Freescale Semiconductor Data Sheet: Technical Data
Document Number: MCF5373DS Rev. 3, 04/2008
MCF5373
MAPBGA–256 17mm x 17mm MAPBGA–196 15mm x 15mm
MCF537x ColdFire® Microprocessor Data Sheet
Features • Version 3 ColdFire variable-length RISC processor core • System debug support • JTAG support for system level board testing • On-chip memories – 16-Kbyte unified write-back cache – 32-Kbyte dual-ported SRAM on CPU internal bus, accessible by core and non-core bus masters (e.g., DMA, FEC, and USB host and OTG) • Power management • Embedded Voice-over-IP (VoIP) system solution • SDR/DDR SDRAM Controller • Universal Serial Bus (USB) Host Controller • Universal Serial Bus (USB) On-the-Go (OTG) controller • Synchronous Serial Interface (SSI) • Fast Ethernet Controller (FEC) • Cryptography Hardware Accelerators • Three Universal Asynchronous Receiver Transmitters (UARTs) • I2C Module • Queued Serial Peripheral Interface (QSPI) • Pulse Width Modulation (PWM) module • Real Time Clock • Four 32-bit DMA Timers • Software Watchdog Timer • Four Periodic Interrupt Timers (PITs) • Phase Locked Loop (PLL) • Interrupt Controllers (x2) • DMA Controller • FlexBus (External Interface) • Chip Configuration Module (CCM) • Reset Controller • General Purpose I/O interface
QFP–160 28mm x 28mm
© Freescale Semiconductor, Inc., 2008. All rights reserved.
Table of Contents
1 2 3 MCF537x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . . .3 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . . .4 3.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 3.2 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 3.3 Supply Voltage Sequencing and Separation Cautions . .5 3.3.1 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . .5 3.3.2 Power Down Sequence . . . . . . . . . . . . . . . . . . . .5 Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .5 4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 4.2 Pinout—196 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .11 4.3 Pinout—160 QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .14 5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .15 5.5 Oscillator and PLL Electrical Characteristics . . . . . . . .16 5.6 External Interface Timing Characteristics . . . . . . . . . . .17 5.6.1 FlexBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 5.7 SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 5.7.1 SDR SDRAM AC Timing Characteristics . . . . . 5.7.2 DDR SDRAM AC Timing Characteristics . . . . . 5.8 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . 5.9 Reset and Configuration Override Timing . . . . . . . . . . 5.10 USB On-The-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.11 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 5.12 I2C Input/Output Timing Specifications . . . . . . . . . . . . 5.13 Fast Ethernet AC Timing Specifications . . . . . . . . . . . 5.13.1 MII Receive Signal Timing . . . . . . . . . . . . . . . . 5.13.2 MII Transmit Signal Timing . . . . . . . . . . . . . . . . 5.13.3 MII Async Inputs Signal Timing . . . . . . . . . . . . 5.13.4 MII Serial Management Channel Timing . . . . . 5.14 32-Bit Timer Module Timing Specifications . . . . . . . . . 5.15 QSPI Electrical Specifications . . . . . . . . . . . . . . . . . . . 5.16 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 5.17 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Package Dimensions—196 MAPBGA . . . . . . . . . . . . . 7.2 Package Dimensions—160 QFP . . . . . . . . . . . . . . . . . Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 22 25 26 27 27 28 30 30 30 31 31 32 32 33 35 35 38 39 40 42
4
5
6 7
8
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 2 Freescale Semiconductor
MCF537x Family Comparison
1
MCF537x Family Comparison
Table 1. MCF537x Family Configurations
Module ColdFire Version 3 Core with EMAC (Enhanced Multiply-Accumulate Unit) Core (System) Clock Peripheral and External Bus Clock (Core clock ÷ 3) Performance (Dhrystone/2.1 MIPS) Instruction/Data Cache Static RAM (SRAM) SDR/DDR SDRAM Controller USB 2.0 Host USB 2.0 On-the-Go Synchronous Serial Interface (SSI) Fast Ethernet Controller (FEC) Cryptography Hardware Accelerators Embedded Voice-over-IP System Solution UARTs I2C QSPI PWM Module Real Time Clock 32-bit DMA Timers Watchdog Timer (WDT) Periodic Interrupt Timers (PIT) Edge Port Module (EPORT) Interrupt Controllers (INTC) 16-channel Direct Memory Access (DMA) FlexBus External Interface General Purpose I/O (GPIO) JTAG - IEEE® 1149.1 Test Access Port Package • — — • • — — 3 • • — • 4 • 4 • 2 • • up to 46 • 160 QFP • • • • • — — 3 • • • • 4 • 4 • 2 • • up to 62 • 196 MAPBGA MCF5372 MCF5372L MCF53721 MCF5373 MCF5373L • up to 180 MHz up to 60 MHz up to 158 • • • up to 180 MHz up to 60 MHz up to 158 • up to 240 MHz up to 80 MHz up to 211
The following table compares the various device derivatives available within the MCF537x family.
up to 240 MHz up to 80 MHz up to 211 16 Kbytes 32 Kbytes • • • • • — • 3 • • • • 4 • 4 • 2 • • up to 62 • 196 MAPBGA
• — — • • • — 3 • • — • 4 • 4 • 2 • • up to 46 • 160 QFP
• • • • • • — 3 • • • • 4 • 4 • 2 • • up to 62 • 196 MAPBGA
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 3
Ordering Information
2
Ordering Information
Table 2. Orderable Part Numbers
Freescale Part Number MCF5372CAB180 MCF5372LCVM240 MCF53721CVM240 MCF5373CAB180 MCF5373LCVM240 Description MCF5372 RISC Microprocessor MCF5372 RISC Microprocessor MCF53721 RISC Microprocessor MCF5373 RISC Microprocessor MCF5373 RISC Microprocessor Package 160 QFP 196 MAPBGA 196 MAPBGA 160 QFP 196 MAPBGA Speed 180 MHz 240 MHz 240 MHz 180 MHz 240 MHz Temperature –40° to +85° C –40° to +85° C –40° to +85° C –40° to +85° C –40° to +85° C
3
3.1
Hardware Design Considerations
PLL Power Filtering
To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins. The filter shown in Figure 1 should be connected between the board VDD and the PLLVDD pins. The resistor and capacitors should be placed as close to the dedicated PLLVDD pin as possible.
10 Ω Board IVDD 10 µF 0.1 µF PLL VDD Pin
GND
Figure 1. System PLL VDD Power Filter
3.2
USB Power Filtering
To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 2 should be connected between the board EVDD or IVDD and each of the USBVDD pins. The resistor and capacitors should be placed as close to the dedicated USBVDD pin as possible.
0Ω Board EVDD 10 µF 0.1 µF USB VDD Pin
GND
Figure 2. USB VDD Power Filter
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 4 Freescale Semiconductor
Pin Assignments and Reset States
NOTE
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown.
3.3
Supply Voltage Sequencing and Separation Cautions
The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences. SDVDD (2.5V or 3.3V) and EVDD are specified relative to IVDD.
3.3.1
Power Up Sequence
If EVDD/SDVDD are powered up with IVDD at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after EVDD/SDVDD powers up before IVDD must powered up. IVDD should not lead the EVDD, SDVDD, or PLLVDD by more than 0.4 V during power ramp-up or there is high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 500 us to avoid turning on the internal ESD protection clamp diodes.
3.3.2
Power Down Sequence
If IVDD/PLLVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IVDD and PLLVDD power down before EVDD or SDVDD must power down. IVDD should not lag EVDD, SDVDD, or PLLVDD going low by more than 0.4 V during power down or there is undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies. The recommended power down sequence is as follows: 1. 2. Drop IVDD/PLLVDD to 0 V. Drop EVDD/SDVDD supplies.
