SC515846, SC515847, SC515848, SC515849, SC101161DT, SC101161DG, SC101161DJ, SC102202, SC102203, SC102204, SC102205
HCS12 Microcontrollers
9S12DT128DGV2/D V02.17 03 Jun 2010
freescale.com
Device User Guide — 9S12DT128DGV2/D V02.17
Revision History
Version Revision Effective Number Date Date
V01.00 V01.01 V01.02 V01.03 V01.04 V01.05 18 Jun 2001 23 July 2001 23 Sep 2001 12 Oct 2001 27 Feb 2002 4 Mar 2002 18 June 2001 23 July 2001 23 Sep 2001 12 Oct 2001 27 Feb 2002 4 Mar 2002
Author
Description of Changes
Initial version (parent doc v2.03 dug for dp256). Updated version after review Changed Partname, added pierce mode, updated electrical characteristics some minor corrections Replaced Star12 by HCS12 Updated electrical spec after MC-Qualification (IOL/IOH), Data for Pierce, NVM reliability New document numbering. Corrected Typos Increased VDD to 2.35V, removed min. oscillator startup Removed Document order number except from Cover Sheet Added: Pull-up columns to signal table, example for PLL Filter calculation, Thermal values for junction to board and package, BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Modified: Reduced Wait and Run IDD values Mode of Operation chapter changed leakage current for ADC inputs down to +-1uA Corrected: Interrupt vector table enable register inconsistencies PCB layout for 80QFP VREGEN position NEW MASKSET Changed part number from DTB128 to DT128 Functional Changes: ROMCTL changes in Emulation Mode 80 Pin Byteflight package Option available Flash with 2 Bit Backdoor Key Enable Additional CAN0 routing to PJ7,6 Improved BDM with sync and acknowledge capabilities New Part ID number Improvements: Significantly improved NVM reliability data Corrections: Interrupt vector Table Updated Block User Guide versions in preface Updated Appendix A Electrical Characteristics
V01.06
8 July 2002
22 July 2002
V02.00
11 Jan 2002
11 Jan 2002
V02.01
01 Feb 2002
01 Feb 2002
2
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Version Revision Effective Number Date Date
Author
Description of Changes
Changed XCLKS to PE7 in Table 2-2 Updated device part numbers in Figure 2-1 Updated BDM clock in Figure 3-1 Removed SIM description in overview & nUPOSC spec in Table A-15 Updated electrical spec of VDD & VDDPLL (Table A-4), IOL/IOH (Table A-6), CINS (Table A-9), CIN (Table A-6 & A-15), Updated interrupt pulse timing variables in Table A-6 Updated device part numbers in Figure 2-1 Added document numbers on cover page and Table 0-2 Cleaned up Fig. 1-1, 2-1 Updated Section 1.5 descriptions Corrected PE assignment in Table 2-2, Fig. 2-5,6,7. Corrected NVM sizes in Sections 16, 17 Added IREF spec for 1ATD in Table A-8 Added Blank Check in A.3.1.5 and Table A-11 Updated CRG spec in Table A-15 Added: Pull-up columns to signal table, Example for PLL Filter calculation, Thermal values for junction to board and package, BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Device specific info on CRG Modified: Reduced Wait and Run IDD values Mode of Operation chapter Changed leakage current for ADC inputs down to +-1uA Minor modification of PLL frequency/ voltage gain values Corrected: Pin names/functions on 80 pin packages Interrupt vector table enable register inconsistencies PCB layout for 80QFP VREGEN position Corrected: Register address mismatches in 1.5.1 Removed document order no. from Revision History pages Renamed "Preface" section to "Derivative Differences and Document references". Added details for derivatives missing CAN0/1/4, BDLC, IIC and/or Byteflight Added 2L40K mask set in section 1.6 Added OSC User Guide in Preface, “Document References” Added oscillator clock connection to BDM in S12_CORE in fig 3-1 Corrected several register and bit names in “Local Enable” column of Table 5.1 Interrupt Vector Locations Section HCS12 Core Block Description: mentioned alternate clock of BDM to be equivalent to oscillator clock Added new section: “Oscillator (OSC) Block Description” Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz
V02.02
08 Mar 2002
08 Mar 2002
V02.03
14 Mar 2002
14 Mar 2002
V02.04
16 Aug 2002
16 Aug 2002
V02.05
12 Sep 2002
12 Sep 2002
V02.06
06 Nov 2002
06 Nov 2002
Freescale Semiconductor
3
Device User Guide — 9S12DT128DGV2/D V02.17
Version Revision Effective Number Date Date
Author
Description of Changes
Added 3L40K mask set in section 1.6 Corrected register entries in section 1.5.1 “Detailed Memory Map” Updated description for ROMCTL in section 2.3.31 Updated section 4.3.3 “Unsecuring the Microcontroller” Corrected and updated device-specific information for OSC (section 8.1) & Byteflight (section 15.1) Updated footnote in Table A-4 “Operating Conditions” Changed reference of VDDM to VDDR in section A.1.8 Removed footnote on input leakage current in Table A-6 “5V I/O Characteristics” Added part numbers MC9S12DT128E, MC9S12DG128E, and MC9S12DJ128E in “Preface” and related part number references Removed mask sets 0L40K and 2L40K from Table 1-3 Replaced references to HCS12 Core Guide by the individual HCS12 Block guides in Table 0-2, section 1.5.1, and section 6; updated Fig.3-1 “Clock Connections” to show the individual HCS12 blocks Corrected PIM module name and document order number in Table 0-2 “Document References” Corrected ECT pulse accumulators description in section 1.2 “Features” Corrected KWP5 pin name in Fig 2-1 112LQFP pin assignments Corrected pull resistor CTRL/reset states for PE7 and PE4-PE0 in Table 2.1 “Signal Properties” Mentioned “S12LRAE” bootloader in Flash section 17 Corrected footnote on clamp of TEST pin under Table A-1 “Absolute Maximum Ratings” Corrected minimum bus frequency to 0.25MHz in Table A-4 “Operating Conditions” Replaced “burst programming” by “row programming” in A.3 “NVM, Flash and EEPROM” Corrected blank check time for EEPROM in Table A-11 “NVM Timing Characteristics” Corrected operating frequency in Table A-18 “SPI Master/Slave Mode Timing Characteristics Added A128 information in “Derivative Differences”, 2.1 “Device Pinout”, 2.2 “Signal Properties Summary”, Fig 23-2 & Fig 23-4 Added lead-free package option (PVE) in Table 0-2 “Derivative Differences for MC9S12DB128” and Fig 0-1 “Order Partnumber Example” Added an “AEC qualified” row in the “Derivative Differences” tables 0-1 & 0-2. Added part numbers SC515846, SC515847, SC515848, and SC515849 in “Derivative Differences” tables 0-1 & 0-2, section 2, and section 23. Corrected and added maskset 4L40K in tables 0-1 & 0-2 and section 1.6. Corrected BDLC module availability in DB128 80QFP part in “Derivative Differences” table 0-2.
