Freescale Semiconductor Data Sheet: Advance Information
Document Number: IMX53AEC Rev. 2, 5/2011
MCIMX53xA
i.MX53xA Automotive and Infotainment Applications Processors
Package Information Plastic Package Case TEPBGA-2 19 x 19 mm, 0.8 mm pitch
Ordering Information See Table 1 on page 3
1
Introduction
1.
The MCIMX53xA (i.MX53xA) automotive infotainment processor is Freescale Semiconductor’s latest addition to a growing family of multimedia-focused products offering high performance processing with a high degree of functional integration aimed at the growing automotive infotainment, telematics, HMI, and display-based cluster markets. This device includes 3D and 2D graphics processors, 1080i/p video processing, and dual display, and provides a variety of interfaces. The i.MX53xA processor features Freescale’s advanced implementation of the ARM™ core, which operates at clock speeds as high as 800 MHz and interfaces with DDR2/LVDDR2-800, LPDDR2-800, or DDR3-800 DRAM memories. This device is well suited for graphics rendering for HMI, navigation, high performance speech processing with large databases, video processing and display, audio playback, and many other applications. The flexibility of the i.MX53xA architecture allows for its use in a wide variety of applications. As the heart of
2. 3. 4.
5.
6.
7.
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1. Special Signal Considerations . . . . . . . . . . . . . . . 17 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1. Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . 17 4.2. Power Supplies Requirements and Restrictions . 24 4.3. I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4. Output Buffer Impedance Characteristics . . . . . . 34 4.5. I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 38 4.6. System Modules Timing . . . . . . . . . . . . . . . . . . . . 45 4.7. External Peripheral Interfaces Parameters . . . . . . 67 4.8. XTAL Electrical Specifications . . . . . . . . . . . . . . 148 Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 149 5.1. Boot Mode Configuration Pins . . . . . . . . . . . . . . 149 5.2. Boot Devices Interfaces Allocation . . . . . . . . . . . 150 5.3. Power setup during Boot . . . . . . . . . . . . . . . . . . 151 Package Information and Contact Assignments . . . . . 152 6.1. 19x19 mm Package Information . . . . . . . . . . . . . 152 6.2. 19 x 19 mm, 0.8 Pitch Ball Map . . . . . . . . . . . . . 171 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
This document contains information on a new product. Specifications and information herein are subject to change without notice.
© 2011 Freescale Semiconductor, Inc. All rights reserved.
Introduction
the application chipset, the i.MX53xA processor provides all the interfaces for connecting peripherals, such as WLAN, Bluetooth™, GPS, hard drive, camera sensors, and dual displays. Features of the i.MX53xA processor include the following: • Multilevel memory system—The multilevel memory system of the i.MX53xA is based on the L1 instruction and data caches, L2 cache, internal and external memory. The i.MX53xA supports many types of external memory devices, including DDR2, low voltage DDR2, LPDDR2, DDR3, NOR Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNAND™, and managed NAND including eMMC up to rev 4.4. • Smart speed technology—The i.MX53xA device has power management throughout the IC that enables the rich suite of multimedia features and peripherals to consume minimum power in both active and various low power modes. Smart speed technology enables the designer to deliver a feature-rich product requiring levels of power far lower than industry expectations. • Multimedia powerhouse—The multimedia performance of the i.MX53xA processor ARM core is boosted by a multilevel cache system, Neon (including advanced SIMD, 32-bit single-precision floating point support) and vector floating point coprocessors. The system is further enhanced by a multistandard hardware video codec, autonomous image processing unit (IPU), and a programmable smart DMA (SDMA) controller. • Powerful graphics acceleration— The i.MX53xA processors provide two independent, integrated graphics processing units: an OpenGL® ES 2.0 3D graphics accelerator (33 Mtri/s, 200 Mpix/s, and 800 Mpix/s z-plane performance) and an OpenVG™ 1.1 2D graphics accelerator (200 Mpix/s). • Interface flexibility—The i.MX53xA processor supports connection to a variety of interfaces, including LCD controller for two displays and CMOS sensor interface, high-speed USB on-the-go with PHY, plus three high-speed USB hosts, multiple expansion card ports (high-speed MMC/SDIO host and others), 10/100 Ethernet controller, and a variety of other popular interfaces (PATA, UART, I2C, and I2S serial audio, among others). • Automotive environment support—Includes interfaces such as two CAN ports, an MLB port, an ESAI audio interface, and an asynchronous sample rate converter for multichannel/multisource audio. • Advanced security—The i.MX53xA processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure software downloads. For detailed information about the i.MX53xA security features contact a Freescale representative. The i.MX53xA application processor is a follow-on to the i.MX51xA, with improved performance, power efficiency, and multimedia capabilities.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 2 Freescale Semiconductor
Introduction
1.1
Ordering Information
Table 1. Ordering Information
Part Number1 Mask Set N78C N78C N78C Features 800 MHz, full feature set 800 MHz, full feature set 800 MHz, no hardware video codecs Notes — — — Package2 19 x 19 mm, 0.8 mm pitch BGA Case TEPBGA-2 19 x 19 mm, 0.8 mm pitch BGA Case TEPBGA-2 19 x 19 mm, 0.8 mm pitch BGA Case TEPBGA-2
Table 1 provides ordering information.
MCIMX536AVV8C PCIMX536AVV8C MCIMX534AVV8C
1 2
Part numbers with a PC prefix indicate non production engineering parts. Case TEPBGA-2 is RoHS compliant, lead-free MSL (moisture sensitivity level) 3.
1.2
Features
The i.MX53xA multimedia applications processor (AP) is based on the ARM Platform, which has the following features: • MMU, L1 instruction and L1 data cache • Unified L2 cache • Target frequency of the core (including Neon, VFPv3 and L1 cache): 800 MHz • Neon coprocessor (SIMD media processing architecture) and vector floating point (VFP-Lite) coprocessor supporting VFPv3 • TrustZone The memory system consists of the following components: • Level 1 cache: — Instruction (32 Kbyte) — Data (32 Kbyte) • Level 2 cache: — Unified instruction and data (256 Kbyte) • Level 2 (internal) memory: — Boot ROM, including HAB (64 Kbyte) — Internal multimedia/shared, fast access RAM (128 Kbyte) — Secure/non-secure RAM (16 Kbyte) • External memory interfaces: — 16/32-bit DDR2-800, LV-DDR2-800 or DDR3-800 up to 2 Gbyte — 32-bit LPDDR2 — 8/16-bit NAND SLC/MLC Flash, up to 66 MHz, 4/8/14/16-bit ECC — 8/16-bit NOR Flash, PSRAM, and cellular RAM.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 3
Introduction
— 32-bit multiplexed mode NOR Flash, PSRAM & cellular RAM. — 8-bit Asynchronous (DTACK mode) EIM interface. — All EIM pins are muxed on other interfaces (data with NFC pins). I/O muxing logic selects EIM port, as primary muxing at system boot. — Samsung OneNAND™ and managed NAND including eMMC up to rev 4.4 (in muxed I/O mode) The i.MX53xA system is built around the following system on chip interfaces: • 64-bit AMBA AXI v1.0 bus—used by ARM platform, multimedia accelerators (such as VPU, IPU, GPU3D, GPU2D) and the external memory controller (EXTMC) operating at 200 MHz. • 32-bit AMBA AHB 2.0 bus—used by the rest of the bus master peripherals operating at 133 MHz. • 32-bit IP bus—peripheral bus used for control (and slow data traffic) of the most system peripheral devices operating at 66 MHz. The i.MX53xA makes use of dedicated hardware accelerators to achieve state-of-the-art multimedia performance. The use of hardware accelerators provides both high performance and low power consumption while freeing up the CPU core for other tasks. The i.MX53xA incorporates the following hardware accelerators: • VPU, version 3—video processing unit • GPU3D—3D graphics processing unit, OpenGL ES 2.0, version 3, 33 Mtri/s, 200 Mpix/s, and 800 Mpix/s z-plane performance, 256 Kbyte RAM memory • GPU2D—2D graphics accelerator, OpenVG 1.1, version 1, 200 Mpix/s performance, • IPU, version 3M—image processing unit • ASRC—asynchronous sample rate converter The i.MX53xA includes the following interfaces to external devices: NOTE Not all interfaces are available simultaneously, depending on I/O multiplexer configuration. • Hard disk drives: — PATA, up to U-DMA mode 5, 100 MByte/s — SATA I, 1.5 Gbps Displays: — Five interfaces available. Total rate of all interfaces is up to 180 Mpixels/s, 24 bpp. Up to two interfaces may be active at once. — Two parallel 24-bit display ports. The primary port is up to 165 Mpix/s (for example, UXGA at 60 Hz). — LVDS serial ports: one dual channel port up to 165 Mpix/s or two independent single channel ports up to 85 MP/s (for example, WXGA at 60 Hz) each. — TV-out/VGA port up to 150 Mpix/s (for example, 1080p60). Camera sensors:
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 4 Freescale Semiconductor
•
•
Introduction
•
•
•
•
— Two parallel 20-bit camera ports. Primary up to 180-MHz peak clock frequency, secondary up to 120-MHz peak clock frequency. Expansion cards: — Four SD/MMC card ports: three supporting 416 Mbps (8-bit i/f) and one enhanced port supporting 832 Mbps (8-bit, eMMC 4.4). USB — High-speed (HS) USB 2.0 OTG (up to 480 Mbps), with integrated HS USB PHY — Three USB 2.0 (480 Mbps) hosts: – High-speed host with integrated on-chip high-speed PHY – Two high-speed hosts for external HS/FS transceivers through ULPI/serial, support IC-USB Automotive environment interfaces: — Two controller area network (FlexCAN) interfaces, 1 Mbps each — Media local bus or MediaLB (MLB) provides interface to most networks (50 Mbps) — Enhanced serial audio interface (ESAI), up to 1.4 Mbps each channel Miscellaneous interfaces: — One-wire (OWIRE) port — Three I2S/SSI/AC97 ports, supporting up to 1.4 Mbps, each connected to audio multiplexer (AUDMUX) providing four external ports. — Five UART RS232 ports, up to 4.0 Mbps each. One supports 8-wire, the other four support 4-wire. — Two high speed enhanced CSPI (ECSPI) ports plus one CSPI port — Three I2C ports, supporting 400 kbps — Fast Ethernet controller, IEEE1588 V1 compliant, 10/100 Mbps — Sony Phillips Digital Interface (SPDIF), Rx and Tx — Key pad port (KPP) — Two pulse-width modulators (PWM) — GPIO with interrupt capabilities
The system supports efficient and smart power control and clocking: • Power gating SRPG (State Retention Power Gating) for ARM core and Neon • Support for various levels of system power modes • Flexible clock gating control scheme • On-chip temperature monitor • On-chip oscillator amplifier supporting 32.768 kHz external crystal • On-chip LDO voltage regulators for PLLs Security functions are enabled and accelerated by the following hardware: • ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, and so on)
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 5
Introduction
• • • • • •
•
Secure JTAG controller (SJC)—Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features Secure real-time clock (SRTC)—Tamper resistant RTC with dedicated power domain and mechanism to detect voltage and clock glitches Real-time integrity checker, version 3 (RTICv3)—RTIC type1, enhanced with SHA-256 engine SAHARAv4 Lite—Cryptographic accelerator that includes true random number generator (TRNG) Security controller, version 2 (SCCv2)—Improved SCC with AES engine, secure/non-secure RAM and support for multiple keys as well as TZ/non-TZ separation Central security unit (CSU)—Enhancement for the IIM (IC Identification Module). CSU is configured during boot by e-fuses, and determines the security level operation mode as well as the TrustZone (TZ) policy Advanced High Assurance Boot (A-HAB)—HAB with the following embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization NOTE The actual feature set depends on the part number as described in Table 1. Functions such as video hardware acceleration with 2D and 3D hardware graphics acceleration may not be enabled for specific part numbers.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 6 Freescale Semiconductor
Architectural Overview
2
2.1
Architectural Overview
Block Diagram
The following subsections provide an architectural overview of the i.MX53xA processor system.
