Freescale Semiconductor, Inc.
DOCUMENT NUMBER 9S12DT128BDGV1/D
MC9S12DT128B Device User Guide V01.09 Covers also
Freescale Semiconductor, Inc...
MC9S12DG128B, MC9S12DJ128B, MC9S12DB128B
Original Release Date: 18 June 2001 Revised: 31 October 2002
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Revision History
Version Revision Effective Number Date Date
V01.00 V01.01 V01.02 18 Jun 2001 23 July 2001 23 Sep 2001 12 Oct 2001 27 Feb 2002 4 Mar 2002 18 June 2001 23 July 2001 23 Sep 2001 12 Oct 2001 27 Feb 2002 4 Mar 2002
Author
Description of Changes
Initial version (parent doc v2.03 dug for dp256). Updated version after review Changed Partname, added pierce mode, updated electrical characteristics some minor corrections Replaced Star12 by HCS12 Updated electrical spec after MC-Qualification (IOL/IOH), Data for Pierce, NVM reliability New document numbering. Corrected Typos Increased VDD to 2.35V, removed min. oscillator startup Removed Document order number except from Cover Sheet Added: Pull-up columns to signal table, example for PLL Filter calculation, Thermal values for junction to board and package, BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Modified: Reduced Wait and Run IDD values Mode of Operation chapter changed leakage current for ADC inputs down to +-1uA Corrected: Interrupt vector table enable register inconsistencies PCB layout for 80QFP VREGEN position Minor corrections in table 1-1 & section 1.5.1 Corrected register address mismatches in section 1.5.1 Removed document order no. from Revision History page Renamed "Preface" section to "Derivative Differences and Document references". Added details for derivatives missing CAN1, BDLC, IIC and/or Byteflight Added oscillator clock connection to BDM in S12_CORE in fig 3-1 Section HCS12 Core Block Description: mentioned alternate clock of BDM to be equivalent to oscillator clock Corrected several register and bit names in “Local Enable” column of Table 5.1 Interrupt Vector Locations. Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz
Freescale Semiconductor, Inc...
V01.03 V01.04 V01.05
V01.06
8 July 2002
22 July 2002
V01.07 V01.08
16 Aug 2002 12 Sep 2002
16 Aug 2002 12 Sep 2002
V01.09
31 Oct 2002
31 Oct 2002
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Table of Contents
Section 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 1.2 1.3 1.4 1.5 1.5.1 1.6 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Freescale Semiconductor, Inc...
Section 2 Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 2.3.3 TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 2.3.4 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . . . .55 2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15] . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]. . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7] . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .56 2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.15 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.17 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.18 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.19 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.20 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
2.3.21 2.3.22 2.3.23 2.3.24 2.3.25 2.3.26 2.3.27 2.3.28 2.3.29 2.3.30 2.3.31 2.3.32 2.3.33 2.3.34 2.3.35 2.3.36 2.3.37 2.3.38 2.3.39 2.3.40 2.3.41 2.3.42 2.3.43 2.3.44 2.3.45 2.3.46 2.3.47 2.3.48 2.3.49 2.3.50 2.3.51 2.3.52 2.3.53 2.3.54 2.3.55 2.3.56
PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . .59 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . .60 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . .60 PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4. . . . . . . . . . . . .61 PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . .61 PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . . . .61 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . .62 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . .64 2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator 64 2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . . . .65 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .65 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .65 2.4.7 VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Freescale Semiconductor, Inc...
Section 3 System Clock Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Section 4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Section 5 Resets and Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.1 I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Section 6 HCS12 Core Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Section 7 Clock and Reset Generator (CRG) Block Description . . . . . . . . . 77
7.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 7.1.1 XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Section 8 Enhanced Capture Timer (ECT) Block Description . . . . . . . . . . . . 77 Section 9 Analog to Digital Converter (ATD) Block Description. . . . . . . . . . 77 Section 10 Inter-IC Bus (IIC) Block Description . . . . . . . . . . . . . . . . . . . . . . . 77 Section 11 Serial Communications Interface (SCI) Block Description. . . . . 77
Freescale Semiconductor, Inc...
Section 12 Serial Peripheral Interface (SPI) Block Description . . . . . . . . . . 78 Section 13 J1850 (BDLC) Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . 78 Section 14 Byteflight (BF) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . 78 Section 15 Pulse Width Modulator (PWM) Block Description . . . . . . . . . . . . 78 Section 16 Flash EEPROM 128K Block Description . . . . . . . . . . . . . . . . . . . 78 Section 17 EEPROM 2K Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Section 18 RAM Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Section 19 MSCAN Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Section 20 Port Integration Module (PIM) Block Description . . . . . . . . . . . . 79 Section 21 Voltage Regulator (VREG) Block Description . . . . . . . . . . . . . . . 79 Section 22 Printed Circuit Board Layout Proposal . . . . . . . . . . . . . . . . . . . . 80 Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 A.1.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 A.1.6 ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 A.2.1 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 A.2.2 Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 A.2.3 ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 A.3.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 A.3.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 A.5.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 A.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 A.5.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 A.7.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 A.7.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 A.8.1 General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
Freescale Semiconductor, Inc...