V02.07
29 Jan 2003
29 Jan 2003
V02.08
26 Feb 2003
26 Feb 2003
V02.09
15 Oct 2003
15 Oct 2003
V02.10
6 Feb 2004
6 Feb 2004
V02.11
3 May 2004
3 May 2004
4
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Version Revision Effective Number Date Date
06 Dec 2004 06 Dec 2004
Author
Description of Changes
Added maskset 0L94R Added items VIH,EXTAL, VIL,EXTAL, & VHYS,EXTAL in table A-15 “Oscillator characteristics” Removed item “Oscillator” from table A-4 “Operating Conditions” as it is already covered in table “Oscillator Characteristics” Amended feature list of A128 in Table 0-1 “Derivative Differences” Updated cover page Added part numbers SC101161DT, SC101161DG, SC101161DJ, SC102202, SC102203, SC102204, & SC102205 Added masksets 5L40K &1L59W Changed TJavg to 85°C in table A-12 “NVM Reliability” & added footnote concerning data retention Updated “NVM Reliability” table A-12 format with added data. Added figure A-2 “Typical Endurance vs Temperature” Added maskset 2L94R Added maskset 1L59W for MC9S12A128
V02.12
V02.13
04 Mar 2005
04 Mar 2005
V02.14
28 Apr 2005
28 Apr 2005
V02.15 V02.16 V02.17
05 Oct 2005 12 Apr 2008 3 Jun 2010
05 Oct 2005 12 Apr 2008 3 Jun 2010
Freescale Semiconductor
5
Device User Guide — 9S12DT128DGV2/D V02.17
6
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table of Contents
Section 1 Introduction
1.1 1.2 1.3 1.4 1.5 1.5.1 1.6 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Section 2 Signal Description
2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.3 TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.4 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . 64 2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15] . . . . . . . . . . . . . . . . . . . . . 65 2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]. . . . . . . . . . . . . . . . . . . . . . . . 65 2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7] . . . . . . . . . . . . . . . . . . . . . . . 65 2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]. . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 65 2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 65 2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.15 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.17 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.18 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.19 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.20 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Freescale Semiconductor 7
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.21 2.3.22 2.3.23 2.3.24 2.3.25 2.3.26 2.3.27 2.3.28 2.3.29 2.3.30 2.3.31 2.3.32 2.3.33 2.3.34 2.3.35 2.3.36 2.3.37 2.3.38 2.3.39 2.3.40 2.3.41 2.3.42 2.3.43 2.3.44 2.3.45 2.3.46 2.3.47 2.3.48 2.3.49 2.3.50 2.3.51 2.3.52 2.3.53 2.3.54 2.3.55 2.3.56
PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 — PORT J I/O Pin 7. . . . . . . . . . . . . . . 68 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 — PORT J I/O Pin 6 . . . . . . . . . . . . . . 69 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . 69 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . 69 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . 69 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . 69 PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4. . . . . . . . . . 70 PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . 70 PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . 70 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . 71 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . 71 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . 71 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . 73 2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins . . . . . . . . . . . . 73 2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 74 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 74 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . 74 2.4.7 VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . 74
Section 3 System Clock Description
3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Section 4 Modes of Operation
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Section 5 Resets and Interrupts
5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3.1 I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Section 6 HCS12 Core Block Description
6.1 CPU Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
6.1.1 6.2 6.2.1 6.3 6.3.1 6.4 6.5 6.5.1 6.6
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 HCS12 Module Mapping Control (MMC) Block Description . . . . . . . . . . . . . . . . . . . 85 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . 85 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 HCS12 Interrupt (INT) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 HCS12 Background Debug Module (BDM) Block Description . . . . . . . . . . . . . . . . . 86 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 HCS12 Breakpoint (BKP) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 7 Clock and Reset Generator (CRG) Block Description
7.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 8 Oscillator (OSC) Block Description
8.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 9 Enhanced Capture Timer (ECT) Block Description Section 10 Analog to Digital Converter (ATD) Block Description Section 11 Inter-IC Bus (IIC) Block Description Section 12 Serial Communications Interface (SCI) Block Description Section 13 Serial Peripheral Interface (SPI) Block Description Section 14 J1850 (BDLC) Block Description Section 15 Byteflight (BF) Block Description
15.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Section 16 Pulse Width Modulator (PWM) Block Description Section 17 Flash EEPROM 128K Block Description Section 18 EEPROM 2K Block Description Section 19 RAM Block Description
10
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 20 MSCAN Block Description Section 21 Port Integration Module (PIM) Block Description Section 22 Voltage Regulator (VREG) Block Description Section 23 Printed Circuit Board Layout Proposal Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.1.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 A.1.6 ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 101 A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.2.1 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.2.2 Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.2.3 ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A.3.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A.3.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 A.5.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 A.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 A.5.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 A.7.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 A.7.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Freescale Semiconductor
11
Device User Guide — 9S12DT128DGV2/D V02.17
A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 A.8.1 General Multiplexed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Appendix B Package Information
B.1 B.2 B.3 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
List of Figures
Figure 0-1 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 1-1 MC9S12DT128 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 1-2 MC9S12DT128 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128E, MC9S12DT128, MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12DB128 MC9S12A128, SC515846, SC515847, SC515848, SC515849, SC101161DT, SC101161DG, SC101161DJ, SC102202, SC102203, SC102204, and SC102205 . . . . . . . . . . . . . . . . . . 58 Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204 Bondout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 2-3 Pin Assignments in 80 QFP for MC9S12DB128, SC515846, and SC102202 Bondout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 2-4 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 2-5 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 2-6 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 2-7 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 23-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . 91 Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204) Colpitts Oscillator . . . . . . . . . . . . . . . . . . . . . . 92 Figure 23-3 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . 93 Figure 23-4 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204) Pierce Oscillator . . . . . . . . . . . . . . . . . . . . . . . 94 Figure 23-5 Recommended PCB Layout for 80QFP (MC9S12DB128, SC515846, and SC102202) Pierce Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Figure A-1 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Figure A-2 Typical Endurance vs Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure A-3 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Figure A-4 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Figure A-5 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Figure A-6 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Figure A-7 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Figure A-8 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Figure A-9 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Freescale Semiconductor
