0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCF51AC128C

MCF51AC128C

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MCF51AC128C - ColdFire Microcontroller - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MCF51AC128C 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: MCF51AC256 Rev.4, 9/2009 MCF51AC256 Series ColdFire Microcontroller Covers:MCF51AC256A MCF51AC256B MCF51AC128A MCF51AC128C The MCF51AC256 series are members of the ColdFire® family of 32-bit variable-length reduced instruction set (RISC) microcontroller. This document provides an overview of the MCF51AC256 series, focusing on its highly integrated and diverse feature set. The MCF51AC256 series are based on the V1 ColdFire core and operates at processor core speeds up to 50.33 MHz. As part of Freescale’s Controller Continuum®, it is an ideal upgrade for designs based on the MC9S08AC128 series of 8-bit microcontrollers. The MCF51AC256 features the following functional units: • V1 ColdFire core with background debug module • Up to 256 KB of flash memory • Up to 32 KB of static RAM (SRAM) • Up to two analog comparators (ACMP) • Analog-to-digital converter (ADC) with up to 24 channels • Controller-area network (CAN) • Cyclic redundancy check (CRC) • Inter-integrated circuit (IIC) • Keyboard interrupt (KBI) • Multipurpose clock generator (MCG) • Rapid general-purpose input/output (RGPIO) • • • • MCF51AC256 80 LQFP 14 mm × 14 mm 64 LQFP 10 mm × 10 mm 64 QFP 14 mm × 14 mm Two serial communications interfaces (SCI) Up to two serial peripheral interfaces (SPI) Two flexible timer modules (FTM) Timer pulse-width modulator (TPM) This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2008-2009. All rights reserved. Table of Contents 1 MCF51AC256 Family Configurations . . . . . . . . . . . . . . . . . . . .3 1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1.3.1 Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 1.4 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.5 Pinouts and Packaging . . . . . . . . . . . . . . . . . . . . . . . . .11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 2.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .15 2.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .15 2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .16 2.4 Electrostatic Discharge (ESD) Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 2.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 2.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .22 2.7 Analog Comparator (ACMP) Electricals . . . . . . . . . . . .23 2.8 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .23 2.9 External Oscillator (XOSC) Characteristics . . . . . . . . .27 2.10 MCG Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .28 2.11 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 2.11.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .30 2.11.2 Timer (TPM/FTM) Module Timing . . . . . . . . . . .31 2.11.3 MSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 2.12 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 2.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .34 2.14 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 2.14.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . .35 Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .36 3.1 80-Pin LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . .36 3.2 64-Pin LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . .39 3.3 64-Pin QFP Package . . . . . . . . . . . . . . . . . . . . . . . . . .42 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Figure 6. Typical IOH vs. VDD–VOH at VDD = 5 V (Low Drive, PTxDSn = 0). . . . . . . . . . . . . . . . . . . . . . . Figure 7. Typical IOH vs. VDD–VOH at VDD = 5 V (High Drive, PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . Figure 8. ADC Input Impedance Equivalency Diagram . . . . . . . Figure 9. Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 10.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 11.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12.Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . . Figure 13.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . Figure 14.SPI Master Timing (CPHA =1) . . . . . . . . . . . . . . . . . . Figure 15.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . Figure 16.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 21 22 25 30 30 31 31 33 33 34 34 2 List of Tables Table 1. MCF51AC256 Series Device Comparison . . . . . . . . . . 3 Table 2. MCF51AC256 Series Functional Units . . . . . . . . . . . . . 5 Table 3. Orderable Part Number Summary. . . . . . . . . . . . . . . . . 9 Table 4. Pin Availability by Package Pin-Count . . . . . . . . . . . . . 12 Table 5. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 15 Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 16 Table 7. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 16 Table 8. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . 18 Table 9. ESD and Latch-Up Protection Characteristics. . . . . . . 18 Table 10.DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 11. Supply Current Characteristics. . . . . . . . . . . . . . . . . . 22 Table 12.Analog Comparator Electrical Specifications. . . . . . . . 23 Table 13.5 Volt 12-bit ADC Operating Conditions . . . . . . . . . . . 23 Table 14.5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 15.Oscillator Electrical Specifications (Temperature Range = –40 to 105 °C Ambient) . . . . . 27 Table 16.MCG Frequency Specifications (Temperature Range = –40 to 105 °C Ambient) . . . . . 28 Table 17.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 18.TPM/FTM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 19.MSCAN Wake-Up Pulse Characteristics . . . . . . . . . . . 31 Table 20.SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 21.Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 22.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 4 List of Figures Figure 1. MCF51AC256 Series Block Diagram . . . . . . . . . . . . . . 