Appendix B Package Information
B.1 B.2 B.3 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
List of Figures
Figure 0-1 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Figure 1-1 MC9S12DT128B Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Figure 1-2 MC9S12DT128B Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128B,MC9S12DG128B, MC9S12DJ128B, MC9S12DB128B50 Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128B, MC9S12DJ128B Bondout . .51 Figure 2-3 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Figure 2-4 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Figure 2-5 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Figure 2-6 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Figure 22-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . . . .81 Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator . . . . . . . . . . . . . . . . .82 Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . . . .83 Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . . . .84 Figure A-1 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure A-2 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Figure A-3 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Figure A-4 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Figure A-5 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Figure A-6 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Figure A-7 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure A-8 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure A-9 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Figure 22-5 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . .122
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
List of Tables
Table 0-1 Derivative Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 0-2 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 $0000 - $000F MEBI map 1 of 3 (Core User Guide) ........................................................24 $0010 - $0014 MMC map 1 of 4 (Core User Guide) ........................................................24 $0015 - $0016 INT map 1 of 2 (Core User Guide) ...........................................................25 $0017 - $0017 MMC map 2 of 4 (Core User Guide) ........................................................25 $0018 - $001B Miscellaneous Peripherals (Device User Guide, Table 1-3) ....................25 $001C - $001D MMC map 3 of 4 (Core and Device User Guide, Table 1-4) ...................25 $001E - $001E MEBI map 2 of 3 (Core User Guide) ........................................................25 $001F - $001F INT map 2 of 2 (Core User Guide) ...........................................................25 $0020 - $0027 Reserved ..................................................................................................26 $0028 - $002F BKP (Core User Guide) ...........................................................................26 $0030 - $0031 MMC map 4 of 4 (Core User Guide) ........................................................26 $0032 - $0033 MEBI map 3 of 3 (Core User Guide) ........................................................26 $0034 - $003F CRG (Clock and Reset Generator) ..........................................................27 $0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) .................................27 $0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel) ..............................30 $00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel) .......................................31 $00C8 - $00CF SCI0 (Asynchronous Serial Interface) ......................................................33 $00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ......................................................33 $00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................34 $00E0 - $00E7 IIC (Inter IC Bus) ......................................................................................34 $00E8 - $00EF BDLC (Byte Level Data Link Controller J1850) ........................................35 $00F0 - $00F7 SPI1 (Serial Peripheral Interface) ............................................................35 $00F8 - $00FF Reserved ..................................................................................................35 $0100 - $010F Flash Control Register (fts128k2) ............................................................36 $0110 - $011B EEPROM Control Register (eets2k) ........................................................36 $011C - $011F Reserved for RAM Control Register ........................................................37 $0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel) ..............................37 $0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) ..............................................38 Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . . . .39 $0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN) ..............................................40
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
$01C0 - $01FF Reserved ..................................................................................................41 $0200 - $023F Reserved ..................................................................................................41 $0240 - $027F PIM (Port Integration Module) ..................................................................42 $0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN) ..............................................44 $02C0 - $02FF Reserved ..................................................................................................45 $0300 - $035F Byteflight ..................................................................................................45 $0360 - $03FF Reserved ..................................................................................................47 Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Table 2-2 MC9S12DT128B Power and Ground Connection Summary . . . . . . . . . . . . . . . . .63 Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Table 22-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Table A-10 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 Table A-12 NVM Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Table A-13 Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . . . .103 Table A-14 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 Table A-16 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 Table A-17 MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 Table A-18 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Table A-19 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Derivative Differences and Document References
Derivative Differences
Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386. Table 0-1 Derivative Differences1
Modules MC9S12DT128B MC9S12DG128B # of CANs 3 2 CAN4 CAN1 ! CAN0 J1850/BDLC ! ! IIC Byteflight Package Package Code Mask set Temp Options Notes ! 112 LQFP PV L85D M, V, C An errata exists contact Sales Office MC9S12DJ128B 2 ! MC9S12DB128B 2 ! ! ! 112 LQFP PV L85D M, V, C An errata exists contact Sales Office
Freescale Semiconductor, Inc...
! ! 112 LQFP/80 QFP 112 LQFP/80 QFP PV/FU L85D M, V, C An errata exists contact Sales Office PV/FU L85D M, V, C An errata exists contact Sales Office
NOTES: 1. : Available for this device, !: Not available for this device
The following figure provides an ordering number example for the MC9S12D128B devices.
MC9S12 DJ128B C FU
Package Option Temperature Option Device Title Controller Family
Temperature Options C = -40˚C to 85˚C V = -40˚C to 105˚C M = -40˚C to 125˚C Package Options FU = 80QFP PV = 112LQFP
Figure 0-1 Order Partnumber Example The following items should be considered when using a derivative. • Registers – Do not write or read CAN1 registers (after reset: address range $0180 - $01BF), if using a derivative without CAN1 (see Table 0-1).
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
– – – •
Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a derivative without BDLC (see Table 0-1). Do not write or read IIC registers (after reset: address range $00E0 - $00E7), if using a derivative without IIC (see Table 0-1). Do not write or read Byteflight registers (after reset: address range $0300 - $035F), if using a derivative without Byteflight registers (see Table 0-1). Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for unused interrupts, if using a derivative without CAN1 (see Table 0-1). Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused interrupts, if using a derivative without BDLC (see Table 0-1). Fill the IIC interrupt vector ($FFC0, $FFC1) according to your coding policies for unused interrupts, if using a derivative without IIC (see Table 0-1). Fill the four Byteflight interrupt vectors ($FFA0 - $FFA7) according to your coding policies for unused interrupts, if using a derivative without Byteflight (see Table 0-1). The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if using a derivative without CAN1 (see Table 0-1). The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC (see Table 0-1). The IIC pin functionality (SCL, SCA) is not available on port PJ7 and PJ6, if using a derivative without IIC (see Table 0-1). The Byteflight pin functionality (BF_PSLM, BF_PERR, BF_PROK, BF_PSYN, TX_BF, RX_BF) is not available on port PM7, PM6, PM5, PM4, PM3 and PM2, if using a derivative without Byteflight (see Table 0-1). Port H In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing a $FF to the pull enable register (PERH at Base+$0264). Port J[1:0] Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+$026C. Port K Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+$000C. Therefore care must be taken not to clear this bit.
Interrupts – –
Freescale Semiconductor, Inc...
– – •
Ports – – – –
•
Pins not available in 80 pin QFP package –
–
–
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
– Port M[7:6] PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. Port P6 PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input. Port S[7:4] PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. PAD[15:8] (ATD1 channels) Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers!
– –
–
Freescale Semiconductor, Inc...
Document References
The Device User Guide provides information about the MC9S12DT128B device made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A complete set of device manuals also includes the HCS12 Core User Guide and all the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block User Guide. If applicable, special implementation details of the module are given in the block description sections of this document. See Table 0-2 for names and versions of the referenced documents throughout the Device User Guide. Table 0-2 Document References
User Guide
HCS12_V1.5 Core User Guide Clock and Reset Generator (CRG) Block User Guide Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide Inter IC Bus (IIC) Block User Guide Asynchronous Serial Interface (SCI) Block User Guide Serial Peripheral Interface (SPI) Block User Guide Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide 128K Byte Flash (FTS128K) Block User Guide 2K Byte EEPROM (EETS2K) Block User Guide Byte Level Data Link Controller -J1850 (BDLC) Block User Guide Motorola Scalable CAN (MSCAN) Block User Guide Voltage Regulator (VREG) Block User Guide Port Integration Module (PIM_9DT128) Block User Guide Byteflight (BF) Block User Guide
Version
1.2 V03 V01 V02 V02 V02 V02 V01 V01 V01 V01 V02 V01 V01 V01
Document Order Number
HCS12COREUG S12CRGV3/D S12ECT16B8CV1/D S12ATD10B8CV2/D S12IICV2/D S12SCIV2/D S12SPIV2/D S12PWM8B8CV1/D S12FTS128KV1/D S12EETS2KV1/D S12BDLCV1/D S12MSCANV2/D S12VREGV1/D S12PIMDT128V1/D S12BFV1/D
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Section 1 Introduction
1.1 Overview
The MC9S12DT128B microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules (MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128B has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements.