13
Device User Guide — 9S12DT128DGV2/D V02.17
Figure A-10 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Figure 23-6 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . 138
14
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
List of Tables
Table 0-1 Derivative Differences1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 0-2 Derivative Differences for MC9S12DB1281. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 0-3 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 $0000 - $000FMEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) ................... 32 $0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) ................................. 32 $0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) .............................................................. 33 $0017 - $0017MMC map 2 of 4 (HCS12 Module Mapping Control) .................................. 33 $0018 - $0019Reserved ..................................................................................................... 33 $001A - $001B Device ID Register ((Table 1-3)) ............................................................... 33 $001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, (Table 1-4)) ............ 33 $001E - $001EMEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) .................. 33 $001F - $001FINT map 2 of 2 (HCS12 Interrupt) ............................................................... 34 $0020 - $0027 Reserved .................................................................................................... 34 $0028 - $002F BKP (HCS12 Breakpoint) ........................................................................... 34 $0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) ................................. 34 $0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) .................. 34 $0034 - $003F CRG (Clock and Reset Generator) ............................................................ 35 $0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) ................................... 35 $0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel) ................................ 38 $00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel) ........................................ 39 $00C8 - $00CF SCI0 (Asynchronous Serial Interface) ...................................................... 41 $00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ....................................................... 41 $00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................. 42 $00E0 - $00E7 IIC (Inter IC Bus) ....................................................................................... 42 $00E8 - $00EF BDLC (Byte Level Data Link Controller J1850) ......................................... 43 $00F0 - $00F7 SPI1 (Serial Peripheral Interface) .............................................................. 43 $00F8 - $00FF Reserved ................................................................................................... 43 $0100 - $010F Flash Control Register (fts128k2) .............................................................. 44 $0110 - $011B EEPROM Control Register (eets2k) .......................................................... 44 $011C - $011F Reserved for RAM Control Register .......................................................... 45 $0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel) ................................ 45 $0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) ................................................ 46
Freescale Semiconductor
15
Device User Guide — 9S12DT128DGV2/D V02.17
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 47 $0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN) ................................................ 48 $01C0 - $01FF Reserved ................................................................................................... 49 $0200 - $023F Reserved .................................................................................................... 49 $0240 - $027F PIM (Port Integration Module) .................................................................... 50 $0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN) ................................................ 52 $02C0 - $02FF Reserved ................................................................................................... 53 $0300 - $035F Byteflight .................................................................................................... 53 $0360 - $03FF Reserved ................................................................................................... 55 Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 2-2 MC9S12DT128 Power and Ground Connection Summary . . . . . . . . . . . . . . . 72 Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 23-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 100 Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table A-10 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table A-12 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table A-13 Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . 117 Table A-14 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table A-16 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table A-17 MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table A-18 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
16
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-19 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Freescale Semiconductor
17
Device User Guide — 9S12DT128DGV2/D V02.17
18
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Derivative Differences and Document References
Derivative Differences
(Table 0-1) and (Table 0-2) show the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386. Table 0-1 Derivative Differences1
MC9S12DT128E3 MC9S12DG128E3 MC9S12DT128 MC9S12DG128 SC5158494 SC5158474 5 SC101161DT SC101161DG5 6 SC102205 SC1022036 3 2 ✓ ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✓ ✓ ✕ ✕ 112 LQFP PV MC9S12DJ128E3 MC9S12DJ128 SC5158484 SC101161DJ5 SC1022046 2 ✓ ✕ ✓ ✓ ✓ ✕
Modules
MC9S12A128
# of CANs CAN4 CAN1 CAN0 J1850/BDLC IIC Byteflight Package Package Code
0 ✕ ✕ ✕ ✕ ✓ ✕
112 LQFP/80 QFP2 112 LQFP/80 QFP2 112 LQFP/80 QFP2 PV/FU PV/FU PV/FU 1L40K3, 3L40K, 0L94R, 4L40K4, 1L59W5, 5L40K6, 2L94R M, V, C Yes
An errata exists contact Sales Office
1L40K3, 3L40K, 0L94R, 4L40K4, Mask set 1L59W5, 5L40K6, 2L94R Temp Options M, V, C AEC qualified Yes Notes
An errata exists contact Sales Office
1L40K3, 3L40K, 0L94R, 4L40K4, 1L59W5, 5L40K6, 2L94R M, V, C Yes
An errata exists contact Sales Office
3L40K, 0L94R, 2L94R, 1L59W C No
An errata exists contact Sales Office
Table 0-2 Derivative Differences for MC9S12DB1281
Modules # of CANs CAN4 CAN1 CAN0 J1850/BDLC IIC Byteflight Package MC9S12DB128 SC5158464 SC1022026 2 ✓ ✕ ✓ ✕ ✕ ✓ 112 LQFP MC9S12DB128 SC5158464 SC1022026 0 ✕ ✕ ✕ ✕ ✕ ✓ 80 QFP2
Freescale Semiconductor
19
Device User Guide — 9S12DT128DGV2/D V02.17 MC9S12DB128 SC5158464 SC1022026 PV/PVE 3L40K, 0L94R, 4L40K4, 5L40K6, 2L94R M, V, C/M, V Yes
An errata exists contact Sales Office
Modules Package Code Mask set Temp Options AEC qualified Notes
MC9S12DB128 SC5158464 SC1022026 FU 3L40K, 0L94R, 4L40K4, 5L40K6, 2L94R M, V, C Yes
An errata exists contact Sales Office
NOTE: 1. ✓: Available for this device, ✕: Not available for this device. 2. 80 Pin bond-out for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204 is the same; MC9S12DB128, SC515846, and SC102202 have a different bond-out. 3. Part numbers MC9S12DT128E, MC9S12DG128E, and MC9S12DJ128E are associated with the mask set 1L40K. 4. Part numbers SC515846, SC515847, SC515848, and SC515849 are associated with the mask set 4L40K. 5. Part numbers SC101161DT, SC101161DG, SC101161DJ are associated with the mask set 1L59W. 6. Part numbers SC102202, SC102203, SC102204, and SC102205 are associated with the mask set 5L40K which is not for volume production.