4 Figure 2. MCF51AC256 Series ColdFire Microcontroller 80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 3. MCF51AC256 Series ColdFire Microcontroller 64-Pin QFP/LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 4. Typical IOH vs. VDD–VOH at VDD = 3 V (Low Drive, PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 5. Typical IOH vs. VDD–VOH at VDD = 3 V (High Drive, PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 2 Freescale Semiconductor MCF51AC256 Family Configurations 1 1.1 MCF51AC256 Family Configurations Device Comparison Table 1. MCF51AC256 Series Device Comparison MCF51AC256A MCF51AC256B MCF51AC128A Feature 80-pin 64-pin 80-pin 64-pin 80-pin 64-pin 80-pin 64-pin MCF51AC128C The MCF51AC256 series is summarized in Table 1. Flash memory size (Kbytes) RAM size (Kbytes) V1 ColdFire core with BDM (background debug module) ACMP1 (analog comparator) ACMP2 (analog comparator) ADC (analog-to-digital converter) channels (12-bit) CAN (controller area network) COP (computer operating properly) CRC (cyclic redundancy check) RTI DBG (debug) IIC1 (inter-integrated circuit) IRQ (interrupt request input) INTC (interrupt controller) KBI (keyboard interrupts) LVD (low-voltage detector) MCG (multipurpose clock generator) OSC (crystal oscillator) Port I/O2 RGPIO (rapid general-purpose I/O) SCI1, SCI2 (serial communications interfaces) SPI1 (serial peripheral interface) SPI2 (serial peripheral interface) FTM1 (flexible timer module) channels FTM2 channels TPM3 (timer pulse-width modulator) channels VBUS (debug visibility bus) Yes No 6 2 Yes No 69 54 24 Yes 20 256 32 Yes Yes Yes 24 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 69 54 16 Yes Yes Yes No 6 6 2 2 Yes No Yes No 6 2 Yes No 69 54 20 24 Yes 20 128 32 or 161 24 No 20 69 54 Yes No 6 2 Yes No MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 3 MCF51AC256 Family Configurations 1 2 The members of MCF51AC128A with CAN support have 32 KB RAM. The other members have 16 KB RAM. Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module. 1.2 Block Diagram PTA7/AD1P17 PTA6/AD1P16 PTA5/ACMP2+ PTA4/ACMP2– PTA3/ACMP2O PTA2 PTA1/RxCAN PTA0/TxCAN PTB7/AD1P7 PTB6/AD1P6 PTB5/AD1P5 PTB4/AD1P4 PTB3/AD1P3 PTB2/AD1P2 PTB1/TPM3CH1/AD1P1 PTB0/TPM3CH0/AD1P0 PTC6/FTM2FLT PTC5/RxD2 PTC4/SS2 PTC3/TxD2 PTC2/MCLK PTC1/SDA1 PTC0/SCL1 PTD7/KBI1P7/AD1P15 PTD6/FTM1CLK/AD1P14 PTD5/AD1P13 PTD4/FTM2CLK/AD1P12 PTD3/KBI1P6/AD1P11 PTD2/KBI1P5/AD1P10/ACMP1O PTD1/AD1P9/ACMP1– PTD0/AD1P8/ACMP1+ PTE7/RGPIO7/SPSCK1 PTE6/RGPIO6/MOSI1 PTE5/RGPIO5/MISO1 PTE4/RGPIO4/SS1 PTE3/RGPIO3/FTM1CH1 PTE2/RGPIO2/FTM1CH0 PTE1/RGPIO1/RxD1 PTE0/RGPIO0/TxD1 PTF7/RGPIO15 PTF6/RGPIO14/FTM1FLT PTF5/RGPIO13/FTM2CH1 PTF4/RGPIO12/FTM2CH0 PTF3/RGPIO11/FTM1CH5 PTF2/RGPIO10/FTM1CH4 PTF1/RGPIO9/FTM1CH3 PTF0/RGPIO8/FTM1CH2 PTG6/EXTAL PTG5/XTAL PTG4/KBI1P4/AD1P19 PTG3/KBI1P3/AD1P18 PTG2/KBI1P2 PTG1/KBI1P1 PTG0/KBI1P0 PTH6/MISO2 PTH5/MOSI2 PTH4/SPSCK2 PTH3/FTM2CH5/BKPT/AD1P23 PTH2/FTM2CH4/PSTCLK1/AD1P22 PTH1/FTM2CH3/PSTCLK0/AD1P21 PTH0/FTM2CH2/AD1P20 PTJ7/DDATA3 PTJ6/DDATA2 PTJ5/DDATA1 PTJ4/DDATA0 PTJ3/PST3 PTJ2/PST2 PTJ1/PST1 PTJ0/PST0 Figure 1 shows the connections between the MCF51AC256 series pins and modules. VREFH VREFL VDDA VSSA Port J: DDATA3DDATA0 PST3VBUS PST0 Port H: PSTCLK BKPT VREFH VREFL VDDA VSSA Port B: AD1P7– AD1P0 Port D: AD1P15– AD1P8 Port A: ADP17– ADP16 Port G: ADP19– ADP18 Port H: ADP23– ADP20 Port F: FTM1CH5 FTM1CH4 FTM1CH3 FTM1CH2 Port E: FTM1CH1 FTM1CH0 Port H: FTM2CH5 FTM2CH4 FTM2CH3 FTM2CH2 Port F: FTM2CH1 FTM2CH0 Port B: TPM3CH1 TPM3CH0 Port D: ACMP1O ACMP1 ACMP1– ACMP1+ Port A: ACMP2O ACMP2+ Port C: SDA1 SCL1 Port G: KBI1P4 KBI1P3 KBI1P2 KBI1P1 KBI1P0 Port D: KBI1P7 KBI1P6 KBI1P5 Port B Port J Port H Port G Port F Port E Port D Port C DBG ADC ACMP2 ACMP2– BKGD/MS BDM IIC ColdFire V1 core RESET TPMCLK FTM1 SIM TPMCLK KBI IRQ/ TPMCLK COP LVD IRQ FTM2 MCG OSC Port G: EXTAL XTAL Port A: RxCAN TxCAN FLASH MCF51AC256A/B = 256 KB MCF51AC128A/C = 128 KB TPMCLK CAN TPM3 RAM MCF51AC256A/B = 32 KB MCF51AC128A = 32 KB MCF51AC128C = 16 KB Port F: RGPIO15 RGPIO14 RGPIO13 RGPIO12 RGPIO11 RGPIO10 RGPIO9 RGPIO8 RGPIO CRC SCI1 Port E: RGPIO7 RGPIO6 RGPIO5 RGPIO4 RGPIO3 RGPIO2 RGPIO1 RGPIO0 Port E: RxD1 TxD1 Port C: RxD2 TxD2 Port E: SS1 SPSCK1 MOSI1 MISO1 Port H: SPSCK2 MOSI2 MISO2 Port C: SS2 RTI SCI2 SPI1 VDD VSS VSS VREG SPI2 Figure 1. MCF51AC256 Series Block Diagram MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 4 Freescale Semiconductor Port A MCF51AC256 Family Configurations 1.3 Features Table 2. MCF51AC256 Series Functional Units Functional Unit Function Executes programs and interrupt handlers Provides single pin debugging interface (part of the V1 ColdFire core) Provides debugging and emulation capabilities (part of the V1 ColdFire core) Allows for real-time program traces (part of the V1 ColdFire core) Controls resets and chip level interfaces between modules Provides storage for program code, constants and variables Provides storage for program variables Allows for I/O port access at CPU clock speeds Controls power management across the device Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low Controls and prioritizes all device interrupts Measures analog voltages at up to 12 bits of resolution Provides a variety of timing-based features Provides a variety of timing-based features Accelerates computation of CRC values for ranges of memory Compares two analog inputs Supports standard IIC communications protocol Provides pin interrupt capabilities Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL Supports standard CAN communications protocol Serial communications UARTs capable of supporting RS-232 and LIN protocols Provides 8-bit 4-pin synchronous serial interface Provides 16-bit 4-pin synchronous serial interface with FIFO Table 2 describes the functional units of the MCF51AC256 series. CF1 Core (V1 ColdFire core) BDM (background debug module) DBG (debug) VBUS (debug visibility bus) SIM (system integration module) Flash (flash memory) RAM (random-access memory) RGPIO (rapid general-purpose input/output) VREG (voltage regulator) COP (computer operating properly) LVD (low-voltage detect) CF1_INTC (interrupt controller) ADC (analog-to-digital converter) FTM1, FTM2 (flexible timer/pulse-width modulators) TPM3 (timer/pulse-width modulator) CRC (cyclic redundancy check) ACMP1, ACMP2 (analog comparators) IIC (inter-integrated circuit) KBI (keyboard interrupt) MCG (multipurpose clock generator) OSC (crystal oscillator) CAN (controller area network) SCI1, SCI2 (serial communications interfaces) SPI1 (8-bit serial peripheral interfaces) SPI2 (16-bit serial peripheral interfaces) MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 5 MCF51AC256 Family Configurations 1.3.1 • Feature List 32-bit Version 1 ColdFire® central processor unit (CPU) — Up to 50.33 MHz at 2.7 V – 5.5 V — Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash) — Implements instruction set revision C (ISA_C) On-chip memory — Up to 256 KB flash memory read/program/erase over full operating voltage and temperature — Up to 32 KB static random access memory (SRAM) — Security circuitry to prevent unauthorized access to SRAM and flash contents Power-Saving Modes — Three low-power stop plus wait modes — Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode System protection features — Watchdog computer operating properly (COP) reset — Low-voltage detection with reset or interrupt — Illegal opcode and illegal address detection with programmable reset or exception response — Flash block protection Debug support — Single-wire background debug interface — Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger — On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes — Support for real-time program (and optional partial data) trace using the debug visibility bus V1 ColdFire interrupt controller (CF1_INTC) — Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests — Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority — Unique vector number for each interrupt source — Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance Multipurpose clock generator (MCG) — Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz — FLL/PLL controlled by internal or external reference — Trimmable internal reference allows 0.2% resolution and 2% deviation Analog-to-digital converter (ADC) MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 • • • • • • • 6 Freescale Semiconductor MCF51AC256 Family Configurations • • • • • 24 analog inputs with 12 bits resolution Output formatted in 12-, 10- or 8-bit right-justified format Single or continuous conversion (automatic return to idle after single conversion) Operation in low-power modes for lower noise operation Asynchronous clock source for lower noise operation Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value — On-chip temperature sensor Flexible timer/pulse-width modulators (FTM) — 16-bit Free-running counter or a counter with initial and final value. The counting can be up and unsigned, up and signed, or up-down and unsigned — Up to 6 channels, and each channel can be configured for input capture, output compare or edge-aligned PWM mode, all channels can be configured for center-aligned PWM mode – Channels can operate as pairs with equal outputs, pairs with complimentary outputs or independent channels (with independent outputs) – Each pair of channels can be combined to generate a PWM signal (with independent control of both edges of PWM signal) – Deadtime insertion is available for each complementary pair — The load of the FTM registers which have write buffer can be synchronized; write protection for critical registers — Generation of the triggers to ADC (hardware trigger) — A fault input for global fault control — Backwards compatible with TPM Timer/pulse width modulator (TPM) — 16-bit free-running or modulo up/down count operation — Two channels, each channel may be input capture, output compare, or edge-aligned PWM — One interrupt per channel plus terminal count interrupt Cyclic redundancy check (CRC) generator — High speed hardware CRC generator circuit using 16-bit shift register — CRC16-CCITT compliancy with x16 + x12 + x5 + 1 polynomial — Error detection for all single, double, odd, and most multi-bit errors — Programmable initial seed value Analog comparators (ACMP) — Full rail to rail supply operation — Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output — Option to compare to fixed internal bandgap reference voltage — Option to allow comparator output to be visible on a pin, ACMPxO Inter-integrated circuit (IIC) — Compatible with IIC bus standard — — — — — — MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 7 MCF51AC256 Family Configurations • • • — Multi-master operation — Software programmable for one of 64 different serial clock frequencies — Interrupt driven byte-by-byte data transfer — Arbitration lost interrupt with automatic mode switching from master to slave — Calling address identification interrupt — Bus busy detection — 10-bit address extension Controller area network (CAN) — Implementation of the CAN protocol — Version 2.0A/B – Standard and extended data frames – Zero to eight bytes data length – Programmable bit rate up to 1 Mbps – Support for remote frames — Five receive buffers with FIFO storage scheme — Three transmit buffers with internal prioritization using a “local priority” concept — Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, four 16-bit filters, or eight 8-bit filters — Programmable wakeup functionality with integrated low-pass filter — Programmable loopback mode supports self-test operation — Programmable listen-only mode for monitoring of CAN bus — Programmable bus-off recovery functionality — Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states (warning, error passive, bus-off) — Internal timer for time-stamping of received and transmitted messages Serial communications interfaces (SCI) — Full-duplex, standard non-return-to-zero (NRZ) format — Double-buffered