Freescale Semiconductor Data Sheet: Technical Data
Document Number: MCF51CN128 Rev. 4, 5/2009
MCF51CN128
MCF51CN128 ColdFire Microcontroller Cover: MCF51CN128
The MCF51CN128 device is a low-cost, low-power, high-performance 32-bit ColdFire V1 microcontroller (MCU) featuring 10/100 BASE-T/TX fast ethernet controller (FEC), media independent interface (MII) to connect an external physical transceiver (PHY), and multi-function external bus interface. MCF51CN128 also has multiple communication interfaces for various ethernet gateway applications. MCF51CN128 is the first ColdFire V1 device to incorporate ethernet and external bus interface along with new features to minimize power consumption and increase functionality in low-power modes. The MCF51CN128 features the following functional units: • 32-bit ColdFire V1 Central Processing Unit (CPU) – Up to 50.33 MHz ColdFire CPU from 3.6 V to 3.0 V, up to 40 MHz CPU from 3.0 V to 2.1 V, and up to 20 MHz CPU from 2.1 V to 1.8 V across temperature range of –40 °C to 85 °C – Provides 0.94 Dhrystone 2.1 MIPS per MHz performance when running from internal RAM (0.76 DMIPS/MHz from flash) – ColdFire Instruction Set Revision C (ISA_C) – Support for up to 45 peripheral interrupt requests and 7 software interrupts • On-Chip Memory – 128 KB Flash, 24 KB RAM – Flash read/program/erase over full operating voltage and temperature – On-chip memory aliased to create a contiguous memory space with off-chip memory – Security circuitry to prevent unauthorized access to Peripherals, RAM, and flash contents • Ethernet – FEC—10/100 BASE-T/TX, bus-mastering fast ethernet controller with direct memory access (DMA); supports half or full duplex; operation is limited to 3.0 V to 3.6 V
80 LQFP 14 mm × 14 mm 64 LQFP 10 mm × 10 mm
48 QFN 7 mm × 7 mm
– MII—media independent interface to connect ethernet controller to external PHY; includes output clock for external PHY • External Bus – Mini-FlexBus—Multi-function external bus interface; supports up to 1 MB memories, gate-array logic, simple slave device or glueless interfaces to standard chip-selected asynchronous memories – Programmable options: access time per chip select, burst and burst-inhibited transfers per chip select, transfer direction, and address setup and hold times • Power-Saving Modes – Two low-power stop modes, one of which allows limited use of some peripherals (ADC, KBI, RTC) – Reduced-power wait mode shuts off CPU and allows full use of all peripherals; FEC can remain active and conduct DMA transfers to RAM and assert an interrupt to wake up the CPU upon completion – Low-power run and wait modes allow peripherals to run while the voltage regulator is in standby – Peripheral clock enable register can disable clocks to unused modules, thereby reducing currents – Low-power external oscillator that can be used in stop3 mode to provide accurate clock source to active peripherals – Low-power real-time counter for use in run, wait, and stop modes with internal and external clock sources – 6 μs typical wake-up time from stop3 mode – Pins and clocks to peripherals not available in smaller packages are automatically disabled for reduced current consumption; no user interaction is needed • Clock Source Options – Oscillator (XOSC) — Loop-control pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 25 MHz – Multi-Purpose Clock Generator (MCG) — Flexible clock source module with either frequency-locked-loop (FLL) or phase-lock loop (PLL) clock options. FLL can be controlled by internal or external reference and
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © Freescale Semiconductor, Inc., 2009. All rights reserved.
•
•
•
•
includes precision trimming of internal reference, allowing 0.2% resolution and 2% deviation over temperature and voltage. PLL derives a higher accuracy clock source derived by an external reference System Protection – Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus clock – Low-voltage detection with reset or interrupt; selectable trip points – Illegal opcode and illegal address detection with programmable reset or exception response – Flash block protection Development Support – Single-wire background debug module (BDM) interface; supports same electrical interface used by the S08, 9S12, and 9S12x families debug modules – 4 PC plus 2 address (optional data) breakpoint registers with programmable 1- or 2-level trigger response – 64-entry processor status and debug data trace buffer with programmable start/stop conditions Peripherals – ADC—Up to 12 channel, 12-bit resolution; 2.5 μs conversion time; automatic compare function; 1.7 mV/°C temperature sensor; internal bandgap reference channel; operation in stop3; fully functional from 3.6 V to 1.8 V – SCI—Three modules with optional 13-bit break – SPI—Two interfaces with full-duplex or single-wire bi-directional; double-buffered transmit and receive; master or slave mode; MSB-first or LSB-first shifting – IIC—Two IICs with up to 100 kbps with maxmimum bus loading; multi-master operation; programmable slave address; interrupt-driven byte-by-byte data transfer; supports broadcast mode and 11-bit addressing – TPM—Two 3-channel, 16-bit resolution modules; selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel – RTC—8-bit modulus counter with binary- or decimal-based prescaler; external clock source for precise time base, time-of-day, calendar- or task-scheduling functions; free-running on-chip low-power oscillator (1 kHz) for cyclic wake-up without external components; runs in all MCU modes – MTIM—Two 8-bit resolution modulo timers with 8-bit prescaler Input/Output – Up to 70 general-purpose input/output (GPIO) pins, all with pin mux controls to select alternate functions – 16 keyboard interrupt (KBI) pins with selectable polarity – Hysteresis and configurable pull-up device or input filtering on all input pins; configurable slew rate and drive strength on all output pins – 16 Rapid GPIO pins connected to the CPU’s high-speed local bus with set, clear, and toggle functionality (PTD and PTF)
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 2 Freescale Semiconductor
Table of Contents
1 2 3 MCF51CN128 Series Comparison . . . . . . . . . . . . . . . . . . . . . .4 1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .12 3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12 3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13 3.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .14 3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18 3.8 External Oscillator (XOSC) Characteristics . . . . . . . . .20 3.9 Multipurpose Clock Generator (MCG) Specifications . .21 3.10 Mini-FlexBus Timing Specifications . . . . . . . . . . . . . . .23 3.11 Fast Ethernet Timing Specifications . . . . . . . . . . . . . . .24 3.11.1 Receive Signal Timing Specifications . . . . . . . .24 3.11.2 Transmit Signal Timing Specifications . . . . . . . .25 3.11.3 Asynchronous Input Signal Timing Specifications25 3.11.4 MII Serial Management Timing Specifications .26 3.12 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.12.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.12.2 TPM Module Timing . . . . . . . . . . . . . . . . . . . . .28 3.12.3 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3.12.4 ADC Characteristics . . . . . . . . . . . . . . . . . . . . .32 3.12.5 Flash Specifications. . . . . . . . . . . . . . . . . . . . . .35 3.13 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 3.13.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . .36 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .36 6.1 80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 6.2 64-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 6.3 48-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Table 13..Receive Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 14..Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 15..MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . 25 Table 16..MII Serial Management Channel Signal Timing . . . . . 26 Table 17..Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 18..TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 19..SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 20..12-bit ADC Operating Conditions . . . . . . . . . . . . . . . . 32 Table 21..12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 22..Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 23..Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 24..Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 25..Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
List of Figures
Figure 1..MCF51CN128 Series Block Diagram . . . . . . . . . . . . . . 5 Figure 2..Pin Assignments in 80-Pin LQFP Package. . . . . . . . . . 6 Figure 3..Pin Assignments in 64-Pin LQFP Package. . . . . . . . . . 7 Figure 4..Pin Assignments in 48-Pin QFN Package. . . . . . . . . . . 8 Figure 5..Pull-up and Pull-down Typical Resistor Values . . . . . . 16 Figure 6..Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 7..Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 8..Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 9..Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 10..Typical Run IDD for FBE and FEI, IDD vs. VDD (ADC off, All Other Modules Enabled) . . . . . . . . . . . . . 19 Figure 11..Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 12..Typical Crystal or Resonator Circuit: Low Range/Low Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 13..Mini-FlexBus Read Timing . . . . . . . . . . . . . . . . . . . . 23 Figure 14..Mini-FlexBus Write Timing . . . . . . . . . . . . . . . . . . . . 24 Figure 15..MII Receive Signal Timing Diagram . . . . . . . . . . . . . 25 Figure 16..MII Transmit Signal Timing Diagram . . . . . . . . . . . . . 25 Figure 17..MII Async Inputs Timing Diagram . . . . . . . . . . . . . . . 25 Figure 18..MII Serial Management Channel TIming Diagram . . 26 Figure 19..Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 20..IRQ/KBIPx Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 21..Timer External Clock. . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 22..Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . 28 Figure 23..SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 30 Figure 24..SPI Master Timing (CPHA =1) . . . . . . . . . . . . . . . . . 30 Figure 25..SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . 31 Figure 26..SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 31 Figure 27..ADC Input Impedance Equivalency Diagram . . . . . . 33
4 5 6
7
List of Tables
Table 1.. MCF51CN128 Series Device Comparison . . . . . . . . . . .4 Table 2.. Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . .8 Table 3.. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . .12 Table 4.. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12 Table 5.. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13 Table 6.. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . .14 Table 7.. ESD and Latch-Up Protection Characteristics . . . . . . .14 Table 8.. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 9.. Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18 Table 10..XOSC and ICS Specifications (Temperature Range = –40 to 85 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Table 11..MCG Frequency Specifications (Temperature Range = –40 to 125 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Table 12..Mini-FlexBus AC Timing Specifications . . . . . . . . . . . .23
MCF51CN128 ColdFire Microcontroller Advance Information Data Sheet, Rev. 4 3 Freescale Semiconductor
MCF51CN128 Series Comparison
1
1.1
MCF51CN128 Series Comparison
Device Comparison
Table 1. MCF51CN128 Series Device Comparison
MCF51CN128 Feature 80-pin Flash memory size (KB) RAM size (KB) V1 ColdFire core equiped with BDM (background debug module) and 2X3 Crossbar switch ADC (analog-to-digital converter) channels (12-bit) FEC (Fast Ethernet Controller with MII Interface) COP (computer operating properly) IIC1 (inter-integrated circuit) IIC2 IRQ (interrupt request input) KBI (keyboard interrupts) LVD (low-voltage detector) MCG (multipurpose clock generator) Port I/O
1
The following table compares the various device derivatives available within the MCF51CN128 series.