The following figure provides an ordering number example for the MC9S12D128 devices.
MC9S12 DJ128 C FU
Package Option Temperature Option Device Title Controller Family
Temperature Options C = -40˚C to 85˚C V = -40˚C to 105˚C M = -40˚C to 125˚C Package Options FU = 80QFP PV = 112LQFP PVE = lead-free 112LQFP
Figure 0-1 Order Partnumber Example The following items should be considered when using a derivative. • Registers – – – – – Do not write or read CAN0 registers (after reset: address range $0140 - $017F), if using a derivative without CAN0 (see (Table 0-1) and (Table 0-2)). Do not write or read CAN1 registers (after reset: address range $0180 - $01BF), if using a derivative without CAN1 (see (Table 0-1) and (Table 0-2)). Do not write or read CAN4 registers (after reset: address range $0280 - $02BF), if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)). Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a derivative without BDLC (see (Table 0-1) and (Table 0-2)). Do not write or read IIC registers (after reset: address range $00E0 - $00E7), if using a derivative without IIC (see (Table 0-1) and (Table 0-2)).
Freescale Semiconductor
20
Device User Guide — 9S12DT128DGV2/D V02.17
– •
Do not write or read Byteflight registers (after reset: address range $0300 - $035F), if using a derivative without Byteflight registers (see (Table 0-1) and (Table 0-2)). Fill the four CAN0 interrupt vectors ($FFB0 - $FFB7) according to your coding policies for unused interrupts, if using a derivative without CAN0 (see (Table 0-1) and (Table 0-2)). Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for unused interrupts, if using a derivative without CAN1 (see (Table 0-1) and (Table 0-2)). Fill the four CAN4 interrupt vectors ($FF90 - $FF97) according to your coding policies for unused interrupts, if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)). Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused interrupts, if using a derivative without BDLC (see (Table 0-1) and (Table 0-2)). Fill the IIC interrupt vector ($FFC0, $FFC1) according to your coding policies for unused interrupts, if using a derivative without IIC (see (Table 0-1) and (Table 0-2)). Fill the four Byteflight interrupt vectors ($FFA0 - $FFA7) according to your coding policies for unused interrupts, if using a derivative without Byteflight (see (Table 0-1) and (Table 0-2)). The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5, PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0 (see (Table 0-1) and (Table 0-2)). The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if using a derivative without CAN1 (see (Table 0-1) and (Table 0-2)). The CAN4 pin functionality (TXCAN4, RXCAN4) is not available on port PJ7, PJ6, PM7, PM6, PM5 and PM4, if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)). The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC (see (Table 0-1) and (Table 0-2)). The IIC pin functionality (SCL, SCA) is not available on port PJ7 and PJ6, if using a derivative without IIC (see (Table 0-1) and (Table 0-2)). The Byteflight pin functionality (BF_PSLM, BF_PERR, BF_PROK, BF_PSYN, TX_BF, RX_BF) is not available on port PM7, PM6, PM5, PM4, PM3 and PM2, if using a derivative without Byteflight (see (Table 0-1) and (Table 0-2)). Do not write MODRR1 and MODRR0 Bit of Module Routing Register (PIM_9DTB128 Block User Guide), if using a derivative without CAN0 (see (Table 0-1) and (Table 0-2)). Do not write MODRR3 and MODRR2 Bit of Module Routing Register (PIM_9DTB128 Block User Guide), if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
Interrupts – – – – – –
•
Ports –
– – – – –
– – •
Pins not available in 80 pin QFP package for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204
Freescale Semiconductor
21
Device User Guide — 9S12DT128DGV2/D V02.17
–
Port H In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing a $FF to the pull enable register (PERH at Base+$0264). Port J[1:0] Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+$026C. Port K Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+$000C. Therefore care must be taken not to clear this bit. Port M[7:6] PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. Port P6 PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input. Port S[7:4] PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. PAD[15:8] (ATD1 channels) Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers! Port H In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing a $FF to the pull enable register (PERH at Base+$0264). Port J[7:6, 1:0] Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[7:6, 1:0] by clearing the bits PERJ7, PERJ6, PERJ1 and PERJ0 at Base+$026C. Port K Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+$000C. Therefore care must be taken not to clear this bit. Port M[1:0] PM1:0 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. Port P6 PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.
–
–
–
– –
–
•
Pins not available in 80 pin QFP package for MC9S12DB128, SC515846, and SC102202 –
–
–
–
–
22
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
–
Port S[3:2] PS3:2 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. PAD[15:8] (ATD1 channels) Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers!
