Freescale Semiconductor Data Sheet
MCF5475EC Rev. 2, 10/2004
MCF547x Integrated Microprocessor Electrical Characteristics
Applies to the MCF5470, MCF5471, MCF5472, MCF5473, MCF5474, and MCF5475
This chapter contains electrical specification tables and reference timing diagrams for the MCF547x microprocessor. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of the MCF547x. NOTE The parameters specified in this MPU document supersede any values found in the module specifications.
Table of Contents
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Maximum Ratings................................................1 Thermal Characteristics ......................................2 DC Electrical Specifications ................................3 Supply Voltage Sequencing and Separation Cautions ..............................................................5 Output Driver Capability and Loading .................6 PLL Timing Specifications ...................................7 Reset Timing Specifications ................................8 FlexBus................................................................8 SDRAM Bus ......................................................11 PCI Bus .............................................................17 Fast Ethernet AC Timing Specifications ............18 General Timing Specifications...........................21 I2C Input/Output Timing Specifications .............21 JTAG and Boundary Scan Timing .....................23 DSPI Electrical Specifications ...........................26 Timer Module AC Timing Specifications............26
1
Maximum Ratings
Table 1 lists maximum and minimum ratings for supply and operating voltages and storage temperature. Operating outside of these ranges may cause erratic behavior or damage to the processor.
© Freescale Semiconductor, Inc., 2004. All rights reserved.
Thermal Characteristics
Table 1. Absolute Maximum Ratings
Rating External (I/O pads) supply voltage (3.3-V power pins) Internal logic supply voltage Memory (I/O pads) supply voltage (2.5-V power pins) PLL supply voltage Internal logic supply voltage, input voltage level Storage temperature range Symbol EVDD IVDD SD VDD PLL VDD Vin Tstg Value –0.3 to +4.0 –0.5 to +2.0 –0.3 to +4.0 SDR Memory –0.3 to +2.8 DDR Memory –0.5 to +2.0 –0.5 to +3.6 –55 to +150 Units V V V V V
o
C
2
2.1
Thermal Characteristics
Operating Temperatures
Table 2. Operating Temperatures
Characteristic Maximum operating junction temperature Maximum operating ambient temperature Minimum operating ambient temperature Symbol Tj TAmax TAmin Value 105 DQS) Relative to DQS (DDR Write Mode) (tQS) Data and Data Mask Output Hold (DQS−>DQ) Relative to DQS (DDR Write Mode) (tQH) Input Data Skew Relative to DQS (Input Setup) (tIS) Input Data Hold Relative to DQS (tIH) DQS falling edge to SDCLK rising (output setup time) (tDSS) DQS falling edge from SDCLK rising (output hold time) (tDSH) DQS input read preamble width (tRPRE) DQS input read postamble width (tRPST) DQS output write preamble width (tWPRE) DQS output write postamble width (tWPST) 0.25 × SDCLK + 0.5ns 0.5 0.5 0.9 0.4 0.25 0.4 Min 83 7.52 0.45 0.45 — 2.0 — 1.0 1.0 Max 133 12 0.55 0.55 0.5 × SDCLK + 1.0 ns — 1.25 — — 1 — — — 1.1 0.6 — 0.6 Unit MHz ns SDCLK SDCLK ns ns SDCLK ns ns ns ns ns ns SDCLK SDCLK SDCLK SDCLK
6 7 8
Notes
1 2 3 4 5
9 10
NOTES: 1 The frequency of operation is either 2x or 4x the CLKIN frequency of operation. The MCF547X supports a single external reference clock (CLKIN). This signal defines the frequency of operation for both FlexBus and PCI, but SDRAM clock operates at the same frequency as the internal bus clock. Please see Section 2.2.6, “Reset Configuration Pins.” 2 SDCLK is one memory clock in (ns). 3 Pulse width high plus pulse width low cannot exceed max clock period. 4 Pulse width high plus pulse width low cannot exceed max clock period. 5 Command output valid should be 1/2 the memory bus clock (SDCLK) plus some minor adjustments for process, temperature, and voltage variations. 6 This specification relates to the required input setup time of today’s DDR memories. SDDATA[31:24] is relative to SDDQS3, SDDATA[23:16] is relative to SDDQS2, SDDATA[15:8] is relative to SDDQS1, and SDDATA[7:0] is relative SDDQS0. 7 The first data beat will be valid before the first rising edge of SDDQS and after the SDDQS write preamble. The remaining data beats will be valid for each subsequent SDDQS edge.