Freescale Semiconductor, Inc...
1.2 Features
• HCS12 Core – 16-bit HCS12 CPU i. Upward compatible with M68HC11 instruction set ii. Interrupt stacking and programmer’s model identical to M68HC11 iii. 20-bit ALU iv. Instruction queue v. Enhanced indexed addressing – – – – – • – – – – – • MEBI (Multiplexed External Bus Interface) MMC (Module Mapping Control) INT (Interrupt control) BKP (Breakpoints) BDM (Background Debug Mode) Choice of low current Colpitts oscillator or standard Pierce Oscillator PLL COP watchdog real time interrupt clock monitor
CRG (Clock and Reset Generator)
8-bit and 4-bit ports with interrupt functionality
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
– – • – – – • – – •
Digital filtering Programmable rising or falling edge trigger 128K Flash EEPROM 2K byte EEPROM 8K byte RAM 10-bit resolution External conversion trigger capability Five receive and three transmit buffers Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit Four separate interrupt channels for Rx, Tx, error and wake-up Low-pass filter wake-up function Loop-back for self test operation 16-bit main counter with 7-bit prescaler 8 programmable input capture or output compare channels Two 8-bit or one 16-bit pulse accumulators Programmable period and duty cycle 8-bit 8-channel or 16-bit 4-channel Separate control for each pulse width and duty cycle Center-aligned or left-aligned outputs Programmable clock select logic with a wide range of frequencies Fast emergency shutdown input Usable as interrupt inputs Two asynchronous Serial Communications Interfaces (SCI) Two Synchronous Serial Peripheral Interface (SPI) Byteflight
Memory
Two 8-channel Analog-to-Digital Converters
Freescale Semiconductor, Inc...
Three 1M bit per second, CAN 2.0 A, B software compatible modules – – – – –
•
Enhanced Capture Timer – – –
•
8 PWM channels – – – – – – –
•
Serial interfaces – – –
•
Byte Data Link Controller (BDLC)
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
• SAE J1850 Class B Data Communications Network Interface – • Compatible and ISO Compatible for Low-Speed (= 100nF 100nF >= 100nF
Freescale Semiconductor, Inc...
C7 C8 C9 / CS C10 / CP C11 / CDC R1 / R R2 / RB
See PLL specification chapter PLL loop filter cap DC cutoff cap PLL loop filter res Colpitts mode only, if recommended by quartz manufacturer See PLL Specification chapter Pierce mode only R3 / RS Q1 Quartz
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed: • • • • • • • Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins (C1 – C6). Central point of the ground star should be the VSSR pin. Use low ohmic low inductance connections between VSS1, VSS2 and VSSR. VSSPLL must be directly connected to VSSR. Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible. Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU. Central power input should be fed in at the VDDA/VSSA pins.
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Figure 22-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator
VREGEN
VDDX
C6 VSSX
VSSA
C3
VDDA
Freescale Semiconductor, Inc...
VDD1 C1 VSS1 VSS2 C2 VDD2
VSSR C4 VDDR C5 C9 R1 C10 C8 Q1 VSSPLL VDDPLL C7
For More Information On This Product, Go to: www.freescale.com
C11
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator
VDDX
C6
VREGEN
VSSX
VSSA
C3
Freescale Semiconductor, Inc...
VDDA
VDD1 VSS2
C1 C2
VSS1 VDD2
VSSR C4 C5 VDDR C11
C8
C7 Q1
C10
R1
For More Information On This Product, Go to: www.freescale.com
C9
VSSPLL VDDPLL
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator
VREGEN VDDX C6 VSSX
VSSA
C3
VDDA
Freescale Semiconductor, Inc...
VDD1 C1 VSS1 VSS2 C2 VDD2
VSSR R3 C5 R2 Q1 C9 C10 C8 C7 VSSPLL C4 VDDR VDDPLL R1
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator
VDDX
C6
VREGEN
VSSX
VSSA
C3
VDDA
Freescale Semiconductor, Inc...
VDD1 VSS2
C1 C2
VSS1 VDD2
VSSPLL
VSSR C4 C5 VDDR
R2 Q1 C8 C7 R3
C10
R1
For More Information On This Product, Go to: www.freescale.com
C9
VSSPLL VDDPLL
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Appendix A Electrical Characteristics
A.1 General
This introduction is intended to give an overview on several common topics like power supply, current injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate.
Freescale Semiconductor, Inc...
P: Those parameters are guaranteed during production testing on each individual device. C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. They are regularly verified by production monitors. T: Those parameters are achieved by design characterization on a small sample size from typical devices. All values shown in the typical column are within this category. D: Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12DT128B utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and PLL as well as the digital core. The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator. The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins ,VDDR supplies also the internal voltage regulator. VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator and the PLL. VSS1 and VSS2 are internally connected by metal. VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins. A.1.3.1 5V I/O pins
Freescale Semiconductor, Inc...
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently. A.1.3.2 Analog Reference This class is made up by the two VRH and VRL pins. A.1.3.3 Oscillator The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL. A.1.3.4 TEST This pin is used for production testing only. A.1.3.5 VREGEN This pin is used to enable the on chip voltage regulator.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Insure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09 A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5). Table A-1 Absolute Maximum Ratings1
Freescale Semiconductor, Inc...
Num
1 2 3 4 5 6 7 8 9 10 11 12 13
Rating
I/O, Regulator and Analog Supply Voltage Digital Logic Supply Voltage 2 PLL Supply Voltage 2 Voltage difference VDDX to VDDR and VDDA Voltage difference VSSX to VSSR and VSSA Digital I/O Input Voltage Analog Reference XFC, EXTAL, XTAL inputs TEST input Instantaneous Maximum Current Single pin limit for all digital I/O pins 3 Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL4 Instantaneous Maximum Current Single pin limit for TEST 5 Storage Temperature Range
Symbol
VDD5 VDD VDDPLL ∆VDDX ∆VSSX VIN VRH, VRL VILV VTEST ID I
Min
-0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -25 -25 -0.25 – 65
Max
6.0 3.0 3.0 0.3 0.3 6.0 6.0 3.0 10.0 +25 +25 0 155
Unit
V V V V V V V V V mA mA mA °C
DL
IDT T
stg
NOTES: 1. Beyond absolute maximum ratings device might be damaged. 2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source. 3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA. 4. Those pins are internally clamped to VSSPLL and VDDPLL. 5. This pin is clamped low to VSSPLL, but not clamped high. This pin must be tied low in applications.