–
Document References
The Device User Guide provides information about the MC9S12DT128 device made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block User Guide. If applicable, special implementation details of the module are given in the block description sections of this document. See Table 0-3 for names and versions of the referenced documents throughout the Device User Guide. Table 0-3 Document References
User Guide
HCS12 CPU Reference Manual HCS12 Module Mapping Control (MMC) Block Guide HCS12 Multiplexed External Bus Interface (MEBI) Block Guide HCS12 Interrupt (INT) Block Guide HCS12 Background Debug Module (BDM) Block Guide HCS12 Breakpoint (BKP) Block Guide Clock and Reset Generator (CRG) Block User Guide Oscillator (OSC) Block User Guide Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide Inter IC Bus (IIC) Block User Guide Asynchronous Serial Interface (SCI) Block User Guide Serial Peripheral Interface (SPI) Block User Guide Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide 128K Byte Flash (FTS128K) Block User Guide 2K Byte EEPROM (EETS2K) Block User Guide Byte Level Data Link Controller -J1850 (BDLC) Block User Guide Motorola Scalable CAN (MSCAN) Block User Guide Voltage Regulator (VREG) Block User Guide Port Integration Module (PIM_9DTB128) Block User Guide Byteflight (BF) Block User Guide
Version
V02 V04 V03 V01 V04 V01 V04 V02 V01 V02 V02 V02 V02 V01 V02 V01 V01 V02 V01 V02 V01
Document Order Number
S12CPUV2/D S12MMCV4/D S12MEBIV3/D S12INTV1/D S12BDMV4/D S12BKPV1/D S12CRGV4/D S12OSCV2/D S12ECT16B8CV1/D S12ATD10B8CV2/D S12IICV2/D S12SCIV2/D S12SPIV2/D S12PWM8B8CV1/D S12FTS128KV2/D S12EETS2KV1/D S12BDLCV1/D S12MSCANV2/D S12VREGV1/D S12DTB128PIMV2/D S12BFV1/D
Freescale Semiconductor
23
Device User Guide — 9S12DT128DGV2/D V02.17
24
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 1 Introduction
1.1 Overview
The MC9S12DT128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules (MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements.
1.2 Features
• HCS12 Core – 16-bit HCS12 CPU i. Upward compatible with M68HC11 instruction set ii. Interrupt stacking and programmer’s model identical to M68HC11 iii. 20-bit ALU iv. Instruction queue v. Enhanced indexed addressing – – – – – • – – – – – • MEBI (Multiplexed External Bus Interface) MMC (Module Mapping Control) INT (Interrupt control) BKP (Breakpoints) BDM (Background Debug Module) Choice of low current Colpitts oscillator or standard Pierce Oscillator PLL COP watchdog real time interrupt clock monitor
CRG (Clock and Reset Generator)
8-bit and 4-bit ports with interrupt functionality
Freescale Semiconductor
25
Device User Guide — 9S12DT128DGV2/D V02.17
– – • – – – • – – • – – – – – • – – – • – – – – – – – • – – – •
Digital filtering Programmable rising or falling edge trigger 128K Flash EEPROM 2K byte EEPROM 8K byte RAM 10-bit resolution External conversion trigger capability Five receive and three transmit buffers Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit Four separate interrupt channels for Rx, Tx, error and wake-up Low-pass filter wake-up function Loop-back for self test operation 16-bit main counter with 7-bit prescaler 8 programmable input capture or output compare channels Four 8-bit or two 16-bit pulse accumulators Programmable period and duty cycle 8-bit 8-channel or 16-bit 4-channel Separate control for each pulse width and duty cycle Center-aligned or left-aligned outputs Programmable clock select logic with a wide range of frequencies Fast emergency shutdown input Usable as interrupt inputs Two asynchronous Serial Communications Interfaces (SCI) Two Synchronous Serial Peripheral Interface (SPI) Byteflight
Memory
Two 8-channel Analog-to-Digital Converters
Three 1M bit per second, CAN 2.0 A, B software compatible modules
Enhanced Capture Timer
8 PWM channels
Serial interfaces
Byte Data Link Controller (BDLC)
26
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
•
SAE J1850 Class B Data Communications Network Interface – Compatible and ISO Compatible for Low-Speed (= 100nF 100nF >= 100nF
See PLL specification chapter PLL loop filter cap DC cutoff cap PLL loop filter res Colpitts mode only, if recommended by quartz manufacturer See PLL Specification chapter
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed: • • • • • • • Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins (C1 – C6). Central point of the ground star should be the VSSR pin. Use low ohmic low inductance connections between VSS1, VSS2 and VSSR. VSSPLL must be directly connected to VSSR. Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible. Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU. Central power input should be fed in at the VDDA/VSSA pins.
Freescale Semiconductor
89
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator
VREGEN
VDDX
C6 VSSX
VSSA
C3
VDDA
VDD1 C1 VSS1 VSS2 C2 VDD2
VSSR C4 VDDR C5 C9 R1 C10 C8 Q1 VSSPLL VDDPLL C7 C11
90
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204) Colpitts Oscillator
VDDX
C6
VREGEN
VSSX
VSSA
C3
VDDA
VDD1 VSS2
C1 C2
VSS1 VDD2
VSSR C4 C5 VDDR C11
C8
C7 Q1
C10
R1
C9
VSSPLL VDDPLL
Freescale Semiconductor
91
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-3 Recommended PCB Layout for 112LQFP Pierce Oscillator
VREGEN VDDX C6 VSSX
VSSA
C3
VDDA
VDD1 C1 VSS1 VSS2 C2 VDD2
VSSR R3 C5 R2 Q1 C9 C10 C8 C7 VSSPLL C4 VDDR VDDPLL R1
92
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-4 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204) Pierce Oscillator
VDDX
C6
VREGEN
VSSX
VSSA
C3
VDDA
VDD1 VSS2
C1 C2
VSS1 VDD2
VSSPLL
VSSR C4 C5 VDDR
R2 Q1 C8 C7 R3
C10
R1
C9
VSSPLL VDDPLL
Freescale Semiconductor
93
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-5 Recommended PCB Layout for 80QFP (MC9S12DB128, SC515846, and SC102202) Pierce Oscillator
VDDX
C6
VREGEN
VSSX
VSSA
C3
VDDA
VDD1 VSS2
C1 C2
VSS1 VDD2
VSSPLL
VSSR C4 C5 VDDR
R2 Q1 C8 C7 R3
C10
R1
C9
VSSPLL VDDPLL
94
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Appendix A Electrical Characteristics
A.1 General
This introduction is intended to give an overview on several common topics like power supply, current injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate. P: Those parameters are guaranteed during production testing on each individual device. C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. They are regularly verified by production monitors. T: Those parameters are achieved by design characterization on a small sample size from typical devices. All values shown in the typical column are within this category. D: Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12DT128 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator, PLL and internal logic. The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator. The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage regulator. VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator and the PLL. VSS1 and VSS2 are internally connected by metal. VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.