Figure 1 shows the functional modules in the i.MX53xA processor system.
Composite CVBS/ S-Video Component RGB, YCC (HD TV-Out / VGA)
DDR2/DDR3/ LPDDR2
NOR/NAND Battery Ctrl Flash Device
Camera Camera (2) (2)
LVDS (WSXGA+)
LCD LCD Display-1,2 Display (2)
Digital Audio
External Memory I/F (EXTMC)
Application Processor Domain (AP)
Internal RAM 144 KB Boot ROM 64 KB Debug DAP CTI (2) AXI and AHB Switch Fabric TPIU
LDB
TV-Encoder
Temperature Sensor
SATA / P-ATA HDD
Smart DMA (SDMA)
Image Processing Subsystem (IPU)
ARM Cortex A8 Platform ARM Cortex A8 Neon, VFPv3 L1 I/D cache L2 cache 256 KB ETM, CTI0,1
Clock and Reset PLL (4) CCM GPC SRC XTALOSC (2) CAMP (2) AP Peripherals ECSPI CSPI UART (4) AUDMUX I2C (3) OWIRE PWM (2) IIM IOMUXC KPP GPIOx32 (7) SSI (2) FIRI FlexCAN (2) FEC(IEEE1588) MLB
CAN i/f
SPBA
GPS
Shared Peripherals
eSDHCv2 (3) eSDHCv3 SSI ECSPI ESAI P-ATA SATA + Temp Mon
SJC
Security SAHARAv4 Lite RTICv3 SCCv2 SRTC CSU TZIC
RF/IF
UART SPDIF Rx/Tx ASRC
Video Proc. Unit (VPU) 3D Graphics Proc. Unit (GPU3D)
G-Memory 256 KB
RF / IF IC’s
Audio, Power Mngmnt. Ethernet 10/100 Mbps
Fuse Box
Timers WDOG (2) GPT EPIT (2)
2D Graphics Proc. Unit (GPU2D)
USB PHY1 USB PHY2
USB OTG + 3 HS Ports
IrDA XVR
Keypad
Bluetooth
WLAN
JTAG
(IEEE1149.1)
MMC/SD eMMC/eSD
USB OTG
(dev/host)
Access. Conn.
Figure 1. i.MX53xA System Block Diagram
NOTE The numbers in brackets indicate number of module instances. For example, PWM (2) indicates two separate PWM peripherals.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 7
Modules List
3
Modules List
Table 2. i.MX53xA Digital and Analog Blocks
The i.MX53xA processor contains a variety of digital and analog modules. Table 2 describes these modules in alphabetical order.
Block Mnemonic ARM
Block Name ARM Platform
Subsystem ARM
Brief Description The ARM Cortex A8TM Platform consists of the ARM processor version r2p5 (with TrustZone) and its essential sub-blocks. It contains the 32 Kbyte L1 instruction cache, 32 Kbyte L1 data cache, Level 2 cache controller and a 256 Kbyte L2 cache. The platform also contains an event monitor and debug modules. It also has a NEON coprocessor with SIMD media processing architecture, a register file with 32/64-bit general-purpose registers, an integer execute pipeline (ALU, Shift, MAC), dual single-precision floating point execute pipelines (FADD, FMUL), a load/store and permute pipeline and a non-pipelined vector floating point (VFP Lite) coprocessor supporting VFPv3. The asynchronous sample rate converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about –120 dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs. The AUDMUX is a programmable interconnect for voice, audio, and synchronous data routing between host serial interfaces (for example, SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The AUDMUX has seven ports (three internal and four external) with identical functionality and programming models. A desired connectivity is achieved by configuring two or more AUDMUX ports.
ASRC
Asynchronous Sample Rate Converter
Multimedia Peripherals
AUDMUX
Digital Audio Multiplexer
Multimedia Peripherals
CAMP-1 CAMP-2 CCM GPC SRC CSPI ECSPI-1 ECSPI-2 CSU
Clock Amplifier
Clocks, Clock amplifier Resets, and Power Control Clocks, These modules are responsible for clock and reset distribution in the Resets, and system, as well as for system power management. Power Control The system includes four PLLs.
Clock Control Module Global Power Controller System Reset Controller Configurable SPI, Enhanced CSPI Central Security Unit
Connectivity Peripherals Security
Full-duplex enhanced synchronous serial interface, with data rates 16-60 Mbit/s. It is configurable to support master/slave modes. In Master mode it supports four slave selects for multiple peripherals. The central security unit (CSU) is responsible for setting comprehensive security policy within the i.MX53xA platform, and for sharing security information between the various security modules. The security control registers (SCR) of the CSU are set during boot time by the high assurance boot (HAB) code and are locked to prevent further writing.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 8 Freescale Semiconductor
Modules List
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic DEBUG Block Name Debug System Subsystem System Control Brief Description The debug system provides real-time trace debug capability of both instructions and data. It supports a trace protocol that is an integral part of the ARM Real Time Debug solution (RealView). Real-time tracing is controlled by specifying a set of triggering and filtering resources, which include address and data comparators, three cross-system triggers (CTI), counters, and sequencers. debug access port (DAP) —The DAP provides real-time access for the debugger without halting the core to system memory, peripheral register, debug configuration registers and JTAG scan chains. The EXTMC is an external and internal memory interface. It performs arbitration between multi-AXI masters to multi-memory controllers, divided into four major channels, fast memories (DDR2/DDR3/LPDDR2) channel, slow memories (NOR-FLASH / PSRAM / NAND-FLASH etc.) channel, internal memory (RAM, ROM) channel and graphical memory (GMEM) channel. In order to increase the bandwidth performance, the EXTMC separates the buffering and the arbitration between different channels so parallel accesses can occur. By separating the channels, slow accesses do not interfere with fast accesses. EXTMC Features: • 64-bit and 32-bit AXI ports • Enhanced arbitration scheme for fast channel, including dynamic master priority, and taking into account which pages are open or closed and what type (read or write) was the last access • Flexible bank interleaving • Support 16/32-bit DDR2-800 or DDR3-800 or LPDDR2. • Support up to 2 GByte DDR memories. • Support NFC, EIM signal muxing scheme. • Support 8/16/32-bit Nor-Flash/PSRAM memories (sync and async operating modes), at slow frequency. (8-bit is not supported on D[23]-D[16]). • Support 4/8/14/16-bit ECC, page sizes of 512-B, 2-KB and 4-KB Nand-Flash (including MLC) • Multiple chip selects (up to 4). • Enhanced DDR memory controller, supporting access latency hiding • Support watermark for security (internal and external memories) Each EPIT is a 32-bit “set and forget” timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter values can be programmed on the fly. The enhanced serial audio interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. The ESAI has 12 pins for data and clocking connection to external devices.
EXTMC
External Memory Connectivity Controller Peripherals
EPIT-1 EPIT-2
Enhanced Timer Periodic Interrupt Peripherals Timer
ESAI
Enhanced Serial Audio Interface
Connectivity Peripherals
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 9
Modules List
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic Block Name Subsystem Connectivity Peripherals Brief Description Ultra high-speed eMMC / SD host controller, enhanced to support eMMC 4.4 standard specification, for 832 MBps. • Port 3 is specifically enhanced to support eMMC 4.4 specification, for double data rate (832 Mbps, 8-bit port). ESDHCV3 is backward compatible to ESDHCV2 and supports all the features of ESDHCV2 as described below. Enhanced multimedia card / secure digital host controller • Ports 1, 2, and 4 are compatible with the “MMC System Specification” version 4.3, full support and supporting 1, 4 or 8-bit data. The generic features of the eSDHCv2 module, when serving as SD / MMC host, include the following: • Can be configured either as SD / MMC controller • Supports eSD and eMMC standard, for SD/MMC embedded type cards • Conforms to SD Host Controller Standard Specification, version 2.0, full support. • Compatible with the SD Memory Card Specification, version 1.1 • Compatible with the SDIO Card Specification, version 1.2 • Designed to work with SD memory, miniSD memory, SDIO, miniSDIO, SD Combo, MMC and MMC RS cards • Configurable to work in one of the following modes: - SD/SDIO 1-bit, 4-bit - MMC 1-bit, 4-bit, 8-bit • Full/high speed mode. • Host clock frequency variable between 32 kHz to 52 MHz • Up to 200 Mbps data transfer for SD/SDIO cards using 4 parallel data lines • Up to 416 Mbps data transfer for MMC cards using 8 parallel data lines Connectivity Peripherals The Ethernet media access controller (MAC) is designed to support both 10 Mbps and 100 Mbps Ethernet/IEEE Std 802.3™ networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The i.MX53xA also consists of HW assist for IEEE1588™ standard. See, TSU and CE_RTC (IEEE1588) section for more details. Fast infrared interface The controller area network (CAN) protocol was primarily, but not exclusively, designed to be used as a vehicle serial data bus. Meets the following specific requirements of this application: real-time processing, reliable operation in the EXTMC environment of a vehicle, cost-effectiveness and required bandwidth. The FLEXCAN is a full implementation of the CAN protocol specification, Version 2.0 B (ISO 11898), which supports both standard and extended message frames at 1 Mbps.
ESDHCV3-3 Ultra-HighSpeed eMMC / SD Host Controller
ESDHCV2-1 Enhanced ESDHCV2-2 Multi-Media Card ESDHCv2-4 / Secure Digital Host Controller
FEC
Fast Ethernet Controller
FIRI FLEXCAN-1 FLEXCAN-2
Fast Infrared Interface Flexible Controller Area Network
Connectivity Peripherals Connectivity Peripherals
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 10 Freescale Semiconductor
Modules List
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7 GPT Block Name Subsystem Brief Description These modules are used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O.
General Purpose System I/O Modules Control Peripherals
General Purpose Timer Timer Peripherals
Each GPT is a 32-bit “free-running” or “set and forget” mode timer with a programmable prescaler and compare and capture register. A timer counter value can be captured using an external event, and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set and forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. The GPU, version 3, provides hardware acceleration for 2D and 3D graphics algorithms with sufficient processor power to run desk-top quality interactive graphics applications on displays up to HD1080 resolution. It supports color representation up to 32 bits per pixel. GPU enables high-performance mobile 3D and 2D vector graphics at rates up to 33 Mtriangles/s, 200 Mpix/s, 800 Mpix/s (z). The GPU2D version 1, provides hardware acceleration for 2D graphic algorithms with sufficient processor power to run desk-top quality interactive graphics applications on displays up to HD1080 resolution. I2C provides serial interface for controlling peripheral devices. Data rates of up to 400 kbps are supported. The IC identification module (IIM) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (e-Fuses). The IIM also provides a set of volatile software-accessible signals that can be used for software control of hardware elements not requiring non-volatility. The IIM provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non-volatility. The IIM also provides up to 28 volatile control signals. The IIM consists of a master controller, a software fuse value shadow cache, and a set of registers to hold the values of signals visible outside the module. IIM interfaces to the electrical fuse array (split to banks). Enabled to set up boot modes, security levels, security keys and many other system parameters. i.MX53A consists of 4 x 256-bit + 1x 128-bit fuse-banks (total 1152 bits) through IIM interface.