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table A-2 ESD and Latch-up Test Conditions
Model
Series Resistance Storage Capacitance Human Body Number of Pulse per pin positive negative Series Resistance
Description
Symbol
R1 C – R1 C –
Value
1500 100 – 3 3 0 200 – 3 3 –2.5 7.5
Unit
Ohm pF
Ohm pF
Freescale Semiconductor, Inc...
Storage Capacitance Machine Number of Pulse per pin positive negative Minimum input voltage limit Latch-up Maximum input voltage limit
V V
Table A-3 ESD and Latch-Up Protection Characteristics
Num
1 2 3 4
C
Rating
Symbol
VHBM VMM VCDM ILAT
Min
2000 200 500 +100 –100 +200 –200
Max
– – – –
Unit
V V V mA
C Human Body Model (HBM) C Machine Model (MM) C Charge Device Model (CDM) Latch-up Current at 125°C C positive negative Latch-up Current at 27°C C positive negative
5
ILAT
–
mA
A.1.7 Operating Conditions
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.
NOTE:
Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature TA and the junction temperature TJ. For power dissipation
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics. Table A-4 Operating Conditions
Rating
I/O, Regulator and Analog Supply Voltage Digital Logic Supply Voltage 1 PLL Supply Voltage 2 Voltage Difference VDDX to VDDR and VDDA Voltage Difference VSSX to VSSR and VSSA Oscillator
Symbol
VDD5 VDD VDDPLL ∆VDDX ∆VSSX fosc fbus
Min
4.5 2.35 2.25 -0.1 -0.1 0.5 0.5
Typ
5 2.5 2.5 0 0 -
Max
5.25 2.75 2.75 0.1 0.1 16 25
Unit
V V V V V MHz MHz
Freescale Semiconductor, Inc...
Bus Frequency MC9S12DT128BC Operating Junction Temperature Range Operating Ambient Temperature Range 2 MC9S12DT128BV Operating Junction Temperature Range Operating Ambient Temperature Range 2 MC9S12DT128BM Operating Junction Temperature Range Operating Ambient Temperature Range 2
TJ T
A
-40 -40
27
100 85
°C °C
TJ TA
-40 -40
27
120 105
°C °C
TJ TA
-40 -40
27
140 125
°C °C
NOTES: 1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when this regulator is disabled and the device is powered from an external source. 2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D • Θ JA ) T J = Junction Temperature, [ ° C ] T A = Ambient Temperature, [ ° C ]
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
P D = Total Chip Power Dissipation, [W] Θ JA = Package Thermal Resistance, [ ° C/W] The total power dissipation can be calculated from: P D = P INT + P IO P INT = Chip Internal Power Dissipation, [W]
Two cases with internal voltage regulator enabled and disabled must be considered: 1. Internal Voltage Regulator disabled
Freescale Semiconductor, Inc...
P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA 2 P IO = R DSON ⋅ I IO i i
∑
Which is the sum of all output currents on I/O ports associated with VDDX and VDDM. For RDSON is valid: V OL R DSON = ----------- ;for outputs driven low I OL
V DD5 – V OH R DSON = ----------------------------------- ;for outputs driven high I OH 2. Internal voltage regulator enabled P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA IDDR is the current shown in Table A-7 and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high.
respectively
P IO =
∑ RDSON ⋅ IIOi
i
2
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Table A-5 Thermal Package Characteristics1
Num C
1 2 3 4 5 6
Rating
Symbol
θJA θJA θJB θJC ΨJT θJA θJA θJB θJC ΨJT
Min
– – – – – – – – – –
Typ
– – – – – – – – – –
Max
54 41 31 11 2 51 41 27 14 3
Unit
oC/W oC/W o
T Thermal Resistance LQFP112, single sided PCB2 T Thermal Resistance LQFP112, double sided PCB with 2 internal planes3
T Junction to Board LQFP112 T Junction to Case LQFP112 T Junction to Package Top LQFP112 T Thermal Resistance QFP 80, single sided PCB T Thermal Resistance QFP 80, double sided PCB with 2 internal planes
C/W
oC/W o
C/W
oC/W oC/W oC/W oC/W o
Freescale Semiconductor, Inc...
7 8 9 10
T Junction to Board QFP80 T Junction to Case QFP80 T Junction to Package Top QFP80
C/W
NOTES: 1. The values for thermal resistance are achieved by package simulations 2. PC Board according to EIA/JEDEC Standard 51-3 3. PC Board according to EIA/JEDEC Standard 51-7
A.1.9 I/O Characteristics
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances.
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Table A-6 5V I/O Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1 P Input High Voltage T Input High Voltage 2 P Input Low Voltage T Input Low Voltage 3 C Input Hysteresis
Rating
Symbol
V V
IH IH IL IL
Min
0.65*VDD5 – – VSS5 – 0.3
Typ
– – – – 250
Max
Unit
V
VDD5 + 0.3 0.35*VDD5 – V V mV
V V V
HYS
Freescale Semiconductor, Inc...
4
Input Leakage Current (pins in high ohmic input mode)1 P Vin = VDD5 or VSS5 ADC Inputs AN15:0 All other Ports (A, B, E, K, M, S, T) Output High Voltage (pins in output mode) C Partial Drive IOH = –2.0mA P Full Drive IOH = –10.0mA Output Low Voltage (pins in output mode) C Partial Drive IOL = +2.0mA P Full Drive IOL = +10.0mA Internal Pull Up Device Current, P tested at V Max.
IL
I
in
– -1.0 –2.5 1.0 2.5
µA
5
V
OH
VDD5 – 0.8
–
–
V
6
V
OL
–
–
0.8
V
7
IPUL IPUH IPDH IPDL Cin IICS IICP tPULSE tPULSE
–
–
–130
µA µA µA µA pF mA µs µs
8
Internal Pull Up Device Current, C tested at V Min.
IH
–10
–
–
9
Internal Pull Down Device Current, P tested at V Min.
IH
–
–
130
10 11 12
Internal Pull Down Device Current, C tested at V Max.