Freescale Semiconductor
97
Device User Guide — 9S12DT128DGV2/D V02.17
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins. A.1.3.1 5V I/O pins Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently. A.1.3.2 Analog Reference This class is made up by the two VRH and VRL pins. A.1.3.3 Oscillator The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL. A.1.3.4 TEST This pin is used for production testing only. A.1.3.5 VREGEN This pin is used to enable the on chip voltage regulator.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Insure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.
98
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5). Table A-1 Absolute Maximum Ratings1
Num
1 2 3 4 5 6 7 8 9 10 11 12 13
Rating
I/O, Regulator and Analog Supply Voltage Digital Logic Supply Voltage 2 PLL Supply Voltage (2) Voltage difference VDDX to VDDR and VDDA Voltage difference VSSX to VSSR and VSSA Digital I/O Input Voltage Analog Reference XFC, EXTAL, XTAL inputs TEST input Instantaneous Maximum Current Single pin limit for all digital I/O pins 3 Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL4 Instantaneous Maximum Current Single pin limit for TEST 5 Storage Temperature Range
Symbol
VDD5 VDD VDDPLL ∆VDDX ∆VSSX VIN VRH, VRL VILV VTEST ID I
Min
-0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -25 -25 -0.25 – 65
Max
6.0 3.0 3.0 0.3 0.3 6.0 6.0 3.0 10.0 +25 +25 0 155
Unit
V V V V V V V V V mA mA mA °C
DL
IDT T
stg
NOTES: 1. Beyond absolute maximum ratings device might be damaged. 2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source. 3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA. 4. Those pins are internally clamped to VSSPLL and VDDPLL. 5. This pin is clamped low to VSSX, but not clamped high. This pin must be tied low in applications.
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.
Freescale Semiconductor
99
Device User Guide — 9S12DT128DGV2/D V02.17
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table A-2 ESD and Latch-up Test Conditions
Model
Series Resistance Storage Capacitance Human Body Number of Pulse per pin positive negative Series Resistance Storage Capacitance Machine Number of Pulse per pin positive negative Minimum input voltage limit Latch-up Maximum input voltage limit 7.5 V
Description
Symbol
R1 C – R1 C –
Value
1500 100 – 3 3 0 200 – 3 3 –2.5
Unit
Ohm pF
Ohm pF
V
Table A-3 ESD and Latch-Up Protection Characteristics
Num
1 2 3 4
C
Rating
Symbol
VHBM VMM VCDM ILAT
Min
2000 200 500 +100 –100 +200 –200
Max
– – – –
Unit
V V V mA
C Human Body Model (HBM) C Machine Model (MM) C Charge Device Model (CDM) Latch-up Current at 125°C C positive negative Latch-up Current at 27°C C positive negative
5
ILAT
–
mA
A.1.7 Operating Conditions
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data. NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature TA and the junction temperature TJ. For power dissipation
100
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics. Table A-4 Operating Conditions
Rating
I/O, Regulator and Analog Supply Voltage Digital Logic Supply Voltage 1 PLL Supply Voltage 1 Voltage Difference VDDX to VDDR and VDDA Voltage Difference VSSX to VSSR and VSSA Bus Frequency MC9S12DT128C Operating Junction Temperature Range Operating Ambient Temperature Range 3 MC9S12DT128V Operating Junction Temperature Range Operating Ambient Temperature Range 3 MC9S12DT128M Operating Junction Temperature Range Operating Ambient Temperature Range 3 TJ TA -40 -40 27 140 125 °C °C TJ TA -40 -40 27 120 105 °C °C T T
J
Symbol
VDD5 VDD VDDPLL ∆VDDX ∆VSSX fbus
Min
4.5 2.35 2.25 -0.1 -0.1 0.252
Typ
5 2.5 2.5 0 0 -
Max
5.25 2.75 2.75 0.1 0.1 25
Unit
V V V V V MHz
-40 -40
27
100 85
°C °C
A
NOTES: 1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The given operating range applies when this regulator is disabled and the device is powered from an external source. 2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation. 3. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D • Θ JA ) T J = Junction Temperature, [ ° C ] T A = Ambient Temperature, [ ° C ]
Freescale Semiconductor
101
Device User Guide — 9S12DT128DGV2/D V02.17
P D = Total Chip Power Dissipation, [W] Θ JA = Package Thermal Resistance, [ ° C/W] The total power dissipation can be calculated from: P D = P INT + P IO P INT = Chip Internal Power Dissipation, [W]
Two cases with internal voltage regulator enabled and disabled must be considered: 1. Internal Voltage Regulator disabled P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA 2 P IO = R DSON ⋅ I IO i i
∑
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR. For RDSON is valid: V OL R DSON = ----------- ;for outputs driven low I OL
V DD5 – V OH R DSON = ----------------------------------- ;for outputs driven high I OH 2. Internal voltage regulator enabled P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA IDDR is the current shown in (Table A-7) and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high.