64-pin 128 24 Yes 12 Yes Yes Yes Yes Yes
48-pin
16
12 Yes Yes
6
70 16
54 16 Yes Yes Yes
38 8
RGPIO (rapid general-purpose I/O) RTC (real-time counter) SCI1, SCI2 & SCI3 (serial communications interface) SPI1 & SPI2 (serial peripheral interface) TPM1 (Timer/PWM Module) channels TPM2 channels MTIM1 & MTIM2 External Timer Clocks Mini-FlexBus XOSC (crystal oscillator)
1 2
3 3
3 3 Yes2
3 3
2 Yes
1 0 Yes
1 0
All GPIO are muxed with other functions TMRCLK2 is not available on the 48 pin package, although MTIM2 can be used as an internal timebase using on-chip clock sources.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 4 Freescale Semiconductor
MCF51CN128 Series Comparison
1.2
Block Diagram
The following figure shows the connections between the MCF51CN128 series pins and modules.
ADC BDM
Port D: BKGD/MS BKGD/MS/PTD6/RGPIO6
DBG INTC
IIC2
Port C/G: SDA2 SCL2 Port E: KBI2P7 KBI2P6 KBI2P5 KBI2P4 KBI2P3 KBI2P2 KBI2P1 KBI2P0 Port G/I: KBI1P7 KBI1P6 KBI1P5 KBI1P4 KBI1P3 KBI1P2 KBI1P1 KBI1P0 Port D:
ColdFire V1 core
Port E: TPM1CH2 TPM1CH1 TPM1CH0 Port B, F or H* : TPM1CLK
TPM1
RESET/PTC3
Port F/H: TPM2CH2 TPM2CH1 TPM2CH0 Port B, F or H* : TPM2CLK
TPM2
SIM
Port F: RGPIO15 RGPIO14 RGPIO13 RGPIO12 RGPIO11 RGPIO10 RGPIO9 RGPIO8
Port C
KBI
Port B
Port A
VDDA/ VREFH VSSA/ VREFL
VDDA VREFH VSSA VREFL
Port C: ADP3ADP0 Port D: ADP8ADP4 Port E: ADP11ADP9
Port C/G: SDA1 IIC1 SCL1
PTA7/MII_RX_DV/MOSI2 PTA6/MII_RXD0/MISO2 PTA5/MII_RXD1/SPSCK2 PTA4/MII_RXD2/RXD3 PTA3/MII_RXD3/TXD3 PTA2/MII_MDC/SCL2 PTA1/MII_MDIO/SDA2 PTA0/PHYCLK PTB7/MII_TXD2/TPM2CH1 PTB6/MII_TXD1/TPM2CH0 PTB5/MII_TXD0/SPSCK1 PTB4/MII_TX_EN/MISO1 PTB3/MII_TX_CLK/MOSI1 PTB2/MII_TX_ER/SS1 PTB1/MII_RX_ER/TMRCLK1 PTB0/MII_RX_CLK/SS2 PTC7/SDA2/SPSCK1/ADP8 PTC6/SCL2/MISO1/ADP9 PTC5/MOSI1/ADP10 PTC4/IRQ/SS1/ADP11 PTC2/MII_CRS/SDA1 PTC1/MII_COL/SCL1 PTC0/MII_TXD3/TPM2CH2 PTD7/RGPIO7/SPSCK2/ADP3 BKGD/MS/PTD6/RGPIO6 PTD5/RGPIO5/XTAL PTD4/RGPIO4/EXTAL PTD3/RGPIO3/RXD2/ADP4 PTD2/RGPIO2/TXD2/ADP5 PTD1/RGPIO1/RXD1/ADP6 PTD0/RGPIO0/TXD1/ADP7 PTE7/KBI2P7/FB_CS0/RXD3 PTE6/KBI2P6/FB_D0/TXD3 PTE5/KBI2P5/IRQ/TPM1CH2 PTE4/KBI2P4/CLKOUT/TPM1CH1 PTE3/KBI2P3/TPM1CH0 PTE2/KBI2P2/SS2/ADP0 PTE1/KBI2P1/MOSI2/ADP1 PTE0/KBI2P0/MISO2/ADP2 PTF7/RGPIO15/FB_A13/FB_AD13/TPM2CH2 PTF6/RGPIO14/FB_A14/FB_AD14/TPM2CH1 PTF5/RGPIO13/FB_D4/TPM2CH0 PTF4/RGPIO12/FB_D5/TMRCLK2 PTF3/RGPIO11/FB_A16/FB_AD16 PTF2/RGPIO10/FB_A17/FB_AD17 PTF1/RGPIO9/FB_A18/FB_AD18 PTF0/RGPIO8/FB_A19/FB_AD19 PTG7/KBI1P7/FB_D1 PTG6/KBI1P6/FB_D2 PTG5/KBI1P5/FB_D3 PTG4/KBI1P4/FB_RW PTG3/KBI1P3/FB_A5/FB_AD5/SDA1 PTG2/KBI1P2/FB_A6/FB_AD6/SCL1 PTG1/KBI1P1/FB_A7/FB_AD7/SDA2 PTG0/KBI1P0/FB_A8/FB_AD8/SCL2 PTH7/FB_A9/FB_AD9/TPM2CH2 PTH6/FB_A10/FB_AD10/TPM2CH1 PTH5/FB_A11/FB_AD11 PTH4/FB_A12/FB_AD12 PTH3/FB_D6/TPM2CH0 PTH2/FB_D7/TMRCLK1 PTH1/FB_OE PTH0/FB_A15/FB_AD15 PTJ5/FB_A0/FB_AD0 PTJ4/FB_A1/FB_AD1 PTJ3/FB_A2/FB_AD2 PTJ2/FB_A3/FB_AD3 PTJ1/FB_A4/FB_AD4 PTJ0/FB_ALE/FB_CS1
COP
LVD FLASH
128 KB
MCG
XOSC EXTAL
XTAL Port A: CLKOUT Port E Port D: RXD1 TXD1 Port D: RXD2 TXD2 Port E: RXD3 TXD3 Port C: SS1 SPSCK1 MOSI1 MISO1 Port H Port J Port G Port F
RAM
24 KB Port A: MII_TX_CLK MII_RX_CLK MII_TX_EN MII_TXD0 MII_TXD1 MII_TXD2 MII_TXD3 Port B: MII_TX_ER MII_RX_DV MII_RXD0 MII_RXD1 MII_RXD2 MII_RXD3 MII_RX_ER MII_CRS Port C: MII_COL MII_MDC MII_MDIO
RGPIO
Port D: RGPIO7 RGPIO6 RGPIO5 RGPIO4 RGPIO3 RGPIO2 RGPIO1 RGPIO0
RTC MTIM1
Port B, F or H* : MTIM1CLK Port B, F or H* : MTIM2CLK
MTIM2
MII
Port F: FB_D7-FB_D0 Port H: FB_A19-FB_A16 FB_A11-FB_A8 Port G: FB_CS1 FB_CS0 OE Mini-FlexBus FB_RW FB_A5-FB_A2 Port I: FB_A15-FB_A12 FB_A7-FB_A6 Port E: FB_A1-FB_A0
SCI1
SCI2
SCI3
FEC
VDD1 VSS1 VDD2 VSS2 VDD3 VSS3 VDD4 VSS4
SPI1
VREG
Port C: External Interrupt IRQ
Port D/E: SS2 SPI2 SPSCK2 MOSI2 MISO2
* TPMx and MTIMx external clocks each have the choice of being assigned to either TMRCLK1 or TMRCLK2.