IL
10
– 6
– – 2.5 25 3
D Input Capacitance Injection current2 T Single Pin limit Total Device Limit. Sum of all injected currents P Port H, J, P Interrupt Input Pulse filtered 3 P Port H, J, P Interrupt Input Pulse passed 3
–2.5 –25
–
13 14
10
NOTES: 1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C. 2. Refer to Section A.1.4 Current Injection, for more details 3. Parameter only applies in STOP or Pseudo STOP mode.
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09 A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for the measurements. A.1.10.1 Measurement Conditions All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input. A.1.10.2 Additional Remarks
Freescale Semiconductor, Inc...
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
given. A very good estimate is to take the single chip currents and add the currents due to the external loads. Table A-7 Supply Current Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1 P
Rating
Run supply currents Single Chip, Internal regulator enabled Wait Supply current All modules enabled, PLL on only RTI enabled 1 Pseudo Stop Current (RTI and COP disabled) 1, 2 -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C “M” Temp Option 140°C Pseudo Stop Current (RTI and COP enabled) 1, 2 -40°C 27°C 70°C 85°C 105°C 125°C 140°C Stop Current 2 -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C “M” Temp Option 140°C
Symbol
IDD5 IDDW
Min
Typ
Max
55 30 5
Unit
mA
2
P P C P C C P C P C P C C C C C C C C P C C P C P C P
mA
Freescale Semiconductor, Inc...
3
IDDPS
370 400 450 550 600 650 800 850 1200 570 600 650 750 850 1200 1500 12 25 100 130 160 200 350 400 600
500 µA
1600 2100 5000
4
IDDPS
µA
100 µA
5
IDDS
1200 1700 5000
NOTES: 1. PLL off, Oscillator in Colpitts Mode 2. At those low power dissipation levels TJ = TA can be assumed
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
A.2 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
A.2.1 ATD Operating Characteristics
The Table A-8 shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results: VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped. Table A-8 ATD Operating Characteristics
Freescale Semiconductor, Inc...
Conditions are shown in Table A-4 unless otherwise noted
Num C
Reference Potential 1 2 3 4 D
Rating
Low High
Symbol VRL VRH VRH-VRL fATDCLK
Min VSSA VDDA/2 4.50 0.5 14 7 12 6
Typ
Max VDDA/2 VDDA
Unit V V V MHz Cycles µs Cycles µs µs mA mA
C Differential Reference Voltage1 D ATD Clock Frequency ATD 10-Bit Conversion Period D
5.00
5.25 2.0 28 14 26 13 20 0.75 0.375
Clock Cycles2 NCONV10 Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10 ATD 8-Bit Conversion Period Clock Cycles(2) Conv, Time at 2.0MHz ATD Clock fATDCLK
5
D
NCONV8 TCONV8 tSR IREF IREF
6 7 8
D Stop Recovery Time (VDDA=5.0 Volts) P Reference Supply current (Both ATD modules on) P Reference Supply current (Only one ATD module on)
NOTES: 1. Full accuracy is not guaranteed when differential voltage is less than 4.50V 2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.
A.2.2 Factors influencing accuracy
Three factors – source resistance, source capacitance and current injection – have an influence on the accuracy of the ATD. A.2.2.1 Source Resistance: Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed. A.2.2.2 Source capacitance When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS– CINN). A.2.2.3 Current injection There are two cases to consider.
Freescale Semiconductor, Inc...
1. A current is injected into the channel being converted. The channel being stressed has conversion values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than VRL unless the current is higher than specified as disruptive conditions. 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance. The additional input voltage error on the converted channel can be calculated as VERR = K * RS * IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted channe Table A-9 ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1 2 3 4 5
Rating
Symbol
RS CINN CINS INA Kp Kn
Min
-
Typ
-
Max
1 10 22
Unit
KΩ pF mA A/A A/A
C Max input Source Resistance Total Input Capacitance T Non Sampling Sampling C Disruptive Analog Input Current C Coupling Ratio positive current injection C Coupling Ratio negative current injection
-2.5
2.5 10-4 10-2
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09 A.2.3 ATD accuracy
Table A-10 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance. Table A-10 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz Num C
1 2 P 10-Bit Resolution P 10-Bit Differential Nonlinearity P 10-Bit Integral Nonlinearity P 10-Bit Absolute Error1 P 8-Bit Resolution P 8-Bit Differential Nonlinearity P 8-Bit Integral Nonlinearity P 8-Bit Absolute Error(1)
Rating
Symbol
LSB DNL INL AE LSB DNL INL AE
Min
Typ
5
Max
Unit
mV
–1 –2.5 -3 ±1.5 ±2.0 20 –0.5 –1.0 -1.5 ±0.5 ±1.0
1 2.5 3
Counts Counts Counts mV
Freescale Semiconductor, Inc...
3 4 5 6 7 8
0.5 1.0 1.5
Counts Counts Counts
NOTES: 1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
For the following definitions see also Figure A-1. Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
Vi – Vi – 1 DNL ( i ) = ----------------------- – 1 1LSB
The Integral Non-Linearity (INL) is defined as the sum of all DNLs: n
INL ( n ) =
∑
i=1
Vn – V0 DNL ( i ) = ------------------- – n 1LSB
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
DNL
LSB Vi-1
$3FF $3FE $3FD $3FC
10-Bit Absolute Error Boundary Vi 8-Bit Absolute Error Boundary
$FF
Freescale Semiconductor, Inc...
$3FB $3FA $3F9 $3F8 $3F7 $3F6 $3F5 $FE
10-Bit Resolution
$3F4 $3F3
$FD
9 8 7 6 5 4 3 2 1 0 5 10 15 20 25 30 35 40 45
Ideal Transfer Curve
2
10-Bit Transfer Curve
1
8-Bit Transfer Curve
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120
Vin mV
Figure A-1 ATD Accuracy Definitions
NOTE:
Figure A-1 shows only definitions, for specification values refer to Table A-10.
For More Information On This Product, Go to: www.freescale.com
8-Bit Resolution
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
A.3 NVM, Flash and EEPROM
NOTE:
Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM.
A.3.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.
Freescale Semiconductor, Inc...
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as fNVMOP. The minimum program and erase times shown in Table A-11 are calculated for maximum fNVMOP and maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
A.3.1.1 Single Word Programming The programming time for single word programming is dependant on the bus frequency as a well as on the frequency f¨NVMOP and can be calculated according to the following formula.
1 1 t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP f bus
A.3.1.2 Burst Programming This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst programming by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:
1 1 t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP f bus
The time to program a whole row is:
t brpgm = t swpgm + 31 ⋅ t bwpgm
Burst programming is more than 2 times faster than single word programming.