transmitter and receiver with separate enables — Programmable baud rates (13-bit modulo divider) — Interrupt-driven or polled operation — Hardware parity generation and checking — Programmable 8-bit or 9-bit character length — Receiver wakeup by idle-line or address-mark — Optional 13-bit break character generation / 11-bit break character detection — Selectable transmitter output polarity Serial peripheral interfaces (SPI) — Master or slave mode operation — Full-duplex or single-wire bidirectional option — Programmable transmit bit rate — Double-buffered transmit and receive — Serial clock phase and polarity options MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 8 Freescale Semiconductor MCF51AC256 Family Configurations • — Slave select output — Selectable MSB-first or LSB-first shifting — 16-bit and FIFO operations in SPI2 Input/Output — 69 GPIOs — 8 keyboard interrupt pins with selectable polarity — Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins — 16-bits Rapid GPIO pins connected to the processor’s local 32-bit platform bus with set, clear, and faster toggle functionality 1.4 Part Numbers MCF 51 AC 256 X V XX E Status (MCF = Fully Qualified ColdFire) (PCF = Product Engineering) Core Family Pb free indicator Package designator Temperature range (V = –40°C to 105°C, C= –40°C to 85°C ) CAN Feature (A: With CAN, B/C: Without CAN) Memory size designator Table 3. Orderable Part Number Summary Freescale Part Number MCF51AC256AVFUE MCF51AC256BVFUE MCF51AC256AVLKE MCF51AC256BVLKE MCF51AC256AVPUE Description MCF51AC256 ColdFire Microcontroller with CAN MCF51AC256 ColdFire Microcontroller without CAN MCF51AC256 ColdFire Microcontroller with CAN MCF51AC256 ColdFire Microcontroller without CAN MCF51AC256 ColdFire Microcontroller with CAN Flash / SRAM (Kbytes) 256 / 32 256 / 32 256 / 32 256 / 32 256 / 32 256 / 32 128 / 32 128 / 16 128 / 32 128 / 16 128 / 32 128 / 16 256 / 32 256 / 32 256 / 32 256 / 32 256 / 32 Package 64 QFP 64 QFP 80 LQFP 80 LQFP 64 LQFP 64 LQFP 64 QFP 64 QFP 80 LQFP 80 LQFP 64 LQFP 64 LQFP 64 QFP 64 QFP 80 LQFP 80 LQFP 64 LQFP Temperature –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 105°C –40°C to 85°C –40°C to 85°C –40°C to 85°C –40°C to 85°C –40°C to 85°C MCF51AC256BVPUE MCF51AC256 ColdFire Microcontroller without CAN MCF51AC128AVFUE MCF51AC128 ColdFire Microcontroller with CAN MCF51AC128CVFUE MCF51AC128 ColdFire Microcontroller without CAN MCF51AC128AVLKE MCF51AC128CVLKE MCF51AC128AVPUE MCF51AC128 ColdFire Microcontroller with CAN MCF51AC128 ColdFire Microcontroller without CAN MCF51AC128 ColdFire Microcontroller with CAN MCF51AC128CVPUE MCF51AC128 ColdFire Microcontroller without CAN MCF51AC256ACFUE MCF51AC256 ColdFire Microcontroller with CAN MCF51AC256BCFUE MCF51AC256 ColdFire Microcontroller without CAN MCF51AC256ACLKE MCF51AC256BCLKE MCF51AC256 ColdFire Microcontroller with CAN MCF51AC256 ColdFire Microcontroller without CAN MCF51AC256ACPUE MCF51AC256 ColdFire Microcontroller with CAN MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 9 MCF51AC256 Family Configurations Table 3. Orderable Part Number Summary MCF51AC256BCPUE MCF51AC256 ColdFire Microcontroller without CAN MCF51AC128ACFUE MCF51AC128 ColdFire Microcontroller with CAN MCF51AC128CCFUE MCF51AC128 ColdFire Microcontroller without CAN MCF51AC128ACLKE MCF51AC128CCLKE MCF51AC128 ColdFire Microcontroller with CAN MCF51AC128 ColdFire Microcontroller without CAN 256 / 32 128 / 32 128 / 16 128 / 32 128 / 16 128 / 32 128 / 16 64 LQFP 64 QFP 64 QFP 80 LQFP 80 LQFP 64 LQFP 64 LQFP –40°C to 85°C –40°C to 85°C –40°C to 85°C –40°C to 85°C –40°C to 85°CC –40°C to 85°C –40°C to 85°C MCF51AC128ACPUE MCF51AC128 ColdFire Microcontroller with CAN MCF51AC128CCPUE MCF51AC128 ColdFire Microcontroller without CAN MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 10 Freescale Semiconductor MCF51AC256 Family Configurations 1.5 Pinouts and Packaging PTC5 / RxD2 PTC3 / TxD2 PTC2 / MCLK PTH6 / MISO2 PTH5 / MOSI2 PTH4 / SPSCK2 PTC1 / SDA1 PTC0 / SCL1 VDD VSS PTG6 / EXTAL PTG5 / XTAL BKGD / MS VREFL VREFH PTD7 / KBI1P7 / AD1P15 PTD6 / FTM1CLK / AD1P14 PTD5 / AD1P13 PTD4/FTM2CLK/AD1P12 PTG4 / KBI1P4 / AD1P19 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 Figure 2 shows the pinout of the 80-pin LQFP. PTE4 / RGPIO4 / SS1 PTE5 / RGPIO5 / MISO1 PTE6 / RGPIO6 / MOSI1 PTE7 / RGPIO7 / SPSCK1 VSS VDD PTJ4 / DDATA0 PTJ5 / DDATA1 PTJ6 / DDATA2 PTJ7 / DDATA3 PTG0 / KBI1P0 PTG1 / KBI1P1 PTG2 / KBI1P2 •PTA0 / TxCAN •PTA1 / RxCAN PTA2 PTA3 / ACMP2O PTA4 / ACMP2– PTA5 / ACMP2+ PTA6 / AD1P16 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 PTC4 / SS2 IRQ / TPMCLK RESET PTF0 / RGPIO8 / FTM1CH2 PTF1 / RGPIO9 / FTM1CH3 PTF2 / RGPIO10 / FTM1CH4 PTF3 / RGPIO11 / FTM1CH5 PTF4 / RGPIO12 / FTM2CH0 PTC6 / FTM2FLT PTF7 / RGPIO15 PTF5 / RGPIO13 / FTM2CH1 PTF6 / RGPIO14 / FTM1FLT PTJ0 / PST0 PTJ1 / PST1 PTJ2 / PST2 PTJ3 / PST3 PTE0 / RGPIO0 / TxD1 PTE1 / RGPIO1 / RxD1 PTE2 / RGPIO2 / FTM1CH0 PTE3 / RGPIO3 / FTM1CH1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 80-Pin LQFP 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 PTG3 / KBI1P3 / AD1P18 PTD3 / KBI1P6 / AD1P11 PTD2 / KBI1P5 / AD1P10 / ACMP1O VSSA VDDA PTD1 / AD1P9 / ACMP1– PTD0 / AD1P8 / ACMP1+ PTB7 / AD1P7 PTB6 / AD1P6 PTB5 / AD1P5 PTB4 / AD1P4 PTB3 / AD1P3 PTB2 / AD1P2 PTB1 / TPM3CH1 / AD1P1 PTB0 / TPM3CH0 / AD1P0 PTH3 / FTM2CH5 / BKPT / AD1P23 PTH2 / FTM2CH4 / PSTCLK1 / AD1P22 PTH1 / FTM2CH3 / PSTCLK0 / AD1P21 PTH0 / FTM2CH2 / AD1P20 PTA7 / AD1P17 • TxCAN and RxCAN are not available in the members that do not support CAN Figure 2. MCF51AC256 Series ColdFire Microcontroller 80-Pin LQFP Figure 3 shows the pinout of the 64-pin LQFP and QFP. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 11 MCF51AC256 Family Configurations 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PTC4 IRQ / TPMCLK RESET PTF0 / RGPIO8 / FTM1CH2 PTF1 / RGPIO9 / FTM1CH3 PTF2 / RGPIO10 / FTM1CH4 PTF3 / RGPIO11 / FTM1CH5 PTF4 / RGPIO12 / FTM2CH0 PTC6 / FTM2FLT PTF7 / RGPIO15 PTF5 / RGPIO13 / FTM2CH1 PTF6 / RGPIO14 / FTM1FLT PTE0 / RGPIO0 / TxD1 PTE1 / RGPIO1 / RxD1 PTE2 / RGPIO2 / FTM1CH0 PTE3 / RGPIO3 / FTM1CH1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PTC5 / RxD2 PTC3 / TxD2 PTC2 / MCLK PTC1 / SDA1 PTC0 / SCL1 VSS PTG6 / EXTAL PTG5 / XTAL BKGD / MS VREFL VREFH PTD7 / KBI1P7 / AD1P15 PTD6 / FTM1CLK / AD1P14 PTD5 / AD1P13 PTD4 / FTM2CLK / AD1P12 PTG4 / KBI1P4 / AD1P19 64-Pin QFP 64-Pin LQFP PTG3 / KBI1P3 / AD1P18 PTD3 / KBI1P6 / AD1P11 PTD2 / KBI1P5 / AD1P10 /ACMP1O VSSA VDDA PTD1 / AD1P9 / ACMP1– PTD0 / AD1P8 / ACMP1+ PTB7 / AD1P7 PTB6 / AD1P6 PTB5 / AD1P5 PTB4 / AD1P4 PTB3 / AD1P3 PTB2 / AD1P2 PTB1 / TPM3CH1 / AD1P1 PTB0 / TPM3CH0 / AD1P0 PTA7 / AD1P17 PTE4 / RGPIO4 / SS1 PTE5 / RGPIO5 / MISO1 PTE6 / RGPIO6 / MOSI1 PTE7 / RGPIO7 / SPSCK1 VSS VDD PTG0 / KBI1P0 PTG1 / KBI1P1 PTG2 / KBI1P2 •PTA0 / TxCAN •PTA1 / RxCAN PTA2 PTA3 / ACMP2O PTA4 / ACMP2– PTA5 / ACMP2+ PTA6 / AD1P16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 • TxCAN and RxCAN are not available in the members that do not support CAN Figure 3. MCF51AC256 Series ColdFire Microcontroller 64-Pin QFP/LQFP Table 4 shows the package pin assignments. Table 4. Pin Availability by Package Pin-Count Pin Number 80 1 2 3 4 5 6 7 8 64 1 2 3 4 5 6 7 8 Lowest Highest Alt 3 Alt 1 SS2 TPMCLK1 Alt 2 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 12 Freescale Semiconductor MCF51AC256 Family Configurations Table 4. Pin Availability by Package Pin-Count (continued) Pin Number 80 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 64 9 10 11 12 — — — — 13 14 15 16 17 18 19 20 21 22 — — — — 23 24 25 26 27 28 29 30 31 32 33 — — — — 34 35 36 Lowest Highest Alt 3 Alt 1 FTM2FLT RGPIO15 RGPIO13 RGPIO14 PST0 PST1 PST2 PST3 RGPIO0 RGPIO1 RGPIO2 RGPIO3 RGPIO4 RGPIO5 RGPIO6 RGPIO7 Alt 2 FTM2CH1 FTM1FLT TxD1 RxD1 FTM1CH0 FTM1CH1 SS1 MISO1 MOSI1 SPSCK1 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 13 MCF51AC256 Family Configurations Table 4. Pin Availability by Package Pin-Count (continued) Pin Number 80 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 Lowest Highest Alt 3 64 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 — 60 61 — — — 62 63 64 Alt 1 AD1P3 AD1P4 AD1P5 AD1P6 AD1P7 AD1P8 AD1P9 Alt 2 ACMP1+ ACMP1– KBI1P5 KBI1P6 KBI1P3 KBI1P4 FTM2CLK AD1P13 FTM1CLK KBI1P7 AD1P10 AD1P11 AD1P18 AD1P19 AD1P12 AD1P14 AD1P15 ACMP1O XTAL EXTAL SCL1 SDA1 SPCK2 MOSI2 MISO2 MCLK TxD2 RxD2 TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively. 2 TxCAN is available in the member that supports CAN. 3 RxCAN is available in the member that supports CAN. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 14 Freescale Semiconductor Electrical Characteristics 2 Electrical Characteristics This section contains electrical specification tables and reference timing diagrams for the MCF51AC256 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this data sheet supersede any values found in the module specifications. 2.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 5. Parameter Classifications P C Those parameters are guaranteed during production testing on each individual device. Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. Those parameters are derived mainly from simulations. T D NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 2.2 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD). MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 15 Electrical Characteristics Table 6. Absolute Maximum Ratings Rating Supply voltage Input voltage Instantaneous maximum current Single pin limit (applies to all port pins)1, 2, 3 Maximum current into VDD Storage temperature 1 Symbol VDD VIn ID IDD Tstg Value –0.3 to 5.8 –0.3 to VDD + 0.3 ±25 120 –55 to 150 Unit V V mA mA °C Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2 All functional non-supply pins are internally clamped to VSS and VDD. 3 Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption. 2.3 Thermal Characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 7. Thermal Characteristics Rating Operating temperature range (packaged) Maximum junction temperature Thermal resistance 1,2,3,4 80-pin LQFP 1s 2s2p 64-pin LQFP 1s 2s2p 64-pin QFP 1s 2s2p 1 Symbol TA TJ Value –40 to 105 150 Unit °C °C 51 38 θJA 59 41 50 36 °C/W Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 16 Freescale Semiconductor Electrical Characteristics 2 3 Junction to Ambient Natural Convection 1s — Single layer board, one signal layer 4 2s2p — Four layer board, 2 signal and 2 power layers The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) Eqn. 1 where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined For most applications, PI/O VDD VIN VDD VIN VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. The RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD. –6.0E-3 –5.0E-3 –4.0E-3 –3.0E-3 –2.0E-3 –1.0E-3 000E+0 Average of IOH VDD–VOH (V) -40°C 25°C 105°C IOH (A) 0 0.3 0.5 0.8 VSupply–VOH 0.9 1.2 1.5 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor Figure 4. Typical IOH vs. VDD–VOH at VDD = 3 V (Low Drive, PTxDSn = 0) 20 Electrical Characteristics –20.0E-3 –18.0E-3 –16.0E-3 –14.0E-3 –12.0E-3 –10.0E-3 –8.0E-3 –6.0E-3 –4.0E-3 –2.0E-3 000E+0 Average of IOH VDD–VOH (V) -40°C 25°C 105°C IOH (A) 0 0.3 0.5 0.8 VSupply–VOH 0.9 1.2 1.5 Figure 5. Typical IOH vs. VDD–VOH at VDD = 3 V (High Drive, PTxDSn = 1) VDD–VOH (V) Average of IOH –7.0E-3 –6.0E-3 –5.0E-3 -40°C 25°C 105°C IOH (A) 0.00 0.30 0.50 0.80 VSupply–VOH 1.00 1.30 2.00 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 –4.0E-3 –3.0E-3 –2.0E-3 –1.0E-3 000E+0 Figure 6. Typical IOH vs. VDD–VOH at VDD = 5 V (Low Drive, PTxDSn = 0) Freescale Semiconductor 21 Electrical Characteristics –30.0E-3 –25.0E-3 –20.0E-3 –15.0E-3 –10.0E-3 –5.0E-3 000E+0 Average of IOH VDD–VOH (V) -40°C 25°C 105°C IOH (A) 0.00 0.30 0.50 0.80 VSupply–VOH 1.00 1.30 2.00 Figure 7. Typical IOH vs. VDD–VOH at VDD = 5 V (High Drive, PTxDSn = 1) 2.6 Num 1 Supply Current Characteristics Table 11. Supply Current Characteristics