Figure 1. MCF51CN128 Series Block Diagram
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 5
Port D
Pin Assignments
2
Pin Assignments
PTJ5/FB_A0/FB_AD0 PTJ4/FB_A1/FB_AD1 PTJ3/FB_A2/FB_AD2 PTJ2/FB_A3/FB_AD3 PTJ1/FB_A4/FB_AD4 PTJ0/FB_ALE/FB_CS1 PTE7/KBI2P7/FB_CS0/RXD3 PTE6/KBI2P6/FB_D0/TXD3 PTE5/KBI2P5/IRQ/TPM1CH2 PTE4/KBI2P4/CLKOUT/TPM1CH1 PTE3/KBI2P3/TPM1CH0 PTE2/KBI2P2/SS2/ADP0 PTE1/KBI2P1/MOSI2/ADP1 PTE0/KBI2P0/MISO2/ADP2 PTD7/RGPIO7/SPSCK2/ADP3 BKGD/MS/PTD6/RGPIO6 PTD5/RGPIO5/XTAL PTD4/RGPIO4/EXTAL VSS4 VDD4
This section describes the pin assignments for the available packages. See for pin availability by package pin-count.
VDD1 VSS1 PTA0/PHYCLK PTA1/MII_MDIO/SDA2 PTA2/MII_MDC/SCL2 PTA3/MII_RXD3/TXD3 PTA4/MII_RXD2/RXD3 PTA5/MII_RXD1/SPSCK2 PTA6/MII_RXD0/MISO2 PTA7/MII_RX_DV/MOSI2 PTB0/MII_RX_CLK/SS2 PTB1/MII_RX_ER/TMRCLK1 PTF0/RGPIO8/FB_A19/FB_AD19 PTF1/RGPIO9/FB_A18/FB_AD18 PTF2/RGPIO10/FB_A17/FB_AD17 PTF3/RGPIO11/FB_A16/FB_AD16 PTH0/FB_A15/FB_AD15 PTH1/FB_OE PTH2/FB_D7/TMRCLK1 PTH3/FB_D6/TPM2CH0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
80-Pin LQFP
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
PTG7/KBI1P7/FB_D1 PTG6/KBI1P6/FB_D2 PTG5/KBI1P5/FB_D3 PTG4/KBI1P4/FB_RW PTG3/KBI1P3/FB_A5/FB_AD5/SDA1 PTG2/KBI1P2/FB_A6/FB_AD6/SCL1 PTG1/KBI1P1/FB_A7/FB_AD7/SDA2 PTG0/KBI1P0/FB_A8/FB_AD8/SCL2 PTD3/RGPIO3/RXD2/ADP4 PTD2/RGPIO2/TXD2/ADP5 PTD1/RGPIO1/RXD1/ADP6 PTD0/RGPIO0/TXD1/ADP7 PTC7/SDA2/SPSCK1/ADP8 PTC6/SCL2/MISO1/ADP9 PTC5/MOSI1/ADP10 PTC4/IRQ/SS1/ADP11 VSSA VDDA VSS3 VDD3
Figure 2. Pin Assignments in 80-Pin LQFP Package
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 6 Freescale Semiconductor
VDD2 VSS2 PTB2/MII_TX_ER/SS1 PTB3/MII_TX_CLK/MOSI1 PTB4/MII_TX_EN/MISO1 PTB5/MII_TXD0/SPSCK1 PTB6/MII_TXD1/TPM2CH0 PTB7/MII_TXD2/TPM2CH1 PTC0/MII_TXD3/TPM2CH2 PTC1/MII_COL/SCL1 PTC2/MII_CRS/SDA1 RESET/PTC3 PTF4/RGPIO12/FB_D5/TMRCLK2 PTF5/RGPIO13/FB_D4/TPM2CH0 PTF6/RGPIO14/FB_A14/FB_AD14/TPM2CH1 PTF7/RGPIO15/FB_A13/FB_AD13/TPM2CH2 PTH4/FB_A12/FB_AD12 PTH5/FB_A11/FB_AD11 PTH6/FB_A10/FB_AD10/TPM2CH1 PTH7/FB_A9/FB_AD9/TPM2CH2
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Pin Assignments
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
PTJ1/FB_A4/FB_AD4 PTJ0/FB_ALE/FB_CS1 PTE7/KBI2P7/FB_CS0/RXD3 PTE6/KBI2P6/FB_D0/TXD3 PTE5/KBI2P5/IRQ/TPM1CH2 PTE4/KBI2P4/CLKOUT/TPM1CH1 PTE3/KBI2P3/TPM1CH0 PTE2/KBI2P2/SS2/ADP0 PTE1/KBI2P1/MOSI2/ADP1 PTE0/KBI2P0/MISO2/ADP2 PTD7/RGPIO7/SPSCK2/ADP3 BKGD/MS/PTD6/RGPIO6 PTD5/RGPIO5/XTAL PTD4/RGPIO4/EXTAL VSS4 VDD4
VDD1 VSS1 PTA0/PHYCLK PTA1/MII_MDIO/SDA2 PTA2/MII_MDC/SCL2 PTA3/MII_RXD3/TXD3 PTA4/MII_RXD2/RXD3 PTA5/MII_RXD1/SPSCK2 PTA6/MII_RXD0/MISO2 PTA7/MII_RX_DV/MOSI2 PTB0/MII_RX_CLK/SS2 PTB1/MII_RX_ER/TMRCLK1 PTF0/RGPIO8/FB_A19/FB_AD19 PTF1/RGPIO9/FB_A18/FB_AD18 PTF2/RGPIO10/FB_A17/FB_AD17 PTF3/RGPIO11/FB_A16/FB_AD16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
64-Pin LQFP
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
PTG3/KBI1P3/FB_A5/FB_AD5/SDA1 PTG2/KBI1P2/FB_A6/FB_AD6/SCL1 PTG1/KBI1P1/FB_A7/FB_AD7/SDA2 PTG0/KBI1P0/FB_A8/FB_AD8/SCL2 PTD3/RGPIO3/RXD2/ADP4 PTD2/RGPIO2/TXD2/ADP5 PTD1/RGPIO1/RXD1/ADP6 PTD0/RGPIO0/TXD1/ADP7 PTC7/SDA2/SPSCK1/ADP8 PTC6/SCL2/MISO1/ADP9 PTC5/MOSI1/ADP10 PTC4/IRQ/SS1/ADP11 VSSA VDDA VSS3 VDD3
Figure 3. Pin Assignments in 64-Pin LQFP Package
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 7
VDD2 VSS2 PTB2/MII_TX_ER/SS1 PTB3/MII_TX_CLK/MOSI1 PTB4/MII_TX_EN/MISO1 PTB5/MII_TXD0/SPSCK1 PTB6/MII_TXD1/TPM2CH0 PTB7/MII_TXD2/TPM2CH1 PTC0/MII_TXD3/TPM2CH2 PTC1/MII_COL/SCL1 PTC2/MII_CRS/SDA1 RESET/PTC3 PTF4/RGPIO12/FB_D5/TMRCLK2 PTF5/RGPIO13/FB_D4/TPM2CH0 PTF6/RGPIO14/FB_A14/FB_AD14/TPM2CH1 PTF7/RGPIO15/FB_A13/FB_AD13/TPM2CH2
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Pin Assignments
47 PTE4/KBI2P4/CLKOUT/TPM1CH1
48 PTE5/KBI2P5/IRQ/TPM1CH2
44 PTE1/KBI2P1/MOSI2/ADP1
PTD7/RGPIO7/SPSCK2/ADP3
PTE0/KBI2P0/MISO2/ADP2
45 PTE2/KBI2P2/SS2/ADP0
46 PTE3/KBI2P3/TPM1CH0
BKGD/MS/PTD6/RGPIO6
PTD4/RGPIO4/EXTAL
PTD5/RGPIO5/XTAL
43
42
41
40
39
38
VDD1 1 VSS1 PTA0/PHYCLK PTA1/MII_MDIO/SDA2 PTA2/MII_MDC/SCL2 PTA3/MII_RXD3/TXD3 PTA4/MII_RXD2/RXD3 PTA5/MII_RXD1/SPSCK2 PTA6/MII_RXD0/MISO2 PTA7/MII_RX_DV/MOSI2 PTB0/MII_RX_CLK/SS2 PTB1/MII_RX_ER/TMRCLK1 2 3 4 5 6 7 8 9 10 11 12 VDD2 13 VSS2 14 PTB2/MII_TX_ER/SS1 15 PTB3/MII_TX_CLK/MOSI1 16 PTB3/MII_TX_CLK/MOSI1 17 PTB5/MII_TXD0/SPSCK1 18 PTB6/MII_TXD1/TPM2CH0 19 PTB7/MII_TXD2/TPM2CH1 20 PTC0/MII_TXD3/TPM2CH2 21 PTC1/MII_COL/SCL1 22 PTC2/MII_CRS/SDA1 23 RESET/PTC3 24 48-Pin QFN