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
A.3.1.3 Sector Erase Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:
1 t era ≈ 4000 ⋅ --------------------f NVMOP
The setup times can be ignored for this operation. A.3.1.4 Mass Erase Erasing a NVM block takes:
1 t mass ≈ 20000 ⋅ --------------------f NVMOP
Freescale Semiconductor, Inc...
The setup times can be ignored for this operation. A.3.1.5 Blank Check The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command.
t check ≈ location ⋅ t cyc + 10 ⋅ t cyc
Table A-11 NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1 2 3 4 5 6 7 8 9 10
Rating
Symbol
fNVMOSC fNVMBUS fNVMOP tswpgm tbwpgm tbrpgm tera tmass tcheck tcheck
Min
0.5 1 150 46 2 20.4 2 678.4 2 20 5 100 5 11 6 11 6
Typ
Max
50 1
Unit
MHz MHz
D External Oscillator Clock D Bus frequency for Programming or Erase Operations D Operating Frequency P Single Word Programming Time D Flash Burst Programming consecutive word 4 D Flash Burst Programming Time for 32 Words 4 P Sector Erase Time P Mass Erase Time D Blank Check Time Flash per block D Blank Check Time EEPROM per block
200 74.5 3 31 3 1035.5 3 26.7 3 133 3 32778 7 20587
kHz µs µs µs ms ms tcyc tcyc
NOTES: 1. Restrictions for oscillator in crystal mode apply! 2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency fbus. 3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus. Refer to formulae in Sections A.3.1.1 - A.3.1.5 for guidance.
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
4. Burst Programming operations are not applicable to EEPROM 5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP. 6. Minimum time, if first word in the array is not blank 7. Maximum time to complete check on an erased block
A.3.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed.
Freescale Semiconductor, Inc...
NOTE:
All values shown in Table A-12 are target values and subject to further extensive characterization Table A-12 NVM Reliability Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1 2
Rating
Cycles
10 10,000
Data Retention Lifetime
15 5
Unit
Years Years
C Flash/EEPROM (-40˚C to +125˚C) C EEPROM (-40˚C to +125˚C)
NOTE: NOTE:
Flash cycling performance is 10 cycles at -40˚C to +125˚C. Data retention is specified for 15 years. EEPROM cycling performance is 10K cycles at -40˚C to 125˚C. Data retention is specified for 5 years on words after cycling 10K times. However if only 10 cycles are executed on a word the data retention is specified for 15 years.
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
A.4 Voltage Regulator
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external DC load is allowed.
Table A-13 Voltage Regulator Recommended Load Capacitances
Rating
Load Capacitance on VDD1, 2 Load Capacitance on VDDPLL
Symbol
CLVDD CLVDDfcPLL
Min
Typ
220 220
Max
Unit
nF nF
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
A.5 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL).
A.5.1 Startup
Table A-14 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
Table A-14 Startup Characteristics
Freescale Semiconductor, Inc...
Conditions are shown in Table A-4 unless otherwise noted
Num C
1 2 3 4 5 6 T POR release level T POR assert level
Rating
Symbol
VPORR VPORA PWRSTL nRST PWIRQ tWRS
Min
Typ
Max
2.07
Unit
V V tosc
0.97 2 192 20 14 196
D Reset input pulse width, minimum input time D Startup from Reset D Interrupt pulse width, IRQ edge-sensitive mode D Wait recovery startup time
nosc ns tcyc
A.5.1.1 POR The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by nuposc. A.5.1.2 SRAM Data Retention Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG Flags Register has not been set. A.5.1.3 External Reset When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset. A.5.1.4 Stop Recovery Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system.
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
A.5.1.5 Pseudo Stop and Wait Recovery The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts fetching the interrupt vector.
A.5.2 Oscillator
The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce oscillator/external clock depends on the XCLKS signal which is sampled during reset.By asserting the XCLKS input during reset this oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time tUPOSC. The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA. Table A-15 Oscillator Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Freescale Semiconductor, Inc...
Num C
1a 1b 2 3 4 5 6 7 8 9 10 11 12
Rating
Symbol
fOSC fOSC iOSC tUPOSC tCQOUT fCMFA fEXT tEXTL tEXTH tEXTR tEXTF CIN VDCBIAS
Min
0.5 0.5 100
Typ
Max
16 40
Unit
MHz MHz µA
C Crystal oscillator range (Colpitts) C Crystal oscillator range (Pierce) 1 P Startup Current C Oscillator start-up time (Colpitts) D Clock Quality check time-out P Clock Monitor Failure Assert Frequency P External square wave input frequency 4 D External square wave pulse width low D External square wave pulse width high D External square wave rise time D External square wave fall time D Input Capacitance (EXTAL, XTAL pins) C DC Operating Bias in Colpitts Configuration on EXTAL Pin
82 0.45 50 0.5 9.5 9.5 100
1003 2.5 200 50
ms s KHz MHz ns ns
1 1 7 1.1
ns ns pF V
NOTES: 1. Depending on the crystal a damping series resistor might be necessary 2. fosc = 4MHz, C = 22pF. 3. Maximum value is for extreme cases using high Q, low frequency crystals 4. XCLKS =0 during reset
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09 A.5.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode. A.5.3.1 XFC Component Selection This section describes the selection of the XFC components to achieve a good filter characteristics.
Cp
Freescale Semiconductor, Inc...
VDDPLL Cs fosc fref 1 refdv+1 ∆ fcmp R Phase KΦ Detector Loop Divider 1 synr+1
XFC Pin
VCO KV fvco
1 2
Figure A-2 Basic PLL functional diagram The following procedure can be used to calculate the resistance and capacitance values using typical values for K1, f1 and ich from Table A-16. The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used for fOSC = 4MHz and a 25MHz bus clock. The VCO Gain at the desired VCO frequency is approximated by: ( f 1 – f vco ) ---------------------K 1 ⋅ 1V ( 75 – 50 ) ----------------------– 120
KV = K1 ⋅ e
= – 120 ⋅ e
= -97.43MHz/V
The phase detector relationship is given by:
K Φ = – i ch ⋅ K V
ich is the current in tracking mode.
= 341.0Hz/Ω
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10, typical values are 50. ζ = 0.9 ensures a good transient response.
2 ⋅ ζ ⋅ f ref f ref 1 f C < ------------------------------------------ ----- → f C < ------------- ;( ζ = 0.9 ) 4 ⋅ 10 10 2 π ⋅ ζ + 1 + ζ fC < 25kHz
And finally the frequency relationship is defined as
f VCO n = ------------ = 2 ⋅ ( synr + 1 ) f ref
= 50
Freescale Semiconductor, Inc...