C C Parameter Run supply current3 measured at (CPU clock = 2 MHz, fBus = 1 MHz) Run supply current3 measured at (CPU clock = 16 MHz, fBus = 8 MHz) Run supply current3 measured at (CPU clock = 50 MHz, fBus = 25 MHz) Wait mode supply3 current measured at (CPU clock = 2 MHz, fBus = 1 MHz) Wait mode supply3 current measured at (CPU clock = 16 MHz, fBus = 8 MHz) Wait mode supply3 current measured at (CPU clock = 50 MHz, fBus = 25 MHz) Stop2 mode supply current –40 °C 25 °C 120 °C 7 C –40 °C 25 °C 120 °C S2IDD 3 1.16 2.5 2.5 200 μA 5 1.40 2.5 2.5 200 μA WIDD RIDD Symbol VDD (V) 5 3 5 3 5 3 5 3 5 3 5 3 Typical1 2.67 2.64 14.8 14.7 42 41.8 1.3 1.29 5.11 5.1 15.24 15.2 Max2 4 4 25 25 60 60 2 2 8 8 25 25 Unit mA 2 C mA 3 P mA 4 C mA 5 C mA 6 C mA MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 22 Freescale Semiconductor Electrical Characteristics Table 11. Supply Current Characteristics (continued) Num C Parameter Stop3 mode supply current –40 °C 25 °C 120 °C 8 C –40 °C 25 °C 120 °C 9 10 1 2 Symbol VDD (V) Typical1 Max2 2.5 2.5 220 2.5 2.5 220 Unit 5 S3IDD 3 5 3 5, 3 1.60 μA 1.35 300 300 5 μA C C RTI adder to stop2 or stop34, 25 °C Adder to stop3 for oscillator enabled5 (ERCLKEN =1 and EREFSTEN = 1) S23IDDRTI S3IDDOSC nA nA μA Typicals are measured at 25 °C. Values given here are preliminary estimates prior to completing characterization. 3 All modules clocks switch on, code run from flash, FEI mode, and does not include any dc loads on port pins. 4 Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. 5 Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0). 2.7 Num 1 2 3 4 5 6 7 8 Analog Comparator (ACMP) Electricals Table 12. Analog Comparator Electrical Specifications C — T D D D D D P Supply voltage Supply current (active) Analog input voltage Analog input offset voltage Analog comparator hysteresis Analog input leakage current Analog comparator initialization delay Bandgap voltage reference factory trimmed at VDD = 5.3248 V, Temp = 25 °C Rating Symbol VDD IDDAC VAIN VAIO VH IALKG tAINIT VBG Min 2.7 — VSS – 0.3 — 3.0 — — 1.18 Typical — 20 — 20 6.0 — — 1.20 Max 5.5 35 VDD 40 20.0 1.0 1.0 1.21 Unit V μA V mV mV μA μs V 2.8 Num ADC Characteristics Table 13. 5 Volt 12-bit ADC Operating Conditions C D Characteristic Conditions Absolute Supply voltage D Delta to VDD (VDD – VDDA)2 Symb VDDA ΔVDDA Min 2.7 –100 Typical1 — 0 Max 5.5 100 Unit V mV Comment 1 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 23 Electrical Characteristics Table 13. 5 Volt 12-bit ADC Operating Conditions (continued) Num 2 3 4 5 6 7 C D D D D C C Characteristic Ground voltage Reference voltage high Reference voltage low Input voltage Input capacitance Input resistance 12-bit mode fADCK > 4MHz fADCK < 4MHz Analog source resistance 10-bit mode fADCK > 4MHz fADCK < 4MHz 8-bit mode (all valid fADCK) ADC conversion clock frequency High speed (ADLPC = 0) Low power (ADLPC = 1) fADCK 0.4 — 4.0 RAS Conditions Delta to VSS (VSS – VSSA)2 Symb ΔVSSA VREFH VREFL VADIN CADIN RADIN Min –100 2.7 VSSA VREFL — — Typical1 0 VDDA VSSA — 4.5 3 Max 100 VDDA VSSA VREFH 5.5 5 Unit mV V V V pF kΩ Comment C — — — — — 0.4 — — — — — — 2 5 5 10 10 8.0 MHz kΩ External to MCU 8 C C D 9 D 1 Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 DC potential difference. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 24 Freescale Semiconductor Electrical Characteristics SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZAS RAS + VADIN – Pad leakage due to input protection ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN ADC SAR ENGINE VAS + – CAS RADIN INPUT PIN RADIN INPUT PIN RADIN CADIN INPUT PIN Figure 8. ADC Input Impedance Equivalency Diagram Table 14. 5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) Num C Characteristic Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1 Supply current ADLPC = 1 ADLSM = 0 ADCO = 1 Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1 Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1 Supply current ADC asynchronous clock source Stop, reset, module off High speed (ADLPC = 0) Low power (ADLPC = 1) fADACK Conditions Symb Min Typical1 Max Unit Comment 1 T IDDA — 133 — μA 2 T IDDA — 218 — μA 3 T IDDA — 327 — μA 4 D IDDA — 0.582 1 mA 5 6 T P IDDA — 2 1.25 0.011 3.3 2 1 5 μA MHz tADACK = 1/fADACK 3.3 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 25 Electrical Characteristics Table 14. 5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Num C Characteristic Conversion time (including sample time) Sample time Long sample (ADLSMP = 1) T 9 P T T 10 P T T 11 T T T 12 P T T 13 P T Full-scale error Zero-scale error Integral non-linearity Differential non-linearity Total unadjusted error 12-bit mode 10-bit mode 8-bit mode 12-bit mode 10-bit mode3 8-bit mode4 12-bit mode 10-bit mode 8-bit mode 12-bit mode 10-bit mode 8-bit mode 12-bit mode 10-bit mode 8-bit mode 12-bit mode 14 D Quantization error 10-bit mode 8-bit mode 12-bit mode 15 D Input leakage error 10-bit mode 8-bit mode 16 D Temp sensor voltage Temp sensor slope 25°C –40 °C–25 °C 25 °C–85 °C m — 3.638 — VTEMP25 EIL EQ EFS EZS INL DNL ETUE Conditions Short sample (ADLSMP = 0) Long sample (ADLSMP = 1) Short sample (ADLSMP = 0) 8 T tADS tADC Symb Min — — — — — — — — — — — — — — — — — — — — — — — — — — — Typical1 20 40 3.5 23.5 ±3.0 ±1 ±0.5 ±1.75 ±0.5 ±0.3 ±1.5 ±0.5 ±0.3 ±1.5 ±0.5 ±0.5 ±1 ±0.5 ±0.5 –1 to 0 — — ±1 ±0.2 ±0.1 1.396 3.266 Max — — — — — ±2.5 ±1.0 — ±1.0 ±0.5 — ±1.0 ±0.5 — ±1.5 ±0.5 — ±1 ±0.5 — ±0.5 ±0.5 — ±2.5 ±1 — — V LSB2 Pad leakage4 * RAS LSB2 LSB2 VADIN = VDDA LSB2 VADIN = VSSA LSB2 LSB2 LSB2 Unit ADCK cycles ADCK cycles Comment See Table 8 for conversion time variances 7 P Includes quantizatio n 17 1 D mV/°C Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 1 LSB = (V N REFH – VREFL)/2 . MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 26 Freescale Semiconductor Electrical Characteristics 3 4 Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes Based on input pad leakage current. Refer to pad electricals. 