Figure 4. Pin Assignments in 48-Pin QFN Package
NOTE
There is no electrical connection to the flag for 48-pin QFN packages. Table 2. Package Pin Assignments
80-Pin 1 2 3 64-Pin 1 2 3 48-Pin 1 2 3 Default Function VDD1 VSS1 PTA0 Alt 1 — — PHYCLK Alt 2 — — — Alt 3 — — — Comment — — —
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 8 Freescale Semiconductor
37
VDD4 36 PTD3/RGPIO3/RXD2/ADP4 35 PTD2/RGPIO2/TXD2/ADP5 34 PTD1/RGPIO1/RXD1/ADP6 33 PTD0/RGPIO0/TXD1/ADP7 32 PTC7/SDA2/SPSCK1/ADP8 31 PTC6/SCL2/MISO1/ADP9 30 PTC5/MOSI1/ADP10 29 PTC4/IRQ/SS1/ADP11 28 VSSA 27 VDDA 26 VSS3 25 VDD3
VSS4
Pin Assignments
Table 2. Package Pin Assignments (continued)
80-Pin 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 64-Pin 4 5 6 7 8 9 10 11 12 13 14 15 16 — — — — 17 18 19 20 21 22 23 24 25 26 27 48-Pin 4 5 6 7 8 9 10 11 12 — — — — — — — — 13 14 15 16 17 18 19 20 21 22 23 Default Function PTA1 PTA2 PTA3 PTA4 PTA5 PTA6 PTA7 PTB0 PTB1 PTF0/RGPIO8 PTF1/RGPIO9 PTF2/RGPIO10 PTF3/RGPIO11 PTH0 PTH1 PTH2 PTH3 VDD2 VSS2 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7 PTC0 PTC1 PTC2 Alt 1 MII_MDIO MII_MDC MII_RXD3 MII_RXD2 MII_RXD1 MII_RXD0 MII_RX_DV MII_RX_CLK MII_RX_ER — — — — — — — — — — MII_TX_ER MII_TX_CLK MII_TX_EN MII_TXD0 MII_TXD1 MII_TXD2 MII_TXD3 MII_COL MII_CRS Alt 2 — — TXD3 RXD3 SPSCK2 MISO2 MOSI2 SS2 — FB_A19/FB_AD19 FB_A18/FB_AD18 FB_A17/FB_AD17 FB_A16/FB_AD16 FB_A15/FB_AD15 FB_OE FB_D7 FB_D6 — — SS1 MOSI1 MISO1 SPSCK1 — — — — — Alt 3 SDA2 SCL2 — — — — — — TMRCLK1 — — — — — — TMRCLK1 TPM2CH0 — — — — — — TPM2CH0 TPM2CH1 TPM2CH2 SCL1 SDA1 — — — — — — — — — — — — — — — Comment — — — — — — — — — RGPIO_ENB selects between standard GPIO and RGPIO
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 9
Pin Assignments
Table 2. Package Pin Assignments (continued)
80-Pin 32 64-Pin 28 48-Pin 24 Default Function RESET Alt 1 PTC3 Alt 2 — Alt 3 — Comment This pin is a bi-directional open drain pin and has an internal pullup. There is no clamp diode to VDD. DSE and SRE port controls for this bit have no effect. RGPIO_ENB selects between standard GPIO and RGPIO
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
29 30 31 32 — — — — 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 — — —
— — — — — — — — 25 26 27 28 29 30 31 32 33 34 35 36 — — — — — — —
PTF4/RGPIO12 PTF5/RGPIO13 PTF6/RGPIO14 PTF7/RGPIO15 PTH4 PTH5 PTH6 PTH7 VDD3 VSS3 VDDA VSSA PTC4 PTC5 PTC6 PTC7 PTD0/RGPIO0 PTD1/RGPIO1 PTD2/RGPIO2 PTD3/RGPIO3 PTG0 PTG1 PTG2 PTG3 PTG4 PTG5 PTG6
— — — — — — — — — — — — IRQ — SCL2 SDA2 — — — — KBI1P0 KBI1P1 KBI1P2 KBI1P3 KBI1P4 KBI1P5 KBI1P6
FB_D5 FB_D4 FB_A14/FB_AD14 FB_A13/FB_AD13 FB_A12/FB_AD12 FB_A11/FB_AD11 FB_A10/FB_AD10 FB_A9/FB_AD9 — — — — SS1 MOSI1 MISO1 SPSCK1 TXD1 RXD1 TXD2 RXD2 FB_A8/FB_AD8 FB_A7/FB_AD7 FB_A6/FB_AD6 FB_A5/FB_AD5 FB_RW FB_D3 FB_D2
TMRCLK2 TPM2CH0 TPM2CH1 TPM2CH2 — — TPM2CH1 TPM2CH2 — — — — ADP11 ADP10 ADP9 ADP8 ADP7 ADP6 ADP5 ADP4 SCL2 SDA2 SCL1 SDA1 — — —
— — — — — — — — — — — — RGPIO_ENB selects between standard GPIO and RGPIO
— — — — — — —
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 10 Freescale Semiconductor
Electrical Characteristics
Table 2. Package Pin Assignments (continued)
80-Pin 60 61 62 63 64 65 64-Pin — 49 50 51 52 53 48-Pin — 37 38 39 40 41 Default Function PTG7 VDD4 VSS4 PTD4/RGPIO4 PTD5/RGPIO5 BKGD/MS Alt 1 KBI1P7 — — — — PTD6/RGPIO6 Alt 2 FB_D1 — — — — — Alt 3 — — — EXTAL XTAL — Comment — — — RGPIO_ENB selects between standard GPIO and RGPIO This pin has an internal pullup. PTD6/RGPIO6 can only be programmed as an output.1 RGPIO_ENB selects between standard GPIO and RGPIO — — — — — — — — — — — — — —
66
54
42
PTD7RGPIO7
—
SPSCK2
ADP3
67 68 69 70 71 72 73 74 75 76 77 78 79 80
1
55 56 57 58 59 60 61 62 63 64 — — — —
43 44 45 46 47 48 — — — — — — — —
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7 PTJ0 PTJ1 PTJ2 PTJ3 PTJ4 PTJ5
KBI2P0 KBI2P1 KBI2P2 KBI2P3 KBI2P4 KBI2P5 KBI2P6 KBI2P7 FB_ALE — — — — —
MISO2 MOSI2 SS2 — CLKOUT IRQ FB_D0 FB_CS0 FB_CS1 FB_A4/FB_AD4 FB_A3/FB_AD3 FB_A2/FB_AD2 FB_A1/FB_AD1 FB_A0/FB_AD0
ADP2 ADP1 ADP0 TPM1CH0 TPM1CH1 TPM1CH2 TXD3 RXD3 — — — — — —
RGPIO_ENB selects between standard GPIO and RGPIO. When PTD6 is set as RGPIO output, and "1" is driven to PTD6 via RGPIO function, a read of register RGPIODATA6 always returns a "0" because V1 RGPIO design looks for IO enable when the return value of RGPIO function reads data. As PTD6 is set to RGPIO output only, it returns "0" always to RGPIODATA6, athough PTD6 pin is driven to high.