4
4.1
Pin Assignments and Reset States
Signal Multiplexing
The following table lists all the MCF537x pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 7, “Package Information,” for package diagrams. For a more detailed discussion of the MCF537x signals, consult the MCF5373 Reference Manual (MCF5373RM).
NOTE
In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., A23), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.
NOTE
The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO default to their GPIO functionality.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 5
Pin Assignments and Reset States
Table 3. MCF5372/3 Signal Information and Muxing
MCF5372 MCF5373 160 QFP MCF5372L MCF53271 MCF5373L 196 MAPBGA Voltage Domain
Signal Name
GPIO
Alternate 1
Alternate 2
Reset RESET2 RSTOUT — — — — — — Clock EXTAL XTAL
2
Dir.1 I O
EVDD EVDD
95 86
K13 L12
— — — — —
— — — — —
— — — — — Mode Selection
I O I O O
EVDD EVDD EVDD EVDD SDVDD
91 93 — — 40
L14 K14 P13 N13 N1
EXTAL32K XTAL32K FB_CLK
RCON2 DRAMSEL
— —
— —
— — FlexBus
I I
EVDD EVDD
72 92
P8 J11
A[23:22] A[21:16] A[15:14] A[13:11] A10 A[9:0]
— — — — — —
FB_CS[5:4] — SD_BA[1:0]3 SD_A[13:11]3 — SD_A[9:0]3
— — — — — —
O O O O O O
SDVDD SDVDD
134, 133 132–127 126, 123 120–118 11 7 116–107
A9, B9 C9, D9, A10, B10, C10, D10 A11, B11 C11, A12, B12 A13 A14, B14, B13, C12, D11, C14, C13, D14–D12 J2, J1, K4–K1, L4, L3, N2, P1, P2, N3, L5, P3, N4, P4 F2, F1, G4–G1, H4, H3, L6, M6, N6, P6, L7, M7, N7 P7 J3, M5, H2, P5 M8 E14 L8
SDVDD SDVDD SDVDD SDVDD
D[31:16]
—
SD_D[31:16]4
—
I/O
SDVDD
27–34, 46–53
D[15:1]
—
FB_D[31:17]4
—
I/O
SDVDD
16–23, 57–63
D02 BE/BWE[3:0] OE TA2 R/W
— PBE[3:0] PBUSCTL3 PBUSCTL2 PBUSCTL1
FB_D[16]4 SD_DQM[3:0]3 — — —
— — — — —
I/O O O I O
SDVDD SDVDD SDVDD SDVDD SDVDD
64 26, 54, 24, 56 66 106 65
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 6 Freescale Semiconductor
Pin Assignments and Reset States
Table 3. MCF5372/3 Signal Information and Muxing (continued)
MCF5372 MCF5373 160 QFP 12 MCF5372L MCF53271 MCF5373L 196 MAPBGA E2 Voltage Domain
SDVDD
Signal Name
GPIO
Alternate 1
Alternate 2
TS
PBUSCTL0
DACK0
— Chip Selects
FB_CS[5:4] FB_CS[3:2] FB_CS1 FB_CS0
PCS[5:4] PCS[3:2] PCS1 —
— — — —
— — — — SDRAM Controller
Dir.1 O O O O O
SDVDD SDVDD SDVDD SDVDD
— — 135 136
D8, C8 B8, A8 D7 C7
SD_A10 SD_CKE SD_CLK SD_CLK SD_CS0 SD_DQS3 SD_DQS2 SD_SCAS SD_SRAS SD_SDR_DQS SD_WE
— — — — — — — — — — —
— — — — — — — — — — —
— — — — — — — — — — —
O O O O O O O O O O O
SDVDD SDVDD SDVDD SDVDD SDVDD SDVDD SDVDD SDVDD SDVDD SDVDD SDVDD
43 14 37 38 15 25 55 44 45 35 13
M2 F4 L1 M1 F3 H1 N5 M3 M4 L2 E1
External Interrupts Port5 IRQ72 IRQ62 IRQ52 IRQ42 IRQ32 IRQ22 IRQ1
2
PIRQ72 PIRQ62 PIRQ52 PIRQ42 PIRQ32 PIRQ22 PIRQ1
2
— USBHOST_ VBUS_EN USBHOST_ VBUS_OC SSI_MCLK — USB_CLKIN DREQ1
2
— — — — — — SSI_CLKIN FEC
I I I I I I I
EVDD EVDD
102 — — 101 — — 100
F13 F12 F11 G14 G13 G12 G11
EVDD
EVDD EVDD EVDD EVDD
FEC_MDC FEC_MDIO FEC_COL FEC_CRS
PFECI2C3 PFECI2C2 PFECH7 PFECH6
I2C_SCL2 I2C_SDA2 — —
— — — —
O I/O I I
EVDD EVDD EVDD EVDD
4 3 144 145
B1 A1 B6 A6
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 7
Pin Assignments and Reset States
Table 3. MCF5372/3 Signal Information and Muxing (continued)
MCF5372 MCF5373 160 QFP 146 147 148–151 152 153 154 155 157, 158, 1, 2 MCF5372L MCF53271 MCF5373L 196 MAPBGA A5 B5 C5, D5, A4, B4 C4 A3 B3 A2 D4, C3, B2, C2 Voltage Domain
EVDD EVDD EVDD EVDD EVDD EVDD EVDD EVDD
Signal Name
GPIO
Alternate 1
Alternate 2
FEC_RXCLK FEC_RXDV FEC_RXD[3:0] FEC_RXER FEC_TXCLK FEC_TXEN FEC_TXER FEC_TXD[3:0]
PFECH5 PFECH4 PFECH[3:0] PFECL7 PFECL6 PFECL5 PFECL4 PFECL[3:0]
— — — — — — — —
— — — — — — — —
USB Host & USB On-the-Go USBOTG_M USBOTG_P USBHOST_M USBHOST_P — — — — — — — — PWM PWM7 PWM5 PWM3 PWM1 PPWM7 PPWM5 PPWM3 PPWM1 — — DT3OUT DT2OUT — — DT3IN DT2IN SSI The SSI signals do not have dedicated bond pads. Please refer to the following pins for muxing: IRQ4 for SSI_MCLK, IRQ1 for SSI_CLKIN, U1CTS for SSI_BCLK, U1RTS for SSI_FS, U1RXD for SSI_RXD, and U1TXD for SSI_TXD I2C I2C_SCL2 I2C_SDA2 PFECI2C1 PFECI2C0 — — U2TXD U2RXD DMA DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing: TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1. QSPI QSPI_CS2 PQSPI5 U2RTS — O
EVDD
— — — —
Dir.1 I I I I I O O O I/O I/O I/O I/O
USB VDD USB VDD USB VDD USB VDD
— — — —
H14 H13 J13 J12
I/O I/O I/O I/O
EVDD EVDD EVDD EVDD
— — — —
E13 E12 E11 F14
I/O I/O
EVDD EVDD
— —
E3 E4
78
N12
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 8 Freescale Semiconductor
Pin Assignments and Reset States