2.9 Num C External Oscillator (XOSC) Characteristics Table 15. Oscillator Electrical Specifications (Temperature Range = –40 to 105 °C Ambient) Rating Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode2 High range (RANGE = 1) PEE or PBE mode3 High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode Symbol flo fhi-fll fhi-pll fhi-hgo fhi-lp C1 C2 Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz) Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz Crystal start-up time 4 Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0)5 High range, high gain (RANGE = 1, HGO = 1)5 Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode 2 PEE or PBE mode 3 BLPE mode t t t Min 32 1 1 1 1 Typical1 — — — — — Max 38.4 5 16 16 8 Unit kHz MHz MHz MHz MHz 1 C 2 3 — Load capacitors Feedback resistor — See crystal or resonator manufacturer’s recommendation. 10 1 — — — — — — 0 100 0 0 0 0 200 400 5 15 — — — 0 10 20 — — — — MΩ RF 4 — RS kΩ CSTL-LP 5 T CSTL-HGO t CSTH-LP CSTH-HGO — — — — ms 6 T fextal 0.03125 1 0 — — — 5 16 40 MHz Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value. When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz. 3 When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz. 4 This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. 5 4 MHz crystal 1 2 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 27 Electrical Characteristics MCU EXTAL XTAL RS RF C1 Crystal or Resonator C2 2.10 Num C 1 2 3 4 C MCG Specifications Table 16. MCG Frequency Specifications (Temperature Range = –40 to 105 °C Ambient) Rating Internal reference frequency — factory trimmed at VDD = 5 V and temperature = 25 °C Symbol fint_ft fint_ut tirefst fdco_ut Min — 31.25 — 16 32 48 — fdco_DMX32 Δfdco_res_t Δfdco_res_t Δfdco_t Δfdco_t tfll_acquire tpll_acquire CJitter fvco ns6 fpll_jitter_625ns Dlock — — — — — — — — — 7.0 — ±1.49 Typical1 32.768 — 60 — — — 16.82 33.69 50.48 ±0.1 ±0.2 0.5 –1.0 ±0.5 — — 0.02 — 0.566 — 6 Max — 39.0625 100 20 40 60 — — — ±0.2 ±0.4 ±2 ±1 1 1 0.2 55.0 — ±2.98 Unit kHz kHz μs MHz C Average internal reference frequency — untrimmed T Internal reference startup time C C C DCO output frequency range — untrimmed 2 Low range (DRS=00) Mid range (DRS=01) High range (DRS=10) Low range (DRS=00) Mid range (DRS=01) High range (DRS=10) 5 P DCO output frequency2 P reference =32768Hz P and DMX32 = 1 MHz 6 7 8 9 10 11 12 13 16 17 Resolution of trimmed DCO output frequency at fixed D voltage and temperature (using FTRIM) D D D Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM) Total deviation of trimmed DCO output frequency over voltage and temperature Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0–70 °C time4 %fdco %fdco %fdco %fdco ms ms %fdco MHz %fpll % D FLL acquisition time3 D PLL acquisition Long term jitter of DCO output clock (averaged over D 2ms interval) 5 D VCO operating frequency D Jitter of PLL output clock measured over 625 D Lock entry frequency tolerance 7 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 28 Freescale Semiconductor Electrical Characteristics Table 16. MCG Frequency Specifications (continued)(Temperature Range = –40 to 105 °C Ambient) Num C 18 19 20 21 1 2 3 Rating 8 Symbol Dunl tfll_lock tpll_lock floc_low Min ±4.47 — — (3/5) × fint Typical1 — — — — Max ±5.97 tfll_acquire+ 1075(1/fint_t) tpll_acquire+ 1075(1/fpll_ref) Unit % s s kHz D Lock exit frequency tolerance D Lock time — FLL D Lock time — PLL Loss of external clock minimum frequency — D RANGE = 0 — 4 5 6 7 Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value. The resulting bus clock frequency must not exceed the maximum specified bus clock frequency of the device. This specification applies when the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. This specification applies when the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit. Below Dlock minimum, the MCG enters lock. Above Dlock maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock. Below Dunl minimum, the MCG will not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock. o 8 2.11 AC Characteristics This section describes ac timing characteristics for each peripheral system. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 29 Electrical Characteristics 2.11.1 Num 1 2 3 4 5 6 7 C D D D D D D D Control Timing Table 17. Control Timing Parameter Bus frequency (tcyc = 1/fBus) Internal low-power oscillator period External reset pulse width (tcyc = 1/fSelf_reset) Reset low drive Active background debug mode latch setup time Active background debug mode latch hold time IRQ pulse width Asynchronous path2 Synchronous path3 KBIPx pulse width Asynchronous path2 Synchronous path3 Port rise and fall time (load = 50 pF)4 Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive tILIH, tIHIL 100 1.5 × tcyc 100 1.5 × tcyc — — — — — — ns 2 Symbol fBus tLPO textrst trstdrv tMSSU tMSH Min dc 800 100 66 × tcyc 500 100 Typical1 — — — — — — Max 24 1500 — — — — Unit MHz μs ns ns ns ns 8 D tILIH, tIHIL — — ns 9 D tRise, tFall 11 35 40 75 — ns Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated. This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. 