GPU3D
Graphics Processing Unit
Multimedia Peripherals
GPU2D
Graphics Processing Unit-2D I2C Controller
Multimedia Peripherals Connectivity Peripherals Security
I2C-1 I2C-2 I2C-3 IIM
IC Identification Module
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 11
Modules List
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic IOMUXC Block Name IOMUX Control Subsystem System Control Peripherals Multimedia Peripherals Brief Description This module enables flexible I/O multiplexing. Each I/O pad has default as well as several alternate functions. The alternate functions are software configurable. Version 3M IPU enables connectivity to displays, relevant processing and synchronization. It supports two display ports and two camera ports, through the following interfaces: • Legacy parallel interfaces • Single/dual channel LVDS display interface • Analog TV or VGA interfaces The processing includes: • Image enhancement—color adjustment and gamut mapping, gamma correction and contrast enhancement • Video/graphics combining • Support for display backlight reduction • Image conversion—resizing, rotation, inversion and color space conversion • Hardware de-interlacing support • Synchronization and control capabilities, allowing autonomous operation. The KPP supports an 8 × 8 external keypad matrix. The KPP features are as follows: • Open drain design • Glitch suppression circuit design • Multiple keys detection • Standby key press detection LVDS display bridge is used to connect the IPU (image processing unit) to external LVDS display interface. LDB supports two channels; each channel has following signals: • 1 clock pair • 4 data pairs On-chip differential drivers are provided for each pair. The MLB interface module provides a link to a MOST® data network, using the standardize MediaLB protocol (up to 50 Mbps). One-wire support provided for interfacing with an on-board EEPROM, and smart battery interfaces, for example, Dallas DS2502. The PATA block is a AT attachment host interface. Its main use is to interface with hard disk drives and optical disc drives. It interfaces with the ATA-6 compliant device over a number of ATA signals. It is possible to connect a bus buffer between the host side and the device side. The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images. It can also generate tones. The PWM uses 16-bit resolution and a 4 x 16 data FIFO to generate sound.
IPU
Image Processing Unit
KPP
Keypad Port
Connectivity Peripherals
LDB
LVDS Display Bridge
Connectivity Peripherals
MLB
Media local bus—MediaLB One-Wire Interface Parallel ATA
Connectivity/ Multimedia Peripherals Connectivity Peripherals Connectivity Peripherals
OWIRE PATA
PWM-1 PWM-2
Pulse Width Modulation
Connectivity Peripherals
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 12 Freescale Semiconductor
Modules List
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic INTRAM Block Name Internal RAM Subsystem Internal Memory Brief Description Internal RAM, shared with VPU. The on-chip memory controller (OCRAM) module, is an interface between the system’s AXI bus, to the internal (on-chip) SRAM memory module. It is used for controlling the 128 KB multimedia RAM, through a 64-bit AXI bus. Supports secure and regular boot modes. The ROM controller supports ROM patching. Protecting read only data from modification is one of the basic elements in trusted platforms. The run-time integrity checker, version 3 (RTIC) block is a data-monitoring device responsible for ensuring that the memory content is not corrupted during program execution. The RTIC mechanism periodically checks the integrity of code or data sections during normal OS run-time execution without interfering with normal operation. The purpose of the RTIC is to ensure the integrity of the peripheral memory contents, protect against unauthorized external memory elements replacement and assist with boot authentication. SAHARA (symmetric/asymmetric hashing and random accelerator), version 4, is a security coprocessor. It implements symmetric encryption algorithms, (AES, DES, 3DES, RC4 and C2), public key algorithms (RSA and ECC), hashing algorithms (MD5, SHA-1, SHA-224 and SHA-256), and a hardware true random number generator. It has a slave IP Bus interface for the host to write configuration and command information, and to read status information. It also has a DMA controller, with an AHB bus interface, to reduce the burden on the host to move the required data to and from memory. SATA HDD interface, includes the SATA controller and the PHY. It is a complete mixed-signal IP solution for SATA HDD connectivity. The security controller is a security assurance hardware module designed to safely hold sensitive data, such as encryption keys, digital right management (DRM) keys, passwords and biometrics reference data. The SCCv2 monitors the system’s alert signal to determine if the data paths to and from it are secure, that is, it cannot be accessed from outside of the defined security perimeter. If not, it erases all sensitive data on its internal RAM. The SCCv2 also features a key encryption module (KEM) that allows non-volatile (external memory) storage of any sensitive data that is temporarily not in use. The KEM utilizes a device-specific hidden secret key and a symmetric cryptographic algorithm to transform the sensitive data into encrypted data.
BOOTROM RTIC
Boot ROM
Internal Memory
Run-Time Security Integrity Checker
SAHARA
SAHARA Security Accelerator
Security
SATA SCCv2
Serial ATA Security Controller, ver. 2
Connectivity Peripherals Security
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 13
Modules List
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic SDMA Block Name Smart Direct Memory Access Subsystem System Control Peripherals Brief Description The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off loading various cores in dynamic data routing. The SDMA features list is as follows: • Powered by a 16-bit instruction-set micro-RISC engine • Multi-channel DMA supports up to 32 time-division multiplexed DMA channels • 48 events with total flexibility to trigger any combination of channels • Memory accesses including linear, FIFO, and 2D addressing • Shared peripherals between ARM and SDMA • Very fast context-switching with two-level priority-based preemptive multi-tasking • DMA units with auto-flush and prefetch capability • Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) • DMA ports can handle unidirectional and bidirectional flows (copy mode) • Up to 8-word buffer for configurable burst transfers to / from the EXTMC • Support of byte swapping and CRC calculations • A library of scripts and API is available Secure / non-secure Internal RAM, controlled by SCC. JTAG manipulation is a known hacker’s method of executing unauthorized program code, getting control over secure applications, and running code in privileged modes. The JTAG port provides a debug access to several hardware blocks including the ARM processor and the system bus. The JTAG port must be accessible during platform initial laboratory bring-up, manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. However, in order to properly secure the system, unauthorized JTAG usage should be strictly forbidden. In order to prevent JTAG manipulation while allowing access for manufacturing tests and software debugging, the i.MX53xA processor incorporates a mechanism for regulating JTAG access. SJC provides four different JTAG security modes that can be selected through an e-fuse configuration. SPBA (shared peripheral bus arbiter) is a two-to-one IP bus interface (IP bus) arbiter. A standard digital audio transmission protocol developed jointly by the Sony and Philips corporations. Both transmitter and receiver functionalists are supported.
SECRAM SJC
Secure / Internal Non-secure RAM Memory Secure JTAG Interface System Control Peripherals
SPBA
Shared Peripheral Bus Arbiter Sony Philips Digital Interface
System Control Peripherals Multimedia Peripherals
SPDIF
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 14 Freescale Semiconductor
Modules List
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic SRTC Block Name Secure Real Time Clock Subsystem Security Brief Description The SRTC incorporates a special system state retention register (SSRR) that stores system parameters during system shutdown modes. This register and all SRTC counters are powered by dedicated supply rail NVCC_SRTC_POW. The NVCC_SRTC_POW can be energized separately even if all other supply rails are shut down. The power for this block comes from NVCC_SRTC_POW supply. When this supply is driven by the MC13892 power management controller, this block can be power backed up through the coin-cell feature of the MC13892. This register is helpful for storing warm boot parameters. The SSRR also stores the system security state. In case of a security violation, the SSRR mark the event (security violation indication). The SSI is a full-duplex synchronous interface used on the i.MX53A processor to provide connectivity with off-chip audio peripherals. The SSI interfaces connect internally to the AUDMUX for mapping to external ports. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock/frame sync options. Each SSI has two pairs of 8 x 24 FIFOs and hardware support for an external DMA controller in order to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream, which reduces CPU overhead in use cases where two time slots are being used simultaneously. The IEEE 1588-2002 (version 1) standard defines a precision time protocol (PTP) - which is a time-transfer protocol that enables synchronization of networks (for example, Ethernet), to a high degree of accuracy and precision. The IEEE1588 hardware assist is composed of the two blocks: time stamp unit and real time clock, which provide the timestamping protocol’s functionality, generating and reading the needed timestamps. The hardware-assisted implementation delivers more precise clock synchronization at significantly lower CPU load compared to purely software implementations. The temperature sensor is an internal module to the i.MX53xA that monitors the die temperature. The monitor is capable in generating SW interrupt, or trigger the CCM, to reduce the core operating frequency. The TV encoder, version 2.1 is implemented in conjunction with the image processing unit (IPU) allowing handheld devices to display captured still images and video directly on a TV or LCD projector. It supports composite PAL/NTSC, VGA, S-video, and component up to HD1080p analog video outputs. The TrustZone interrupt controller (TZIC) collects interrupt requests from all i.MX53xA sources and routes them to the ARM core. Each interrupt can be configured as a normal or a secure interrupt. Software Force Registers and software Priority Masking are also supported.
SSI-1 SSI-2 SSI-3
I2S/SSI/AC97 Interface
Connectivity Peripherals
IPTP
IEEE1588 Precision Time Protocol
Connectivity Peripherals
Temperature Monitor TVE
(Part of SATA Block) TV Encoder
System Control Peripherals Multimedia
TZIC
TrustZone Aware ARM/Control Interrupt Controller
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 15
Modules List
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic UART-1 UART-2 UART-3 UART-4 UART-5 Block Name UART Interface Subsystem Connectivity Peripherals Brief Description Each of the UART blocks supports the following serial data transmit/receive protocols and configurations: • 7 or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd, or none) • Programmable bit-rates up to 4 Mbps. This is a higher max baud rate relative to the 1.875 Mbps, which is specified by the TIA/EIA-232-F standard. • 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud • IrDA 1.0 support (up to SIR speed of 115200 bps) • Option to operate as 8-pins full UART, DCE, or DTE USB supports USB2.0 480 MHz, and contains: • One high-speed OTG sub-block with integrated HS USB PHY • One high-speed host sub-block with integrated HS USB PHY • Two identical high-speed Host modules The high-speed OTG module, which is internally connected to the HS USB PHY, is equipped with transceiver-less logic to enable on-board USB connectivity without USB transceivers All the USB ports are equipped with standard digital interfaces (ULPI, HS IC-USB) and transceiver-less logic to enable onboard USB connectivity without USB transceivers. A high-performing video processing unit (VPU) version 3, which covers many SD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing such as rotation and mirroring. VPU Features: • MPEG-2 decode, Mail-High profile, up to 1080i/p resolution, 40 Mbps bit rate • MPEG4/XviD decode, SP/ASP profile, up to 1080 i/p resolution, 40 Mbps bit rate • H.263 decode, P0/P3 profile, up to 16CIF resolution, 20 Mbps bit rate • Sorenson H.263 decode, 4CIF resolution, 8 Mbps bit rate • H.264 decode, BP/MP/HP profile, up to 1080 i/p resolution, 40 Mbps bit rate • VC1 decode, SP/MP/AP profile, up to 1080 i/p resolution, 40 Mbps bit rate • RV10 decode, 8/9/2010 profile, up to 1080 i/p resolution, 40 Mbps bit rate • DivX decode, 3/4/5/6 profile, up to 1080 i/p resolution, 40 Mbps bit rate • MJPEG decode, Baseline profile, up to 8192 x 8192 resolution, 40 Mpixel/s bit rate for 4:4:4 format • MPEG21 encode, Main-Main profile, up to D1 resolution, 15 Mbps bit rate • MPEG4 encode, Simple profile, up to 720p resolution, 12 Mbps bit rate2 • H.263 encode, P0/P3 profile, up to 4CIF resolution, 8 Mbps bit rate2 • H.264 encode, Baseline profile, up to 720p resolution, 14 Mbps bit rate2 • MJPEG encode, Baseline profile, up to 8192 x 8192 resolution, 80 Mpixel/s bit rate for 4:2:2 format The watch dog timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.