With the above values the resistance can be calculated. The example is shown for a loop bandwidth fC=11kHz:
2 ⋅ π ⋅ n ⋅ fC R = ---------------------------- = 2*π*50*11kHz/(341.0Hz/Ω)=10.1kΩ =~ 10kΩ KΦ
The capacitance Cs can now be calculated as:
0.516 2⋅ζ C s = --------------------- ≈ -------------- ;( ζ = 0.9 ) = 4.69nF =~ 4.7nF π ⋅ fC ⋅ R fC ⋅ R
The capacitance Cp should be chosen in the range of:
2
C s ⁄ 20 ≤ C p ≤ C s ⁄ 10
Cp = 470pF
A.5.3.2 Jitter Information The basic functionality of the PLL is shown in Figure A-2. With each transition of the clock fcmp, the deviation from the reference clock fref is measured and input voltage to the VCO is adjusted accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-3.
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
0
1
2
3
N-1
N
tmin1 tnom tmax1 tminN tmaxN
Freescale Semiconductor, Inc...
Figure A-3 Jitter Definitions The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N). Defining the jitter as:
t max ( N ) t min ( N ) J ( N ) = max 1 – -------------------- , 1 – -------------------- N ⋅ t nom N ⋅ t nom
For N < 100, the following equation is a good fit for the maximum jitter:
j1 J ( N ) = ------- + j 2 N
J(N)
1
5
10
20
N
Figure A-4 Maximum bus clock jitter approximation
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent.
Table A-16 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1 2 3 4
Rating
Symbol
fSCM fVCO |∆trk| |∆Lock| |∆unl| |∆unt| tstab tacq tal K1 f1 | ich | | ich | j1 j2
Min
1 8 3 0 0.5 6
Typ
Max
5.5 50 4 1.5 2.5 8
Unit
MHz MHz %1 %(1) %(1) %(1) ms ms ms MHz/V MHz µA µA
P Self Clock Mode frequency D VCO locking range D Lock Detector transition from Acquisition to Tracking mode
D Lock Detection D Un-Lock Detection D Lock Detector transition from Tracking to Acquisition mode
Freescale Semiconductor, Inc...
5 6 7 8 9 10 11 12 13 14 15
C PLLON Total Stabilization delay (Auto Mode) 2 D PLLON Acquisition mode stabilization delay (2) D PLLON Tracking mode stabilization delay (2) D Fitting parameter VCO loop gain D Fitting parameter VCO loop frequency D Charge pump current acquisition mode D Charge pump current tracking mode C Jitter fit parameter 1(2) C Jitter fit parameter 2(2)
0.5 0.3 0.2 -120 75 38.5 3.5 1.1 0.13
% %
NOTES: 1. % deviation from target frequency 2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs = 10KΩ.
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
A.6 MSCAN
Table A-17 MSCAN Wake-up Pulse Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1 2
Rating
Symbol
tWUP tWUP
Min
Typ
Max
2
Unit
µs µs
P MSCAN Wake-up dominant pulse filtered P MSCAN Wake-up dominant pulse pass
5
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
A.7 SPI
A.7.1 Master Mode
Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18.
SS1 (OUTPUT) 2 SCK (CPOL = 0) (OUTPUT) SCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 9 MOSI (OUTPUT)
1.if configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
1 4 4
11
3
12
Freescale Semiconductor, Inc...
6 MSB IN2 BIT 6 . . . 1 9 MSB OUT2 BIT 6 . . . 1 LSB OUT LSB IN 10
Figure A-5 SPI Master Timing (CPHA = 0)
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
SS1 (OUTPUT) 1 2 SCK (CPOL = 0) (OUTPUT) 4 SCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) MSB IN2 6 BIT 6 . . . 1 10 MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA LSB IN 4 11 12 12 11 3
Freescale Semiconductor, Inc...
9 MOSI (OUTPUT) PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-6 SPI Master Timing (CPHA =1) Table A-18 SPI Master Mode Timing Characteristics1
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs
Num C
1 1 2 3 4 5 6 9 10 11 12 P Operating Frequency
Rating
Symbol
fop tsck tlead tlag twsck tsu thi tv tho tr tf
Min
DC 4 1/2 1/2 tbus − 30 25 0
Typ
Max
1/4 2048 —
Unit
fbus tbus tsck tsck
P SCK Period tsck = 1./fop D Enable Lead Time D Enable Lag Time D Clock (SCK) High or Low Time D Data Setup Time (Inputs) D Data Hold Time (Inputs) D Data Valid (after SCK Edge) D Data Hold Time (Outputs) D Rise Time Inputs and Outputs D Fall Time Inputs and Outputs
1024 tbus
ns ns ns
25 0 25 25
ns ns ns ns
NOTES: 1. The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent between the Master and the Slave timing shown in Table A-19.
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09 A.7.2 Slave Mode
Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-19.
SS (INPUT) 1 SCK (CPOL = 0) (INPUT) 2 SCK (CPOL = 1) (INPUT) 7 9 MSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN BIT 6 . . . 1 4 4 11 12 8 10 10 12 11 3
Freescale Semiconductor, Inc...
MISO (OUTPUT)
SLAVE 5
SLAVE LSB OUT
MOSI (INPUT)
Figure A-7 SPI Slave Timing (CPHA = 0)
SS (INPUT) 1 2 SCK (CPOL = 0) (INPUT) 4 SCK (CPOL = 1) (INPUT) 9 MISO (OUTPUT) 7 MOSI (INPUT) SLAVE 5 MSB IN MSB OUT 6 BIT 6 . . . 1 LSB IN 4 11 12 12 11 3
10 BIT 6 . . . 1 SLAVE LSB OUT
8
Figure A-8 SPI Slave Timing (CPHA =1)
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Table A-19 SPI Slave Mode Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs
Num C
1 1 2 3 4 5 P Operating Frequency
Rating
Symbol
fop tsck tlead tlag twsck tsu thi ta tdis tv tho tr tf
Min
DC 4 1 1 tcyc − 30 25 25
Typ
Max
1/4 2048
Unit
fbus tbus tcyc tcyc ns ns ns
P SCK Period tsck = 1./fop D Enable Lead Time D Enable Lag Time D Clock (SCK) High or Low Time D Data Setup Time (Inputs) D Data Hold Time (Inputs) D Slave Access Time D Slave MISO Disable Time D Data Valid (after SCK Edge) D Data Hold Time (Outputs) D Rise Time Inputs and Outputs D Fall Time Inputs and Outputs
Freescale Semiconductor, Inc...