3
3.1
Electrical Characteristics
Introduction
This section contains electrical and timing specifications for the MCF51CN128 series of microcontrollers available at the time of publication.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 11
Electrical Characteristics
3.2
Parameter Classification
Table 3. Parameter Classifications P C T D
These parameters are guaranteed during production testing on each individual device. These parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. These parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. These parameters are derived mainly from simulations.
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:
NOTE
The classification is shown in the column labeled “C” in the parameter tables where appropriate.
3.3
Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pull-up resistor associated with the pin is enabled. Table 4. Absolute Maximum Ratings
Rating Supply voltage Maximum current into VDD Digital input voltage Instantaneous maximum current Single pin limit (applies to all port pins)1, 2, 3 Storage temperature range
1
Symbol VDD IDD VIn ID Tstg
Value –0.3 to +3.8 120 –0.3 to VDD + 0.3 ± 25 –55 to 150
Unit V mA V mA °C
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2 All functional non-supply pins are internally clamped to V SS and VDD. 3 Power supply must maintain regulation within operating V DD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 12 Freescale Semiconductor
Electrical Characteristics
3.4
Thermal Characteristics
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 5. Thermal Characteristics
Rating Operating temperature range (packaged) Maximum junction temperature Thermal resistance Single-layer board 48-pin QFN 64-pin LQFP 80-pin LQFP Thermal resistance Four-layer board 48-pin QFN 64-pin LQFP 80-pin LQFP
1
Symbol TA TJM
Value TL to TH (–40 to 85 or 0 to 70)1 95
Unit °C °C
81 θJA 69 60 °C/W
26 θJA 50 47 °C/W
Depending on device.
The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined For most applications, PI/O 2.7 V VDD > 1.8 V VDD > 2.7 V VDD >1.8 V — VIn = VDD or VSS VIn = VDD or VSS —
mA
6
P Input high voltage C P Input low voltage
V 0.35 x VDD 0.30 x VDD — 1 1 52.5 0.2 5 8 1.79 — 2.45 2.49 mV μA μA kΩ mA mA pF V μs V
all digital inputs VIL all digital inputs all input only pins (Per pin) all input/output (per pin) all digital inputs, when enabled Single pin limit Total MCU limit, includes sum of all stressed pins IIC CIn VPOR tPOR VLVDH9 Vhys |IIn| |IOZ| RP
7 C 8 9 10 11 C Input hysteresis P P P Input leakage current Hi-Z (off-state) leakage current Pull resistors
12
DC injection 4, 5, 6 D current
VIN < VSS, VIN > VDD
–5 — 0.9 10
13 14 15 16
C Input Capacitance, all pins C POR re-arm voltage7 D POR re-arm time P Low-voltage detection threshold — high range8
VDD falling VDD rising
2.15 2.24
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 15
Electrical Characteristics
Table 8. DC Characteristics (continued)
Num C 17 18 19 20
1 2
Characteristic Low-voltage detection threshold — low range8 Low-voltage warning threshold — high range8 Low-voltage warning threshold — low range8
Symbol VLVDL VLVWH VLVWL VBG
Condition VDD falling VDD rising VDD falling VDD rising VDD falling VDD rising —
Min 1.70 1.80 2.50 2.50 2.25 2.29 1.15
Typ1 1.83 1.89 2.62 2.62 2.32 2.39 1.17
Max 1.95 2.00 2.70 2.70 2.45 2.49 1.18
Unit V V V V
P P P
P Bandgap Voltage Reference10
Typical values are measured at 25 °C. Characterized, not tested As an exception, the Fast Ethernet Controller (FEC) is only operational above the operating voltage of 3 V. 3 As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL. 4 All functional non-supply pins are internally clamped to VSS and VDD. 5 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. 6 Power supply must maintain regulation within operating V DD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). 7 Maximum is highest voltage that POR is guaranteed. 8 Low voltage detection and warning limits measured at 1 MHz bus frequency. 9 Run at 1 MHz bus frequency 10 Factory trimmed at V DD = 3.3 V, Temp = 25 °C
PULL-DOWN RESISTANCE (kΩ) 40 PULL-UP RESISTOR (kΩ) 35 30 25 20 1.8 PULL-UP RESISTOR TYPICALS 85°C 25°C –40°C PULL-DOWN RESISTOR TYPICALS 85°C 25°C –40°C
40 35 30 25 20 1.8
2
2.2
2.4
2.6 2.8 VDD (V)
3
3.2
3.4
3.6
2.3
2.8 VDD (V)
3.3
3.6
Figure 5. Pull-up and Pull-down Typical Resistor Values
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 16 Freescale Semiconductor
Electrical Characteristics
TYPICAL VOL VS IOL AT VDD = 3.3 V
85°C 25°C –40°C
1.2 1 0.8 VOL (V)
0.2 0.15 VOL (V) 0.1 0.05 0
TYPICAL VOL VS VDD
0.6 0.4 0.2 0 0 5 10 IOL (mA) 15 20
85°C, IOL = 2 mA 25°C, IOL = 2 mA –40°C, IOL = 2 mA
1
2
VDD (V)
3
4
Figure 6. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0)
TYPICAL VOL VS IOL AT VDD = 3.3 V
85°C 25°C –40°C
1 0.8 VOL (V) 0.6 0.4 0.2 0 0
TYPICAL VOL VS VDD 0.4 0.3 VOL (V) 0.2 0.1 0 IOL = 6 mA IOL = 3 mA 1 2 VDD (V) 3 4
85°C 25°C –40°C
IOL = 10 mA
10 IOL (mA)
20
30
Figure 7. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)
TYPICAL VDD – VOH VS IOH AT VDD = 3.3 V VDD – VOH (V)
85°C 25°C –40°C
1.2 VDD – VOH (V) 1 0.8 0.6 0.4 0.2 0 0
0.25 0.2 0.15 0.1 0.05 0
TYPICAL VDD – VOH VS VDD AT SPEC IOH
85°C, IOH = 2 mA 25°C, IOH = 2 mA –40°C, IOH = 2 mA
–5
–10 IOH (mA))
–15
–20
1
2
VDD (V)
3
4
Figure 8. Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0)
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 17
Electrical Characteristics
TYPICAL VDD – VOH VS VDD AT SPEC IOH
85°C 25° C –40°C
0.4
0.8 0.6 0.4 0.2 0 0 –5 –10 –15 –20 IOH (mA) –25 –30 TYPICAL VDD – VOH VS IOH AT VDD = 3.3 V
VDD – VOH (V)
85°C 25° C –40°C
VDD – VOH (V)
0.3 0.2 0.1 0 1
IOH = –10 mA IOH = –6 mA IOH = –3 mA 2 VDD (V) 3 4
Figure 9. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1)
3.7
Supply Current Characteristics
Table 9. Supply Current Characteristics
This section includes information about power supply current in various operating modes.