USB
USB Controller
Connectivity Peripherals
VPU
Video Processing Multimedia Unit Peripherals
WDOG-1
Watch Dog
Timer Peripherals
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 16 Freescale Semiconductor
Electrical Characteristics
Table 2. i.MX53xA Digital and Analog Blocks (continued)
Block Mnemonic WDOG-2 (TZ) Block Name Watch Dog (TrustZone) Subsystem Timer Peripherals Brief Description The TrustZone watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. This situation should be avoided, as it can compromise the system’s security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW. Provides a crystal oscillator amplifier that supports a 24-MHz external crystal Provides a crystal oscillator amplifier that supports a 32.768-kHz external crystal.
XTALOSC XTALOSC_ 32K
1 2
24 MHz Crystal Oscillator
Clocking
Clocking 32.768 KHz Crystal Oscillator I/F
Video partially performed in hardware accelerator (70%) and partially in software. VPU can generate higher bit rate than the maximum specified by the corresponding standard.
3.1
Special Signal Considerations
The package contact assignments can be found in Section 6, “Package Information and Contact Assignments.” Signal descriptions are defined in the i.MX53 Reference Manual. Special signal considerations information is contained in Chapter 1 of i.MX53 System Development User's Guide. Document number is MX53UG.
4
Electrical Characteristics
NOTE This electrical specification is preliminary. These specifications are not fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after thorough characterization and device qualifications have been completed.
This section provides the device and module-level electrical characteristics for the i.MX53xA processor.
4.1
Chip-Level Conditions
This section provides the device-level electrical characteristics for the IC. See Table 3 for a quick reference to the individual tables and sections.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 17
Electrical Characteristics
Table 3. i.MX53xA Chip-Level Conditions
For these characteristics, … Absolute Maximum Ratings TEPBGA-2 Package Thermal Resistance Data i.MX53xA Operating Ranges External Clock Sources Maximal Supply Currents USB Interface Current Consumption Topic appears … Table 4 on page 18 Table 5 on page 19 Table 6 on page 20 Table 7 on page 22 Table 8 on page 22 Table 9 on page 24
4.1.1
Absolute Maximum Ratings
CAUTION Stresses beyond those listed under Table 4 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Table 6 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Table 4. Absolute Maximum Ratings
Parameter Description Symbol VCC VDDGP Supplies denoted as I/O Supply Supplies denoted as I/O Supply VBUS USB_DP/USB_DN Vin/Vout Vesd — — TSTORAGE –40 2000 500 150 V
oC
Min –0.3 –0.3 –0.5 –0.5 — –0.3 –0.5
Max 1.35 1.35 3.6 3.3 5.25 3.631 OVDD +0.32
Unit V V V V V V V
Peripheral Core Supply Voltage ARM Core Supply Voltage Supply Voltage UHVIO Supply Voltage for non UHVIO USB VBUS Input voltage on USB_OTG_DP, USB_OTG_DN, USB_H1_DP, USB_H1_DN pins Input/Output Voltage Range ESD Damage Immunity: • Human Body Model (HBM) • Charge Device Model (CDM) Storage Temperature Range
1 2
USB_DN and USB_DP can tolerate 5 V for up to 24 hours. The term OVDD in this section refers to the associated supply rail of an input or output. The association is described in Table 113 on page 156. The maximum range can be superseded by the DC tables.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 18 Freescale Semiconductor
Electrical Characteristics
4.1.2
4.1.2.1
Thermal Resistance
TEPBGA-2 Package Thermal Resistance
Table 5. TEPBGA-2 Package Thermal Resistance Data
Rating Board Single layer board (1s) Four layer board (2s2p) Single layer board (1s) Four layer board (2s2p) — — — Symbol RθJA RθJA RθJMA RθJMA RθJB RθJC ΨJT Value 28 16 21 13 6 4 4 Unit °C/W °C/W °C/W °C/W °C/W °C/W °C/W
Table 5 provides the TEPBGA-2 package thermal resistance data.
Junction to Ambient (natural convection)1, 2 Junction to Ambient (natural convection)1, 2, 3 Junction to Ambient (at 200 ft/min)1, 3 Junction to Ambient (at 200 ft/min)1, 3 Junction to Board4 Junction to Case5 Junction to Package Top (natural convection)6
1
2 3 4 5 6
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 19
Electrical Characteristics
4.1.3
Operating Ranges
Table 6. i.MX53xA Operating Ranges
Symbol Parameter ARM core supply voltage fARM ≤ 800 MHz ARM core supply voltage Stop mode Peripheral supply voltage VCC VDDA3 Peripheral supply voltage—Stop mode Memory arrays voltage Memory arrays voltage—Stop mode VDDAL13 L1 Cache Memory arrays voltage L1 Cache Memory arrays voltage—Stop mode Minimum1 Nominal2 Maximum1 1.05 0.8 1.25 0.9 1.25 0.9 1.25 0.9 1.25 1.75 1.65 1.65 2.25 2.25 1.7 1.14 1.47 DDR Supply LV-DDR2 range 1.42 DDR Supply DDR3 range 1.42 3.0 1.5 1.5 — 1.58 1.58 3.3 V 1.1 0.85 1.3 0.95 1.30 0.95 1.30 0.95 1.3 1.8 1.8 1.8 or 2.775 2.5 2.5 1.8 1.2 1.55 1.15 1.15 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.95 1.95 3.1 2.75 2.75 1.9 1.3 1.63 V Unit V V V V V V V V V V V V V V
Table 6 provides the operating ranges of i.MX53xA processor.
VDDGP
VDD_DIG_PLL4 VDD_ANA_PLL5 NVCC_CKIH NVCC_LCD NVCC_JTAG NVCC_LVDS NVCC_LVDS_BG
PLL Digital supplies—external regulator option PLL Analog supplies—external regulator option ESD protection of the CKIH pins, FUSE read Supply and 1.8V bias for the UHVIO pads GPIO digital power supplies LVDS interface Supply LVDS Band Gap Supply DDR Supply DDR2 range DDR Supply LPDDR2 range
NVCC_EMI_DRAM
VDD_FUSE
6
Fusebox Program Supply (Write Only) Ultra High voltage I/O (UHVIO) supplies: • UHVIO_L • UHVIO_H • UHVIO_UH
NVCC_NANDF NVCC_SD1 NVCC_SD2 NVCC_PATA NVCC_KEYPAD NVCC_GPIO NVCC_FEC NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_CSI
1.65 2.5
1.8 2.775
1.95 3.1 V
3.0
3.3
3.6
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 20 Freescale Semiconductor
Electrical Characteristics
Table 6. i.MX53xA Operating Ranges (continued)
Symbol Parameter TVE digital and analog power supply, TVE-to-DAC level shifter supply, cable detector supply, analog power supply to RGB channel For GPIO use only, when TVE is not in use NVCC_SRTC_POW NVCC_RESET USB_H1_VDDA25 USB_OTG_VDDA25 NVCC_XTAL USB_H1_VDDA33 USB_OTG_VDDA33 VBUS VDD_REG10 VP VPH TJ
1
Minimum1 Nominal2 Maximum1 2.69 2.75 2.91
Unit V
TVDAC_DHVDD7 TVDAC_AHVDDRGB7
1.65 1.25 1.65 2.25
1.8 or 2.775 1.3 1.8 or 2.775 2.5
3.1 1.35 3.1 2.75
V V V V
SRTC Core and slow I/O Supply (GPIO)8 LVIO USB_PHY analog supply, oscillator amplifier analog supply9 USB PHY I/O analog supply See Table 4 on page 18 and Table 106 on page 148 for details. Note that this is not a power supply. Power supply input for the integrated linear regulators SATA PHY core power supply SATA PHY I/O supply voltage Junction Temperature
3.0
3.3
3.6
V
— 2.37 1.25 2.25 –40
— 2.5 1.3 2.5 10511
— 2.63 1.35 2.75 125
— V V V
oC
Voltage at the package power supply contact must be maintained between the minimum and maximum voltages. The design must allow for supply tolerances and system voltage drops. 2 The nominal values for the supplies indicate the target setpoint for a tolerance no tighter than ± 50 mV. Use of supplies with a tighter tolerance allows reduction of the setpoint with commensurate power savings. 3 VDDA and VDDAL1 can be driven by the VDD_DIG_PLL internal regulator using external connections. When operating in this configuration, the regulator is still operating at the default 1.2 V, as bootup start. During bootup initialization, software should increase this regulator voltage to match VCC (1.3 V nominal) in order to reduce internal leakage current. 4 By default, VDD_DIG_PLL is driven from internal on-die 1.2 V linear regulator (LDO). In this case, there is no need driving this supply externally. LDO output to VDD_DIG_PLL should be configured by software after power-up to 1.3 V output. A bypass capacitor of minimal value 22 μF should be connected to this pad in any case whether it is driven internally or externally. Use of the on-chip LDO is preferred. See i.MX53 System Development User’s Guide. 5 By default, the VDD_ANA_PLL is driven from internal on-die 1.8 V linear regulator (LDO). In this case there is no need driving this supply externally. A bypass capacitor of minimal value 22 μF should be connected to this pad in any case whether it is driven internally or externally. Use of the on-chip LDO is preferred. See i.MX53 System Development User’s Guide. 6 After fuses are programmed, Freescale strongly recommends the best practice of reading the fuses to verify that they are written correctly. In Read mode, VDD_FUSE should be floated or grounded. Tying VDD_FUSE to a positive supply (3.0 V–3.3 V) increases the possibility of inadvertently blowing fuses and is not recommended in read mode. 7 If not using TVE module or other pads in this power domain for the product, the TVDAC_DHVDD and TVDAC_AHVDDRGB can remain floating. 8 GPIO pad operational at low frequency 9 The analog supplies should be isolated in the application design. Use of series inductors is recommended. 10 VDD_REG is power supply input for the integrated linear regulators of VDD_ANA_PLL and VDD_DIG_PLL when they are configured to the internal supply option. VDDR_REG still has to be tied to 2.5 V supply when VDD_ANA_PLL and VDD_DIG_PLL are configured for external power supply mode although in this case it is not used as supply source.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 21
Electrical Characteristics
11
Lifetime of 43,800 hours based on 105 C junction temperature at nominal supply voltages.