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 Freescale Semiconductor 15
SDRAM Bus
8
This specification relates to the required hold time of today’s DDR memories. SDDATA[31:24] is relative to SDDQS3, SDDATA[23:16] is relative to SDDQS2, SDDATA[15:8] is relative to SDDQS1, and SDDATA[7:0] is relative SDDQS0. 9 Data input skew is derived from each SDDQS clock edge. It begins with a SDDQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors). 10 Data input hold is derived from each SDDQS clock edge. It begins with a SDDQS transition and ends when the first data line becomes invalid.
DD1 SDCLK0
DD2
DD3 SDCLK1
SDCLK0
SDCLK1 DD5 SDCSn,SDWE, RAS, CAS DD4 SDADDR, SDBA[1:0]
CMD
DD6
ROW
COL
DD7
SDDM DD8 SDDQS DD7 SDDATA
WD1 WD2 WD3 WD4
DD8
Figure 11. DDR Write Timing
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 16 Freescale Semiconductor
PCI Bus
DD1 SDCLK0
DD2
DD3 SDCLK1
SDCLK0
SDCLK1 DD5 SDCSn,SDWE, RAS, CAS DD4 SDADDR, SDBA[1:0]
CL=2
CMD CL=2.5 ROW COL DQS Read Preamble
DD10 DD9
SDDQS
DQS Read Postamble
SDDATA
SDDQS
WD1 WD2 WD3 WD4 DQS Read DQS Read Preamble Postamble WD1 WD2 WD3 WD4
SDDATA
Figure 12. DDR Read Timing
10
PCI Bus
Table 14. PCI Timing Specifications
Num Frequency of Operation P1 P2 P3 P4 P5 Clock Period (tCK) Address, Data, and Command (33< PCI ≤ 66 Mhz)—Input Setup (tIS) Address, Data, and Command (0 < PCI ≤ 33 Mhz)—Input Setup (tIS) Address, Data, and Command (33-66 Mhz) - Output Valid (tDV) Address, Data, and Command (0 -33 Mhz) - Output Valid (tDV) Characteristic Min 30 15.15 3.0 7.0 — — Max 66 33.33 — — 6.0 11.0 Unit MHz ns ns ns ns ns
3
The PCI bus on the MCF547x is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Please refer to the PCI 2.2 spec for a more detailed timing analysis.
Notes
1 2
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 Freescale Semiconductor 17
Fast Ethernet AC Timing Specifications
Table 14. PCI Timing Specifications (continued)
Num P6 P7 P8 P9 P10 P11 P12
1
Characteristic PCI signals (0 - 66 Mhz) - Output Hold (tDH) PCI signals (0 - 66 Mhz) - Input Hold (tIH) PCI REQ/GNT (33 < PCI ≤ 66Mhz) - Output valid (tDV) PCI REQ/GNT (0 < PCI ≤ 33Mhz) - Output valid (tDV) PCI REQ/GNT (33 < PCI ≤ 66Mhz) - Input Setup (tIS) PCI REQ (0 < PCI ≤ 33Mhz) - Input Setup (tIS) PCI GNT (0 < PCI ≤ 33Mhz) - Input Setup (tIS)
Min 0 0 — — — 12 10
Max — — 6 12 5 — —
Unit ns ns ns ns ns ns ns
Notes
4 5 6
NOTES: Please see Section 2.2.6, “Reset Configuration Pins,” for more information on setting the PCI clock rate. Also specific guidelines may need to be followed when operating the system PLL below certain frequencies. 2 Max cycle rate is determined by CLKIN and how the user has the system PLL configured. 3 All signals defined as PCI bused signals. Does not include PTP (point-to-point) signals. 4 PCI 2.2 spec does not require an output hold time. Although the MCF547X may provide a slight amount of hold, it is not required or guaranteed. 5 PCI 2.2 spec requires zero input hold. 6 These signals are defined at PTP (Point-to-point) in the PCI 2.2 spec.
P1
CLKIN
P4 P6
Output Valid/Hold
Output Valid
P2
Input Setup/Hold
Input Valid
P7
Figure 13. PCI Timing
11
Fast Ethernet AC Timing Specifications
11.1 MII/7-WIRE Interface Timing Specs
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the EMAC_10_100 I/O signals. The following timing specs meet the requirements for both MII and 7-Wire style interfaces for a range of transceiver devices. If this interface is to be used with a specific transceiver device the timing specs may be altered to match that specific transceiver.
