0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCF5235EC

MCF5235EC

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MCF5235EC - Integrated Microprocessor Hardware Specification - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MCF5235EC 数据手册
Freescale Semiconductor Hardware Specification Document Number: MCF5235EC Rev. 2, 08/2006 MCF523x Integrated Microprocessor Hardware Specification by: Microcontroller Division The MCF523x is a family of highly-integrated 32-bit microcontrollers based on the V2 ColdFire microarchitecture. Featuring a 16 or 32 channel eTPU, 64 Kbytes of internal SRAM, a 2-bank SDRAM controller, four 32-bit timers with dedicated DMA, a 4 channel DMA controller, up to 2 CAN modules, 3 UARTs and a queued SPI, the MCF523x family has been designed for general purpose industrial control applications. It is also a high-performance upgrade for users of the MC68332. This document provides an overview of the MCF523x microcontroller family, as well as detailed descriptions of the mechanical and electrical characteristics of the devices. The MCF523x family is based on the Version 2 ColdFire reduced instruction set computing (RISC) microarchitecture operating at a core frequency of up to 150 MHz and bus frequency up to 75 MHz. Contents 1 2 3 4 5 6 7 8 9 MCF523x Family Configurations . . . . . . . . . . . . . . . . . . . 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Design Recommendations . . . . . . . . . . . . . . . . . . . . . . . 9 Mechanicals/Pinouts and Part Numbers . . . . . . . . . . . . 14 Preliminary Electrical Characteristics . . . . . . . . . . . . . . 23 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Document Revision History . . . . . . . . . . . . . . . . . . . . . . 44 © Freescale Semiconductor, Inc., 2006. All rights reserved. MCF523x Family Configurations 1 MCF523x Family Configurations Table 1. MCF523x Family Configurations Module ColdFire V2 Core with EMAC (Enhanced Multiply-Accumulate Unit) Enhanced Time Processor Unit with memory (eTPU) System Clock Performance (Dhrystone/2.1 MIPS) Instruction/Data Cache Static RAM (SRAM) Interrupt Controllers (INTC) Edge Port Module (EPORT) External Interface Module (EIM) 4-channel Direct-Memory Access (DMA) SDRAM Controller Fast Ethernet Controller (FEC) Cryptography - Security module for data packets processing Watchdog Timer (WDT) Four Periodic Interrupt Timers (PIT) 32-bit DMA Timers QSPI UART(s) I 2C MCF5232 x MCF5233 x MCF5234 x MCF5235 x 16-ch 6K 32-ch 6K 16-ch 6K 32-ch 6K up to 150 MHz up to 144 8 Kbytes 64 Kbytes 2 x x x x — — x x 4 x 3 x 1 x x 160 QFP 196 MAPBGA 2 x x x x — — x x 4 x 3 x 2 x x 256 MAPBGA 2 x x x x x — x x 4 x 3 x 1 x x 256 MAPBGA 2 x x x x x x x x 4 x 3 x 2 x x 256 MAPBGA FlexCAN 2.0B - Controller-Area Network communication module General Purpose I/O Module (GPIO) JTAG - IEEE 1149.1 Test Access Port Package 2 Block Diagram The superset device in the MCF523x family comes in a 256 mold array process ball grid array (MAPBGA) package. Figure shows a top-level block diagram of the MCF5235, the superset device. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 2 Freescale Semiconductor Features EIM (To/From SRAM backdoor) CHIP SELECTS SDRAMC QSPI I2C_SDA I2C_SCL Arbiter INTC0 INTC1 EBI UnTXD UnRXD UnRTS UnCTS (To/From PADI) FAST ETHERNET CONTROLLER (FEC) PADI – Pin Muxing DTnOUT DTnIN FEC CANRX CANTX eTPU UART 0 UART 1 UART 2 I2 C QSPI SDRAMC (To/From PADI) (To/From PADI) 4 CH DMA DTIM 0 DTIM 1 DTIM 2 DTIM 3 D[31:0] A[23:0] DREQ[2:0] DACK[2:0] MUX R/W BDM JTAG_EN V2 ColdFire CPU DIV EMAC CS[3:0] TA TSIZ[1:0] TEA BS[3:0] JTAG TAP (To/From PADI) NEXUS eTPU 64 Kbytes SRAM (8Kx16)x4 8 Kbytes CACHE (1Kx32)x2 PORTS (GPIO) CIM Watchdog Timer (To/From Arbiter backdoor) SKHA FlexCAN (x2) RNGA PLL CLKGEN (To/From INTC) PIT0 PIT1 PIT2 PIT3 MDHA Cryptography Modules MCF5235 Block Diagram Edge Port 3 Features For a detailed feature list see the MCF5235 Reference Manual (MCF5235RM). MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 3 Signal Descriptions 4 Signal Descriptions This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF523x signals, consult the MCF5235 Reference Manual (MCF5235RM). 4.1 Signal Properties Table 2 lists all of the signals grouped by function. The “Dir” column is the direction for the primary function of the pin. Refer to Section 6, “Mechanicals/Pinouts and Part Numbers,” for package diagrams. NOTE In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon. NOTE The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality. Table 2. MCF523x Signal Information and Muxing Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5232 160 QFP MCF5232 196 MAPBGA MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA Reset RESET RSTOUT — — — — — — I O Clock EXTAL XTAL CLKOUT — — — — — — — — — I O O 86 85 89 M14 N14 K14 P16 R16 M16 P16 R16 M16 P16 R16 M16 83 82 N13 P13 T15 T14 T15 T14 T15 T14 Mode Selection CLKMOD[1:0] RCON — — — — — — I I 19,20 79 G5, H5 K10 J3, J2 P13 J3, J2 P13 J3, J2 P13 External Memory Interface and Ports A[23:21] PADDR[7:5] CS[6:4] — O 126, 125, 124 B11, C11, D11 B14, C14, A15 B14, C14, A15 B14, C14, A15 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 4 Freescale Semiconductor Signal Descriptions Table 2. MCF523x Signal Information and Muxing (continued) Signal Name A[20:0] GPIO — Alternate 1 Alternate 2 Dir.1 — — O MCF5232 160 QFP 123:115, 112:106, 102:98 MCF5232 196 MAPBGA A12, B12, C12, A13, B13, B14, C13, C14, D12, D13, D14, E11, E12, E13, E14, F12, F13, F14, G11, G12, G13 MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA B15, B16, B15, B16, B15, B16, C15, C16, C15, C16, C15, C16, D16, D15, D16, D15, D16, D15, D14, E16, D14, E16, D14, E16, E15, E14, E15, E14, E15, E14, E13, F15, E13, F15, E13, F15, F14, F13, F14, F13, F14, F13, G15, G14, G15, G14, G15, G14, G13, H16, G13, H16, G13, H16, H15, H14, H15, H14, H15, H14, H13 H13 H13 K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1 K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1 K4, K3, K2, K1, L4, L3, L2, L1, M3, M2, M1, N2, N1, P2, P1, R1 D[31:16] — — — O 21:24, 26:30, G1, G2, H1, 33:39 H2, H3, H4, J1, J2, J3, J4, K1, K2, K3, K4, L1, L2 42:49, D[15:8] PDATAH[7:0] — — O M1, N1, M2, R2, T2, N3, R2, T2, N3, R2, T2, N3, N2, P2, L3, P3, R3, T3, P3, R3, T3, P3, R3, T3, M3, N3, N4, P4, N4, P4, N4, P4, D[7:0] PDATAL[7:0] — — O 50:52, 56:60 P3, M4, N4, R4, T4, P5, R4, T4, P5, R4, T4, P5, P4, L5, M5, R5, N6, P6, R5, N6, P6, R5, N6, P6, N5, P5 R6, N7 R6, N7 R6, N7 143:140 63 97 — 96 — — — — B6, C6, D7, C9, B9, A9, C9, B9, A9, C9, B9, A9, C7 A10 A10 A10 N6 H11 J14 J13 P6 P7 H13 H12 T7 K14 K13 L16 N8 P8 K16 K15 T7 K14 K13 L16 N8 P8 K16 K15 T7 K14 K13 L16 N8 P8 K16 K15 BS[3:0] OE TA TEA R/W TSIZ1 TSIZ0 TS TIP PBS[7:4] PBUSCTL7 PBUSCTL6 PBUSCTL5 PBUSCTL4 PBUSCTL3 PBUSCTL2 PBUSCTL1 PBUSCTL0 CAS[3:0] — — DREQ1 — DACK1 DACK0 DACK2 DREQ0 — — — — — — — — — O O I I O O O O O Chip Selects CS[7:4] CS[3:2] CS1 CS0 PCS[7:4] PCS[3:2] PCS1 — — SD_CS[1:0] — — — — — — O O O O — 134,133 130 129 B9, A10, C10, A11 A9, C9 B10 D10 C12, A13, C13, A14 B12, D12 B13 D13 C12, A13, C13, A14 B12, D12 B13 D13 C12, A13, C13, A14 