4.1.4
External Clock Sources
The i.MX53xA device has four external input system clocks, a low frequency (CKIL), a high frequency (XTAL), and two general purpose CKIH1 and CKIH2 clocks. The CKIL is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. The system clock input XTAL is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. CKIH1 and CKIH2 provide additional clock source option for peripherals that require specific and accurate frequencies. Table 7 shows the interface frequency requirements. Refer to Chapter 1 of the i.MX53 System Development User's Guide for additional clock and oscillator information. Document number is MX53UG.
Table 7. External Input Clock Frequency
Parameter Description CKIL Oscillator1 CKIH1, CKIH2 Operating Frequency XTAL Oscillator
1 2
Symbol fckil fckih1, fckih2 fxtal
Min —
Typ 32.7682/32.0
Max —
Unit kHz MHz MHz
See Table 32, "CAMP Electrical Parameters (CKIH1, CKIH2)," on page 46 22 24 27
External oscillator or a crystal with internal oscillator amplifier. Recommended nominal frequency 32.768 kHz.
4.1.5
Maximal Supply Currents
Table 8 represents the maximal momentary current transients on power lines, and should be used for power supply selection. Maximal currents higher by far than the average power consumption of typical use cases. For typical power consumption information, refer to i.MX53xA power consumption application note.
Table 8. Maximal Supply Currents
Power Line VDDGP VCC VDDA+VDDAL1 VDD_DIG_PLL VP VDD_ANA_PLL Conditions 800 MHz ARM clock. Max Current 1450 800 100 10 20 10 Unit mA mA mA mA mA mA
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 22 Freescale Semiconductor
Electrical Characteristics
Table 8. Maximal Supply Currents (continued)
Power Line MVCC_XTAL VDD_REG VDD_FUSE Fuse Write Mode operation 1.8v (DDR2) NVCC_EMI_DRAM 1.5v (DDR3) 1.2v (LPDDR2) TVDAC_DHVDD + TVDAC_AHVDDRGB NVCC_SRTC_POW USB_H1_VDDA25 + USB_OTG_VDDA25 USB_H1_VDDA33 + USB_OTG_VDDA33 VPH NVCC_CKIH NVCC_CSI NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_EMI_DRAM NVCC_FEC NVCC_GPIO NVCC_JTAG NVCC_KPAD NVCC_LCD NVCC_LVDS NVCC_LVDS_BG NVCC_NANDF NVCC_PATA NVCC_REST NVCC_SD1 Conditions Max Current 25 325 120 800 650 250 200 0 NVCC_CKIH IO Supplies below or equal to 2.8 V nom./3.1 V max. (in any order, after NVCC_CKIH ramp up start, if needed) Δt > 0 IO Supplies above 2.8 V nom./3.1 V max (in any order, if needed) Δt > 0 VDD_REG
90% 90% 90% 90%
90%
Δt > 0
90%
Δt > 0
Δt > 0 NVCC_EMI_DRAM
90%
Δt > 0 VP, VPH (in any order)
90%
Δt > 0
VDDA,VDDAL1,VDDGP (in any order) POR_B
90%
Δt > 0
Figure 2. Power Up Detailed Sequence 1
NOTE Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the parts that use both 1.8 V and the 3.3 V supply).
1. If fuse writing is required, VDD_FUSE should be powered ON after NVCC_CKIH is stable. i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 26 Freescale Semiconductor
Electrical Characteristics
4.2.2
Power-Down Sequence
Power-down sequence should follow one of the following two options: Option 1: Switch all supplies down simultaneously with further free discharge. A deviation of few microseconds of actual power-down of the different power rails is acceptable. Option 2: Switch down supplies, in any order, keeping the following rules: • NVCC_CKIH must be powered down at the same time or after the UHVIO IO cell supplies (for full supply list, refer to Table 6, Ultra High voltage I/O (UHVIO) supplies). A deviation of few microseconds of actual power-down of the different power rails is acceptable. • VDD_REG must be powered down at the same time or after NVCC_EMI_DRAM supply. A deviation of few microseconds of actual power-down of the different power rails is acceptable. • If all of the following conditions are met: — 1. VDD_REG is powered down to 0V (Not Hi-Z) — 2. VDD_DIG_PLL and VDD_ANA_PLL are provided externally, — 3. VDD_REG is powered down before VDD_DIG_PLL and VDD_ANA_PLL Then the following rule should be kept: VDD_REG output impedance must be higher than 1 kΩ, when inactive.
4.2.3
•
Power Supplies Usage
All IO pins should not be externally driven while the IO power supply for the pin (NVCC_xxx) is off. This can cause internal latch-up and malfunctions due to reverse current flows. For information about IO power supply of each pin refer to “Power Rail” columns in pin list tables of Section 6, “Package Information and Contact Assignments.” If not using SATA interface and the embedded thermal sensor, the VP and VPH should be grounded. In particular, keeping VPH turned OFF while the VP is powered ON is not recommended and might lead to excessive power consumption. When internal clock source is used for SATA temperature monitor the USB_PHY supplies and PLL need to be active because they are providing the clock. If not using TVE the module, the TVDAC_DHVDD and TVDAC_AHVDDRGB can remain floating. If only the GPIO pads in TVDAC_AHVDDRGB domain are in use, the supplies can be set to GPIO pad voltage range (1.65 V to 3.1 V).
•
• •
4.3
I/O DC Parameters
This section includes the DC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate 3 I/O (DDR3) for DDR2/LVDDR2, LPDDR2 and DDR3 modes • Low Voltage I/O (LVIO) • Ultra High Voltage I/O (UHVIO) • LVDS I/O
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 27
Electrical Characteristics
NOTE The term ‘OVDD’ in this section refers to the associated supply rail of an input or output. The association is shown in Table 113.
Figure 3. Circuit for Parameters Voh and Vol for IO Cells
4.3.1
General Purpose I/O (GPIO) DC Parameters
The parameters in Table 10 are guaranteed per the operating ranges in Table 6, unless otherwise noted. Table 10 shows DC parameters for GPIO pads, operating at two supply ranges: • 1.1 V to 1.3 V • 1.65 V to 3.1 V
Table 10. GPIO I/O DC Electrical Characteristics
Parameter High-level output voltage1 Low-level output voltage1 High-level output current (1.1-1.3V OVDD) Symbol Voh Vol Ioh Test Conditions Iout = –1 mA Iout= specified Ioh Drive Iout = 1 mA Iout= specified Iol Drive Vout = 0.8×OVDD Low drive Medium drive High drive Max drive Vout = 0.2×OVDD Low drive Medium drive High drive Max drive Vout = 0.8×OVDD Low drive Medium drive High drive Max drive Min OVDD – 0.15 0.8*OVDD — Typ — — Max — 0.15 0.2 × OVDD Unit V V
–0.85 –1.7 –2.5 –3.4 0.9 1.9 2.9 3.8 –2.1 –4.2 –6.3 –8.4
—
—
mA
Low-level output current (1.1-1.3V OVDD)
Iol
—
—
mA
High-level output current (1.65-3.1V OVDD)
Ioh
—
—
mA
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 28 Freescale Semiconductor
Electrical Characteristics
Table 10. GPIO I/O DC Electrical Characteristics (continued)
Parameter Low-level output current (1.65-3.1V OVDD) Symbol Iol Test Conditions Vout = 0.2×OVDD Low drive Medium drive High drive Max drive — — OVDD = 1.875 V OVDD = 2.775 V — — Vin = OVDD or 0 Vin = 0 V Vin = OVDD Vin = 0 V Vin = OVDD Vin = 0 V Vin= OVDD Vin = 0 V Vin = OVDD Min Typ Max Unit
2.1 4.2 6.3 8.4 0.7 × OVDD 0 0.25 0.5 × OVDD — — — — — — —
—
—
mA
High-Level DC input voltage1, 2 Low-Level DC input voltage1, 2 Input Hysteresis Schmitt trigger VT+2, 3 Schmitt trigger VT–2, 3 Input current (no pull-up/down) Input current (22 kΩ Pull-up) Input current (47 kΩ Pull-up) Input current (100 kΩ Pull-up) Input current (100 kΩ Pull-down) Keeper Circuit Resistance
1
VIH VIL VHYS VT+ VT– Iin Iin Iin Iin Iin
— — 0.34 0.45 — — — — — — — 1304
OVDD 0.3 × OVDD — — 0.5 × OVDD 2 161 2 76 2 36 2 2 36 —
V V V V V μA μA μA μA μA kΩ
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device. 2 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 s. 3 Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled. 4 Use an off-chip pull resistor of less than 60 kΩ to override this keeper.
4.3.2
LPDDR2 I/O DC Parameters
The LPDDR2 I/O pads support DDR2/LVDDR2, LPDDR2, and DDR3 operational modes.
4.3.2.1
DDR2 Mode I/O DC Parameters
The DDR2 interface fully complies with JESD79-2E DDR2 JEDEC standard release April, 2008. The parameters in Table 11 are guaranteed per the operating ranges in Table 6, unless otherwise noted.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 29
Electrical Characteristics
Table 11. DDR2 I/O DC Electrical Parameters1
Parameters High-level output voltage2 Low-level output voltage Output minimum Source Current3 Output min Sink Current4 Input Reference Voltage DC input High Voltage (data pins) DC input Low Voltage (data pins) DC Input voltage range of each differential input5 Symbol Voh Vol Ioh Iol Vref Vihd (dc) Vild (dc) Vin (dc) — — — — Vtt Vin = 0 V Vin=OVDD — — Test Conditions — — OVDD=1.7 V, Vout=1.42 V OVDD=1.7 V, Vout=280 mV Min 0.9*OVDD — –13.4 13.4 0.49*OVDD Vref+0.125V –0.3 –0.3 0.25 Vref – 0.04 — — — Typ — — — — 0.5*OVDD — — — — Vref — — 1307 Max — 0.1*OVDD — — 0.51*OVDD OVDD+0.3 Vref-0.125V OVDD+0.3 OVDD+0.6 Vref + 0.04 1 1 — V V V V V μA kΩ Unit V V mA mA
DC Differential input voltage required for Vid (dc) switching 6 Termination Voltage Input current (no pull-up/down) Keeper Circuit Resistance
1 2 3 4 5 6 7
Vtt Iin
Note that the JEDEC SSTL_18 specification (JESD8-15a) for a SSTL interface for class II operation supersedes any specification in this document. OVDD is the I/O power supply (1.7 V–1.9 V for DDR2) (Vout - OVDD) / Ioh must be less than 21 Ω for values of Vout between OVDD and OVDD-0.28 V. Vout / Iol must be less than 21 Ω for values of Vout between 0 V and 280 mV. Vin(dc) specifies the allowable DC voltage exertion of each differential input. Vid(dc) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input level and Vcp is the “complementary” input level. The minimum value is equal to Vih(dc) -Vil(dc). Use an off-chip pull resistor of less than 60 kΩ to override this keeper.