6 7 8 9 10 11 12
1 1 25 0 25 25
tcyc tcyc ns ns ns ns
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
A.8 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing values shown on table Table A-20. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
A.8.1 General Muxed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
1, 2 3 4
ECLK PE4 5 9 Addr/Data (read) PA, PB data 6 15 addr 7 12 Addr/Data (write) PA, PB data addr 8 14 data 13 16 10 data 11
Freescale Semiconductor, Inc...
17 Non-Multiplexed Addresses PK5:0 20 ECS PK7
18
19
21
22
23
24 R/W PE2
25
26
27 LSTRB PE3
28
29
30 NOACC PE7
31
32
33 PIPO0 PIPO1, PE6,5
34
35
36
Figure A-9 General External Bus Timing
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Table A-20 Expanded Bus Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF
Num C
1 2 3 4 5 6 7
Rating
Symbol
fo tcyc PWEL PWEH tAD tAV tMAH tAHDS tDHA tDSR tDHR tDDW tDHW tDSW tACCA tACCE tNAD tNAV tNAH tCSD tACCS tCSH tCSN tRWD tRWV tRWH tLSD tLSV tLSH tNOD tNOV
Min
0 40 19 19
Typ
Max
25.0
Unit
MHz ns ns ns
P Frequency of operation (E-clock) P Cycle time D Pulse width, E low D Pulse width, E high1 D Address delay time D Address valid time to E rise (PWEL–tAD) D Muxed address hold time D Address hold to data valid D Data hold to address D Read data setup time D Read data hold time D Write data delay time D Write data hold time D Write data setup time(1) (PWEH–tDDW) D Address access time(1) (tcyc–tAD–tDSR) D E high access time(1) (PWEH–tDSR) D Non-multiplexed address delay time D Non-muxed address valid to E rise (PWEL–tNAD) D Non-multiplexed address hold time D Chip select delay time D Chip select access time(1) (tcyc–tCSD–tDSR) D Chip select hold time D Chip select negated time D Read/write delay time D Read/write valid time to E rise (PWEL–tRWD) D Read/write hold time D Low strobe delay time D Low strobe valid time to E rise (PWEL–tLSD) D Low strobe hold time D NOACC strobe delay time D NOACC valid time to E rise (PWEL–tNOD)
8 11 2 7 2 13 0 7 2 12 19 6 6 15 2 16 11 2 8 7 14 2 7 14 2 7 14
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Freescale Semiconductor, Inc...
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Table A-20 Expanded Bus Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF
Num C
32 33 34 35 36 D NOACC hold time D IPIPO[1:0] delay time
Rating
Symbol
tNOH tP0D tP0V tP1D tP1V
Min
2 2 11 2 11
Typ
Max
Unit
ns
7
ns ns
D IPIPO[1:0] valid time to E rise (PWEL–tP0D) D IPIPO[1:0] delay time(1) (PWEH-tP1V) D IPIPO[1:0] valid time to E fall
25
ns ns
NOTES: 1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
Appendix B Package Information
B.1 General
This section provides the physical dimensions of the MC9S12DT128B packages.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
B.2 112-pin LQFP package
4X PIN 1 IDENT 1 112
0.20 T L-M N
4X 28 TIPS 85 84
0.20 T L-M N
J1 J1 C L
4X
P
VIEW Y
108X
G
X X=L, M OR N
VIEW Y B L M B1 V1 V
Freescale Semiconductor, Inc...
J
AA
28
57
F D 0.13
M
BASE METAL
29
56
T L-M N
N A1 S1 A S
SECTION J1-J1 ROTATED 90 ° COUNTERCLOCKWISE
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. 3. DATUMS L, M AND N TO BE DETERMINED AT SEATING PLANE, DATUM T. 4. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM T. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B INCLUDE MOLD MISMATCH. 6. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.46. MILLIMETERS MIN MAX 20.000 BSC 10.000 BSC 20.000 BSC 10.000 BSC --1.600 0.050 0.150 1.350 1.450 0.270 0.370 0.450 0.750 0.270 0.330 0.650 BSC 0.090 0.170 0.500 REF 0.325 BSC 0.100 0.200 0.100 0.200 22.000 BSC 11.000 BSC 22.000 BSC 11.000 BSC 0.250 REF 1.000 REF 0.090 0.160 8° 0° 7° 3° 13 ° 11 ° 11 ° 13 °
C2 C 0.050 θ2
VIEW AB 0.10 T
112X
SEATING PLANE
θ3 T
θ
R
R2 0.25
GAGE PLANE
R
R1
C1 (Y) (Z) VIEW AB
(K) E
θ1
DIM A A1 B B1 C C1 C2 D E F G J K P R1 R2 S S1 V V1 Y Z AA θ θ1 θ2 θ3
Figure 22-5 112-pin LQFP mechanical dimensions (case no. 987)
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
B.3 80-pin QFP package
L
60 61 41 40
S
S
B B P
D
L
H A-B
B
V 0.05 D
M
M
C A-B
-A-
-B-
S
S
D
0.20
0.20
-A-,-B-,-DDETAIL A
Freescale Semiconductor, Inc...
DETAIL A
80 1 20
21
-D0.20
M
F
A H A-B S
S
D
S
0.05 A-B J
S
N
0.20 E C -CSEATING PLANE
M
C A-B
D
S
M DETAIL C -HH G
DATUM PLANE
D 0.20
M
C A-B
S
D
S
SECTION B-B
VIEW ROTATED 90 °
0.10 M
U T
DATUM PLANE
-H-
R
K W X DETAIL C
Q
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.
DIM A B C D E F G H J K L M N P Q R S T U V W X
MILLIMETERS MIN MAX 13.90 14.10 13.90 14.10 2.15 2.45 0.22 0.38 2.00 2.40 0.22 0.33 0.65 BSC --0.25 0.13 0.23 0.65 0.95 12.35 REF 5° 10 ° 0.13 0.17 0.325 BSC 0° 7° 0.13 0.30 16.95 17.45 0.13 --0° --16.95 17.45 0.35 0.45 1.6 REF
Figure 1 80-pin QFP Mechanical Dimensions (case no. 841B)
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc. MC9S12DT128B Device User Guide — V01.09
User Guide End Sheet
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
MC9S12DT128B Device User Guide — V01.09
Freescale Semiconductor, Inc.
Home Page: www.freescale.com email: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp.
Freescale Semiconductor, Inc...
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.
For More Information On This Product, Go to: www.freescale.com