B12, D12 B13 D13 SDRAM Controller MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 5 Signal Descriptions Table 2. MCF523x Signal Information and Muxing (continued) Signal Name SD_WE SD_SCAS SD_SRAS SD_CKE SD_CS[1:0] GPIO PSDRAM5 PSDRAM4 PSDRAM3 PSDRAM2 PSDRAM[1:0] Alternate 1 Alternate 2 Dir.1 — — — — — — — — — — O O O O O MCF5232 160 QFP 93 92 91 — — MCF5232 196 MAPBGA K13 K12 K11 E8 L12, L13 MCF5233 256 MAPBGA L13 M15 M14 C10 N15, M13 MCF5234 256 MAPBGA L13 M15 M14 C10 N15, M13 MCF5235 256 MAPBGA L13 M15 M14 C10 N15, M13 External Interrupts Port IRQ[7:3] IRQ2 IRQ1 PIRQ[7:3] PIRQ2 PIRQ1 — DREQ2 — — — — I I I eTPU TPUCH31 TPUCH30 TPUCH29 TPUCH28 TPUCH[27:24] TPUCH23 TPUCH22 TPUCH21 TPUCH20 TPUCH[19:16] TPUCH[15:0] — — — — — — — — — — — ECOL ECRS ERXCLK ERXDV ERXD[3:0] ERXER ETXCLK ETXEN ETXER ETXD[3:0] — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — F3 F4 E3 E4 D3, D4, C3, C4 D5 C5 D6 C6 B6,B5, A5, B7 F2, E1, E2, D1, D2, C1, C2, B1, B2, A2, B3, A3, B4, A4, A6, A7 F1 J13 J14 — — — — — — — — — — F2, E1, E2, D1, D2, C1, C2, B1, B2, A2, B3, A3, B4, A4, A6, A7 F1 J13 J14 F3 F4 E3 E4 D3, D4, C3, C4 D5 C5 D6 C6 B6,B5, A5, B7 F2, E1, E2, D1, D2, C1, C2, B1, B2, A2, B3, A3, B4, A4, A6, A7 F1 J13 J14 IRQ7=64 IRQ4=65 — 66 N7, M7, L7, R8, T8, N9, R8, T8, N9, R8, T8, N9, P8, N8 P9, R9 P9, R9 P9, R9 M8 L8 T9 N10 T9 N10 T9 N10 11, 10, 7:2, E2, E1, D1 159:154, D2, D3, C1, 152, 151 C2, B1, B2, A2, C3, B3, A3, A4, C4, BR 12 — — FEC E3 H10 G10 TCRCLK UTPUODIS LTPUODIS PETPU2 PETPU1 PETPU0 — — — — — — EMDIO EMDC ECOL PFECI2C2 PFECI2C3 — I2C_SDA I2C_SCL — U2RXD U2TXD — I/O O I — — — — — — — — — C7 D7 F3 C7 D7 F3 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 6 Freescale Semiconductor Signal Descriptions Table 2. MCF523x Signal Information and Muxing (continued) Signal Name ECRS ERXCLK ERXDV ERXD[3:0] ERXER ETXCLK ETXEN ETXER ETXD[3:0] GPIO — — — — — — — — — Alternate 1 Alternate 2 Dir.1 — — — — — — — — — — — — — — — — — — I I I I I I O O O MCF5232 160 QFP — — — — — — — — — MCF5232 196 MAPBGA — — — — — — — — — MCF5233 256 MAPBGA — — — — — — — — — MCF5234 256 MAPBGA F4 E3 E4 MCF5235 256 MAPBGA F4 E3 E4 D3, D4, C3, D3, D4, C3, C4 C4 D5 C5 D6 C6 D5 C5 D6 C6 B6, B5, A5, B6, B5, A5, B7 B7 Feature Control eTPU/EthENB — — — I I2C I2C_SDA I2C_SCL PFECI2C1 PFECI2C0 CAN0RX CAN0TX — — I/O I/O DMA DACK[2:0] and DREQ[2:0] do not have a dedicated bond pads. Please refer to the following pins for muxing: TS and DT2OUT for DACK2, TSIZ1and DT1OUT for DACK1, TSIZ0 and DT0OUT for DACK0, IRQ2 and DT2IN for DREQ2, TEA and DT1IN for DREQ1, and TIP and DT0IN for DREQ0. QSPI QSPI_CS1 QSPI_CS0 QSPI_CLK QSPI_DIN QSPI_DOUT PQSPI4 PQSPI3 PQSPI2 PQSPI1 PQSPI0 SD_CKE — I2C_SCL I2C_SDA — — — — — — O O O I O UARTs U2TXD U2RXD U1CTS U1RTS U1TXD PUARTH1 PUARTH0 PUARTL7 PUARTL6 PUARTL5 CAN1TX CAN1RX U2CTS U2RTS CAN0TX — — — — — O I I O O — — — — 135 A8 A7 B8 C8 D9 D11 D10 C11 B11 A12 D11 D10 C11 B11 A12 D11 D10 C11 B11 A12 139 147 148 149 150 B7 A6 C5 B5 A5 B10 D9 B8 C8 D8 B10 D9 B8 C8 D8 B10 D9 B8 C8 D8 — — — — — — — J12 J11 L15 L14 L15 L14 L15 L14 — — — — M4 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 7 Signal Descriptions Table 2. MCF523x Signal Information and Muxing (continued) Signal Name U1RXD U0CTS U0RTS U0TXD U0RXD GPIO PUARTL4 PUARTL3 PUARTL2 PUARTL1 PUARTL0 Alternate 1 Alternate 2 Dir.1 CAN0RX — — — — — — — — — I I O O I MCF5232 160 QFP 136 — — 14 13 MCF5232 196 MAPBGA D8 F3 G3 F1 F2 MCF5233 256 MAPBGA A11 G1 H3 H2 G2 MCF5234 256 MAPBGA A11 G1 H3 H2 G2 MCF5235 256 MAPBGA A11 G1 H3 H2 G2 DMA Timers DT3IN DT3OUT DT2IN DT2OUT DT1IN DT1OUT DT0IN DT0OUT PTIMER7 PTIMER6 PTIMER5 PTIMER4 PTIMER3 PTIMER2 PTIMER1 PTIMER0 U2CTS U2RTS DREQ2 DACK2 DREQ1 DACK1 DREQ0 DACK0 QSPI_CS2 QSPI_CS3 DT2OUT — DT1OUT — — — I O I O I O I O — — — — — — — — H14 G14 M9 L9 L6 M6 E4 F4 J15 J16 P10 R10 P7 R7 G4 G3 J15 J16 P10 R10 P7 R7 G4 G3 J15 J16 P10 R10 P7 R7 G4 G3 BDM/JTAG2 DSCLK PSTCLK BKPT DSI DSO JTAG_EN DDATA[3:0] PST[3:0] — — — — — — — — TRST TCLK TMS TDI TDO — — — — — — — — — — — I O I I O I O O 70 68 71 73 72 78 — 77:74 N9 P9 P10 M10 N10 K9 M12, N12, P12, L11 M11, N11, P11, L10 N11 T10 P11 T11 R11 N13 N14, P14, T13, R13 T12, R12, P12, N12 N11 T10 P11 T11 R11 N13 N14, P14, T13, R13 T12, R12, P12, N12 N11 T10 P11 T11 R11 N13 N14, P14, T13, R13 T12, R12, P12, N12 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 8 Freescale Semiconductor Design Recommendations Table 2. MCF523x Signal Information and Muxing (continued) Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5232 160 QFP MCF5232 196 MAPBGA MCF5233 256 MAPBGA MCF5234 256 MAPBGA MCF5235 256 MAPBGA Test TEST PLL_TEST — — — — — — I I 18 — F5 J4 R14 J4 R14 J4 R14 Power Supplies VDDPLL VSSPLL OVDD — — — — — — — — — I I I 87 84 1, 9, 17, 32, 41, 55, 62, 69, 81, 90, 95, 105, 114, 128, 132, 138, 146 M13 L14 P15 R15 E5, E7, E6:11, F5, F7:10, F12, G5, G6, G11, E10, F7, F9, G12, H5, H6, H11, H12, J5, J6, J11, G6, G8, H7, J12, K5, K6, K11, K12, L5, L7:10, H8, H9, J6, L12, M6:M11 J8, J10, K5, K6, K8 VSS — — — I 8, 16, 25, 31, A1, A14, A1, A16, E5, E12, F6, F11, F16, 40, 54, 61, E6, E9, F6, G7:10, H7: 10, J1, J7:10, K7:10, L6, 67, 80, 88, F8, F10, L11, M5, M12, N16, T1, T6, T16 94, 104, 113, G7, G9, H6, 127, 131, J5, J7, J9, 137, 145, K7, P1, P14 153, 160 15, 53, 103, 144 D6, F11, G4, L4 A8, G16, H1, T5 VDD 1 — — — I Refers to pin’s primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM. 2 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins. 5 5.1 • • • Design Recommendations Layout Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF523x. See application note AN1259, System Design and Layout Techniques for Noise Reduction in Processor-Based Systems. Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 9 Design Recommendations 5.2 • Power Supply 33 µF, 0.1 µF, and 0.01 µF across each power supply 5.2.1 Supply Voltage Sequencing and Separation Cautions Figure 1 shows situations in sequencing the I/O VDD (OVDD), PLL VDD (PLLVDD), and Core VDD (VDD). OVDD is specified relative to VDD. OVDD Supplies Stable 2.5V DC Power Supply Voltage 3.3V 1.5V 1 VDD, PLLVDD 2 0 Time Notes: 1. VDD should not exceed OVDD or PLLVDD by more than 0.4 V at any time, including power-up. 2. Recommended that VDD/PLLVDD should track OVDD up to 0.9 V, then separate for completion of ramps. 3. Input voltage must not be greater than the supply voltage (OVDD, VDD, or PLLVDD) by more than 0.5 V at any time, including during power-up. 4. Use 1 ms or slower rise time for all supplies. Figure 1. Supply Voltage Sequencing and Separation Cautions 5.2.1.1 Power Up Sequence If OVDD are powered up with VDD at 0 V, then the sense circuits in the I/O pads will cause all pad output drivers connected to the OVDD to be in a high impedance state. There is no limit on how long after OVDD powers up before VDD must powered up. VDD should not lead the OVDD or PLLVDD by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning on the internal ESD protection clamp diodes. The recommended power up sequence is as follows: 1. Use 1 µs or slower rise time for all supplies. 