Table 3. MCF5372/3 Signal Information and Muxing (continued)
MCF5372 MCF5373 160 QFP — — 77 75 76 MCF5372L MCF53271 MCF5373L 196 MAPBGA M12 M11 P12 P11 N11 Voltage Domain
EVDD EVDD EVDD EVDD EVDD
Signal Name
GPIO
Alternate 1
Alternate 2
QSPI_CS1 QSPI_CS0 QSPI_CLK QSPI_DIN QSPI_DOUT
PQSPI4 PQSPI3 PQSPI2 PQSPI1 PQSPI0
PWM7 PWM5 I2C_SCL U2CTS I2C_SDA
2 2
USBOTG_ PU_EN — — — — UARTs
U1CTS U1RTS U1TXD U1RXD U0CTS U0RTS U0TXD U0RXD
PUARTL7 PUARTL6 PUARTL5 PUARTL4 PUARTL3 PUARTL2 PUARTL1 PUARTL0
SSI_BCLK SSI_FS SSI_TXD2 SSI_RXD2 — — — —
— — — — — — — —
Dir.1 O O O I O I O O I I O O I
EVDD EVDD EVDD EVDD EVDD EVDD EVDD EVDD
143 142 141 140 85 84 83 80
C6 D6 A7 B7 M14 M13 N14 P14
Note: The UART2 signals are multiplexed on the QSPI, DMA Timers, and I2C pins. DMA Timers DT3IN DT2IN DT1IN DT0IN PTIMER3 PTIMER2 PTIMER1 PTIMER0 DT3OUT DT2OUT DT1OUT DT0OUT U2RXD U2TXD DACK1 DREQ02 BDM/JTAG6 JTAG_EN7 DSCLK PSTCLK BKPT DSI DSO DDATA[3:0] PST[3:0] ALLPST — — — — — — — — — — TRST2 TCLK2 TMS2 TDI2 TDO — — — — — — — — — — — — I I O I I O O O O
EVDD EVDD EVDD EVDD EVDD EVDD EVDD EVDD
I I I I
EVDD EVDD EVDD EVDD
8 7 6 5
D1 C1 D2 D3
96 88 70 87 90 74 — — 73
G10 K11 N8 L13 K12 L11 L9, M9, N9, P9 L10, M10, N10, P10 —
EVDD
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 9
Pin Assignments and Reset States
Table 3. MCF5372/3 Signal Information and Muxing (continued)
MCF5372 MCF5373 160 QFP MCF5372L MCF53271 MCF5373L 196 MAPBGA Voltage Domain
Signal Name
GPIO
Alternate 1
Alternate 2
Test TEST
7
—
—
— Power Supplies
Dir.1 I
EVDD
124
E10
EVDD
—
—
—
—
—
9, 69, 71, 81, 94, 103, 139, 160 36, 79, 97, 125, 156 99 11, 39, 41, 67, 105, 121, 137 — 10, 42, 68, 82, 89, 104, 122, 138, 159 98 —
E6, E7, F5–F7, G5, H10, J8, K8–K9 E5, J9, K5, K10 J10 E8–E9, F8–F10, J4–J7, H5, K6, K7 H12 G6–G9, H6–H9
IVDD PLL_VDD SD_VDD
— — —
— — —
— — —
— — —
— — —
USB_VDD VSS
— —
— —
— —
— —
— —
PLL_VSS USB_VSS
1 2 3 4 5 6 7
— —
— —
— —
— —
— —
H11 J14
Refers to pin’s primary function. Pull-up enabled internally on this signal for this mode. The SDRAM functions of these signals are not programmable by the user. They are dynamically switched by the processor when accessing SDRAM memory space and are included here for completeness. Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins. GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions. If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins. Pull-down enabled internally on this signal for this mode.
NOTE
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 10 Freescale Semiconductor
Pin Assignments and Reset States
4.2
1 A FEC_ MDIO FEC_ MDC
Pinout—196 MAPBGA
2 FEC_ TXER FEC_ TXD1 FEC_ TXD0 3 FEC_ TXCLK FEC_ TXEN FEC_ TXD2 4 FEC_ RXD1 FEC_ RXD0 FEC_ RXER FEC_ TXD3 5 FEC_ RXCLK FEC_ RXDV FEC_ RXD3 FEC_ RXD2 6 FEC_ CRS FEC_ COL 7 U1TXD 8 FB_CS2 9 A23 10 A19 11 A15 12 A12 13 A10 14 A9 A
The pinout for the MCF5373LCVM240, MCF5372LCVM240, and MCF53721CVM240 packages are shown below.
B
U1RXD
FB_CS3
A22/
A18
A14
A11
A7
A8
B
C
DT2IN
U1CTS
FB_CS0 FB_CS4
A21
A17
A13
A6
A3
A4
C
D
DT3IN
DT1IN
DT0IN
U1RTS
FB_CS1 FB_CS5
A20
A16
A5
A0
A1
A2
D
E
SD_WE
TS
I2C_SCL I2C_SDA
IVDD
EVDD
EVDD
SD_VDD SD_VDD
TEST
PWM3
PWM5
PWM7
TA
E
F
D14
D15
SD_CS0
SD_CKE
EVDD
EVDD
EVDD
SD_VDD SD_VDD SD_VDD
IRQ5
IRQ6
IRQ7
PWM1
F
G
D10
D11
D12
D13
EVDD
VSS
VSS
VSS
VSS
JTAG_ EN
IRQ1
IRQ2
IRQ3
IRQ4
G
H
SD_ DQS3
BE/ BWE1
D8
D9
SD_VDD
VSS
VSS
VSS
VSS
EVDD
PLL_ VSS DRAM SEL TRST/ DSCLK TDO/ DSO QSPI_ CS0 QSPI_ DOUT QSPI_ DIN 11
USBOTG _VDD
USB OTG_P
USB OTG_M
H
J
D30
D31
BE/ BWE3
SD_VDD SD_VDD SD_VDD SD_VDD
EVDD
IVDD
PLL_ VDD
USB USB USBHOST J HOST_P HOST_M _VSS K
K
D26
D27
D28
D29
IVDD
SD_VDD SD_VDD
EVDD
EVDD
IVDD
TDI/DSI
RESET
XTAL
L
SD_CLK
SD_DR_ DQS
D24
D25
D19
D7
D3
R/W
DDATA3
PST3
RSTOUT
TMS/ BKPT
EXTAL
L
M
SD_CLK SD_A10
SD_CAS
SD_RAS
BE/ BWE2 SD_ DQS2 BE/ BWE0 5
D6
D2
OE
DDATA2
PST2
QSPI_ CS1 QSPI_ CS2 QSPI_ CLK 12
U0RTS
U0CTS
M
N
FB_CLK
D23
D20
D17
D5
D1
TCLK/ PSTCLK
DDATA1
PST1
XTAL 32K EXTAL 32K 13
U0TXD
N
P
D22 1
D21 2
D18 3
D16 4
D4 6
D0 7
RCON 8
DDATA0 9
PST0 10
U0RXD 14
P
Figure 3. MCF5373LCVM240, MCF5372LCVM240, and MCF53721CVM240 Pinout Top View (196 MAPBGA)
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 11
Pin Assignments and Reset States
4.3
Pinout—160 QFP
FEC_RXD2 FEC_RXD3 FEC_RXDV FEC_RXCLK FEC_CRS FEC_COL U1CTS U1RTS U1TXD U1RXD 160 EVDD 159 VSS 158 FEC_TXD2 157 FEC_TXD3 156 IVDD 155 FEC_TXER 154 FEC_TXEN 153 FEC_TXCLK 152 FEC_RXER 151 FEC_RXD0 150 FEC_RXD1 EVDD VSS SD_VDD FB_CS0 FB_CS1 A23/FB_CS5 A22/FB_CS4 A21 A20 A19
The pinout for the MCF5372CAB180 and MCF5373CAB180 packages is shown below.