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 18 Freescale Semiconductor
Fast Ethernet AC Timing Specifications
Table 15. MII Receive Signal Timing
Num M1 M2 M3 M4 Characteristic RXD[3:0], RXDV, RXER to RXCLK setup RXCLK to RXD[3:0], RXDV, RXER hold RXCLK pulse width high RXCLK pulse width low Min 5 5 35% 35% Max — — 65% 65% Unit ns ns RXCLK period RXCLK period
M3 RXCLK (Input) M1 RXD[3:0] (Inputs) RXDV, RXER M2 M4
Figure 14. MII Receive Signal Timing Diagram
11.2 MII Transmit Signal Timing
Table 16. MII Transmit Signal Timing
Num M5 M6 M7 M8 Characteristic TXCLK to TXD[3:0], TXEN, TXER invalid TXCLK to TXD[3:0], TXEN, TXER valid TXCLK pulse width high TXCLK pulse width low Min 0 — 35% 35% Max — 25 65% 65% Unit ns ns TXCLK period TXCLK period
M7 TXCLK (Input) M5 TXD[3:0] (Outputs) TXEN, TXER M6 M8
Figure 15. MII Transmit Signal Timing Diagram
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 Freescale Semiconductor 19
Fast Ethernet AC Timing Specifications
11.3 MII Async Inputs Signal Timing (CRS, COL)
Table 17. MII Transmit Signal Timing
Num M9 Characteristic CRS, COL minimum pulse width Min 1.5 Max — Unit TX_CLK period
CRS, COL M9
Figure 16. MII Async Inputs Timing Diagram
11.4 MII Serial Management Channel Timing (MDIO,MDC)
Table 18. MII Serial Management Channel Signal Timing
Num M10 M11 M12 M13 M14 M15 Characteristic MDC falling edge to MDIO output invalid (min prop delay) MDC falling edge to MDIO output valid (max prop delay) MDIO (input) to MDC rising edge setup MDIO (input) to MDC rising edge hold MDC pulse width high MDC pulse width low Min 0 — 10 0 40% 40% Max — 25 — — 60% 60% Unit ns ns ns ns MDC period MDC period
M14 MDC (Output) M10 MDIO (Output) M12 MDIO (Input) M13
M15
M11
Figure 17. MII Serial Management Channel TIming Diagram
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 20 Freescale Semiconductor
General Timing Specifications
12
General Timing Specifications
Table 19. General AC Timing Specifications
Table 19 lists timing specifications for the GPIO, PSC, DREQ, DACK, and external interrupts.
Name G1 G2 G3
Characteristic CLKIN high to signal output valid CLKIN high to signal invalid (output hold) Signal input pulse width
Min — 0 2
Max 2 — —
Unit PSTCLK ns PSTCLK
13
I2C Input/Output Timing Specifications
Table 20. I2C Input Timing Specifications between SCL and SDA
Num I1 I2 I3 I4 I5 I6 I7 I8 I9 Characteristic Start condition hold time Clock low period SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time Min 2 8 — 0 — 4 0 2 2 Max — — 1 — 1 — — — — Units Bus clocks Bus clocks mS ns mS Bus clocks ns Bus clocks Bus clocks
Table 20 lists specifications for the I2C input timing parameters shown in Figure 18.
Table 21 lists specifications for the I2C output timing parameters shown in Figure 18.
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 Freescale Semiconductor 21
I2C Input/Output Timing Specifications
Table 21. I2C Output Timing Specifications between SCL and SDA
Num I11 I2 1 I3 I4 I5 I6 I7 I8
2 1 3 1 1 1
Characteristic Start condition hold time Clock low period SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time
Min 6 10 — 7 — 10 2 20 10
Max — — — — 3 — — — —
Units Bus clocks Bus clocks µS Bus clocks ns Bus clocks Bus clocks Bus clocks Bus clocks
I9 1
NOTES: 1 Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 21. The I2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 21 are minimum values. 2 Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values. 3 Specified at a nominal 50-pF load.
Figure 18 shows timing for the values in Table 20 and Table 21.