2. VDD/PLLVDD and OVDD should track up to 0.9 V, then separate for the completion of ramps with OVDD going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 10 Freescale Semiconductor Design Recommendations 5.2.1.2 Power Down Sequence If VDD/PLLVDD are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance state. There is no limit on how long after VDD and PLLVDD power down before OVDD must power down. VDD should not lag OVDD or PLLVDD going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies. The recommended power down sequence is as follows: 1. Drop VDD/PLLVDD to 0 V. 2. Drop OVDD supplies. 5.3 • • Decoupling Place the decoupling caps as close to the pins as possible, but they can be outside the footprint of the package. 0.1 µF and 0.01 µF at each supply input 5.4 • Buffering Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See Section 7, “Preliminary Electrical Characteristics.” 5.5 • Pull-up Recommendations Use external pull-up resistors on unused inputs. See pin table. 5.6 • • • • • • • • Clocking Recommendations Use a multi-layer board with a separate ground plane. Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible. Do not run a high frequency trace around crystal circuit. Ensure that the ground for the bypass capacitors is connected to a solid ground trace. Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal. Tie the ground pin to the most solid ground in the system. Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable. Tie XTAL to ground when an external oscillator is clocking the device. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 11 Design Recommendations 5.7 5.7.1 5.7.1.1 Interface Recommendations SDRAM Controller SDRAM Controller Signals in Synchronous Mode Table 3. Synchronous DRAM Signal Connections Signal SD_SRAS Description Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller’s SD_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals. Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM. DRAM read/write. Asserted for write operations and negated for read operations. Row address strobe. Select each memory block of SDRAMs connected to the MCF523x. One SD_CS signal selects one SDRAM block and connects to the corresponding CS signals. Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality. Column address strobe. For synchronous operation, BS[3:0] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs. Bus clock output. Connects to the CLK input of SDRAMs. Table 3 shows the behavior of SDRAM signals in synchronous mode. SD_SCAS DRAMW SD_CS[1:0] SD_CKE BS[3:0] CLKOUT 5.7.1.2 Address Multiplexing See the SDRAM controller module chapter in the MCF5235 Reference Manual for details on address multiplexing. 5.7.2 Ethernet PHY Transceiver Connection The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4. Table 4. MII Mode Signal Description Transmit clock Transmit enable Transmit data MCF523x Pin ETXCLK ETXEN ETXD[3:0] MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 12 Freescale Semiconductor Design Recommendations Table 4. MII Mode (continued) Signal Description Transmit error Collision Carrier sense Receive clock Receive enable Receive data Receive error Management channel clock Management channel serial data MCF523x Pin ETXER ECOL ECRS ERXCLK ERXDV ERXD[3:0] ERXER EMDC EMDIO The serial mode interface operates in what is generally referred to as AMD mode. The MCF523x configuration for seven-wire serial mode connections to the external transceiver are shown in Table 5. Table 5. Seven-Wire Mode Configuration Signal Description Transmit clock Transmit enable Transmit data Collision Receive clock Receive enable Receive data Unused, configure as PB14 Unused input, tie to ground Unused, configure as PB[13:11] Unused output, ignore Unused, configure as PB[10:8] Unused, configure as PB15 Input after reset, connect to ground MCF523x Pin ETXCLK ETXEN ETXD[0] ECOL ERXCLK ERXDV ERXD[0] ERXER ECRS ERXD[3:1] ETXER ETXD[3:1] EMDC EMDIO Refer to the M523xEVB evaluation board user’s manual for an example of how to connect an external PHY. Schematics for this board are accessible at the MCF5235 site by navigating to: http://www.freescale.com/coldfire. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 13 Mechanicals/Pinouts and Part Numbers 5.7.3 FlexCAN The FlexCAN module interface to the CAN bus is composed of 2 pins: CANTX and CANRX, which are the serial transmitted data and the serial received data. The use of an external CAN transceiver to interface to the CAN bus is generally required. The transceiver is capable of driving the large current needed for the CAN bus and has current protection, against a defective CAN bus or defective stations. 5.7.4 BDM Use the BDM interface as shown in the M523xEVB evaluation board user’s manual. The schematics for this board are accessible at the Freescale website at: http://www.freescale.com/coldfire. 6 Mechanicals/Pinouts and Part Numbers This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF523x devices. See Table 2 for a list the signal names and pin locations for each device. 6.1 Pinout—196 MAPBGA The following figure shows a pinout of the MCF5232CVMxxx package. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 14 Freescale Semiconductor Mechanicals/Pinouts and Part Numbers 1 A VSS 2 TPUCH6 3 TPUCH3 4 TPUCH2 5 QSPI_ DOUT QSPI_ DIN 6 QSPI_CS0 7 U2RXD 8 U2TXD 9 CS3 10 CS6 11 CS4 12 A20 13 A17 14 VSS A B TPUCH8 TPUCH7 TPUCH4 TPUCH0 BS3 QSPI_CS1 U1CTS CS7 CS1 A23 A19 A16 A15 B C TPUCH10 TPUCH9 TPUCH5 TPUCH1 QSPI_CLK BS2 BS0 U1RTS CS2 CS5 A22 A18 A14 A13 C D TPUCH13 TPUCH12 TPUCH11 NC NC VDD BS1 U1RXD/ CAN0RX U1TXD/ CAN0TX CS0 A21 A12 A11 A10 D E TPUCH14 TPUCH15 TCRCLK DT0IN OVDD VSS OVDD SD_CKE VSS OVDD A9 A8 A7 A6 E F U0TXD U0RXD U0CTS DT0OUT TEST VSS OVDD VSS OVDD VSS VDD A5 A4 A3 F G D31 D30 U0RTS VDD CLKMOD1 OVDD VSS OVDD VSS LTPU ODIS UTPU ODIS A2 A1 A0 DT3OUT G H D29 D28 D27 D26 CLKMOD0 VSS OVDD OVDD OVDD TA TIP TS DT3IN H J D25 D24 D23 D22 VSS OVDD VSS OVDD VSS OVDD I2C_SCL I2C_SDA R/W TEA J K D21 D20 D19 D18 OVDD OVDD VSS OVDD JTAG_EN RCON SD_SRAS SD_SCAS SD_WE CLKOUT K L D17 D16 D10 VDD D3 DT1IN IRQ5 IRQ1 DT2OUT PST0 DDATA0 SD_CS1 SD_CS0 VSSPLL L M D15 D13 D9 D6 D2 DT1OUT IRQ6 IRQ2 DT2IN TDI/DSI PST3 DDATA3 VDDPLL EXTAL M N D14 D12 D8 D5 D1 OE IRQ7 IRQ3 TRST/ DSCLK TCLK/ PSTCLK 9 TDO/DSO PST2 DDATA2 RESET XTAL N P VSS 1 D11 2 D7 3 D4 4 D0 5 TSIZ1 6 TSIZ0 7 IRQ4 8 TMS/ BKPT 10 PST1 11 DDATA1 12 RSTOUT 13 VSS 14 P Figure 2. MCF5232CVMxxx Pinout (196 MAPBGA) 6.2 Package Dimensions—196 MAPBGA Figure 3 shows MCF5232CVMxxx package dimensions. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 15 Mechanicals/Pinouts and Part Numbers X Y D Laser mark for pin 1 identification in this area M K NOTES: 1. Dimensions are in millimeters. 2. Interpret dimensions and tolerances per ASME Y14.5M, 1994. 3. Dimension b is measured at the maximum solder ball diameter, parallel to datum plane Z. 4. Datum Z (seating plane) is defined by the spherical crowns of the solder balls. 