A18 A17 A16 A15 IVDD TEST A14 VSS SD_VDD 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 D2 D1 D0 R/W OE SD_VDD VSS EVDD TCLK/PSTCLK EVDD RCON ALL_PST TDO/DSO QSPI_DIN QSPI_DOUT QSPI_CLK QSPI_CS2 IVDD U0RXD SD_VDD VSS SD_A10 SD_CAS SD_RAS D23 D22 D21 D20 D19 D18 D17 D16 BE/BWE2 SD_DQS0/2 BE/BWE0 D7 D6 D5 D4 D3 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
FEC_TXD1 FEC_TXD0 FEC_MDIO FEC_MDC DT0IN DT1IN DT2IN DT3IN EVDD VSS SD_VDD TS SD_WE SD_CKE SD_CS0 D15 D14 D13 D12 D11 D10 D9 D8 BE/BWE1 SD_DQS1/3 BE/BWE3 D31 D30 D29 D28 D27 D26 D25 D24 SD_DR_DQS IVDD SD_CLK SD_CLK SD_VDD FB_CLK
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121
•
A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 TA SD_VDD VSS EVDD IRQ7 IRQ4 IRQ1 PLL_VDD PLL_VSS IVDD JTAG_EN RESET EVDD XTAL DRAMSEL EXTAL TDI/DSI VSS TRST/DSCLK TMS/BKPT RSTOUT U0CTS U0RTS U0TXD VSS EVDD
Figure 4. MCF5372CAB180 and MCF5373CAB180 Pinout Top View (160 QFP)
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 12 Freescale Semiconductor
Electrical Characteristics
5
Electrical Characteristics
This document contains electrical specification tables and reference timing diagrams for the MCF5373 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5373. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.
NOTE
The parameters specified in this MCU document supersede any values found in the module specifications.
5.1
Maximum Ratings
Table 4. Absolute Maximum Ratings1, 2
Rating Core Supply Voltage CMOS Pad Supply Voltage DDR/Memory Pad Supply Voltage PLL Supply Voltage Digital Input Voltage
3
Symbol IVDD EVDD SDVDD PLLVDD VIN ID TA (TL - TH) Tstg
Value – 0.5 to +2.0 – 0.3 to +4.0 – 0.3 to +4.0 – 0.3 to +2.0 – 0.3 to +3.6 25 – 40 to +85 – 55 to +150
Unit V V V V V mA °C °C
Instantaneous Maximum Current Single pin limit (applies to all pins) 3, 4, 5 Operating Temperature Range (Packaged) Storage Temperature Range
1
2
3
4 5
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.” Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (VSS or EVDD). Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values. All functional non-supply pins are internally clamped to VSS and EVDD. Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater than IDD, the injection current may flow out of EVDD and could result in external power supply going out of regulation. Ensure external EVDD load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 13
Electrical Characteristics
5.2
Thermal Characteristics
Table 5. Thermal Characteristics
Characteristic Symbol Four layer board (2s2p) Four layer board (2s2p) θJMA θJMA θJB θJC Ψjt Tj 256MBGA 371,2 341,2 273 16 4
4
196MBGA 421,2 381,2 323 19
4
160QFP 491,2 441,2 403 39 12
4
Unit °C/ W °C/ W °C/ W °C/ W °C/ W
o
Junction to ambient, natural convection Junction to ambient (@200 ft/min) Junction to board Junction to case Junction to top of package Maximum operating junction temperature
1
1,5
51,5 105
1,5
105
105
C
2 3 4 5
θJMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer’s system using the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
The average chip-junction temperature (TJ) in °C can be obtained from:
T J = T A + ( P D × Θ JMA )
Eqn. 1
Where:
TA QJMA PD PINT PI/O = = = = = Ambient Temperature, °C Package Thermal Resistance, Junction-to-Ambient, °C/W PINT + PI/O IDD × IVDD, Watts - Chip Internal Power Power Dissipation on Input and Output Pins — User Determined
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is:
K P D = -------------------------------( T J + 273 ° C )
Eqn. 2
Solving equations 1 and 2 for K gives: K = P D × ( T A × 273 ° C ) + Q JMA × P D
2
Eqn. 3
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively for any value of TA.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 14 Freescale Semiconductor
Electrical Characteristics
5.3
ESD Protection
Table 6. ESD Protection Characteristics1, 2
Characteristics ESD Target for Human Body Model
1
Symbol HBM
Value 2000
Units V
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
5.4
DC Electrical Specifications
Table 7. DC Electrical Specifications
Characteristic Symbol IVDD PLLVDD EVDD SDVDD 1.70 2.25 3.0 USBVDD EVIH EVIL EVOH EVOL SDVIH 1.35 1.7 2 SDVIL VSS – 0.3 VSS – 0.3 VSS – 0.3 SDVOH SDVDD – 0.35 2.1 2.4 — — — 0.45 0.8 0.8 V 3.0 2 VSS – 0.3 EVDD – 0.4 — 1.95 2.75 3.6 3.6 EVDD + 0.3 0.8 — 0.4 V V V V V V SDVDD + 0.3 SDVDD + 0.3 SDVDD + 0.3 V Min 1.4 1.4 3.0 Max 1.6 1.6 3.6 Unit V V V V
Core Supply Voltage PLL Supply Voltage CMOS Pad Supply Voltage SDRAM and FlexBus Supply Voltage Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) USB Supply Voltage CMOS Input High Voltage CMOS Input Low Voltage CMOS Output High Voltage IOH = –5.0 mA CMOS Output Low Voltage IOL = 5.0 mA SDRAM and FlexBus Input High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) SDRAM and FlexBus Input Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) SDRAM and FlexBus Output High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) IOH = –5.0 mA for all modes
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 15
Electrical Characteristics
Table 7. DC Electrical Specifications (continued)
Characteristic SDRAM and FlexBus Output Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) IOL = 5.0 mA for all modes Input Leakage Current Vin = VDD or VSS, Input-only pins Weak Internal Pull-Up Device Current, tested at VIL Max.1 Input Capacitance 2 All input-only pins All input/output (three-state) pins
1 2
Symbol SDVOL
Min — — —
Max 0.3 0.3 0.5 1.0 −130 7 7
Unit V
Iin IAPU Cin
−1.0 −10 — —
μA μA pF
Refer to the signals section for pins having weak internal pull-up devices. This parameter is characterized before qualification rather than 100% tested.
5.5
Oscillator and PLL Electrical Characteristics
Table 8. PLL Electrical Characteristics
Num
Characteristic PLL Reference Frequency Range Crystal reference External reference Core frequency CLKOUT Frequency2 Crystal Start-up Time3, 4 EXTAL Input High Voltage Crystal Mode5 All other modes (External, Limp) EXTAL Input Low Voltage Crystal Mode5 All other modes (External, Limp) PLL Lock Time 3, 6 Duty Cycle of XTAL Current Total on-chip stray capacitance on XTAL Total on-chip stray capacitance on EXTAL Crystal capacitive load Discrete load capacitance for XTAL reference 3
Symbol
Min. Value 12 12 488 x 10−6 163 x 10−6 — VXTAL + 0.4 EVDD/2 + 0.4 — — — 40 1
Max. Value 251 401 240 80 10 — — VXTAL – 0.4 EVDD/2 – 0.4 50000 60 3 1.5 1.5 See crystal spec 2*CL – CS_XTAL – CPCB_XTAL7
Unit
1
fref_crystal fref_ext fsys fsys/3 tcst VIHEXT VIHEXT VILEXT VILEXT tlpll tdc IXTAL CS_XTAL CS_EXTAL CL CL_XTAL
MHz MHz MHz MHz ms V V V V CLKIN % mA pF pF
2 3 4
5 7 8 9 10 11 12
pF
13
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 16 Freescale Semiconductor
Electrical Characteristics
Table 8. PLL Electrical Characteristics (continued)
Num Characteristic Discrete load capacitance for EXTAL 14 CLKOUT Period Jitter, 3, 4, 7, 8, 9 Measured at fSYS Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter Frequency Modulation Range Limit 3, 10, 11 (fsysMax must not be exceeded) VCO Frequency. fvco = (fref * PFD)/4 Cjitter — — Cmod fvco 0.8 350 10 TBD 2.2 540 % fsys/3 % fsys/3 %fsys/3 MHz Symbol CL_EXTAL Min. Value Max. Value 2*CL–CS_EXTAL – CPCB_EXTAL7 Unit pF
17
18 19
1
The maximum allowable input clock frequency when booting with the PLL enabled is 24MHz. For higher input clock frequencies the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency. 2 All internal registers retain data at 0 Hz. 3 This parameter is guaranteed by characterization before qualification rather than 100% tested. 4 Proper PC board layout procedures must be followed to achieve specifications. 5 This parameter is guaranteed by design rather than 100% tested. 6 This specification is the PLL lock time only and does not include oscillator start-up time. 7C PCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively. 8 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f sys. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval. 9 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod. 10 Modulation percentage applies over an interval of 10 μs, or equivalently the modulation rate is 100 KHz. 11 Modulation range determined by hardware design.