Num
C P T
Parameter Run supply current FEI mode, all modules on
Symbol
Bus Freq 25 MHz 20 MHz
VDD (V)
Typ1 60 49
Max 75 —
Unit
Temp (°C)
1 T T C T 2 T T T 3 T Run supply current LPRS=1, all modules off, running from Flash Wait mode supply current FEI mode, all modules off Run supply current LPRS=0, all modules off Run supply current FEI mode, all modules off
RIDD
3.3 8 MHz 1 MHz 25 MHz 20 MHz 21 4.6 44 36 3.3 8 MHz 1 MHz 16 kHz FBILP 15.5 3.9 203 3.3 16 kHz FBELP 16 kHz FBELP 25 MHz 20 MHz 3.3 154 — — — — — — 47 —
mA
–40 to 85 °C
RIDD
mA
–40 to 85 °C
RIDD
μA
–40 to 85 °C
4
T C T
RIDD
50 11 4.57
— 13.7 — — — 11
μA
–40 to 85 °C
5 T T C P 6 C C Stop2 mode supply current
WIDD
3.3 8 MHz 1 MHz 3.3 2 0.73 0.35 45
μA
–-40 to 85 °C
0 to 70 °C μA –40 to 85 °C 0 to 70 °C –40 to 85 °C
S2IDD
n/a 12 1.8 0.35 16.2
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 18 Freescale Semiconductor
Electrical Characteristics
Table 9. Supply Current Characteristics (continued)
Num C C P 7 C C 8 9 10 11 12 13 14
1
Parameter Stop3 mode supply current No clocks active
Symbol
Bus Freq
VDD (V) 3.3
Typ1
Max 14
Unit
Temp (°C) 0 to 70 °C
0.52 55 μA 15
–40 to 85 °C 0 to 70 °C –40 to 85 °C
S3IDD
n/a 1.8 0.52 32.4 500 70 12 3.3 15 200 1 100 — — — — — — —
T T T T T T T Low power mode adders:
EREFSTEN=1 IREFSTEN=1 TPM PWM SCI, SPI, or IIC RTC using LPO RTC using ICSERCLK LVD —
32 kHz 32 kHz 100 Hz 300 bps 1 kHz 32 kHz n/a
nA μA μA μA nA μA μA
–40 to 85 °C –40 to 85 °C –40 to 85 °C –40 to 85 °C –40 to 85 °C –40 to 85 °C –40 to 85 °C
Data in Typical column was characterized at 3.3 V, 25 °C or is typical recommended value.
Figure 10. Typical Run IDD for FBE and FEI, IDD vs. VDD (ADC off, All Other Modules Enabled)
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 19
Electrical Characteristics
3.8
External Oscillator (XOSC) Characteristics
Table 10. XOSC and ICS Specifications (Temperature Range = –40 to 85 °C Ambient)
Reference Figure 11 and Figure 12 for crystal or resonator circuits.
Num
C
Characteristic
Symbol flo fhi fhi C1,C2
Min
Typ1
Max
Unit
1
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) C High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0) D Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings
32 1 1
— — —
38.4 25 8
kHz MHz MHz
2
See Note2 See Note3
3
Feedback resistor Low range, low power (RANGE=0, HGO=0)2 D Low range, High Gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X) Series resistor — Low range, low power (RANGE = 0, HGO = 0)2 Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) D High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz Crystal start-up time 4 Low range, low power Low range, high power C High range, low power High range, high power D Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) External with FLL / PLL enabled (FEE / PEE) External with bypass (FBE.FBELP,PBE, PBELP)
RF
— — — — — — — — —
— 10 1 — 0 100 0 0 0 200 400 5 15 — —
— — — — — — 0 10 20 — — — — 50.33 50.33
MΩ
Ω
4
RS
ΚΩ
t CSTL t CSTH
5
— — — — 0.03125 0
ms
6
1 2
fextal
MHz MHz
Data in Typical column was characterized at 3.3 V, 25 °C or is typical recommended value. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0. 3 See crystal or resonator manufacturer’s recommendation. 4 Proper PC board layout procedures must be followed to achieve specifications.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 20 Freescale Semiconductor
Electrical Characteristics
XOSC EXTAL XTAL RS
RF
C1
Crystal or Resonator C2
Figure 11. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain
XOSC EXTAL XTAL
Crystal or Resonator
Figure 12. Typical Crystal or Resonator Circuit: Low Range/Low Gain
3.9
Num C
Multipurpose Clock Generator (MCG) Specifications
Table 11. MCG Frequency Specifications (Temperature Range = –40 to 125 °C Ambient)
Rating Symbol fint_ft Min Typical Max Unit
1
Internal reference frequency - factory P trimmed at VDD = and temperature = 25 °C P P Average internal reference frequency untrimmed 1 Average internal reference frequency user trimmed
—
32.768
—
kHz
2 3 4
fint_ut fint_t tirefst
25 31.25 —
— — 60
41.66 39.06 100
kHz kHz us
D Internal reference startup time DCO output frequency range untrimmed 1 — value provided for reference: fdco_ut = 1024 X fint_ut P DCO output frequency range - trimmed Resolution of trimmed DCO output C frequency at fixed voltage and temperature (using FTRIM)
5
fdco_ut
25.6
33.48
42.66
MHz
6 7
fdco_t Δfdco_res_t
32 —
— ± 0.1
40 ± 0.2
MHz %fdco
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 21
Electrical Characteristics
Table 11. MCG Frequency Specifications (continued)(Temperature Range = –40 to 125 °C Ambient)
Num C 8 Rating Symbol Δfdco_res_t Min — Typical ± 0.2 Max ± 0.4 Unit %fdco
Resolution of trimmed DCO output C frequency at fixed voltage and temperature (not using FTRIM) Total deviation of trimmed DCO output P frequency over voltage and temperature Total deviation of trimmed DCO output C frequency over fixed voltage and temperature range of 0 - 70 °C C FLL acquisition time 2 D PLL acquisition time 3 C Long term Jitter of DCO output clock (averaged over 2ms interval) 4
9
Δfdco_t
—
+ 0.5 -1.0
±2
%fdco
10 11 12 13 14 15 16 17
Δfdco_t tfll_acquire tpll_acquire CJitter fvco Dlock Dunl tfll_lock
— — — — 7.0 ± 1.49 ± 4.47 —
± 0.5 — — 0.02 — — — —
±1 1 1 0.2 55.0 ± 2.98 ± 5.97 tfll_acquire+ 1075(1/fint_t
)
%fdco ms ms %fdco MHz % % s
D VCO operating frequency D Lock entry frequency tolerance5 D Lock exit frequency tolerance6 D Lock time - FLL
18
D Lock time - PLL Loss of external clock minimum D frequency - RANGE = 0
tpll_lock
—
—
tpll_acquire+ 1075(1/fpll_r
ef)
s
19
1 2
floc_low
(3/5) x fint
—
—
kHz
TRIM register at default value (0x80) and FTRIM control bit at default value (0x0). This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 3 This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 4 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. 5 Below D lock minimum, the MCG is guaranteed to enter lock. Above Dlock maximum, the MCG does not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
6
Below Dunl minimum, the MCG does not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 22 Freescale Semiconductor
Electrical Characteristics
3.10
Mini-FlexBus Timing Specifications
A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 25.1666 MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used. All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-FlexBus output clock (MB_CLK). All other timing relationships can be derived from these values. Table 12. Mini-FlexBus AC Timing Specifications
Num — MB1 MB2 MB3 MB4 MB5
1 2
C — D P D P D
Characteristic Frequency of Operation Clock Period Output Valid Output Hold Input Setup Input Hold
Min — 39.73 — 1.0 22 10
Max 25.1666 — 20 — — —
Unit MHz ns ns ns ns ns
Notes — —
1 1 2 2
Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE. Specification is valid for all MB_D[7:0].
S0
S1
S2
S3
S0
FB_CLK
MB1 MB3 ADDR[19:0] MB2 MB5 DATA[7:0] MB4
FB_A[19:16] 8-bit Non-Mux’d Bus FB_D[7:0]
ADDR[31:24]
FB_AD[19:16] 16-bit Mux’d Bus FB_AD[15:0]
ADDR[15:0]
ADDR[19:16]
DATA[15:0]
FB_R/W FB_ALE FB_CSn, FB_OE
Figure 13. Mini-FlexBus Read Timing
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 23
Electrical Characteristics
S0
S1
S2
S3
S0
FB_CLK
MB1 MB3 ADDR[19:8] MB2
FB_AD[19:8] 8-bit Non-Mux’d Bus FB_AD[7:0] FB_AD[19:16] 16-bit Mux’d Bus FB_AD[15:0] FB_R/W FB_ALE FB_CSn FB_OE
ADDR[15:0]
ADDR[7:0]
DATA[7:0] ADDR[19:16]
DATA[15:0]
Figure 14. Mini-FlexBus Write Timing
3.11
Fast Ethernet Timing Specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.
3.11.1
Receive Signal Timing Specifications
Table 13. Receive Signal Timing
MII Mode
The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.