respectively
P IO =
∑ RDSON ⋅ IIOi
i
2
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
102
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-5 Thermal Package Characteristics1
Num C
1 2 3 4 5 6 7 8 9 10
Rating
Symbol
θJA θJA θJB θJC ΨJT θJA θJA θJB θJC ΨJT
Min
– – – – – – – – – –
Typ
– – – – – – – – – –
Max
54 41 31 11 2 51 41 27 14 3
Unit
o
T Thermal Resistance LQFP112, single sided PCB2 T Thermal Resistance LQFP112, double sided PCB with 2 internal planes3
C/W
oC/W o o o o
T Junction to Board LQFP112 T Junction to Case LQFP112 T Junction to Package Top LQFP112 T Thermal Resistance QFP 80, single sided PCB T Thermal Resistance QFP 80, double sided PCB with 2 internal planes
C/W C/W C/W C/W
oC/W oC/W oC/W oC/W
T Junction to Board QFP80 T Junction to Case QFP80 T Junction to Package Top QFP80
NOTES: 1. The values for thermal resistance are achieved by package simulations 2. PC Board according to EIA/JEDEC Standard 51-3 3. PC Board according to EIA/JEDEC Standard 51-7
A.1.9 I/O Characteristics
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances.
Freescale Semiconductor
103
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-6 5V I/O Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
1 P Input High Voltage T Input High Voltage 2 P Input Low Voltage T Input Low Voltage 3 C Input Hysteresis
Rating
Symbol
V V
IH IH IL IL
Min
0.65*VDD5 – – VSS5 – 0.3
Typ
– – – – 250
Max
Unit
V
VDD5 + 0.3 0.35*VDD5 – V V mV µA
V V V
HYS
4
Input Leakage Current (pins in high ohmic input P mode) V =V or VSS5 in DD5 Output High Voltage (pins in output mode) C Partial Drive IOH = –2.0mA P Full Drive IOH = –10.0mA Output Low Voltage (pins in output mode) C Partial Drive IOL = +2.0mA P Full Drive IOL = +10.0mA Internal Pull Up Device Current, P tested at V Max.
IL
Iin
-1.0
–
1.0
5
V
OH
VDD5 – 0.8
–
–
V
6
V
OL
–
–
0.8
V
7
IPUL IPUH IPDH IPDL Cin IICS IICP tPULSE tPULSE
–
–
–130
µA µA µA µA pF mA µs µs
8
Internal Pull Up Device Current, C tested at V Min.
IH
–10
–
–
9
Internal Pull Down Device Current, P tested at V Min.
IH
–
–
130
10 11 12
Internal Pull Down Device Current, C tested at V Max.
IL
10
– 6
– – 2.5 25 3
D Input Capacitance Injection current1 T Single Pin limit Total Device Limit. Sum of all injected currents P Port H, J, P Interrupt Input Pulse filtered 2 P Port H, J, P Interrupt Input Pulse passed 2
–2.5 –25
–
13 14
10
NOTES: 1. Refer to Section A.1.4 Current Injection, for more details 2. Parameter only applies in STOP or Pseudo STOP mode.
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for the measurements.
104 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.1.10.1 Measurement Conditions All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input. A.1.10.2 Additional Remarks In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads. Table A-7 Supply Current Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
1 P
Rating
Run supply currents Single Chip, Internal regulator enabled Wait Supply current All modules enabled, PLL on only RTI enabled (1) Pseudo Stop Current (RTI and COP disabled) 1, 2 -40°C 27°C 70°C 85°C “C” Temp Option 100°C 105°C “V” Temp Option 120°C 125°C “M” Temp Option 140°C Pseudo Stop Current (RTI and COP enabled)
(1), (2)
Symbol
IDD5 IDDW
Min
Typ
Max
55 30 5
Unit
mA
2
P P C P C C P C P C P C C C C C C C Stop Current (2) C P C C P C P C P
mA
3
IDDPS
370 400 450 550 600 650 800 850 1200 570 600 650 750 850 1200 1500 12 25 100 130 160 200 350 400 600
500 µA
1600 2100 5000
4
-40°C 27°C 70°C 85°C 105°C 125°C 140°C -40°C 27°C 70°C 85°C “C” Temp Option 100°C 105°C “V” Temp Option 120°C 125°C “M” Temp Option 140°C
IDDPS
µA
100 µA
5
IDDS
1200 1700 5000
Freescale Semiconductor
105
Device User Guide — 9S12DT128DGV2/D V02.17
NOTES: 1. PLL off, Oscillator in Colpitts Mode 2. At those low power dissipation levels TJ = TA can be assumed
106
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.2 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
A.2.1 ATD Operating Characteristics
The (Table A-8) shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results: VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped. Table A-8 ATD Operating Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Reference Potential 1 2 3 4 D
Rating
Low High
Symbol VRL VRH VRH-VRL fATDCLK
Min VSSA VDDA/2 4.50 0.5 14 7 12 6
Typ
Max VDDA/2 VDDA
Unit V V V MHz Cycles µs Cycles µs µs mA mA
C Differential Reference Voltage1 D ATD Clock Frequency ATD 10-Bit Conversion Period D
5.00
5.25 2.0 28 14 26 13 20 0.75 0.375
Clock Cycles2 NCONV10 Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10 ATD 8-Bit Conversion Period Clock Cycles(2) Conv, Time at 2.0MHz ATD Clock fATDCLK
5
D
NCONV8 TCONV8 tSR IREF IREF
6 7 8
D Stop Recovery Time (VDDA=5.0 Volts) P Reference Supply current (Both ATD modules on) P Reference Supply current (Only one ATD module on)
NOTES: 1. Full accuracy is not guaranteed when differential voltage is less than 4.50V 2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.