I2 I6 SCL I1 I4 SDA I7 I8 I3 I9 I5
Figure 18. I2C Input/Output Timings
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 22 Freescale Semiconductor
JTAG and Boundary Scan Timing
14
Num J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14
JTAG and Boundary Scan Timing
Table 22. JTAG and Boundary Scan Timing
Characteristics1 TCLK Frequency of Operation TCLK Cycle Period TCLK Clock Pulse Width TCLK Rise and Fall Times Boundary Scan Input Data Setup Time to TCLK Rise Boundary Scan Input Data Hold Time after TCLK Rise TCLK Low to Boundary Scan Output Data Valid TCLK Low to Boundary Scan Output High Z TMS, TDI Input Data Setup Time to TCLK Rise TMS, TDI Input Data Hold Time after TCLK Rise TCLK Low to TDO Data Valid TCLK Low to TDO High Z TRST Assert Time TRST Setup Time (Negation) to TCLK High Symbol fJCYC tJCYC tJCW tJCRF tBSDST tBSDHT tBSDV tBSDZ tTAPBST tTAPBHT tTDODV tTDODZ tTRSTAT tTRSTST Min DC 2 15.15 0.0 5.0 24.0 0.0 0.0 5.0 10.0 0.0 0.0 100.0 10.0 Max 10 — — 3.0 — — 15.0 15.0 — — 15.0 15.0 — — Unit MHz tCK ns ns ns ns ns ns ns ns ns ns ns ns
NOTES: 1 MTMOD is expected to be a static signal. Hence, it is not associated with any timing
J2 J3 TCLK (Input) VIH VIL J4 J4 J3
Figure 19. Test Clock Input Timing
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 Freescale Semiconductor 23
JTAG and Boundary Scan Timing
TCLK
VIL 5
VIH 6
Data Inputs 7 Data Outputs 8 Data Outputs 7 Data Outputs
Input Data Valid
Output Data Valid
Output Data Valid
Figure 20. Boundary Scan (JTAG) Timing
TCLK
VIL 9
VIH 10
TDI, TMS, BKPT 11 TDO 12 TDO 11 TDO
Input Data Valid
Output Data Valid
Output Data Valid
Figure 21. Test Access Port Timing
TCLK 14 TRST 13
Figure 22. TRST Timing Debug AC Timing Specifications
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 24 Freescale Semiconductor
JTAG and Boundary Scan Timing
Table 23 lists specifications for the debug AC timing parameters shown in Figure 24.
Table 23. Debug AC Timing Specification
66 MHz Num D1 D2 D3 D4 1 D5 Characteristic Min PSTDDATA to PSTCLK setup PSTCLK to PSTDDATA hold DSI-to-DSCLK setup DSCLK-to-DSO hold DSCLK cycle time 4.5 4.5 1 4 5 Max ns ns PSTCLKs PSTCLKs PSTCLKs Units
NOTES: 1 DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.
Figure 23 shows real-time trace timing for the values in Table 23.
PSTCLK D1 PSTDDATA[7:0] D2
Figure 23. Real-Time Trace AC Timing
Figure 24 shows BDM serial port AC timing for the values in Table 23.
D5 DSCLK D3 DSI Current D4 DSO Past Current Next
Figure 24. BDM Serial Port AC Timing
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 Freescale Semiconductor 25
DSPI Electrical Specifications
15
DSPI Electrical Specifications
Table 24. DSPI Modules AC Timing Specifications
Table 24 lists DSPI timings.
Name DS1 DS2 DS3 DS4 DS5 DSPI_CS[3:0] to DSPI_CLK
Characteristic
Min 1 × tck — 2 10 10
Max 510 × tck 12 — — —
Unit ns ns ns ns ns
DSPI_CLK high to DSPI_DOUT valid. DSPI_CLK high to DSPI_DOUT invalid. (Output hold) DSPI_DIN to DSPI_CLK (Input setup) DSPI_DIN to DSPI_CLK (Input hold)
The values in Table 24 correspond to Figure 25.
DSPI_CS[3:0] DS1 DSPI_CLK DS2 DSPI_DOUT DS3 DSPI_DIN DS4 DS5
Figure 25. DSPI Timing
16
Timer Module AC Timing Specifications
Table 25. Timer Module AC Timing Specifications
0–66 MHz Name T1 T2 Characteristic Min TIN0 / TIN1 / TIN2 / TIN3 cycle time TIN0 / TIN1 / TIN2 / TIN3 pulse width 3 1 Max — — PSTCLK PSTCLK Unit
Table 25 lists timer module AC timings.
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 26 Freescale Semiconductor
THIS PAGE INTENTIONALLY LEFT BLANK
MCF547x Integrated Microprocessor Electrical Characteristics, Rev. 2 Freescale Semiconductor 27
How to Reach Us:
Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-0047, Japan 0120 191014 or +81 3 3440 3569 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.© Freescale Semiconductor, Inc. 2004. All rights reserved. MCF5475EC Rev. 2 10/2004