3 This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case. 4 Timing is shown with respect to 20% V DD and 80% VDD levels. Temperature range –40 °C to 105 °C. 1 2 textrst RESET PIN Figure 9. Reset Timing tIHIL IRQ/KBIPx IRQ/KBIPx tILIH Figure 10. IRQ/KBIPx Timing MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 30 Freescale Semiconductor Electrical Characteristics 2.11.2 Timer (TPM/FTM) Module Timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 18. TPM/FTM Input Timing NUM 1 2 3 4 5 C — — D D D Function External clock frequency External clock period External clock high time External clock low time Input capture pulse width Symbol fTPMext tTPMext tclkh tclkl tICPW Min DC 4 1.5 1.5 1.5 Max fBus/4 — — — — Unit MHz tcyc tcyc tcyc tcyc tTPMext tclkh TPMxCLK tclkl Figure 11. Timer External Clock tICPW TPMxCHn TPMxCHn tICPW Figure 12. Timer Input Capture Pulse 2.11.3 Num 1 2 1 MSCAN Table 19. MSCAN Wake-Up Pulse Characteristics C D D Parameter MSCAN wake-up dominant pulse filtered MSCAN wake-up dominant pulse pass Symbol tWUP tWUP Min — 5 Typical1 — — Max 2 5 Unit μs μs Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 31 Electrical Characteristics 2.12 SPI Characteristics Table 20. SPI Timing No. — C D Function Operating frequency Master Slave SPSCK period Master Slave Enable lead time Master Slave Enable lag time Master Slave Clock (SPSCK) high or low time Master Slave Data setup time (inputs) Master Slave Data hold time (inputs) Master Slave Slave access time Slave MISO disable time Data valid (after SPSCK edge) Master Slave Data hold time (outputs) Master Slave Rise time Input Output Fall time Input Output Symbol fop Min fBus/2048 0 2 4 1/2 1 1/2 1 tcyc – 30 tcyc – 30 15 15 0 25 — — — — 0 0 — — — — Max fBus/2 fBus/4 2048 — — — — — 1024 tcyc — — — — — 1 1 25 25 — — tcyc – 25 25 tcyc – 25 25 Unit Hz Table 20 and Figure 13 through Figure 16 describe the timing requirements for the SPI system. 1 D tSPSCK tcyc tcyc tSPSCK tcyc tSPSCK tcyc ns ns ns ns ns ns tcyc tcyc ns ns ns ns ns ns ns ns 2 D tLead 3 D tLag 4 D tWSPSCK 5 D tSU 6 7 8 9 D D D D tHI ta tdis tv 10 D tHO 11 D tRI tRO tFI tFO 12 D MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 32 Freescale Semiconductor Electrical Characteristics SS1 (OUTPUT) 2 SPSCK (CPOL = 0) (OUTPUT) SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) MSB IN2 9 MOSI (OUTPUT) MSB OUT2 6 BIT 6 . . . 1 9 BIT 6 . . . 1 LSB OUT LSB IN 10 1 4 4 12 11 3 NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 13. SPI Master Timing (CPHA = 0) SS(1) (OUTPUT) 1 2 SPSCK (CPOL = 0) (OUTPUT) 4 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 9 MOSI (OUTPUT) PORT DATA MASTER MSB OUT(2) MSB IN(2) 10 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 6 BIT 6 . . . 1 LSB IN 4 11 12 12 11 3 NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 14. SPI Master Timing (CPHA =1) MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 33 Electrical Characteristics SS (INPUT) 1 SPSCK (CPOL = 0) (INPUT) 2 SPSCK (CPOL = 1) (INPUT) 7 MISO (OUTPUT) SLAVE 5 MOSI (INPUT) NOTE: 12 11 3 4 4 11 12 8 9 MSB OUT 6 MSB IN BIT 6 . . . 1 BIT 6 . . . 1 10 10 SEE NOTE SLAVE LSB OUT LSB IN 1. Not defined but normally MSB of character just received Figure 15. SPI Slave Timing (CPHA = 0) SS (INPUT) 1 SPSCK (CPOL = 0) (INPUT) SPSCK (CPOL = 1) (INPUT) MISO (OUTPUT) SEE NOTE 7 MOSI (INPUT) 2 12 3 11 4 4 11 12 9 SLAVE 5 MSB IN MSB OUT 6 10 BIT 6 . . . 1 SLAVE LSB OUT 8 BIT 6 . . . 1 LSB IN NOTE: 1. Not defined but normally LSB of character just received Figure 16. SPI Slave Timing (CPHA = 1) 2.13 Flash Specifications This section provides details about program/erase times and program-erase endurance for the Flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see Chapter 4, “Memory.” MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 34 Freescale Semiconductor Electrical Characteristics Table 21. Flash Characteristics Num 1 2 3 4 5 6 7 8 9 10 1 2 C — — — — — — — — C C Characteristic Supply voltage for program/erase Supply voltage for read operation Internal FCLK frequency2 Internal FCLK period (1/FCLK) Byte program time (random location)2 Byte program time (burst mode)2 Page erase time3 Mass erase time2 Program/erase endurance4 TL to TH = –40 °C to 105 °C T = 25 °C Data retention5 Symbol Vprog/erase VRead fFCLK tFcyc tprog tBurst tPage tMass — tD_ret Min 2.7 2.7 150 5 Typical1 — — — — 9 4 4000 20,000 Max 5.5 5.5 200 6.67 Unit V V kHz μs tFcyc tFcyc tFcyc tFcyc 10,000 — 15 — 100,000 100 — — — cycles years Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated. The frequency of this clock is controlled by a software setting. 3 These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. 4 Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory. 5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory. 2.14 EMC Performance Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance. 2.14.1 Radiated Emissions Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device. MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 35 Mechanical Outline Drawings 3 3.1 Mechanical Outline Drawings 80-Pin LQFP Package MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 36 Freescale Semiconductor Mechanical Outline Drawings MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 37 Mechanical Outline Drawings MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 38 Freescale Semiconductor Mechanical Outline Drawings 3.2 64-Pin LQFP Package MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 39 Mechanical Outline Drawings MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 40 Freescale Semiconductor Mechanical Outline Drawings MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 41 Mechanical Outline Drawings 3.3 64-Pin QFP Package MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 42 Freescale Semiconductor Mechanical Outline Drawings MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 43 Mechanical Outline Drawings MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 44 Freescale Semiconductor Revision History 4 Revision History Table 22. Revision History Revision 1 2 3 Initial published Updated ADC channels, Item 1, 4-5 on Table 2.10 Completed all theTBDs. Changed RTC to RTI in Figure 1. Corrected the block diagram. Changed VDDAD to VDDA, VSSAD to VSSA. Added charge device model data and removed machine data in Table 8. Updated the specifications of VLVDH, VLVDL, VLVWH and VLVWL in Table 10. Updated S2IDD, S3IDD in Table 11. Added C column in Table 14. Updated fdco_DMX32 in Table 16. Corrected the expansion of SPI to serial peripheral interface. Description 4 MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.4 Freescale Semiconductor 45 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008-2009. All rights reserved. MCF51AC256 Rev.4 9/2009
MCF51AC128C 价格&库存

很抱歉,暂时无法提供与“MCF51AC128C”相匹配的价格&库存,您可以联系我们找货

免费人工找货