5.6
External Interface Timing Characteristics
NOTE
All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the FB_CLK output. All other timing relationships can be derived from these values. Timings listed in Table 9 are shown in Figure 6 and Figure 7.
Table 9 lists processor bus input timings.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 17
Electrical Characteristics
* The timings are also valid for inputs sampled on the negative clock edge. FB_CLK (80MHz) TSETUP THOLD 1.5V
Input Setup And Hold
Invalid
1.5V Valid 1.5V
Invalid
trise Input Rise Time Vh = VIH Vl = VIL tfall Input Fall Time Vh = VIH Vl = VIL
FB_CLK
B4 B5
Inputs
Figure 5. General Input Timing Requirements
5.6.1
FlexBus
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects (FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces. Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.
5.6.1.1
FlexBus AC Timing Characteristics
Table 9. FlexBus AC Timing Specifications
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock.
Num — FB1 FB2 FB3 Frequency of Operation Clock Period (FB_CLK)
Characteristic
Symbol fsys/3 tFBCK (tcyc) tFBCHDCV tFBCHDCI
Min — 12.5 — 1
Max 80 — 7.0 —
Unit Mhz ns ns ns
Address, Data, and Control Output Valid (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)1 Address, Data, and Control Output Hold (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)1, 2
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 18 Freescale Semiconductor
Electrical Characteristics
Table 9. FlexBus AC Timing Specifications (continued)
Num FB4 FB5 FB6 FB7
1
Characteristic Data Input Setup Data Input Hold Transfer Acknowledge (TA) Input Setup Transfer Acknowledge (TA) Input Hold
Symbol tDVFBCH tDIFBCH tCVFBCH tCIFBCH
Min 3.5 0 4 0
Max — — — —
Unit ns ns ns ns
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2, “DDR SDRAM AC Timing Characteristics” for SD_CS[3:0] timing. 2 The FlexBus supports programming an extension of the address hold. Please consult the Reference Manual for more information.
NOTE The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial. The address and data busses are muxed between the FlexBus and SDRAM controller. At the end of the read and write bus cycles the address signals are indeterminate.
S0 S1 S2 S3
FB_CLK
FB1 FB3 ADDR[23:0] FB2 ADDR[31:X] DATA FB4 FB5
FB_A[23:0] FB_D[31:X]
FB_R/W FB_TS FB_CSn, FB_OE, FB_BE/BWEn
FB6 FB7
FB_TA
Figure 6. FlexBus Read Timing
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 19
Electrical Characteristics
S0 S1 S2 S3
FB_CLK
FB1 FB3 ADDR[23:0] FB2
FB_A[23:0]
FB_D[31:X] FB_R/W FB_TS FB_CSn, FB_BE/BWEn FB_OE FB_TA
ADDR[31:X]
DATA
FB6 FB7
Figure 7. FlexBus Write Timing
5.7
SDRAM Bus
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.
5.7.1
SDR SDRAM AC Timing Characteristics
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must remain supplied to the device for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the SD_SDR_DQS signal and its usage. Table 10. SDR Timing Specifications
Symbol • SD1 SD3 SD4 SD5 SD6 SD7 SD8 Characteristic Frequency of Operation1 Clock Period Pulse Width
2
Symbol • tSDCK tSDCKH tSDCKH tSDCHACV tSDCHACI tDQSOV
6
Min TBD 12.5 0.45 0.45 — 2.0 — 0.25 × SD_CLK
Max 80 TBD 0.55 0.55 0.5 × SD_CLK + 1.0 — Self timed 0.40 × SD_CLK
Unit MHz ns SD_CLK SD_CLK ns ns ns ns
High3
Pulse Width Low4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA, SD_CS[1:0] - Output Valid Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA, SD_CS[1:0] - Output Hold SD_SDR_DQS Output Valid5 SD_DQS[3:0] input setup relative to SD_CLK
tDQVSDCH
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 20 Freescale Semiconductor
Electrical Characteristics
Table 10. SDR Timing Specifications (continued)
Symbol SD9 SD10 SD11 SD12 SD13
1 2 3 4 5 6 7 8
Characteristic SD_DQS[3:2] input hold relative to SD_CLK7 Data (D[31:0]) Input Setup relative to SD_CLK (reference only)8 Data Input Hold relative to SD_CLK (reference only) Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold
Symbol
Min
Max
Unit
tDQISDCH Does not apply. 0.5×SD_CLK fixed width. tDVSDCH tDISDCH tSDCHDMV tSDCHDMI 0.25 × SD_CLK 1.0 — 1.5 — — 0.75 × SD_CLK + 0.5 — ns ns ns ns
The FlexBus and SDRAM clock operates at the same frequency of the internal bus clock. See the PLL chapter of the MCF5373 Reference Manual for more information on setting the SDRAM clock rate. SD_CLK is one SDRAM clock in (ns). Pulse width high plus pulse width low cannot exceed min and max clock period. Pulse width high plus pulse width low cannot exceed min and max clock period. SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SD_DQS only pulses during a read cycle and one pulse occurs for each data beat. SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat. The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller. Because a read cycle in SDR mode uses the DQS circuit within the device, it is most critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup spec is provided as guidance.
SD1 SD_CLK
SD2
SD3 SD5 SD_CSn SD_RAS SD_CAS SD_WE A[23:0] SD_BA[1:0]
CMD
SD4
ROW
COL
SD11
SDDM SD12 D[31:0]
WD1
WD2
WD3
WD4
Figure 8. SDR Write Timing
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 21
Electrical Characteristics
SD1 SD_CLK SD_CSn, SD_RAS, SD_CAS, SD_WE A[23:0], SD_BA[1:0] SD5 SD3 SD2
CMD
SD4
3/4 MCLK Reference
ROW
COL
tDQS
SDDM SD6 SD_SDR_DQS
(Measured at Output Pin) Board Delay
SD8
SD_DQS[3:2]
(Measured at Input Pin) Board Delay
SD7
Delayed SD_CLK SD9 D[31:0] from Memories
WD1 WD2 WD3 WD4
NOTE: Data driven from memories relative to delayed memory clock.