4.3.2.2
LPDDR2 Mode I/O DC Parameters
Table 12. LPDDR2 I/O DC Electrical Parameters1
Parameters Symbol Voh Vol Vref Vih(dc) Vil(dc) — — Test Conditions — — Min 0.9*OVDD — 0.49*OVDD Vref+0.13V OVSS Typ — — 0.5*OVDD — — Max — 0.1*OVDD 0.51*OVDD OVDD Vref-0.13V V V Unit V V
The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009.
High-level output voltage Low-level output voltage Input Reference Voltage DC input High Voltage DC input Low Voltage
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 30 Freescale Semiconductor
Electrical Characteristics
Table 12. LPDDR2 I/O DC Electrical Parameters1 (continued)
Differential Input Logic High Differential Input Logic Low Input current (no pull-up/down) Pull-up/Pull-down impedance Mismatch 240 Ohm unit calibration resolution Keeper Circuit Resistance
1 2
Vih(diff) Vil(diff) Iin Vin = 0 V Vin=OVDD
0.26 See Note2 — — -15 — —
See Note2 -0.26 1 1 +15 10 μA % Ohm kΩ
—
—
—
1403
—
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 3 Use an off-chip pull resistor of less than 60 kΩ to override this keeper.
4.3.2.3
DDR3 Mode I/O DC Parameters
The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. The parameters in Table 13 are guaranteed per the operating ranges in Table 6, unless otherwise noted.
Table 13. DDR3 I/O DC Electrical Parameters
Parameters High-level output voltage Low-level output voltage DC input Logic High DC input Logic Low Differential input Logic High Differential input Logic Low Over/undershoot peak Over/undershoot area (above OVDD or below OVSS) Termination Voltage Input current (no pull-up/down) Pull-up/Pull-down impedance mismatch 240 Ω unit calibration resolution Keeper Circuit Resistance
1 2
Symbol Voh Vol VIH(dc) VIL(dc) VIH(diff) VIL(diff) Vpeak Varea Vtt Iin — — —
Test Conditions — — — — — — — — Vtt tracking OVDD/2 VI = 0 V VI=OVDD Minimum impedance configuration — —
Min 0.8*OVDD1 — Vref
2+0.1
Typ — — — — — — — — Vref — — — — 1304
Max — 0.2*OVDD OVDD Vref-0.1 See Note3
Unit V V V V V V V Vx nS V μA Ω Ω kΩ
OVSS 0.2 See Note3 — — 0.49*OVDD — — — — —
-0.2 0.4 0.67 0.51*OVDD 1 1 3 10 —
OVDD – I/O power supply (1.425 V–1.575 V for DDR3) Vref – DDR3 external reference voltage
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 31
Electrical Characteristics
3
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 4 Use an off-chip pull resistor of less than 60 kΩ to override this keeper.
4.3.3
Low Voltage I/O (LVIO) DC Parameters
The parameters in Table 14 are guaranteed per the operating ranges in Table 6, unless otherwise noted. The LVIO pads operate only as inputs.
Table 14. LVIO DC Electrical Characteristics
DC Electrical Characteristics High-Level DC input voltage1, 2 Low-Level DC input voltage Input Hysteresis Schmitt trigger VT+2, 3 Schmitt trigger VT–2, 3 Input current (no pull-up/down) Input current (22 kΩ Pull-up) Input current (47 kΩ Pull-up) Input current (100 kΩ Pull-up) Input current (100 kΩ Pull-down) Keeper Circuit Resistance
1 1, 2
Symbol Vih Vil Vhys VT+ VT– Iin Iin Iin Iin Iin —
Test Conditions — — OVDD = 1.875 V OVDD = 2.775 V — — Vin = OVDD or 0 V Vin = 0 V Vin = OVDD Vin = 0 V Vin = OVDD Vin = 0 V Vin = OVDD Vin = 0 V Vin = OVDD
Min 0.7 × OVDD 0 0.35 0.5 × OVDD — — — — — — —
Typ — — 0.62 1.27 — — — — — — — 1304
Max OVDD 0.3 × OVDD — — 0.5 × OVDD 1 161 1 76 1 36 1 1 36 —
Unit V V V V V μA μA μA μA μA kΩ
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device. 2 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 s. VIL and VIH do not apply when hysteresis is enabled. 3 Hysteresis of 350 mV is guaranteed over all operating conditions when hysteresis is enabled. 4 Use an off-chip pull resistor of less than 60 kΩ to override this keeper.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 32 Freescale Semiconductor
Electrical Characteristics
4.3.4
Ultra-High Voltage I/O (UHVIO) DC Parameters
Table 15. UHVIO DC Electrical Characteristics
The parameters in Table 15 are guaranteed per the operating ranges in Table 6, unless otherwise noted.
DC Electrical Characteristics High-level output voltage1
Symbol Voh
Test Conditions Iout = –1mA Iout= specified Ioh Drive Iout = 1mA Iout= specified Ioh Drive Vout = 0.8 × OVDD Low Drive Medium Drive High Drive Vout = 0.8 × OVDD Low Drive Medium Drive High Drive Vout = 0.2 × OVDD Low Drive Medium Drive High Drive Vout = 0.2 × OVDD Low Drive Medium Drive High Drive — — low voltage mode high voltage mode — — Vin = OVDD or 0 V Vin = 0 Vin = OVDD Vin = 0 Vin = OVDD Vin = 0 Vin = OVDD Vin = 0 Vin = OVDD —
Min OVDD–0.15 0.8 * OVDD —
Typ —
Max —
Unit V
Low-level output voltage1
Vol
—
0.15 0.2 * OVDD
V
High-level output current, low voltage mode Ioh_lv
–2.2 –4.4 –6.6 –5.1 –10.2 –15.3 2.2 4.4 6.6 5.1 10.2 15.3 0.7 × OVDD 0 0.38 0.95 0.5 × OVDD — — — — — — —
—
—
mA
High-level output current, high voltage mode
Ioh_hv
—
—
mA
Low-level output current, low voltage mode Iol_lv
—
—
mA
Low-level output current, high voltage mode Iol_hv
—
—
mA
High-Level DC input voltage1, 2 Low-Level DC input Input Hysteresis Schmitt trigger VT+2, 3 Schmitt trigger VT–2, 3 Input current (no pull-up/down) Input current (22 kΩ Pull-up) Input current (75 kΩ Pull-up) Input current (100 kΩ Pull-up) Input current (360 kΩ Pull-down) Keeper Circuit Resistance voltage1, 2
VIH VIL VHYS VT+ VT– Iin Iin Iin Iin Iin —
— — — — — — — — — — 1304
OVDD 0.3 × OVDD 0.43 1.33 — 0.5 × OVDD 1 202 1 61 1 47 1 1 5.7 —
V V V V V μA μA μA μA μA kΩ
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 33
Electrical Characteristics
1
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device. 2 To maintain a valid level, the transitioning edge of the input must sustain a constant slew rate (monotonic) from the current DC level to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 s. VIL and VIH do not apply when hysteresis is enabled. 3 Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled. 4 Use an off-chip pull resistor of less than 60 kΩ to override this keeper.
4.3.5
LVDS I/O DC Parameters
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details. Table 16 shows the Low Voltage Differential Signaling (LVDS) DC electrical characteristics.
Table 16. LVDS DC Electrical Characteristics
DC Electrical Characteristics Output Differential Voltage Output High Voltage Output Low Voltage Offset Voltage Symbol VOD VOH VOL VOS Test Conditions Rload=100Ω padP, –padN Min 250 1.25 0.9 1.125 Typ 350 1.375 1.025 1.2 Max 450 1.6 1.25 1.375 V Unit mV
4.4
Output Buffer Impedance Characteristics
This section defines the I/O Impedance parameters of the i.MX53xA processor for the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate 3 I/O (DDR3) for DDR2/LVDDR2, LPDDR2, and DDR3 modes • Ultra High Voltage I/O (UHVIO) • LVDS I/O NOTE Output driver impedance is measured with “long” transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission lime. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 4).
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 34 Freescale Semiconductor
Electrical Characteristics
OVDD PMOS (Rpu) Ztl Ω, L = 20 inches ipp_do predriver pad Cload = 1p NMOS (Rpd) OVSS Vin (do) VDD
U,(V)
t,(ns) 0 U,(V) Vout (pad) OVDD
Vref1 Vref
Vref2
t,(ns) 0
Rpu =
Vovdd – Vref1 Vref1
× Ztl
Rpd =
Vref2 Vovdd – Vref2
× Ztl
Figure 4. Impedance Matching Load for Measurement
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 35
Electrical Characteristics
4.4.1
GPIO Output Buffer Impedance
Table 17. GPIO Output Buffer Impedance
Typ
Table 17 shows the GPIO output buffer impedance.
Parameter
Symbol
Test Conditions Low Drive Strength, Ztl = 150 Ω Medium Drive Strength, Ztl = 75 Ω High Drive Strength, Ztl = 50 Ω Max Drive Strength, Ztl = 37.5 Ω Low Drive Strength, Ztl = 150 Ω Medium Drive Strength, Ztl = 75 Ω High Drive Strength, Ztl = 50 Ω Max Drive Strength, Ztl = 37.5 Ω
Min OVDD 2.775 V OVDD 1.875 V 150 75 51 38 134 66 44 34
Max
Unit
Output Driver Impedance
Rpu
80 40 27 20 64 32 21 16
104 52 35 26 88 44 30 22
250 125 83 62 243 122 81 61
Ω
Output Driver Impedance
Rpd
Ω
4.4.2
DDR Output Driver Average Impedance
The DDR2/LVDDR2 interface fully complies with JESD79-2E DDR2 JEDEC standard release April, 2008. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 36 Freescale Semiconductor
Electrical Characteristics
Table 18 shows DDR output driver average impedance of the i.MX53xA processor.
Table 18. DDR Output Driver Average Impedance1
Drive strength (DSE) Parameter Symbol Test Conditions 000 LPDDR1/DDR2 mode NVCC_DRAM = 1.8 V DDR_SEL = 00 Calibration resistance = 300 Ω3 DDR2 mode NVCC_DRAM = 1.8 V DDR_SEL = 01 Calibration resistance = 180 Ω3 DDR2 mode NVCC_DRAM = 1.8 V DDR_SEL = 10 Calibration resistance = 200 Ω3 DDR2 mode NVCC_DRAM= 1.8 V DDR_SEL = 11 Calibration resistance = 140 Ω3 LPDDR2 mode NVCC_DRAM= 1.2 V DDR_SEL = 014 Calibration resistance = 160 Ω3 LPDDR2 mode NVCC_DRAM = 1.2 V DDR_SEL = 10 Calibration resistance = 240 Ω3 LPDDR2 mode NVCC_DRAM = 1.2 V DDR_SEL = 114 Calibration resistance = 160 Ω3 DDR3 mode NVCC_DRAM = 1.5 V DDR_SEL = 00 Calibration resistance = 200 Ω3
1
Unit 001 300 010 150 011 100 100 75 101 60 110 50 111 43
Hi-Z
Hi-Z
180
90
60
45
36
30
26
Hi-Z
200
100
66
50
40
33
28
Hi-Z
140
70
46
35
28
23
20
Output Driver Impedance
Rdrv2
Ω Hi-Z 160 80 53 40 32 27 23
Hi-Z
240
120
80
60
48
40
34
Hi-Z
160
80
53
40
32
27
23
Hi-Z
240
120
80
60
48
48
34
Output driver impedance is controlled across PVTs (process, voltages, and temperatures) using calibration procedure and pu_*cal, pd_*cal input pins. 2 Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs. 3 Calibration is done against external reference resistor. Value of the resistor should be varied depending on DDR mode and DDR_SEL setting. 4 If DDR_SEL = ‘01’ or DDR_SEL = ‘11’ are selected with NVCC_DRAM = 1.2 V for LPDDR2 operation, the external reference resistor value must be 160 Ω for a correct ZQ calibration. In any case, reference resistors attached to the DDR memory devices should be kept to 240 Ω per the JEDEC standard.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 37
Electrical Characteristics
4.4.3
UHVIO Output Buffer Impedance
Table 19. UHVIO Output Buffer Impedance
Min Typ OVDD 3.3 V 135 67 45 154 77 51 Max OVDD 1.65 V 198 99 66 179 89 60 OVDD 3.6 V 206 103 69 217 109 72 Unit
Table 19 shows the UHVIO output buffer impedance.