Num — E1 E2 E3 E4
C — P D D D RXCLK frequency
Characteristic Min — 5 5 35% 35% Max 25 — — 65% 65%
Unit MHz ns ns RXCLK period RXCLK period
RXD[3:0], RXDV, RXER to RXCLK setup RXCLK to RXD[3:0], RXDV, RXER hold RXCLK pulse width high RXCLK pulse width low
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 24 Freescale Semiconductor
Electrical Characteristics
RXCLK (Input)
E4
E3
E1
E2
RXD[n:0] RXDV, RXER
Valid Data
Figure 15. MII Receive Signal Timing Diagram
3.11.2
Transmit Signal Timing Specifications
Table 14. Transmit Signal Timing
MII Mode
Num — E5 E6 E7 E8
C — D P D D TXCLK frequency
Characteristic Min — 5 — 35% 35% Max 25 — 25 65% 65%
Unit MHz ns ns tTXCLK tTXCLK
TXCLK to TXD[3:0], TXEN, TXER invalid TXCLK to TXD[3:0], TXEN, TXER valid TXCLK pulse width high TXCLK pulse width low
TXCLK (Input)
E6
E8
E7 E5
TXD[n:0] TXEN, TXER
Valid Data
Figure 16. MII Transmit Signal Timing Diagram
3.11.3
Num E9
Asynchronous Input Signal Timing Specifications
Table 15. MII Transmit Signal Timing
C D Characteristic CRS, COL minimum pulse width Min 1.5 Max — Unit TXCLK period
CRS, COL
E9
Figure 17. MII Async Inputs Timing Diagram
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 25
Electrical Characteristics
3.11.4
Num E10 E11 E12 E13 E14 E15
MII Serial Management Timing Specifications
Table 16. MII Serial Management Channel Signal Timing
C D D D D D D MDC cycle time MDC pulse width MDC to MDIO output valid MDC to MDIO output invalid MDIO input to MDC setup MDIO input to MDC hold
E10 E11
Characteristic
Symbol tMDC — — — — —
Min 400 40 — 30 5 15
Max — 60 375 — — —
Unit ns % tMDC ns ns ns ns
MDC (Output)
E11 E12 E13
MDIO (Output)
Valid Data
E14
E15
MDIO (Input)
Valid Data
Figure 18. MII Serial Management Channel TIming Diagram
3.12
AC Characteristics
This section describes timing characteristics for each peripheral system.
3.12.1
Num C
Control Timing
Table 17. Control Timing
Rating Bus frequency (tcyc = 1/fBus) VDD > 2.7 V 2.7 V > VDD > 2.1 V 2.1 V > VDD > 1.8 V Internal low power oscillator period External reset pulse Reset low drive BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes width2 Symbol Min dc dc dc 700 100 34 x tcyc 500 Typ1 — — — — — — — Max 50.33 40 20 1300 — — — Unit
1
D
fBus
MHz
2 3 4 5
D D D D
tLPO textrst trstdrv tMSSU
μs ns ns ns
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 26 Freescale Semiconductor
Electrical Characteristics
Table 17. Control Timing (continued)
Num 6 C D Rating BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes 3 IRQ pulse width Asynchronous path2 Synchronous path4 Keyboard interrupt pulse width Asynchronous path2 Synchronous path4 Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF)5 Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) 9 C Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)
10
1 2
Symbol tMSH
Min 100
Typ1 —
Max —
Unit μs
7
D
tILIH, tIHIL
100 2 x tcyc 100 2 x tcyc
— — — —
— — — —
ns
8
D
tILIH, tIHIL
ns
tRise, tFall
— —
16 23
— —
ns
tRise, tFall
— — —
5 9 6
— — 10
ns
C
Stop3 recovery time, from interrupt event to vector fetch
tSTPREC
μs
Typical values are based on characterization data at VDD = 3.3 V, 25 °C unless otherwise stated. This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t MSH after VDD rises above VLVD. 4 This is the minimum assertion time in which the interrupt may be recognized. The correct protocol is to assert the interrupt request until it is explicitly negated by the interrupt service routine. 5 Timing is shown with respect to 20% V DD and 80% VDD levels. Temperature range –40 °C to 85 °C.
textrst RESET PIN
Figure 19. Reset Timing
tIHIL KBIPx
IRQ/KBIPx tILIH
Figure 20. IRQ/KBIPx Timing
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 27
Electrical Characteristics
3.12.2
TPM Module Timing
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 18. TPM Input Timing
No. 1 2 3 4 5 C D D D D D Function External clock frequency External clock period External clock high time External clock low time Input capture pulse width Symbol fTCLK tTCLK tclkh tclkl tICPW
tTCLK tclkh
Min 0 4 1.5 1.5 1.5
Max fBus/4 — — — —
Unit Hz tcyc tcyc tcyc tcyc
TCLK tclkl
Figure 21. Timer External Clock
tICPW TPMCHn
TPMCHn tICPW
Figure 22. Timer Input Capture Pulse
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 28 Freescale Semiconductor
Electrical Characteristics
3.12.3
SPI Timing
Table 19. SPI Timing
Table 19 and Figure 23 through Figure 26 describe the timing requirements for the SPI system.
No. —
C D
Function Operating frequency Master Slave SPSCK period Master Slave Enable lead time Master Slave Enable lag time Master Slave Clock (SPSCK) high or low time Master Slave Data setup time (inputs) Master Slave Data hold time (inputs) Master Slave Slave access time Slave MISO disable time Data valid (after SPSCK edge) Master Slave Data hold time (outputs) Master Slave Rise time Input Output Fall time Input Output
Symbol fop
Min fBus/2048 0
Max fBus/2 fBus/4 2048 — — — — — 1024 tcyc — — — — — 1 1 25 25 — — tcyc – 25 25 tcyc – 25 25
Unit Hz Hz tcyc tcyc tSPSCK tcyc tSPSCK tcyc ns ns ns ns ns ns tcyc tcyc ns ns ns ns ns ns ns ns
tSPSCK 2 4 tLead 1/2 1 1/2 1 tcyc – 30 tcyc – 30 tSU 15 15 tHI 0 25 ta tdis tv — — tHO 0 0 tRI tRO tFI tFO — — — — — —
1
D
2
D
tLag
3
D
tWSPSCK
4
D
5
D
6 7 8 9
D D D D
10
D
11
D
12
D
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 29
Electrical Characteristics
SS1 (OUTPUT) 2 SPSCK (CPOL = 0) (OUTPUT) SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 9 MOSI (OUTPUT) MSB OUT2 6 MSB IN2 BIT 6 . . . 1 9 BIT 6 . . . 1 LSB OUT LSB IN
10
1 4 4
11
3
12
NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 23. SPI Master Timing (CPHA = 0)
SS(1) (OUTPUT) 1 2 SPSCK (CPOL = 0) (OUTPUT) 4 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 9 MOSI (OUTPUT) PORT DATA MASTER MSB OUT(2) 6 MSB IN(2) BIT 6 . . . 1
10 12 11
3
4
11
12
LSB IN
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 24. SPI Master Timing (CPHA =1)
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 30 Freescale Semiconductor
Electrical Characteristics
SS (INPUT) 1 SPSCK (CPOL = 0) (INPUT) 2 SPSCK (CPOL = 1) (INPUT) 7 MISO (OUTPUT) SLAVE 5 MOSI (INPUT)
NOTE:
12
11
3
4
4
11
12
8 9 MSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN BIT 6 . . . 1
10 10
SLAVE LSB OUT
SEE NOTE
1. Not defined but normally MSB of character just received
Figure 25. SPI Slave Timing (CPHA = 0)
SS (INPUT) 1 2 SPSCK (CPOL = 0) (INPUT) 4 SPSCK (CPOL = 1) (INPUT) 9 MISO (OUTPUT) SEE NOTE 7 MOSI (INPUT) SLAVE 5 MSB IN MSB OUT 6 BIT 6 . . . 1 LSB IN 4
11 12 12
3
11
10
8 SLAVE LSB OUT
BIT 6 . . . 1
NOTE: 1. Not defined but normally LSB of character just received
Figure 26. SPI Slave Timing (CPHA = 1)
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 31
Electrical Characteristics
3.12.4
C D D D D D C C
ADC Characteristics
Table 20. 12-bit ADC Operating Conditions
Conditions Absolute Delta to VDD (VDD-VDDAD)
2
Characteristic Supply voltage
Symb VDDAD ΔVDDAD ΔVSSAD VREFH VREFL VADIN CADIN RADIN
Min 1.8 -100 -100 1.8 VSSAD VREFL — — — — — — —
Typ1 — 0 0 VDDAD VSSAD — 4.5 5 — — — — — — —
Max 3.6 +100 +100 VDDAD VSSAD VREFH 5.5 7 2 5
Unit V mV mV V V V pF kΩ
Comment
Ground voltage Ref Voltage High Ref Voltage Low Input Voltage Input Capacitance Input Resistance Analog Source Resistance
Delta to VSS (VSS-VSSAD)2
12 bit mode fADCK > 4MHz fADCK < 4MHz 10 bit mode fADCK > 4MHz fADCK < 4MHz 8 bit mode (all valid fADCK)
RAS
External to MCU
C
kΩ 5 10 10 8.0 MHz 0.4 4.0
D
1
ADC Conversion High Speed (ADLPC=0) Clock Freq. Low Power (ADLPC=1)