SD10
Figure 9. SDR Read Timing
5.7.2
DDR SDRAM AC Timing Characteristics
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte lanes. Table 11. DDR Timing Specifications
Num • DD1 DD2 DD3 DD4 DD5 DD6 DD7 Characteristic Frequency of Operation Clock Period
1 2
Symbol tDDCK tDDSK tDDCKH tDDCKL tSDCHACV tSDCHACI tCMDVDQ tDQDMV
Min TBD 12.5 0.45 0.45 — 2.0 — 1.5
Max 80 TBD 0.55 0.55 0.5 × SD_CLK + 1.0 — 1.25 —
Unit Mhz ns SD_CLK SD_CLK ns ns SD_CLK ns
Pulse Width High
Pulse Width Low3 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] - Output Valid3 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] - Output Hold Write Command to first DQS Latching Transition Data and Data Mask Output Setup (DQ-->DQS) Relative to DQS (DDR Write Mode)4, 5
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 22 Freescale Semiconductor
Electrical Characteristics
Table 11. DDR Timing Specifications (continued)
Num DD8 DD9 DD10 Characteristic Data and Data Mask Output Hold (DQS-->DQ) Relative to DQS (DDR Write Mode)6 Input Data Skew Relative to DQS (Input Setup)7 Input Data Hold Relative to DQS
8
Symbol tDQDMI tDVDQ tDIDQ tDQLSDCH tDQRPRE tDQRPST tDQWPRE tDQWPST
Min 1.0 — 0.25 × SD_CLK + 0.5ns 0.5 0.9 0.4 0.25 0.4
Max — 1 — — 1.1 0.6
Unit ns ns ns ns SD_CLK SD_CLK SD_CLK
DD11 DQS falling edge from SDCLK rising (output hold time) DD12 DQS input read preamble width DD13 DQS input read postamble width DD14 DQS output write preamble width DD15 DQS output write postamble width
1 2 3 4
0.6
SD_CLK
5 6
7
8
SD_CLK is one SDRAM clock in (ns). Pulse width high plus pulse width low cannot exceed min and max clock period. Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature, and voltage variations. This specification relates to the required input setup time of today’s DDR memories. The processor’s output setup should be larger than the input setup of the DDR memories. If it is not larger, the input setup on the memory is in violation. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0]. The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge. This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0]. Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors). Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 23
Electrical Characteristics
DD1 SD_CLK
DD2
DD3 SD_CLK
DD5 SD_CSn,SD_WE, SD_RAS, SD_CAS DD4 A[13:0]
CMD
DD6
ROW
COL
DD7
DM3/DM2 DD8 SD_DQS3/SD_DQS2 DD7 D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DD8
Figure 10. DDR Write Timing
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 24 Freescale Semiconductor
Electrical Characteristics
DD1 SD_CLK
DD2
DD3 SD_CLK
DD5 SD_CSn,SD_WE, SD_RAS, SD_CAS DD4 A[13:0]
CL=2
CMD CL=2.5 ROW COL DQS Read Preamble
DD10 DD9
SD_DQS3/SD_DQS2 CL = 2
DQS Read Postamble
D[31:24]/D[23:16]
SD_DQS3/SD_DQS2 CL = 2.5
WD1 WD2 WD3 WD4 DQS Read DQS Read Preamble Postamble
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
Figure 11. DDR Read Timing
5.8
Num G1 G2 G3 G4
1
General Purpose I/O Timing
Table 12. GPIO Timing1
Characteristic FB_CLK High to GPIO Output Valid FB_CLK High to GPIO Output Invalid GPIO Input Valid to FB_CLK High FB_CLK High to GPIO Input Invalid Symbol tCHPOV tCHPOI tPVCH tCHPI Min — 1.5 9 1.5 Max 10 — — — Unit ns ns ns ns
GPIO pins include: IRQn, PWM, UART, and Timer pins.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 25
Electrical Characteristics
FB_CLK
G1
GPIO Outputs
G2
G3
GPIO Inputs
G4
Figure 12. GPIO Timing
5.9
Num R1 R2 R3 R4 R5 R6 R7 R8
1
Reset and Configuration Override Timing
Table 13. Reset and Configuration Override Timing
Characteristic RESET Input valid to FB_CLK High FB_CLK High to RESET Input invalid RESET Input valid Time
1
Symbol tRVCH tCHRI tRIVT tCHROV tROVCV tCOS tCOH tROICZ
Min 9 1.5 5 — 0 20 0 —
Max — — — 10 — — — 1
Unit ns ns tCYC ns ns tCYC ns tCYC
FB_CLK High to RSTOUT Valid RSTOUT valid to Config. Overrides valid Configuration Override Setup Time to RSTOUT invalid Configuration Override Hold Time after RSTOUT invalid RSTOUT invalid to Configuration Override High Impedance
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.
FB_CLK
R1 R3
RESET
R2
R4
RSTOUT
R4 R8 R5 R6 R7
Configuration Overrides*: (RCON, Override pins])
Figure 13. RESET and Configuration Override Timing
NOTE
Refer to the CCM chapter of the MCF5373 Reference Manual for more information.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 26 Freescale Semiconductor
Electrical Characteristics
5.10 5.11
USB On-The-Go SSI Timing Specifications
The MCF5373 device is compliant with industry standard USB 2.0 specification.
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync (SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below. Table 14. SSI Timing – Master Modes1
Num S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
1 2
Description SSI_MCLK cycle time2 SSI_MCLK pulse width high / low SSI_BCLK cycle time3 SSI_BCLK pulse width SSI_BCLK to SSI_FS output valid SSI_BCLK to SSI_FS output invalid SSI_BCLK to SSI_TXD valid SSI_BCLK to SSI_TXD invalid / high impedence SSI_RXD / SSI_FS input setup before SSI_BCLK SSI_RXD / SSI_FS input hold after SSI_BCLK
Symbol tMCLK
Min 8 × tSYS 45% 8 × tSYS 45% — -2 — -4 15 0
Max — 55% — 55% 15 — 15 — — —
Units ns tMCLK ns tBCLK ns ns ns ns ns ns
tBCLK
All timings specified with a capactive load of 25pF. SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (SYSCLK). 3 SSI_BCLK can be derived from SSI_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the minimum divider is 6. If the SSI_CLKIN input is used, the programmable dividers must be set to ensure that SSI_BCLK does not exceed 4 x fSYS.
Table 15. SSI Timing – Slave Modes1
Num S11 S12 S13 S14 S15 S16 S17 S18
1
Description SSI_BCLK cycle time SSI_BCLK pulse width high/low SSI_FS input setup before SSI_BCLK SSI_FS input hold after SSI_BCLK SSI_BCLK to SSI_TXD/SSI_FS output valid SSI_BCLK to SSI_TXD/SSI_FS output invalid/high impedence SSI_RXD setup before SSI_BCLK SSI_RXD hold after SSI_BCLK
Symbol tBCLK
Min 8 × tSYS 45% 10 3 — -2 10 3
Max — 55% — — 15 — — —
Units ns tBCLK ns ns ns ns ns ns
All timings specified with a capactive load of 25pF.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 27
Electrical Characteristics
S1
S2
S2
SSI_MCLK (Output)
S3
SSI_BCLK (Output)
S5
S4
S4 S6
SSI_FS (Output)
S9 S10 S7 S7 S8 S8
SSI_FS (Input)
SSI_TXD
S9 S10
SSI_RXD
Figure 14. SSI Timing – Master Modes
S11
SSI_BCLK (Input)
S15
S12 S12 S16
SSI_FS (Output)
S13
SSI_FS (Input)
S15
S14 S15 S16 S16
SSI_TXD
S17 S18
SSI_RXD
Figure 15. SSI Timing – Slave Modes
5.12
I2C Input/Output Timing Specifications
Table 16. I2C Input Timing Specifications between SCL and SDA
Num I1 I2 I3 I4 Characteristic Start condition hold time Clock low period I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time Min 2 8 — 0 Max — — 1 — Units tcyc tcyc ms ns
Table 16 lists specifications for the I2C input timing parameters shown in Figure 16.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 28 Freescale Semiconductor
Electrical Characteristics
Table 16. I2C Input Timing Specifications between SCL and SDA (continued)
Num I5 I6 I7 I8 I9 Characteristic I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time Min — 4 0 2 2 Max 1 — — — — Units ms tcyc ns tcyc tcyc
Table 17 lists specifications for the I2C output timing parameters shown in Figure 16. Table 17. I2C Output Timing Specifications between SCL and SDA
Num I11 I2 1 I3
2
Characteristic Start condition hold time Clock low period I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time
Min 6 10 — 7 — 10 2 20 10
Max — — — — 3 — — — —
Units tcyc tcyc µs tcyc ns tcyc tcyc tcyc tcyc
I4 1 I5 3 I6 I7 I8
1 1 1
I9 1
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 17. The I2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 17 are minimum values. 2 Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values. 3 Specified at a nominal 50-pF load.