Parameter
Symbol
Test Conditions
OVDD OVDD OVDD 1.95 V 3.0 V 1.875 V 98 49 32 97 49 32 114 57 38 118 59 40 124 62 41 126 63 42
Output Driver Impedance Output Driver Impedance
Rpu
Low Drive Strength, Ztl = 150 Ω Medium Drive Strength, Ztl = 75 Ω High Drive Strength, Ztl = 50 Ω Low Drive Strength, Ztl = 150 Ω Medium Drive Strength, Ztl = 75 Ω High Drive Strength, Ztl = 50 Ω
Ω
Rpd
Ω
4.4.4
LVDS I/O Output Buffer Impedance
The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
4.5
I/O AC Parameters
This section includes the AC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate 3 I/O (DDR3) for DDR2/LVDDR2, LPDDR2 and DDR3 modes • Low Voltage I/O (LVIO) • Ultra High Voltage I/O (UHVIO) • LVDS I/O The load circuit and output transition time waveforms are shown in Figure 5 and Figure 6.
From Output Under Test Test Point CL CL includes package, probe and fixture capacitance
Figure 5. Load Circuit for Output
OVDD 80% Output (at pad) 20% tr tf 80% 20% 0V
Figure 6. Output Transition Time Waveform
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 38 Freescale Semiconductor
Electrical Characteristics
4.5.1
GPIO I/O AC Electrical Characteristics
AC electrical characteristics for GPIO I/O in slow and fast modes are presented in the Table 20 and Table 21, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bit in the IOMUXC control registers.
Table 20. GPIO I/O AC Parameters Slow Mode
Parameter Output Pad Transition Times (Max Drive) Output Pad Transition Times (High Drive) Output Pad Transition Times (Medium Drive) Output Pad Transition Times (Low Drive) Output Pad Slew Rate (Max Drive)1 Output Pad Slew Rate (High Drive)1 Output Pad Slew Rate (Medium Drive)1 Output Pad Slew Rate (Low Drive)1 Output Pad di/dt (Max Drive) Output Pad di/dt (High Drive) Output Pad di/dt (Medium drive) Output Pad di/dt (Low drive) Input Transition Times
1 2 2
Symbol Test Condition tr, tf tr, tf tr, tf tr, tf tps tps tps tps tdit tdit tdit tdit trm 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF — — — — —
Min — — — — 0.5/0.65 0.32/0.37 0.43/0.54 0.26/0.41 0.34/0.41 0.18/0.2 0.20/0.22 0.09/0.1 — — — — —
Typ — — — — — — — — — — — — —
Max 1.91/1.52 3.07/2.65 2.22/1.81 3.81/3.42 2.88/2.42 5.43/5.02 4.94/4.50 10.55/9.70 — —
Unit ns ns ns ns
V/ns — — 30 23 mA/ns 15 7 25 ns
tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge. Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
Table 21. GPIO I/O AC Parameters Fast Mode
Parameter Output Pad Transition Times (Max Drive) Output Pad Transition Times (High Drive) Output Pad Transition Times (Medium Drive) Symbol tr, tf tr, tf tr, tf Test Condition 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF Min — — — Typ — — — Max 1.45/1.24 2.76/2.54 1.81/1.59 3.57/3.33 2.54/2.29 5.25/5.01 Unit ns ns ns
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 39
Electrical Characteristics
Table 21. GPIO I/O AC Parameters Fast Mode (continued)
Parameter Output Pad Transition Times (Low Drive) Output Pad Slew Rate (Max Drive)1 Output Pad Slew Rate (High Drive)1 Output Pad Slew Rate (Medium Drive)1 Output Pad Slew Rate (Low Drive)1 Output Pad di/dt (Max Drive) Output Pad di/dt (High Drive) Output Pad di/dt (Medium drive) Output Pad di/dt (Low drive) Input Transition Times2
1 2
Symbol tr, tf tps tps tps tps tdit tdit tdit tdit trm
Test Condition 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF — — — — —
Min
Typ
Max 4.82/4.5 10.54/9.95 — — — — 70 53 35 18 25
Unit ns V/ns V/ns V/ns V/ns mA/ns mA/ns mA/ns mA/ns ns
— 0.69/0.78 0.36/0.39 0.55/0.62 0.28/0.30 0.39/0.44 0.19/0.20 0.21/0.22 0.09/0.1 — — — — —
— — — — — — — — — —
tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge. Hysteresis mode is recommended for inputs with transition time greater than 25 ns.
4.5.2
LPDDR2 I/O AC Electrical Characteristics
The DDR2/LVDDR2 interface mode fully complies with JESD79-2E DDR2 JEDEC standard release April, 2008. The DDR3 interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. Table 22 shows the AC parameters for LPDDR2 I/O operating in DDR2 mode.
Table 22. LPDDR2 I/O DDR2 mode AC Characteristics1
Parameter Symbol Test Condition Min Typ — — — — — — — Max — Unit V V V V V V/ns ns
AC input logic high AC input logic low
AC differential input voltage2 Input AC differential cross point voltage3
Vih(ac) Vil(ac)
Vid(ac) Vix(ac) Vox(ac) tsr tSKD
— — — — — At 25 Ω to Vref clk=266Mhz clk=400Mhz
Vref+0.25
— 0.5
Vref-0.25
OVDD Vref + 0.175 Vref + 0.125 2 0.2 0.1
Vref – 0.175 Vref – 0.125
0.4 —
Output AC differential cross point voltage4 Single output slew rate Skew between pad rise/fall asymmetry + skew caused by SSN
1
Note that the JEDEC SSTL_18 specification (JESD8-15a) for class II operation supersedes any specification in this document.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 40 Freescale Semiconductor
Electrical Characteristics
2
Vid(ac) specifies the input differential voltage |Vtr – Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac) – Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 * OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross. 4 The typical value of Vox(ac) is expected to be about 0.5 * OVDD and Vox(ac) is expected to track variation in OVDD. Vox(ac) indicates the voltage at which differential output signal must cross.
Table 23 shows the AC parameters for LPDDR2 I/O operating in LPDDR2 mode.
Table 23. LPDDR2 I/O LPDDR2 mode AC Characteristics1
Parameter AC input logic high AC input logic low AC differential input high voltage2 AC differential input low voltage Input AC differential cross point voltage3 Over/undershoot peak Over/undershoot area (above OVDD or below OVSS) Single output slew rate Symbol Vih(ac) Vil(ac) Vidh(ac) Vidl(ac) Vix(ac) Vpeak Varea tsr Test Condition — — — — Relative to OVDD/2 — 266MHz 50Ohm to Vref. 5pF load. Drive impedance= 40Ohm +-30% 50Ohm to Vref. 5pF load.Drive impedance= 60Ohm +-30% Skew between pad rise/fall asymmetry + skew caused by SSN
1 2
Min Vref + 0.22 0 0.44 — -0.12 — — 1.5
Typ — — — — — — — —
Max OVDD Vref – 0.22 — 0.44 0.12 0.35 0.6 3.5
Unit V V V V V V V*ns V/ns
1
—
2.5
tSKD
clk=266MHz clk=400MHz
—
—
0.2 0.1
ns
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document. Vid(ac) specifies the input differential voltage |Vtr – Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac) – Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 * OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.
Table 24 shows the AC parameters for LPDDR2 I/O operating in DDR3 mode.
Table 24. LPDDR2 I/O DDR3 mode AC Characteristics1
Parameter AC input logic high AC input logic low AC differential input voltage2 Input AC differential cross point voltage3 Symbol Test Condition Vih(ac) Vil(ac) Vid(ac) Vix(ac) — — — — Min Vref + 0.175 0 0.35 Typ — — — — Max OVDD Unit V V V V
Vref – 0.175
— Vref + 0.15
Vref – 0.15
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 41
Electrical Characteristics
Table 24. LPDDR2 I/O DDR3 mode AC Characteristics1 (continued)
Parameter Output AC differential cross point voltage4 Single output slew rate Skew between pad rise/fall asymmetry + skew caused by SSN
1 2
Symbol Test Condition Vox(ac) tsr tSKD — At 25 Ω to Vref clk=266MHz clk=400MHz
Min
Typ — — —
Max Vref + 0.15 5 0.2 0.1
Unit V V/ns ns
Vref – 0.15
2.5 —
Note that the JEDEC JESD79_3C specification supersedes any specification in this document. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac) – Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 * OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross. 4 The typical value of Vox(ac) is expected to be about 0.5 * OVDD and Vox(ac) is expected to track variation in OVDD. Vox(ac) indicates the voltage at which differential output signal must cross.
4.5.3
LVIO I/O AC Electrical Characteristics
AC electrical characteristics for LVIO I/O in slow and fast modes are presented in the Table 25 and Table 26, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bit in the IOMUXC control registers.
Table 25. LVIO I/O AC Parameters in Slow Mode
Parameter Input Transition Times1
1
Symbol Test Condition trm —
Min —
Typ —
Max 25
Unit ns
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 42 Freescale Semiconductor
Electrical Characteristics
4.5.4
UHVIO I/O AC Electrical Characteristics
Table 26. LVIO I/O AC Parameters in Fast Mode
Parameter Symbol trm Test Condition — Min — Typ — Max 25 Unit ns
Input Transition Times1
1
Hysteresis mode is recommended for inputs with transition time greater than 25 ns.
Table 27 shows the AC parameters for UHVIO I/O operating in low output voltage mode. Table 28 shows the AC parameters for UHVIO I/O operating in high output voltage mode.