fADCK
0.4
Typical values assume VDDAD = 3.3 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 DC potential difference.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 32 Freescale Semiconductor
Electrical Characteristics
SIMPLIFIED INPUT PIN EQUIVALENT ZADIN CIRCUIT ZAS RAS VADIN VAS Pad leakage due to input protection SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN
ADC SAR ENGINE
+ –
+ –
CAS
RADIN INPUT PIN
RADIN
INPUT PIN
RADIN CADIN
INPUT PIN
Figure 27. ADC Input Impedance Equivalency Diagram Table 21. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD)
Characteristic Supply Current ADLPC=1 ADLSMP=1 ADCO=1 Supply Current ADLPC=1 ADLSMP=0 ADCO=1 Supply Current ADLPC=0 ADLSMP=1 ADCO=1 Supply Current ADLPC=0 ADLSMP=0 ADCO=1 Supply Current ADC Asynchronous Clock Source Stop, Reset, Module Off High Speed (ADLPC=0) Low Power (ADLPC=1) Conditions C T Symb IDDAD Min — Typ1 120 Max — μA Unit Comment
T
IDDAD
—
202
— μA
T
IDDAD
—
288
— μA
T
IDDAD
—
0.532
1 mA
D P C
IDDAD fADACK
— 2 1.25
0.007 3.3 2
0.8 5 3.3
μA tADACK = 1/fADACK MHz
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 33
Electrical Characteristics
Table 21. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued)
Characteristic Conditions C P C P C T P T T P T T P T T P T T P T D EQ EFS EZS INL DNL ETUE tADS Symb tADC Min — — — — — — — — — — — — — — — — — — — — — — D EIL — — — D m — — D VTEMP25 — Typ1 20 40 3.5 23.5 ±3.0 ±1 ±0.5 ±1.75 ±0.5 ±0.3 ±1.5 ±0.5 ±0.3 ±1.5 ±0.5 ±0.5 ±1.0 ±0.5 ±0.5 -1 to 0 — — ±2 ±0.2 ±0.1 1.646 1.769 701.2 Max — — — — — ±2.5 ±1.0 — ±1.0 ±0.5 — ±1.0 ±0.5 — ±1.5 ±0.5 — ±1 ±0.5 — ±0.5 ±0.5 — ±4 ±1.2 — — — mV mV/°C LSB2 Pad leakage4 * RAS{test=pad leakage
test}
Unit ADCK cycles ADCK cycles LSB2
Comment See the ADC chapter in the MCF51CN128 Reference Manual for conversion time variances Includes Quantization
Conversion Time Short Sample (ADLSMP=0) (Including Long Sample (ADLSMP=1) sample time) Sample Time Short Sample (ADLSMP=0) Long Sample (ADLSMP=1) Total Unadjusted 12 bit mode Error 10 bit mode 8 bit mode Differential Non-Linearity 12 bit mode 10 bit mode3 8 bit mode3 Integral Non-Linearity 12 bit mode 10 bit mode 8 bit mode Zero-Scale Error 12 bit mode 10 bit mode 8 bit mode Full-Scale Error 12 bit mode 10 bit mode 8 bit mode Quantization Error 12 bit mode 10 bit mode 8 bit mode Input Leakage Error 12 bit mode 10 bit mode 8 bit mode Temp Sensor Slope Temp Sensor Voltage
1
LSB2
LSB2
LSB2
VADIN = VSSAD
LSB2
VADIN = VDDAD
LSB2
-40°C to 25°C 25°C to 85°C 25°C
Typical values assume VDDAD = 3.3 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 1 LSB = (V N REFH - VREFL)/2 3 Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes 4 Based on input pad leakage current. Refer to pad electricals.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 34 Freescale Semiconductor
Electrical Characteristics
3.12.5
Flash Specifications
This section provides details about program/erase times and program-erase endurance for the flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Memory section of the MCF51CN128 Reference Manual. Table 22. Flash Characteristics
C D D D D P P P P D D C C
1 2
Characteristic Supply voltage for program/erase -40 °C to 85 °C Supply voltage for read operation Internal FCLK frequency1
Symbol Vprog/erase VRead fFCLK tFcyc tprog tBurst tPage tMass RIDDBP RIDDPE mode)(2)
Min 1.8 1.8 150 5
Typical — — — — 9 4 4000 20,000
Max 3.6 3.6 200 6.67
Unit V V kHz μs tFcyc tFcyc tFcyc tFcyc
Internal FCLK period (1/FCLK) Longword program time (random location)(2) Longword program time (burst Page erase Mass erase time2 time(2)
Longword program current3 Page erase current
3
— — 10,000 —
9.7 7.6 — 100,000 100
— — — — —
mA mA cycles years
Program/erase TL to TH = –40°C to + 85°C T = 25°C Data retention5 tD_ret
endurance4
15
The frequency of this clock is controlled by a software setting. These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. 3 The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures with VDD = 3.3 V, bus frequency = 8.0 MHz. 4 Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory. 5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.
3.13
EMC Performance
Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 35
Ordering Information
3.13.1
Radiated Emissions
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.
4
Ordering Information
Table 23. Ordering Information
Freescale Part Number1 Flash MCF51CN128CLK MCF51CN128CLH MCF51CN128CGT 128K 128K 128K Memory RAM 24K 24K 24K Temperature Range (°C) –40 to +85 –40 to +85 –40 to +85 Package2 80-pin LQFP 64-pin LQFP 48-pin QFN
This section contains ordering information for MCF51CN128 devices.
1
See the MCF51CN128 Reference Manual (document MCF51CN128RM), for a complete description of modules included on each device. 2 See Table 24 for package information.
5
80 64 48
Package Information
Table 24. Package Descriptions
Pin Count Package Type Low Quad Flat Package Low Quad Flat Package Quad Flat No-Leads Abbreviation LQFP LQFP QFN Designator LK LH GT Case No. 917A 840F 1314 Document No. 98ASS23237W 98ASS23234W 98ARH99048A
6
Mechanical Outline Drawings
The following pages are mechanical drawings for the packages described in Table 24. For the latest available drawings, visit freescale web site (http://www.freescale.com) and enter the package’s document number into the keyword search box.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 36 Freescale Semiconductor
Mechanical Outline Drawings
6.1
80-pin LQFP
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 37
Mechanical Outline Drawings
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 38 Freescale Semiconductor
Mechanical Outline Drawings
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 39
Mechanical Outline Drawings
6.2
64-pin LQFP
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 40 Freescale Semiconductor
Mechanical Outline Drawings
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 41
Mechanical Outline Drawings
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 42 Freescale Semiconductor
Mechanical Outline Drawings
6.3
48-pin QFN
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 43
Mechanical Outline Drawings
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 44 Freescale Semiconductor
Mechanical Outline Drawings
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 45
Mechanical Outline Drawings
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 46 Freescale Semiconductor
Revision History
7
Revision History
Table 25. Revision History
Revision Number 1 2 3 4 Date August 2008 January 2009 January 2009 May 2009 Description of Changes Alpha Customer Release. Pre-Launch Release. Launch Release. • Changed LVDH trip and recovery values in Table 8. • Fixed Mini-FlexBus maximum frequency to 25.1666 MHz in Section 3.10, “Mini-FlexBus Timing Specifications.” • Updated FEC feature list to describe ethernet operation between 3.0 V to 3.6 V. • In Table 8, added a footnote to the operating voltage. It describes an exception to the Fast Ethernet Controller (FEC), because it is only operational above the operating voltage of 3 V. • Corrected Freescale part numbers in Table 23. • In Table 21, changed IDDAD classification to T.
This section lists the changes between versions of MCF51CN128 Data Sheet document.
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 47
How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com D ocument Number: MCF51CN128
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.
Rev. 4 5/2009