5. Parallelism measurement shall exclude any effect of mark on top surface of package. E Millimeters DIM Min A A1 A2 M TOL 13X e S 14 13 12 11 10 9 6 5 4 3 2 1 A B C D E F G H J K L M N P 1.25 0.27 Max 1.60 0.47 1.16 REF 0.45 0.55 b D E 15.00 BSC 15.00 BSC 1.00 BSC 0.50 BSC Metalized mark for pin 1 identification in this area e S 5 A A2 0.20 Z S 13X e A1 Z 4 0.10 Z 196X Detail K Rotated 90° Clockwise 3 196X b 0.15 Z X Y 0.08 Z View M-M Figure 3. 196 MAPBGA Package Dimensions (Case No. 1128A-01) 6.2.1 Pinout—256 MAPBGA Figure 4 through Figure 6 show pinouts of the MCF5233CVMxxx, MCF5234CVMxxx, and MCF5235CVMxxx packages. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 16 Freescale Semiconductor Mechanicals/Pinouts and Part Numbers 1 A VSS 2 TPUCH6 3 TPUCH4 4 5 6 TPUCH1 7 TPUCH0 8 VDD QSPI_ CLK QSPI_ DIN QSPI_ DOUT OVDD 9 BS1 10 BS0 QSPI_ CS1 11 12 13 CS6 14 CS4 15 A21 16 VSS A TPUCH2 TPUCH17 U1RXD/ U1TXD/ CAN0RX CAN0TX U1RTS CS3 B TPUCH8 TPUCH7 TPUCH5 TPUCH3 TPUCH18 TPUCH19 TPUCH16 I2C_SDA/ U2RXD I2C_SCL/ U2TXD OVDD BS2 CS1 A23 A20 A19 B C TPUCH10 TPUCH9 TPUCH25 TPUCH24 TPUCH22 TPUCH20 BS3 SD_CKE U1CTS CS7 CS5 A22 A18 A17 C D TPUCH12 TPUCH11 TPUCH27 TPUCH26 TPUCH23 TPUCH21 QSPI_ U2RXD/ U2TXD/ CS0 CAN1RX CAN1TX OVDD OVDD OVDD CS2 CS0 A14 A15 A16 D E TPUCH14 TPUCH13 TPUCH29 TPUCH28 VSS OVDD VSS A10 A11 A12 A13 E F TCRCLK TPUCH15 TPUCH31 TPUCH30 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD A7 A8 A9 VSS F G U0CTS U0RXD DT0OUT DT0IN OVDD OVDD VSS VSS VSS VSS OVDD OVDD A4 A5 A6 VDD G H VDD U0TXD CLK MOD0 D29 U0RTS CLK MOD1 D30 NC OVDD OVDD VSS VSS VSS VSS OVDD OVDD A0 UTPU ODIS TEA A1 LTPU ODIS TA A2 A3 H J VSS TEST OVDD OVDD VSS VSS VSS VSS OVDD OVDD DT3IN DT3OUT J K D28 D31 OVDD OVDD VSS VSS VSS VSS OVDD OVDD TIP TS K L D24 D25 D26 D27 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD SD_WE SD_ CS0 JTAG_ EN RCON I2C_SCL/ I2C_SDA/ CAN0TX CAN0RX SD_ SRAS DDATA3 SD_ SCAS SD_CS1 R/W L M D21 D22 D23 NC VSS OVDD OVDD OVDD OVDD OVDD OVDD TRST/ DSCLK TMS/ BKPT TDO/ DSO VSS CLKOUT M N D19 D20 D13 D9 NC D3 D0 TSIZ1 IRQ5 IRQ1 PST0 VSS N P D17 D18 D12 D8 D5 D2 DT1IN TSIZ0 IRQ4 DT2IN PST1 DDATA2 PLL_ TEST VDDPLL EXTAL P R D16 D15 D11 D7 D4 D1 DT1OUT IRQ7 IRQ3 DT2OUT PST2 DDATA0 VSSPLL XTAL R T VSS 1 D14 2 D10 3 D6 4 VDD 5 VSS 6 OE 7 IRQ6 8 IRQ2 9 TCLK/ TDI/DSI PSTCLK 10 11 PST3 12 DDATA1 RSTOUT 13 14 RESET 15 VSS 16 T Figure 4. MCF5233CVMxxx Pinout (256 MAPBGA) MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 17 Mechanicals/Pinouts and Part Numbers 1 A VSS 2 TPUCH6 3 TPUCH4 4 TPUCH2 5 ETXD1 6 TPUCH1 7 TPUCH0 8 VDD QSPI_ CLK QSPI_ DIN QSPI_ DOUT OVDD 9 BS1 10 BS0 QSPI_ CS1 11 12 13 CS6 14 CS4 15 A21 16 VSS A U1RXD/ U1TXD/ CAN0RX CAN0TX U1RTS CS3 B TPUCH8 TPUCH7 TPUCH5 TPUCH3 ETXD2 ETXD3 ETXD0 BS2 CS1 A23 A20 A19 B C TPUCH10 TPUCH9 ERXD1 ERXD0 ETXCLK ETXER EMDIO BS3 QSPI_ CS0 OVDD SD_CKE U1CTS CS7 CS5 A22 A18 A17 C D TPUCH12 TPUCH11 ERXD3 ERXD2 ERXER ETXEN EMDC U2RXD U2TXD CS2 CS0 A14 A15 A16 D E TPUCH14 TPUCH13 ERXCLK ERXDV VSS OVDD OVDD OVDD OVDD VSS A10 A11 A12 A13 E F TCRCLK TPUCH15 ECOL ECRS OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD A7 A8 A9 VSS F G U0CTS U0RXD DT0OUT DT0IN OVDD OVDD VSS VSS VSS VSS OVDD OVDD A4 A5 A6 VDD G H VDD U0TXD CLK MOD0 D29 U0RTS CLK MOD1 D30 NC OVDD OVDD VSS VSS VSS VSS OVDD OVDD A0 UTPU ODIS TEA A1 LTPU ODIS TA A2 A3 H J VSS TEST OVDD OVDD VSS VSS VSS VSS OVDD OVDD DT3IN DT3OUT J K D28 D31 OVDD OVDD VSS VSS VSS VSS OVDD OVDD TIP TS K L D24 D25 D26 D27 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD SD_WE I2C_SCL/ I2C_SDA/ CAN0TX CAN0RX SD_ SRAS DDATA3 SD_ SCAS SD_CS1 R/W L M D21 D22 D23 NC VSS OVDD OVDD OVDD OVDD OVDD OVDD TRST/ DSCLK TMS/ BKPT TDO/ DSO VSS SD_CS0 JTAG_ EN RCON CLKOUT M N D19 D20 D13 D9 NC D3 D0 TSIZ1 IRQ5 IRQ1 PST0 VSS N P D17 D18 D12 D8 D5 D2 DT1IN TSIZ0 IRQ4 DT2IN PST1 DDATA2 PLL_ TEST RST OUT 14 VDDPLL EXTAL P R D16 D15 D11 D7 D4 D1 DT1OUT IRQ7 IRQ3 DT2OUT PST2 DDATA0 VSSPLL XTAL R T VSS 1 D14 2 D10 3 D6 4 VDD 5 VSS 6 OE 7 IRQ6 8 IRQ2 9 TCLK/ TDI/DSI PSTCLK 10 11 PST3 12 DDATA1 13 RESET 15 VSS 16 T Figure 5. MCF5234CVMxxx Pinout (256 MAPBGA) MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 18 Freescale Semiconductor Mechanicals/Pinouts and Part Numbers 1 A VSS 2 TPUCH6 3 TPUCH4 4 TPUCH2 5 6 7 TPUCH0 8 VDD 9 BS1 10 BS0 QSPI_ CS1 11 12 13 CS6 14 CS4 15 A21 16 VSS A TPUCH17/ TPUCH1 ETXD1 U1RXD/ U1TXD/ CAN0RX CAN0TX U1RTS CS3 B TPUCH8 TPUCH7 TPUCH5 TPUCH3 TPUCH18/ TPUCH19/ TPUCH16/ QSPI_ ETXD2 ETXD3 ETXD0 CLK I2C_SDA/ U2RXD/ EMDIO I2C_SCL/ U2TXD/ EMDC OVDD QSPI_ DIN QSPI_ DOUT BS2 CS1 A23 A20 A19 B C TPUCH10 TPUCH9 TPUCH25/ TPUCH24/ TPUCH22/ TPUCH20/ ERXD1 ERXD0 ETXCLK ETXER TPUCH27/ TPUCH26/ TPUCH23/ TPUCH21/ ERXD3 ERXD2 ERXER ETXEN TPUCH29/ TPUCH2/ ERXCLK ERXDV TPUCH31/ TPUCH30/ ECOL ECRS DT0OUT DT0IN BS3 SD_CKE U1CTS CS7 CS5 A22 A18 A17 C D TPUCH12 TPUCH11 QSPI_ U2RXD/ U2TXD/ CS0 CAN1RX CAN1TX CS2 CS0 A14 A15 A16 D E TPUCH14 TPUCH13 VSS OVDD OVDD OVDD OVDD OVDD VSS A10 A11 A12 A13 E F TCRCLK TPUCH15 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD A7 A8 A9 VSS F G U0CTS U0RXD OVDD OVDD VSS VSS VSS VSS OVDD OVDD A4 A5 A6 VDD G H VDD U0TXD CLK MOD0 D29 U0RTS CLK MOD1 D30 NC OVDD OVDD VSS VSS VSS VSS OVDD OVDD A0 UTPU ODIS TEA A1 LTPU ODIS TA A2 A3 H J VSS TEST OVDD OVDD VSS VSS VSS VSS OVDD OVDD DT3IN DT3OUT J K D28 D31 OVDD OVDD VSS VSS VSS VSS OVDD OVDD TIP TS K L D24 D25 D26 D27 eTPU/ EthENB D9 OVDD VSS OVDD OVDD OVDD OVDD VSS OVDD SD_WE I2C_SCL/ I2C_SDA/ CAN0TX CAN0RX SD_ SRAS DDATA3 SD_ SCAS SD_CS1 R/W L M D21 D22 D23 VSS OVDD OVDD OVDD OVDD OVDD OVDD TRST/ DSCLK TMS/ BKPT TDO/ DSO VSS SD_CS0 JTAG_ EN RCON CLKOUT M N D19 D20 D13 NC D3 D0 TSIZ1 IRQ5 IRQ1 PST0 VSS N P D17 D18 D12 D8 D5 D2 DT1IN TSIZ0 IRQ4 DT2IN PST1 DDATA2 PLL_ TEST VDDPLL EXTAL P R D16 D15 D11 D7 D4 D1 DT1OUT IRQ7 IRQ3 DT2OUT PST2 DDATA0 VSSPLL XTAL R T VSS 1 D14 2 D10 3 D6 4 VDD 5 VSS 6 OE 7 IRQ6 8 IRQ2 9 TCLK/ TDI/DSI PSTCLK 10 11 PST3 12 DDATA1 RSTOUT 13 14 RESET 15 VSS 16 T Figure 6. MCF5235CVMxxx Pinout (256 MAPBGA) MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 19 Mechanicals/Pinouts and Part Numbers 6.2.2 Package Dimensions—256 MAPBGA Figure 7 shows MCF5235CVMxxx, MCF5234CVMxxx, and MCF5233CVMxx package dimensions. X Y D LASER MARK FOR PIN A1 IDENTIFICATION IN THIS AREA M K A A2 A1 Z 4 256X 5 0.30 Z E 0.15 Z DETAIL K ROTATED 90°CLOCKWISE NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z. 4. DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE. MILLIMETERS MIN MAX A 1.25 1.60 A1 0.27 0.47 1.16 REF A2 0.40 0.60 b 17.00 BSC D 17.00 BSC E e 1.00 BSC 0.50 BSC S M 0.20 15X e METALIZED MARK FOR PIN A1 IDENTIFICATION IN THIS AREA A B C D E F G H J K L M N P R T S 16151413121110 7654321 15X e S 256X b 0.25 0.10 3 M M ZXY Z DIM VIEW M-M Figure 7. 256 MAPBGA Package Outline 6.3 Pinout—160 QFP Figure 8 shows a pinout of the MCF5232CABxxx package. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 20 Freescale Semiconductor Mechanicals/Pinouts and Part Numbers VSS TPUCH7 TPUCH6 TPUCH5 TPUCH4 TPUCH3 TPUCH2 VSS TPUCH1 TPUCH0 QSPI_DOUT QSPI_DIN QSPI_CLK QSPI_CS0 OVDD VSS\OVSS VDD BS3 BS2 BS1 BS0 SD_CKE\QSPI_CS1 OVDD VSS U1RXD\CAN0RX U1TXD\CAN0TX CS3 CS2 OVDD VSS CS1 CS0 OVDD VSS A23 A22 A21 A20 A19 A18 OVDD TPUCH8 TPUCH9 TPUCH10 TPUCH11 TPUCH12 TPUCH13 VSS OVDD TPUCH14 TPUCH15 TCRCLK U0RXD U0TXD VDD VSS OVDD TEST CLKMOD1 CLKMOD0 D31 D30 D29 D28 VSS D27 D26 D25 D24 D23 VSS OVDD D22 D21 D20 D19 D18 D17 D16 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 MCF5232 A17 A16 A15 A14 A13 A12 OVDD VSS A11 A10 A9 A8 A7 A6 A5 OVDD VSS/OVSS VDD A4 A3 A2 A1 A0 TA R/W OVDD VSS SD_WE SD_SCAS SD_SRAS OVDD CLKOUT VSS VDDPLL EXTAL XTAL VSSPLL RESET RSTOUT/PLL_TEST OVDD 6.4 Package Dimensions—160 QFP Figure 9 shows MCF5232CAB80 package dimensions. Freescale Semiconductor OVDD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 VDD VSS\OVSS OVDD D4 D3 D2 D1 D0 VSS OVDD OE IRQ7 IRQ4 IRQ1 VSS TCLK\PSTCLK OVDD TRST\DSCLK TMS\BKPT TDO/DSO TDI/DSI PST0 PST1 PST2 PST3 JTAG_EN RCON VSS 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Figure 8. MCF5232CABxxx Pinout (160 QFP) MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 21 Mechanicals/Pinouts and Part Numbers Y L DS DS –A–, –B–, –D– A-B S 0.20 (0.008) 0.20 (0.008) 0.20 (0.008) M L B M A-B –A– H V H –B– A-B S B B P G DETAIL A DETAIL A Z A 0.20 (0.008) M C 0.20 (0.008) A-B A-B S DS BASE METAL S 0.20 (0.008) MC A-B S N DS J F D DETAIL C –H– 0.13 (0.005) M C A-B S DS SECTION B–B MILLIMETERS DIM MIN MAX A 27.90 28.10 27.90 28.10 B 3.85 3.35 C D 0.22 0.38 3.20 3.50 E 0.22 0.33 F 0.65 BSC G H 0.25 0.35 J 0.11 0.23 K 0.70 0.90 25.35 BSC L 16° M 5° 0.11 0.19 N 0.325 BSC P Q 7° 0° R 0.13 0.30 S 31.00 31.40 0.13 — T U 0° — V 31.00 31.40 0.4 — W 1.60 REF X Y 1.33 REF 1.33 REF Z INCHES MIN MAX 1.098 1.106 1.098 1.106 0.132 1.106 0.009 0.015 0.126 0.138 0.009 0.013 0.026 REF 0.010 0.014 0.004 0.009 0.028 0.035 0.998 REF 5° 16° 0.004 0.007 0.013 REF 0° 7° 0.005 0.012 1.220 1.236 0.005 — 0° — 1.220 1.236 0.016 — 0.063 REF 0.052 REF 0.052 REF M× TOP & BOTTOM NOTES 1. DIMENSIONING AND TOLERINCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER 3. DATUM PLAN -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -A-, -B-, AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. U× C E –H– T R Q× –C– H W K X 0.110 (0.004) DETAIL C Case 864A-03 Figure 9. 160 QFP Package Dimensions MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 22 Freescale Semiconductor Preliminary Electrical Characteristics 6.5 Ordering Information Table 6. Orderable Part Numbers Freescale Part Number MCF5232CAB80 MCF5232CVM100 MCF5232CVM150 MCF5233CVM100 MCF5233CVM150 MCF5234CVM100 MCF5234CVM150 MCF5235CVM100 MCF5235CVM150 Description MCF5232 RISC Microprocessor, 160 QFP MCF5232 RISC Microprocessor, 196 MAPBGA MCF5232 RISC Microprocessor, 196 MAPBGA MCF5233 RISC Microprocessor, 256 MAPBGA MCF5233 RISC Microprocessor, 256 MAPBGA MCF5234 RISC Microprocessor, 256 MAPBGA MCF5234 RISC Microprocessor, 256 MAPBGA MCF5235 RISC Microprocessor, 256 MAPBGA MCF5235 RISC Microprocessor, 256 MAPBGA Speed 80MHz 100MHz 150MHz 100MHz 150MHz 100MHz 150MHz 100MHz 150MHz Temperature –40° to +85° C –40° to +85° C –40° to +85° C –40° to +85° C –40° to +85° C –40° to +85° C –40° to +85° C –40° to +85° C –40° to +85° C 7 Preliminary Electrical Characteristics This chapter contains electrical specification tables and reference timing diagrams for the MCF5235 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5235. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this processor document supersede any values found in the module specifications. 7.1 Maximum Ratings Table 7. Absolute Maximum Ratings1, 2 Rating Core Supply Voltage Pad Supply Voltage Clock Synthesizer Supply Voltage Digital Input Voltage 3 Symbol VDD OVDD VDDPLL VIN Value – 0.5 to +2.0 – 0.3 to +4.0 – 0.3 to +4.0 – 0.3 to + 4.0 Unit V V V V MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 23 Preliminary Electrical Characteristics Table 7. Absolute Maximum Ratings1, 2 (continued) Rating Instantaneous Maximum Current Single pin limit (applies to all pins) 3,4,5 Operating Temperature Range (Packaged) Storage Temperature Range 1 Symbol ID TA (TL - TH) Tstg Value 25 – 40 to 85 – 65 to 150 Unit mA °C °C 2 3 4 5 Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or OVDD). Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. All functional non-supply pins are internally clamped to VSS and OVDD. Power supply must maintain regulation within operating OVDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > OVDD) is greater than IDD, the injection current may flow out of OVDD and could result in external power supply going out of regulation. Insure external OVDD load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power (ex; no clock).Power supply must maintain regulation within operating OVDD range during instantaneous and operating maximum current conditions. 7.2 Thermal Characteristics Table 8. Thermal Characteristics Characteristic Symbol Four layer board (2s2p) Four layer board (2s2p) θJMA θJMA θJB θJC Ψjt Tj 256 196 MAPBGA MAPBGA 261,2 231,2 153 104 2 1,5 The below table lists thermal resistance values. 160 QFP 401,2 361,2 253 104 2 1,5 Unit °C/W °C/W °C/W °C/W °C/W oC Junction to ambient, natural convection Junction to ambient (@200 ft/min) Junction to board Junction to case Junction to top of package Maximum operating junction temperature 1 321,2 291,2 203 104 2 1,5 102 104 1056 θJMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer’s system using the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2. 2 Per JEDEC JESD51-6 with the board horizontal. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 24 Freescale Semiconductor Preliminary Electrical Characteristics 3 Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 4 Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 5 Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT. 6 At 100MHz. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D × Θ JMA ) (1) Where: TA= Ambient Temperature, °C ΘJMA= Package Thermal Resistance, Junction-to-Ambient, °C/W PD= PINT + PI/O PINT= IDD × VDD, Watts - Chip Internal Power PI/O= Power Dissipation on Input and Output Pins — User Determined For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is: P D = K ÷ ( T J + 273 ° C ) (2) Solving equations 1 and 2 for K gives: K = PD × (TA + 273 °C) + ΘJMA × PD 2 (3) where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA. 7.3 DC Electrical Specifications Table 9. DC Electrical Specifications1 Characteristic Symbol VDD OVDD VIH VIL VHYS Iin IOZ Min 1.4 3 0.7 × OVDD VSS – 0.3 0.06 × OVDD –1.0 –1.0 Typical — — — — — — — Max 1.6 3.6 3.65 0.35 × OVDD — 1.0 1.0 Unit V V V V mV µA µA Core Supply Voltage Pad Supply Voltage Input High Voltage Input Low Voltage Input Hysteresis Input Leakage Current Vin = VDD or VSS, Input-only pins High Impedance (Off-State) Leakage Current Vin = VDD or VSS, All input/output and output pins MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 25 Preliminary Electrical Characteristics Table 9. DC Electrical Specifications1 (continued) Characteristic Output High Voltage (All input/output and all output pins) IOH = –5.0 mA Output Low Voltage (All input/output and all output pins) IOL = 5.0mA Weak Internal Pull Up Device Current, tested at VIL Max.2 Input Capacitance All input-only pins All input/output (three-state) pins Load Capacitance4 Low drive strength High drive strength Core Operating Supply Current 5 Master Mode Pad Operating Supply Current Master Mode Low Power Modes DC Injection Current 3, 6, 7, 8 VNEGCLAMP =VSS– 0.3 V, VPOSCLAMP = VDD + 0.3 Single Pin Limit Total processor Limit, Includes sum of all stressed pins 1 2 3 4 3 Symbol VOH VOL IAPU Cin Min OVDD - 0.5 — –10 — — Typical — — — — Max — 0.5 – 130 7 7 Unit V V µA pF CL IDD — OIDD — — IIC –1.0 –10 — — 135 100 TBD 25 50 150 — — pF pF mA mA µA 1.0 10 mA mA 5 6 7 8 Refer to Table 10 for additional PLL specifications. Refer to the MCF5235 signals section for pins having weak internal pull-up devices. This parameter is characterized before qualification rather than 100% tested. pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination. See High Speed Signal Propagation: Advanced Black Magic by Howard W. Johnson for design guidelines. Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load. All functional non-supply pins are internally clamped to VSS and their respective VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Insure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 26 Freescale Semiconductor Preliminary Electrical Characteristics 7.4 Oscillator and PLLMRFM Electrical Characteristics Table 10. HiP7 PLLMRFM Electrical Specifications1 Num 1 Characteristic PLL Reference Frequency Range Crystal reference External reference 1:1 mode (NOTE: fsys/2 = 2 × fref_1:1) Core frequency CLKOUT Frequency 2 External reference On-Chip PLL Frequency Loss of Reference Frequency 3, 5 Self Clocked Mode Frequency 4, 5 Crystal Start-up Time 5, 6 XTAL Load Capacitance5 PLL Lock Time 5, 7,13 Power-up To Lock Time 5, 6,8 With Crystal Reference (includes 5 time) Without Crystal Reference9 1:1 Mode Clock Skew (between CLKOUT and EXTAL) 10 Duty Cycle of reference 5 Frequency un-LOCK Range Frequency LOCK Range CLKOUT Period Jitter, 5, 6, 8,11, 12 Measured at fsys/2 Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval) Frequency Modulation Range Limit13,14 (fsys/2 Max must not be exceeded) ICO Frequency. fico = fref × 2 × (MFD+2) 15 tlpll tlplk — — tskew tdc fUL fLCK Cjitter — — 5.0 .01 % fsys/2 –1 40 –3.8 –1.7 11 750 1 60 4.1 2.0 ms µs ns % % fsys/2 % fsys/2 Symbol Min. Value Max. Value Unit MHz fref_crystal fref_ext fref_1:1 fsys fsys/2 fLOR fSCM tcst 0 fref ÷ 32 100 10.25 — 5 — 8 8 24 25 25 75 150 75 75 1000 15.25 10 30 750 MHz MHz MHz kHz MHz ms pF µs 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 Cmod fico 0.8 48 2.2 150 %fsys/2 MHz All values given are initial design targets and subject to change. All internal registers retain data at 0 Hz. “Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR with default MFD/RFD settings. This parameter is guaranteed by characterization before qualification rather than 100% tested. Proper PC board layout procedures must be followed to achieve specifications. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 27 Preliminary Electrical Characteristics 7 8 9 10 11 12 13 14 15 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). Assuming a reference is available at power up, lock time is measured from the time VDD and VDDSYN are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must be added to the PLL lock time to determine the total start-up time. tlpll = (64 * 4 * 5 + 5 × τ) × Tref, where Tref = 1/Fref_crystal = 1/Fref_ext = 1/Fref_1:1, and τ = 1.57x10-6 × 2(MFD + 2). PLL is operating in 1:1 PLL mode. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys/2. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod. Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz. Modulation rate selected must not result in fsys/2 value greater than the fsys/2 maximum specified value. Modulation range determined by hardware design. fsys/2 = fico / (2 * 2RFD) 7.5 External Interface Timing Characteristics NOTE All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output. All other timing relationships can be derived from these values. Table 11. Processor Bus Input Timing Specifications Name freq B0 System bus frequency CLKOUT period Control Inputs B1a B1b B2a B2b Control input valid to CLKOUT high2 BKPT valid to CLKOUT high 3 Table 11 lists processor bus input timings. Characteristic1 Symbol fsys/2 tcyc Min 50 — Max 75 1/75 Unit MHz ns tCVCH tBKVCH 9 9 0 0 — — — — ns ns ns ns CLKOUT high to control inputs invalid2 tCHCII tBKNCH CLKOUT high to asynchronous control input BKPT invalid3 Data Inputs B4 B5 1 Data input (D[31:0]) valid to CLKOUT high CLKOUT high to data input (D[31:0]) invalid tDIVCH tCHDII 4 0 — — ns ns Timing specifications are tested using full drive strength pad configurations in a 50ohm transmission line environment.. 2 TEA and TA pins are being referred to as control inputs. 3 Refer to figure A-19. Timings listed in Table 11 are shown in Figure 10 & Figure A-3. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 28 Freescale Semiconductor Preliminary Electrical Characteristics * The timings are also valid for inputs sampled on the negative clock edge. CLKOUT(75MHz) TSETUP THOLD 1.5V Input Setup And Hold Invalid 1.5V Valid 1.5V Invalid trise Input Rise Time Vh = VIH Vl = VIL tfall Input Fall Time Vh = VIH Vl = VIL CLKOUT B4 B5 Inputs Figure 10. General Input Timing Requirements 7.6 Processor Bus Output Timing Specifications Table 12. External Bus Output Timing Specifications Name Characteristic Control Outputs B6a B6b B6c B7 B7a CLKOUT high to chip selects valid 1 CLKOUT high to byte enables (BS[3:0]) valid2 CLKOUT high to output enable (OE) valid3 CLKOUT high to control output (BS[3:0], OE) invalid CLKOUT high to chip selects invalid tCHCV tCHBV tCHOV tCHCOI tCHCI — — — 0.5tCYC+1.5 0.5tCYC+1.5 0.5tCYC +5 0.5tCYC +5 0.5tCYC +5 — — ns ns ns ns ns Symbol Min Max Unit Table 12 lists processor bus output timings. Address and Attribute Outputs B8 CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) valid tCHAV — 9 ns MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 29 Preliminary Electrical Characteristics Table 12. External Bus Output Timing Specifications (continued) Name B9 Characteristic CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalid Data Outputs B11 B12 B13 1 2 3 Symbol tCHAI Min 1.5 Max — Unit ns CLKOUT high to data output (D[31:0]) valid CLKOUT high to data output (D[31:0]) invalid CLKOUT high to data output (D[31:0]) high impedance tCHDOV tCHDOI tCHDOZ — 1.5 — 9 — 9 ns ns ns CS transitions after the falling edge of CLKOUT. BS transitions after the falling edge of CLKOUT. OE transitions after the falling edge of CLKOUT. Read/write bus timings listed in Table 12 are shown in Figure 11, Figure 12, and Figure 13. S0 S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5 CLKOUT B7a CSn A[23:0] TSIZ[1:0] TS TIP B8 B6c OE R/W (H) B6b BS[3:0] B4 D[31:0] B5 TA (H) B13 B7 B11 B12 B7 B9 B0 B6a B8 B8 B6a B7a B9 B8 B9 B8 B9 B9 B8 B6b B7 TEA (H) Figure 11. Read/Write (Internally Terminated) SRAM Bus Timing MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 30 Freescale Semiconductor Preliminary Electrical Characteristics Figure 12 shows a bus cycle terminated by TA showing timings listed in Table 12. S0 CLKOUT B6a CSn A[23:0] TSIZ[1:0] B8 TS B8 TIP B6c OE B7 B9 B9 B8 B9 B7a S1 S2 S3 S4 S5 S0 S1 R/W (H) B6b BS[3:0] B4 D[31:0] B2a TA B1a TEA (H) B7 B5 Figure 12. SRAM Read Bus Cycle Terminated by TA Figure 13 shows an SRAM bus cycle terminated by TEA showing timings listed in Table 12. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 31 Preliminary Electrical Characteristics S0 CLKOUT B6a CSn A[23:0] TSIZ[1:0] TS B8 TIP B6c OE B8 S1 S2 S3 S4 S5 S0 S1 B7a B9 B8 B9 B9 B7 R/W (H) B6b BS[3:0] B7 D[31:0] TA (H) B1a TEA B2a Figure 13. SRAM Read Bus Cycle Terminated by TEA Figure 14 shows an SDRAM read cycle. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 32 Freescale Semiconductor Preliminary Electrical Characteristics 0 SD_CKE D1 D3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A[23:0] D2 Row Column D4 SD_SRAS D2 D4 SD_CAS1 D4 D2 SDWE D5 D6 D[31:0] D2 RAS[1:0] D2 D4 CAS[3:0] ACTV 1 NOP READ NOP NOP PALL DACR[CASL] = 2 Figure 14. SDRAM Read Cycle Table 13. SDRAM Timing NUM D1 D2 D3 D4 D5 D6 D71 D8 1 2 Characteristic CLKOUT high to SDRAM address valid CLKOUT high to SDRAM control valid CLKOUT high to SDRAM address invalid CLKOUT high to SDRAM control invalid SDRAM data valid to CLKOUT high CLKOUT high to SDRAM data invalid CLKOUT high to SDRAM data valid CLKOUT high to SDRAM data invalid Symbol tCHDAV tCHDCV tCHDAI tCHDCI tDDVCH tCHDDI tCHDDVW tCHDDIW Min — — 1.5 1.5 4 1.5 — 1.5 Max 9 9 — — — — 9 — Unit ns ns ns ns ns ns ns ns D7 and D8 are for write cycles only. Figure 15 shows an SDRAM write cycle. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 33 Preliminary Electrical Characteristics 0 SD_CKE D1 1 2 3 4 5 6 7 8 9 10 11 12 D3 A[23:0] D2 Row Column D4 SD_SRAS D2 SD_SCAS1 D2 D4 SD_WE D7 D[31:0] D2 D8 RAS[1:0] D2 D4 CAS[3:0] ACTV 1 DACR[CASL] NOP WRITE NOP PALL =2 Figure 15. SDRAM Write Cycle 7.7 NUM G1 G2 G3 G4 1 General Purpose I/O Timing Table 14. GPIO Timing1 Characteristic CLKOUT High to GPIO Output Valid CLKOUT High to GPIO Output Invalid GPIO Input Valid to CLKOUT High CLKOUT High to GPIO Input Invalid Symbol tCHPOV tCHPOI tPVCH tCHPI Min — 1.5 9 1.5 Max 10 — — — Unit ns ns ns ns GPIO pins include: INT, ETPU, UART, FlexCAN and Timer pins. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 34 Freescale Semiconductor Preliminary Electrical Characteristics CLKOUT G1 GPIO Outputs G2 G3 GPIO Inputs G4 Figure 16. GPIO Timing 7.8 Reset and Configuration Override Timing Table 15. Reset and Configuration Override Timing (VDD = 2.7 to 3.6 V, VSS = 0 V, TA = TL to TH)1 NUM R1 R2 R3 R4 R5 R6 R7 R8 1 2 Characteristic RESET Input valid to CLKOUT High CLKOUT High to RESET Input invalid RESET Input valid Time 2 Symbol tRVCH tCHRI tRIVT tCHROV tROVCV tCOS tCOH tROICZ Min 9 1.5 5 — 0 20 0 — Max — — — 10 — — — 1 Unit ns ns tCYC ns ns tCYC ns tCYC CLKOUT High to RSTOUT Valid RSTOUT valid to Config. Overrides valid Configuration Override Setup Time to RSTOUT invalid Configuration Override Hold Time after RSTOUT invalid RSTOUT invalid to Configuration Override High Impedance All AC timing is shown with respect to 50% VDD levels unless otherwise noted. During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns. CLKOUT R1 R3 R2 RESET R4 R4 RSTOUT R8 R5 R6 R7 Configuration Overrides*: (RCON, Override pins]) Figure 17. RESET and Configuration Override Timing Refer to the chip configuration module (CCM) chapter in the device’s reference manual for more information. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 35 Preliminary Electrical Characteristics 7.9 I2C Input/Output Timing Specifications Table 16. I2C Input Timing Specifications between I2C_SCL and I2C_SDA Num I1 I2 I3 I4 I5 I6 I7 I8 I9 Start condition hold time Clock low period I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time Characteristic Min 2 8 — 0 — 4 0 2 2 Max — — 1 — 1 — — — — Units tcyc tcyc ms ns ms tcyc ns tcyc tcyc Table 16 lists specifications for the I2C input timing parameters shown in Figure 18. Table 17 lists specifications for the I2C output timing parameters shown in Figure 18. Table 17. I2C Output Timing Specifications between I2C_SCL and I2C_SDA Num I11 I2 1 I3 2 I4 I5 1 3 Characteristic Start condition hold time Clock low period I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time Min 6 10 — 7 — 10 2 20 10 Max — — — — 3 — — — — Units tcyc tcyc µs tcyc ns tcyc tcyc tcyc tcyc I6 1 I7 1 I8 I9 1 1 1 Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 17. The I2C interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 17 are minimum values. 2 Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values. 3 Specified at a nominal 50-pF load. Figure 18 shows timing for the values in Table 16 and Table 17. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 36 Freescale Semiconductor Preliminary Electrical Characteristics I2 I6 I5 I2C_SCL I1 I4 I7 I8 I3 I9 I2C_SDA Figure 18. I2C Input/Output Timings 7.10 Fast Ethernet AC Timing Specifications MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V. 7.10.1 MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK) The receiver functions correctly up to a ERXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ERXCLK frequency. Table 18 lists MII receive channel timings. Table 18. MII Receive Signal Timing Num M1 M2 M3 M4 Characteristic ERXD[3:0], ERXDV, ERXER to ERXCLK setup ERXCLK to ERXD[3:0], ERXDV, ERXER hold ERXCLK pulse width high ERXCLK pulse width low Min 5 5 35% 35% Max — — 65% 65% Unit ns ns ERXCLK period ERXCLK period Figure 19 shows MII receive signal timings listed in Table 18. M3 ERXCLK (input) ERXD[3:0] (inputs) ERXDV ERXER M1 M2 M4 Figure 19. MII Receive Signal Timing Diagram MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 37 Preliminary Electrical Characteristics 7.10.2 MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK) Table 19 lists MII transmit channel timings. The transmitter functions correctly up to a ETXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ETXCLK frequency. Table 19. MII Transmit Signal Timing Num M5 M6 M7 M8 Characteristic ETXCLK to ETXD[3:0], ETXEN, ETXER invalid ETXCLK to ETXD[3:0], ETXEN, ETXER valid ETXCLK pulse width high ETXCLK pulse width low Min 5 — 35% 35% Max — 25 65% 65% Unit ns ns ETXCLK period ETXCLK period Figure 20 shows MII transmit signal timings listed in Table 19. M7 ETXCLK (input) M5 ETXD[3:0] (outputs) ETXEN ETXER M6 M8 Figure 20. MII Transmit Signal Timing Diagram 7.10.3 MII Async Inputs Signal Timing (ECRS and ECOL) Table 20. MII Async Inputs Signal Timing Table 20 lists MII asynchronous inputs signal timing. Num M9 Characteristic ECRS, ECOL minimum pulse width Min 1.5 Max — Unit ETXCLK period Figure 21 shows MII asynchronous input timings listed in Table 20. ECRS, ECOL M9 Figure 21. MII Async Inputs Timing Diagram MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 38 Freescale Semiconductor Preliminary Electrical Characteristics 7.10.4 MII Serial Management Channel Timing (EMDIO and EMDC) Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 21. MII Serial Management Channel Timing Num M10 M11 M12 M13 M14 M15 Characteristic EMDC falling edge to EMDIO output invalid (minimum propagation delay) EMDC falling edge to EMDIO output valid (max prop delay) EMDIO (input) to EMDC rising edge setup EMDIO (input) to EMDC rising edge hold EMDC pulse width high EMDC pulse width low Min 0 — 10 0 Max — 25 — — Unit ns ns ns ns 40% 60% MDC period 40% 60% MDC period Figure 22 shows MII serial management channel timings listed in Table 21. M14 M15 EMDC (output) M10 EMDIO (output) M11 EMDIO (input) M12 M13 Figure 22. MII Serial Management Channel Timing Diagram 7.11 32-Bit Timer Module AC Timing Specifications Table 22 lists timer module AC timings. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 39 Preliminary Electrical Characteristics Table 22. Timer Module AC Timing Specifications 0–66 MHz Name T1 T2 Characteristic Min DT0IN / DT1IN / DT2IN / DT3IN cycle time DT0IN / DT1IN / DT2IN / DT3IN pulse width 3 1 Max — — tCYC tCYC Unit 7.12 QSPI Electrical Specifications Table 23. QSPI Modules AC Timing Specifications Table 23 lists QSPI timings. Name QS1 QS2 QS3 QS4 QS5 QSPI_CS[1:0] to QSPI_CLK Characteristic Min 1 — 2 9 9 Max 510 10 — — — Unit tcyc ns ns ns ns QSPI_CLK high to QSPI_DOUT valid. QSPI_CLK high to QSPI_DOUT invalid. (Output hold) QSPI_DIN to QSPI_CLK (Input setup) QSPI_DIN to QSPI_CLK (Input hold) The values in Table 23 correspond to Figure 23. QS1 QSPI_CS[1:0] QSPI_CLK QS2 QSPI_DOUT QS3 QS4 QS5 QSPI_DIN Figure 23. QSPI Timing MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 40 Freescale Semiconductor Preliminary Electrical Characteristics 7.13 JTAG and Boundary Scan Timing Table 24. JTAG and Boundary Scan Timing Num J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 Characteristics1 TCLK Frequency of Operation TCLK Cycle Period TCLK Clock Pulse Width TCLK Rise and Fall Times Boundary Scan Input Data Setup Time to TCLK Rise Boundary Scan Input Data Hold Time after TCLK Rise TCLK Low to Boundary Scan Output Data Valid TCLK Low to Boundary Scan Output High Z TMS, TDI Input Data Setup Time to TCLK Rise TMS, TDI Input Data Hold Time after TCLK Rise TCLK Low to TDO Data Valid TCLK Low to TDO High Z TRST Assert Time TRST Setup Time (Negation) to TCLK High Symbol fJCYC tJCYC tJCW tJCRF tBSDST tBSDHT tBSDV tBSDZ tTAPBST tTAPBHT tTDODV tTDODZ tTRSTAT tTRSTST Min DC 4 26 0 4 26 0 0 4 10 0 0 100 10 Max 1/4 — — 3 — — 33 33 — — 26 8 — — Unit fsys/2 tCYC ns ns ns ns ns ns ns ns ns ns ns ns 1 JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it. J2 J3 J3 TCLK (input) J4 VIH VIL J4 Figure 24. Test Clock Input Timing MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 41 Preliminary Electrical Characteristics TCLK VIL J5 VIH J6 Data Inputs J7 Input Data Valid Data Outputs J8 Output Data Valid Data Outputs J7 Data Outputs Output Data Valid Figure 25. Boundary Scan (JTAG) Timing TCLK VIL J9 VIH J10 TDI TMS J11 Input Data Valid TDO J12 Output Data Valid TDO J11 TDO Output Data Valid Figure 26. Test Access Port Timing TCLK J14 TRST J13 Figure 27. TRST Timing 7.14 Debug AC Timing Specifications Table 25 lists specifications for the debug AC timing parameters shown in Figure 29. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 42 Freescale Semiconductor Preliminary Electrical Characteristics Table 25. Debug AC Timing Specification 150 MHz Num DE0 DE1 DE2 DE3 DE4 DE5 1 Characteristic Min PSTCLK cycle time PST valid to PSTCLK high PSTCLK high to PST invalid DSCLK cycle time DSI valid to DSCLK high DSCLK high to DSO invalid BKPT input data setup time to CLKOUT rise CLKOUT high to BKPT high Z — 4 1.5 5 1 4 4 0 Max 0.5 — — — — — — 10 Units tcyc ns ns tcyc tcyc tcyc ns ns DE6 DE7 1 DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT. Figure 28 shows real-time trace timing for the values in Table 25. PSTCLK DE0 DE1 DE2 PST[3:0] DDATA[3:0] Figure 28. Real-Time Trace AC Timing Figure 29 shows BDM serial port AC timing for the values in Table 25. MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 43 Documentation CLKOUT DE6 BKPT DE7 DE5 DSCLK DE3 DSI Current DE4 DSO Past Current Next Figure 29. BDM Serial Port AC Timing 8 Documentation Documentation regarding the MCF523x and their development support tools is available from a local Freescale distributor, a Freescale semiconductor sales office, the Freescale Literature Distribution Center, or through the Freescale web address at http://www.freescale.com/coldfire. 9 Document Revision History Table 26. Document Revision History Rev. No. 0 1 1.1 1.2 1.3 Preliminary release. • Updated Signal List table • Removed duplicate information in the module description sections. The information is all in the Signals Description Table. • Corrected Figure 8 pin 81. VDD instead of VSS • Changed instances of Motorola to Freescale • Removed detailed signal description section. This information can be found in the MCF5235RM Chapter 2. • Removed detailed feature list. This information can be found in the MCF5235RM Chapter 1. • Corrected Figure 2 pin F10. VSS instead of VDD. Change made in Table 2 as well. • Corrected Figure 8 pin 81. OVDD instead of VDD. Change made in Table 2 as well. • Cleaned up many inconsistencies within the pinout figure signal names • Corrected document IDs in Documentation Table • • • • Added values for ‘Maximum operating junction temperature’ in Table 8. Added typical values for ‘Core operating supply current (master mode)’ in Table 9. Added typical values for ‘Pad operating supply current (master mode)’ in Table 9. Removed unnecessary PLL specifications, #6-9, in Table 10. Substantive Change(s) The below table provides a revision history for this document. 1.4 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 44 Freescale Semiconductor Document Revision History Table 26. Document Revision History (continued) Rev. No. 1.5 Substantive Change(s) • Removed Overview, Features, Modes of Operation, and Address Multiplexing sections. This information can be found in the MCF5235 Reference Manual. • Removed list of documentation table in Section 8, “Documentation.”. An up-to-date list is always available on our web site. • Table 9: Changed core supply voltage (VDD) from 1.35-1.65 to 1.4-1.6. • Table 10: Changed max fICO frequency from “75 MHz” to “150 MHz”. • Added Section 5.2.1, “Supply Voltage Sequencing and Separation Cautions.” • Updated 196MAPBGA package dimensions, Figure 3. • Table 2: Changed SD_CKE pin location from 139 to “—” for the 160QFP device. Changed QSPI_CS1 pin location from “—” to 139 for the 160QFP device. • Figure 8: Changed pin 139 label from “SD_CKE/QSPI_CS1” to “QSPI_CS1/SD_CKE”. • Removed second sentence from Section 7.10.1, “MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK),” and Section 7.10.2, “MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK),” regarding no minimum frequency requirement for TXCLK. • Removed third and fourth paragraphs from Section 7.10.2, “MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK),” as this feature is not supported on this device. 1.6 1.7 1.8 2 MCF523x Integrated Microprocessor Hardware Specification, Rev. 2 Freescale Semiconductor 45 How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com D ocument Number: MCF5235EC Rev. 2 08/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.
MCF5235EC 价格&库存

很抱歉,暂时无法提供与“MCF5235EC”相匹配的价格&库存,您可以联系我们找货

免费人工找货