Figure 16 shows timing for the values in Table 17 and Table 16.
I5 I2 I2C_SCL I1 I2C_SDA I4 I7 I8 I9 I6
I3
Figure 16. I2C Input/Output Timings
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 29
Electrical Characteristics
5.13
Fast Ethernet AC Timing Specifications
MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.
5.13.1
MII Receive Signal Timing
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the FEC_RXCLK frequency. Table 18 lists MII receive channel timings. Table 18. MII Receive Signal Timing
Num M1 M2 M3 M4 Characteristic FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold FEC_RXCLK pulse width high FEC_RXCLK pulse width low Min 5 5 35% 35% Max — — 65% 65% Unit ns ns FEC_RXCLK period FEC_RXCLK period
Figure 17 shows MII receive signal timings listed in Table 18.
M3
FEC_RXCLK (input)
M4
FEC_RXD[3:0] (inputs) FEC_RXDV FEC_RXER
M1 M2
Figure 17. MII Receive Signal Timing Diagram
5.13.2
MII Transmit Signal Timing
Table 19 lists MII transmit channel timings. The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the FEC_TXCLK frequency. Table 19. MII Transmit Signal Timing
Num M5 M6 M7 M8 Characteristic FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid FEC_TXCLK pulse width high FEC_TXCLK pulse width low Min 5 — 35% 35% Max — 25 65% 65% Unit ns ns FEC_TXCLK period FEC_TXCLK period
Figure 18 shows MII transmit signal timings listed in Table 19.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 30 Freescale Semiconductor
Electrical Characteristics
M7
FEC_TXCLK (input)
M5
FEC_TXD[3:0] (outputs) FEC_TXEN FEC_TXER
M6
M8
Figure 18. MII Transmit Signal Timing Diagram
5.13.3
MII Async Inputs Signal Timing
Table 20. MII Async Inputs Signal Timing
Table 20 lists MII asynchronous inputs signal timing.
Num M9
Characteristic FEC_CRS, FEC_COL minimum pulse width
Min 1.5
Max —
Unit FEC_TXCLK period
FEC_CRS FEC_COL M9
Figure 19. MII Async Inputs Timing Diagram
5.13.4
MII Serial Management Channel Timing
Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 21. MII Serial Management Channel Timing
Num M10 M11 M12 M13 M14 M15 Characteristic FEC_MDC falling edge to FEC_MDIO output invalid (minimum propagation delay) FEC_MDC falling edge to FEC_MDIO output valid (max prop delay) FEC_MDIO (input) to FEC_MDC rising edge setup FEC_MDIO (input) to FEC_MDC rising edge hold FEC_MDC pulse width high FEC_MDC pulse width low Min 0 — 10 0 Max — 25 — — Unit ns ns ns ns
40% 60% FEC_MDC period 40% 60% FEC_MDC period
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 31
Electrical Characteristics
M14
M15
FEC_MDC (output)
M10
FEC_MDIO (output)
M11
FEC_MDIO (input)
M12
M13
Figure 20. MII Serial Management Channel Timing Diagram
5.14
32-Bit Timer Module Timing Specifications
Table 22. Timer Module AC Timing Specifications
Name T1 T2 Characteristic DT0IN / DT1IN / DT2IN / DT3IN cycle time DT0IN / DT1IN / DT2IN / DT3IN pulse width Min 3 1 Max — — Unit tCYC tCYC
Table 22 lists timer module AC timings.
5.15
QSPI Electrical Specifications
Table 23. QSPI Modules AC Timing Specifications
Table 23 lists QSPI timings.
Name QS1 QS2 QS3 QS4 QS5 QSPI_CS[3:0] to QSPI_CLK
Characteristic
Min 1 — 2 9 9
Max 510 10 — — —
Unit tCYC ns ns ns ns
QSPI_CLK high to QSPI_DOUT valid. QSPI_CLK high to QSPI_DOUT invalid. (Output hold) QSPI_DIN to QSPI_CLK (Input setup) QSPI_DIN to QSPI_CLK (Input hold)
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 32 Freescale Semiconductor
Electrical Characteristics
QS1
QSPI_CS[3:0]
QSPI_CLK QS2 QSPI_DOUT QS3 QSPI_DIN QS4 QS5
Figure 21. QSPI Timing
5.16
Num J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14
1
JTAG and Boundary Scan Timing
Table 24. JTAG and Boundary Scan Timing
Characteristics1 TCLK Frequency of Operation TCLK Cycle Period TCLK Clock Pulse Width TCLK Rise and Fall Times Boundary Scan Input Data Setup Time to TCLK Rise Boundary Scan Input Data Hold Time after TCLK Rise TCLK Low to Boundary Scan Output Data Valid TCLK Low to Boundary Scan Output High Z TMS, TDI Input Data Setup Time to TCLK Rise TMS, TDI Input Data Hold Time after TCLK Rise TCLK Low to TDO Data Valid TCLK Low to TDO High Z TRST Assert Time TRST Setup Time (Negation) to TCLK High Symbol fJCYC tJCYC tJCW tJCRF tBSDST tBSDHT tBSDV tBSDZ tTAPBST tTAPBHT tTDODV tTDODZ tTRSTAT tTRSTST Min DC 4 26 0 4 26 0 0 4 10 0 0 100 10 Max 1/4 — — 3 — — 33 33 — — 26 8 — — Unit fsys/3 tCYC ns ns ns ns ns ns ns ns ns ns ns ns
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 33
Electrical Characteristics
J2 J3 VIH J3
TCLK (input)
J4
VIL J4
Figure 22. Test Clock Input Timing
TCLK
VIL J5
VIH J6
Data Inputs
J7
Input Data Valid
Data Outputs
J8
Output Data Valid
Data Outputs
J7
Data Outputs
Output Data Valid
Figure 23. Boundary Scan (JTAG) Timing
TCLK
VIL J9
VIH J10
TDI TMS
J11
Input Data Valid
TDO
J12
Output Data Valid
TDO
J11
TDO
Output Data Valid
Figure 24. Test Access Port Timing
TCLK
J14
TRST
J13
Figure 25. TRST Timing
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 34 Freescale Semiconductor
Current Consumption
5.17
Debug AC Timing Specifications
Table 25. Debug AC Timing Specification
Num D0 D1 D2 D3 D41 D5 D6
1
Table 25 lists specifications for the debug AC timing parameters shown in Figure 26.
Characteristic PSTCLK cycle time PSTCLK rising to PSTDDATA valid PSTCLK rising to PSTDDATA invalid DSI-to-DSCLK setup DSCLK-to-DSO hold DSCLK cycle time BKPT assertion time
Min 2 — 1.5 1 4 5 1
Max 2 3.0 — — — — —
Units tSYS = 1/fSYS ns ns PSTCLK PSTCLK PSTCLK PSTCLK
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.