A.2.2 Factors influencing accuracy
Three factors – source resistance, source capacitance and current injection – have an influence on the accuracy of the ATD. A.2.2.1 Source Resistance: Due to the input pin leakage current as specified in (Table A-6) in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
Freescale Semiconductor 107
Device User Guide — 9S12DT128DGV2/D V02.17
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed. A.2.2.2 Source capacitance When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS– CINN). A.2.2.3 Current injection There are two cases to consider. 1. A current is injected into the channel being converted. The channel being stressed has conversion values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than VRL unless the current is higher than specified as disruptive conditions. 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance. The additional input voltage error on the converted channel can be calculated as VERR = K * RS * IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted channel. Table A-9 ATD Electrical Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
1 2 3 4 5
Rating
Symbol
RS CINN CINS INA Kp Kn
Min
-
Typ
-
Max
1 10 22
Unit
KΩ pF mA A/A A/A
C Max input Source Resistance Total Input Capacitance T Non Sampling Sampling C Disruptive Analog Input Current C Coupling Ratio positive current injection C Coupling Ratio negative current injection
-2.5
2.5 10-4 10-2
108
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.2.3 ATD accuracy
(Table A-10) specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance. Table A-10 ATD Conversion Performance
Conditions are shown in (Table A-4) unless otherwise noted VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz Num C
1 2 3 4 5 6 7 8 P 10-Bit Resolution P 10-Bit Differential Nonlinearity P 10-Bit Integral Nonlinearity P 10-Bit Absolute Error1 P 8-Bit Resolution P 8-Bit Differential Nonlinearity P 8-Bit Integral Nonlinearity P 8-Bit Absolute Error(1)
Rating
Symbol
LSB DNL INL AE LSB DNL INL AE
Min
Typ
5
Max
Unit
mV
–1 –2.5 -3 ±1.5 ±2.0 20 –0.5 –1.0 -1.5 ±0.5 ±1.0
1 2.5 3
Counts Counts Counts mV
0.5 1.0 1.5
Counts Counts Counts
NOTES: 1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
For the following definitions see also Figure A-1. Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
Vi – Vi – 1 DNL ( i ) = ----------------------- – 1 1LSB
The Integral Non-Linearity (INL) is defined as the sum of all DNLs: n
INL ( n ) =
∑
i=1
Vn – V0 DNL ( i ) = ------------------- – n 1LSB
Freescale Semiconductor
109
Device User Guide — 9S12DT128DGV2/D V02.17
DNL
LSB Vi-1
$3FF $3FE $3FD $3FC $3FB $3FA $3F9 $3F8 $3F7 $3F6 $3F5
10-Bit Absolute Error Boundary Vi 8-Bit Absolute Error Boundary
$FF
$FE
10-Bit Resolution
$3F4 $3F3
$FD
9 8 7 6 5 4 3 2 1 0 5 10 15 20 25 30 35 40 45
Ideal Transfer Curve
2
10-Bit Transfer Curve
1
8-Bit Transfer Curve
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120
Vin mV
Figure A-1 ATD Accuracy Definitions NOTE: Figure A-1 shows only definitions, for specification values refer to Table A-10.
110
Freescale Semiconductor
8-Bit Resolution
Device User Guide — 9S12DT128DGV2/D V02.17
A.3 NVM, Flash and EEPROM
NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM.
A.3.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured. The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as fNVMOP. The minimum program and erase times shown in (Table A-11) are calculated for maximum fNVMOP and maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
A.3.1.1 Single Word Programming The programming time for single word programming is dependant on the bus frequency as a well as on the frequency fNVMOP and can be calculated according to the following formula.
1 1 t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP f bus
A.3.1.2 Row Programming This applies only to the Flash where up to 32 words in a row can be programmed consecutively by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:
1 1 t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP f bus
The time to program a whole row is:
t brpgm = t swpgm + 31 ⋅ t bwpgm
Row programming is more than 2 times faster than single word programming. A.3.1.3 Sector Erase Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:
Freescale Semiconductor
111
Device User Guide — 9S12DT128DGV2/D V02.17
1 t era ≈ 4000 ⋅ --------------------f NVMOP
The setup time can be ignored for this operation. A.3.1.4 Mass Erase Erasing a NVM block takes:
1 t mass ≈ 20000 ⋅ --------------------f NVMOP
The setup time can be ignored for this operation. A.3.1.5 Blank Check The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command.
t check ≈ location ⋅ t cyc + 10 ⋅ t cyc
Table A-11 NVM Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
1 2 3 4 5 6 7 8 9 10
Rating
Symbol
fNVMOSC fNVMBUS fNVMOP tswpgm tbwpgm tbrpgm tera tmass tcheck tcheck
Min
0.5 1 150 46 2 20.4 (2) 678.4 (2) 20 5 100 (5) 11 6 11 (6)
Typ
Max
50 1
Unit
MHz MHz
D External Oscillator Clock D Bus frequency for Programming or Erase Operations D Operating Frequency P Single Word Programming Time D Flash Row Programming consecutive word 4 D Flash Row Programming Time for 32 Words (4) P Sector Erase Time P Mass Erase Time D Blank Check Time Flash per block D Blank Check Time EEPROM per block
200 74.5 3 31 (3) 1035.5 (3) 26.7 (3) 133 (3) 32778 7 1034(7)
kHz µs µs µs ms ms tcyc tcyc
NOTES: 1. Restrictions for oscillator in crystal mode apply! 2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency fbus. 3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus. Refer to formulae in Sections Section A.3.1.1 Single Word Programming- Section A.3.1.4 Mass Erasefor guidance. 4. Row Programming operations are not applicable to EEPROM 5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP. 6. Minimum time, if first word in the array is not blank 7. Maximum time to complete check on an erased block
112
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.3.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed.
Freescale Semiconductor
113
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-12 NVM Reliability Characteristics1
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Flash Reliability Characteristics
Min
Typ
Max
Unit
1
C
Data retention after 10,000 program/erase cycles at an average junction temperature of TJavg ≤ 85°C
15 tFLRET 20
1002 1002 — 100,0003
— Years —
2
Data retention with