D0
PSTCLK
D1 D2
PSTDDATA[7:0]
Figure 26. Real-Time Trace AC Timing
D5 DSCLK
D3
DSI
Current D4
Next
DSO
Past
Current
Figure 27. BDM Serial Port AC Timing
6
Current Consumption
All current consumption data is lab data measured on a single device using an evaluation board. Table 26 shows the typical power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 35
Current Consumption
Table 26. Current Consumption in Low-Power Modes1,2
Mode Stop Mode 3 (Stop 11)5 Voltage 3.3 V 1.5 V Stop Mode 2 (Stop 10)4 3.3 V 1.5 V Stop Mode 1(Stop 01)4 3.3 V 1.5 V Stop Mode 0 (Stop 00)4 3.3 V 1.5 V 3.3 V Wait/Doze 1.5 V 3.3 V Run 1.5 V
1 2 3 4 5
58 MHz (Typ)3 3.9 1.04 4.69 2.69 4.72 15.28 21.65 15.47 22.49 26.79 33.61 56.3
64 MHz (Typ)3 3.92 1.04 4.72 2.69 4.73 16.44 21.68 16.63 22.52 28.85 33.61 60.7
72 MHz (Typ)3 4.0 1.04 4.8 2.70 4.81 17.85 24.33 18.06 25.21 30.81 42.3 65.4
80 MHz (Typ)3 4.0 1.04 4.8 2.70 4.81 19.91 26.13 20.12 27.03 34.47 50.5 73.4
80 MHz (Peak)4 4.0 1.08 4.8 2.75 4.81 20.42
Units
mA 26.16 20.67 39.8 97.4 62.6 132.3
All values are measured with a 3.30V EVDD, 3.30V SDVDD and 1.5V IVDD power supplies. Tests performed at room temperature with pins configured for high drive strength. Refer to the Power Management chapter in the MCF537x Reference Manual for more information on low-power modes. All peripheral clocks except UART0, FlexBus, INTC0, reset controller, PLL, and edge port off before entering low power mode. All code executed from flash. All peripheral clocks on before entering low power mode. All code is executed from flash. See the description of the low-power control register (LCPR) in the MCF537x Reference Manual for more information on stop modes 0–3.
450 Power Consumption (mW) 400 350 300 250 200 150 100 50 0 58 64 72 fsys/3 (MHz)
Figure 28. Current Consumption in Low-Power Modes
Stop 0 - Flash Stop 1 - Flash Stop 2 - Flash Stop 3 - Flash Wait/Doze - Flash Run - Flash
80
80(peak)
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 36 Freescale Semiconductor
Current Consumption
Table 27. Typical Active Current Consumption Specifications1
fsys/3 Frequency Voltage 3.3V 1.333 MHz 1.5V 3.3V 2.666 MHz 1.5V 3.3V 58 MHz 1.5V 3.3V 64 MHz 1.5V 3.3V 72 MHz 1.5V 3.3V 80 MHz 1.5V
1
Typical2 Active (Flash) 7.73 2.87 8.57 4.37 40.10 65.90 44.40 69.50 53.6 74.6 63.0 79.6
Peak3 7.74 3.56 8.60 5.52 49.3 91.70
Unit
mA 54.0 97.0 63.7 104.7 73.7 112.9
All values are measured with a 3.30 V EVDD, 3.30 V SDVDD and 1.5 V IVDD power supplies. Tests performed at room temperature with pins configured for high drive strength. 2 CPU polling a status register. All peripheral clocks except UART0, FlexBus, INTC0, reset controller, PLL, and edge port disabled. 3 Peak current measured while running a while(1) loop with all modules active.
Figure 29 shows the estimated maximum power consumption.
300 250 200 150 100 50 0 0
Estimated Power Consumption vs. Core Frequency
Power Consumption (mW)
40
80 120 160 Core Frequency (MHz)
200
240
Figure 29. Estimated Maximum Power Consumption
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 37
Package Information
7
Package Information
NOTE
The mechanical drawings are the latest revisions at the time of publication of this document. The most up-to-date mechanical drawings can be found at the product summary page located at http://www.freescale.com/coldfire.
This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF537x devices.
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 38 Freescale Semiconductor
Package Information
7.1
X Y
Package Dimensions—196 MAPBGA
D Laser mark for pin 1 identification in this area NOTES: 1. Dimensions are in millimeters. 2. Interpret dimensions and tolerances per ASME Y14.5M, 1994. 3. Dimension B is measured at the maximum solder ball diameter, parallel to datum plane Z. 4. Datum Z (seating plane) is defined by the spherical crowns of the solder balls. 5. Parallelism measurement shall exclude any effect of mark on top surface of package.
Millimeters DIM Min Max
Figure 30 shows the MCF5373LCVM240, MCF5372LCVM240, and MCF53721CVM240 package dimensions.
M K
E
A A1 A2 b D E e S
1.32 1.75 0.27 0.47 1.18 REF 0.35 0.65 15.00 BSC 15.00 BSC 1.00 BSC 0.50 BSC
Top View
0.20
13X
M
e Metalized mark for pin 1 identification in this area
A B C
S
14 13 12 11 10 9 6 5 4 3 2 1
S
13X
D E F G H J K L M N
5 A A2 0.30 Z
e
A1
Z
4
0.15 Z
Detail K Rotated 90 ° Clockwise
3
196X
P
b 0.30 Z X Y 0.10 Z
Bottom View
View M-M
Figure 30. 196 MAPBGA Package Dimensions (Case No. 1128A-01)
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 39
Package Information
7.2
Package Dimensions—160 QFP
Figure 31 and Figure 32 show the MCF5372CAB180 and MCF5373CAB180 package dimensions.
Top View
Figure 31. 160QFP Package Dimensions (Sheet 1 of 2)
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 40 Freescale Semiconductor
Package Information
Figure 32. 160QFP Package Dimensions (Sheet 2 of 2)
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 41
Revision History
8
Revision History
Table 28. MCF5373DS Document Revision History
Rev. No. 0 0.1 0.2 • Initial release • Swapped pin locations PLL_VSS (J11->H11) and DRAMSEL (H11->J11) in Table 1. Figure 3 is correct. • Added not to Section 7, “Package Information.” • Added “top view” and “bottom view” where appropriate in mechanical drawings and pinout figures. • Figure 5: Corrected “FB_CLK (75MHz)” label to “FB_CLK (80MHz)” • Changed 160QFP pinouts in Figure 4 and Table 2: Removed IRQ3 pin, shifted pins 89–99 up one pin to 90–100. Pin 89 is now VSS. • Table 2: Rearranged GPIO signal names for FEC pins. • Removed ULPI specifications as the device does not support ULPI. • Updated thermal characteristic values in Table 7. • Updated DC electricals values in Table 7. • Updated Section 3.3, “Supply Voltage Sequencing and Separation Cautions” and subsections. • Updated and added Oscillator/PLL characteristics in Table 8. • Table 9: Swapped min/max for FB1; Removed FB8 & FB9. • Updated SDRAM write timing diagram, Figure 8. • Table 11: Added values for frequency of operation and DD1. • Replaced figure & table Section 5.11, “SSI Timing Specifications,” with slave & master mode versions. • Removed second sentence from Section 5.13.2, “MII Transmit Signal Timing,” regarding no minimum frequency requirement for TXCLK. • Removed third and fourth paragraphs from Section 5.13.2, “MII Transmit Signal Timing,” as this feature is not supported on this device. • Updated figure & table Section 5.17, “Debug AC Timing Specifications.” • Renamed & moved previous version’s Section 5.5 “Power Consumption” to Section 6, “Current Consumption.” Added additional real-world data to this section as well. • Added MCF53721 device information throughout: features list, family configuration table, ordering information table, signals description table, and relevant package diagram titles • Remove Footnote 1 from Table 11. • Changed document type from Advance Information to Technical Data. • Removed cryptography from Table 1 for the MCF53721 device. • Corrected D0 spec in Table 25 from 1.5 x tsys to 2 x tsys for min and max balues. • Updated FlexBus read and write timing diagrams in Figure 6 and Figure 7. • Corrected package information in Table 2 for MCF5373LCVM240 device from “256 MAPBGA” to “196 MAPBGA”. • Removed footnote 2 from the IRQ[7:1] alternate functions USBHOST VBUS_EN, USBHOST VBUS_OC, SSI_MCLK, USB_CLKIN, and SSI_CLKIN signals in Table 6. Substantive Changes Date of Release 11/2005 12/2005 3/2006
0.3
4/2006
1
7/2007
2
8/2007
3
4/2008
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 42 Freescale Semiconductor
Revision History
THIS PAGE INTENTIONALLY BLANK
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 43
How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.
D ocument Number: MCF5373DS
Rev. 3 04/2008