Table 27. AC Electrical Characteristics of UHVIO Pad (Low Output Voltage Mode)
Parameter Output Pad Transition Times (High Drive) Output Pad Transition Times (Medium Drive) Output Pad Transition Times (Low Drive) Output Pad Slew Rate (High Drive)1 Output Pad Slew Rate (Medium Drive)1 Output Pad Slew Rate (Low Drive)1 Output Pad di/dt (High Drive) Output Pad di/dt (Medium drive) Output Pad di/dt (Low drive) Input Transition
1 2
Symbol Test Condition tr, tf tr, tf tr, tf tps tps tps tdit tdit tdit trm 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF — — — —
Min — — — 0.63/0.59 0.33/0.30 0.46/0.42 0.22/0.21 0.25/0.23 0.11/0.11 — — — —
Typ — — — — — — — — — —
Max 1.59/1.69 3.05/3.30 2.16/2.35 4.45/4.84 4.06/4.42 8.79/9.55 — — — 43.6 32.3 18.24 25
Unit
ns
V/ns
mA/ns
Times2
ns
tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge. Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
Table 28. AC Electrical Characteristics of UHVIO Pad (High Output Voltage Mode)
Parameter Output Pad Transition Times (High Drive) Output Pad Transition Times (Medium Drive) Output Pad Transition Times (Low Drive) Symbol Test Condition tr, tf tr, tf tr, tf 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF Min — — — Typ — — — Max 1.72/1.92 3.46/3.70 2.38/2.56 5.07/5.25 4.55/4.58 10.04/9.94 ns Unit
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 43
Electrical Characteristics
Table 28. AC Electrical Characteristics of UHVIO Pad (High Output Voltage Mode) (continued)
Parameter Output Pad Slew Rate (High Drive)1 Output Pad Slew Rate (Medium Drive)1 Output Pad Slew Rate (Low Drive)1 Output Pad di/dt (High Drive) Output Pad di/dt (Medium drive) Output Pad di/dt (Low drive) Input Transition Times2
1 2
Symbol Test Condition tps tps tps tdit tdit tdit trm 15 pF 35 pF 15 pF 35 pF 15 pF 35 pF — — — —
Min 1.05/0.94 0.52/0.49 0.76/0.71 0.36/0.34 0.40/0.93 0.18/0.18 — — — —
Typ — — — — — — —
Max — — — 82.8 65.6 43.1 25
Unit
V/ns
mA/ns
ns
tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge. Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
4.5.5
LVDS I/O AC Electrical Characteristics
The differential output transition time waveform is shown in Figure 7.
Figure 7. Differential LVDS Driver Transition Time Waveform
Table 29 shows the AC parameters for LVDS I/O.
Table 29. AC Electrical Characteristics of LVDS Pad
Parameter Transition Low to High Time1 Transition High to Low Time1 Operating Frequency Offset voltage imbalance
1
Symbol Test Condition tTLH tTHL f Vos Rload = 100 Ω, Cload = 2 pF — —
Min 0.26 0.26 — —
Typ — — 300 —
Max 0.5
Unit ns
0.5 — 150 MHz mV
Measurement levels are 20-80% from output voltage.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 44 Freescale Semiconductor
Electrical Characteristics
4.6
System Modules Timing
This section contains the timing and electrical parameters for the modules in the i.MX53xA processor.
4.6.1
Reset Timings Parameters
Figure 8 shows the reset timing and Table 30 lists the timing parameters.
RESET_IN (Input) CC1
Figure 8. Reset Timing Diagram Table 30. Reset Timing Parameters
ID CC1 Parameter Duration of RESET_IN to be qualified as valid (input slope = 5 ns) Min 50 Max — Unit ns
4.6.2
WDOG Reset Timing Parameters
Figure 9 shows the WDOG reset timing and Table 31 lists the timing parameters.
WATCHDOG_RST (Input) CC5
Figure 9. WATCHDOG_RST Timing Diagram Table 31. WATCHDOG_RST Timing Parameters
ID CC5 Parameter Duration of WATCHDOG_RESET Assertion Min 1 Max — Unit TCKIL
NOTE CKIL is approximately 32 kHz. TCKIL is one period or approximately 30 μs.
4.6.3
Clock Amplifier Parameters (CKIH1, CKIH2)
The input to Clock Amplifier (CAMP) is internally ac-coupled allowing direct interface to a square wave or sinusoidal frequency source. No external series capacitors are required.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 45
Electrical Characteristics
Table 32 shows the electrical parameters of CAMP.
Table 32. CAMP Electrical Parameters (CKIH1, CKIH2)
Parameter Input frequency VIL (for square wave input) VIH (for square wave input)1 Sinusoidal input amplitude Output duty cycle
1
Min 8.0 0 NVCC_CKIH – 0.25 0.4 45
Typ — — — — 50
Max 40.0 0.3 NVCC_CKIH VDD 55
Unit MHz V V Vp-p %
NVCC_CKIH is the supply voltage of CAMP.
4.6.4
DPLL Electrical Parameters
Table 33. DPLL Electrical Parameters
Parameter Test Conditions/Remarks — — — — — Should be less than denominator — — — — (peak value) — FPL mode, integer and fractional MF fdck = 300 MHz at avdd = 1.8 V, dvdd = 1.2 V fdck = 650 MHz at avdd = 1.8 V, dvdd = 1.2 V Min 10 10 300 1 5 –67108862 1 48.5 — — — — — Typ — — — — — — — 50 — — 0.02 2.0 — Max 100 40 1025 16 15 67108862 67108863 51.5 398 100 0.04 3.5 0.65 (avdd) 0.92 (dvdd) 1.98 (avdd) 1.8 (dvdd) Unit MHz MHz MHz — — — — % Tdpdref
Table 33 shows the electrical parameters of digital phase-locked loop (DPLL).
Reference clock frequency range1 Reference clock frequency range after pre-divider Output clock frequency range (dpdck_2) Pre-division factor
2
Multiplication factor integer part Multiplication factor numerator3
Multiplication factor denominator2 Output Duty Cycle Frequency lock time4 (FOL mode or non-integer MF) Phase lock time Frequency jitter5
µs
Tdck ns mW
Phase jitter (peak value) Power dissipation
2
Device input range cannot exceed the electrical specifications of the CAMP, see Table 32. The values specified here are internal to DPLL. Inside the DPLL, a “1” is added to the value specified by the user. Therefore, the user has to enter a value “1” less than the desired value at the inputs of DPLL for PDF and MFD. 3 The maximum total multiplication factor (MFI + MFN/MFD) allowed is 15. Therefore, if the MFI value is 15, MFN value must be zero.
1
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 46 Freescale Semiconductor
Electrical Characteristics
4
Tdpdref is the time period of the reference clock after predivider. According to the specification, the maximum lock time in FOL mode is 398 cycles of divided reference clock when DPLL starts after full reset. 5 Tdck is the time period of the output clock, dpdck_2.
4.6.5
NAND Flash Controller (NFC) Parameters
This section provides the relative timing requirements among various signals of NFC at the module level, in each operational mode. Timing parameters in Figure 10, Figure 11, Figure 12, Figure 13, Figure 15, and Table 35 show the default NFC mode (asymmetric mode) using two Flash clock cycles per one access of RE_B and WE_B. Timing parameters in Figure 10, Figure 11, Figure 12, Figure 14, Figure 15, and Table 35 show symmetric NFC mode using one Flash clock cycle per one access of RE_B and WE_B. With reference to the timing diagrams, a high is defined as 80% of signal value and low is defined as 20% of signal value. All parameters are given in nanoseconds. The BGA contact load used in calculations is 20 pF (except for NF16 - 40 pF) and there is maximum drive strength on all contacts. All timing parameters are a function of T, which is the period of the flash_clk clock (“enfc_clk” at system level). This clock frequency can be controlled by the user, configuring CCM (SoC clock controller). The clock is derived from emi_slow_clk after single divider. Figure 34 demonstrates several examples of clock frequency settings.
Table 34. NFC Clock Settings Examples
emi_slow_clk (MHz) 100 (Boot mode) nfc_podf (Division Factor) 71 32 133 4 3 2
1 2
enfc_clk (MHz) 14.29 33.33 33.33 44.33 663
3
T-Clock Period (ns) 70 30 30 22.5 15
Boot value NFC_FREQ_SEL Fuse High (burned) Boot value NFC_FREQ_SEL Fuse Low 3 For RBB_MODE=1, using NANDF_RB0 signal for ready/busy indication. This mode require setting the delay line. See the Reference Manual for details.
NOTE A potential limitation for minimum clock frequency may exist for some devices. When the clock frequency is too low, the data bus capturing might occur after the specified trhoh (RE_B high to output hold) period. Setting the clock frequency above 25.6 MHz (that is, T = 39 ns) guaranties a proper operation for devices having trhoh > 15 ns. It is also recommended that the NFC_FREQ_SEL Fuse be set accordingly to initiate the boot with 33.33 MHz clock.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 47
Electrical Characteristics
Lower frequency operation can be supported for most available devices in the market, relying on data lines Bus-Keeper logic. This depends on device behavior on the data bus in the time interval between data output valid to data output high-Z state. In NAND device parameters this period is marked between trhoh and trhz (RE_B high to output high-Z). In most devices, the data transition from valid value to high-Z occurs without going through other states. Setting the data bus pads to Bus-Keeper mode in the IOMUXC registers, keeps the data bus valid internally after the specified hold time, allowing proper capturing with slower clock.
NFCLE
NF1 NF3
NF2 NF4
NFCE_B NF5 NFWE_B NF8 NFIO[7:0] command NF9
Figure 10. Command Latch Cycle Timing
NF3 NFCE_B NF10 NF11 NF5 NFWE_B NF6 NFALE NF8 NFIO[7:0] Address NF9 NF7 NF4
Figure 11. Address Latch Cycle Timing
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 48 Freescale Semiconductor
Electrical Characteristics NF3 NFCE_B NF10 NF11 NF5 NFWE_B NF8 NFIO[15:0] Data to NF
NF9
Figure 12. Write Data Latch Timing
NFCE_B NF14 NF15 NF13 NFRE_B NF16 NFRB_B NF12 NFIO[15:0] Data from NF NF17
Figure 13. Read Data Latch Timing, Asymmetric Mode
NFCE_B NF14 NF15 NF13 NFRE_B NF16 NFRB_B NF12 NFIO[15:0] Data from NF NF18
Figure 14. Read Data Latch Timing, Symmetric Mode
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 49
Electrical Characteristics
NF19
NFCLE NF20 NFCE_B
NFWE_B NF22 NFRE_B
NF21
NFRB_B
Figure 15. Other Timing Parameters
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 50 Freescale Semiconductor
Electrical Characteristics
Table 35. NFC—Timing Characteristics
ID NF1 NF2 NF31 NF4 NF5 NF6 NF7 NF8 NF9 NF10 NF11 NF12 NF13 NF14 NF15 NF162 NF174 NF185 NF19 NF20 NF21 NF22
1
Parameter NFCLE setup Time NFCLE Hold Time NFCE_B Setup Time NFCE_B Hold Time NFWE_B Pulse Width NFALE Setup Time NFALE Hold Time Data Setup Time Data Hold Time Write Cycle Time NFWE_B Hold Time Ready to NFRE_B Low NFRE_B Pulse Width READ Cycle Time NFRE_B High Hold Time Data Setup on READ Data Hold on READ Data Hold on READ CLE to RE delay CE to RE delay WE high to RE low WE high to busy
Symbol tCLS tCLH tCS tCH tWP tALS tALH tDS tDH tWC tWH tRR tRP tRC tREH tDSR tDHR tDHR tCLR tCRE tWHR tWB
Asymmetric Mode Min 2T + 0.1 T – 4.45 3T + 0.95 2T–5.55 T – 1.4 2T + 0.1 T – 4.45 T – 0.9 T – 5.55 2T T – 1.15 9T + 8.9 1.5T 2T 0.5T – 1.15 11.2 + 0.5T – 0 — 9T T – 3.45 10.5T — Tdl3
Symmetric Mode Min 2T + 0.1 T – 4.45 3T+0.95 1.5T–5.55 0.5T – 1.4 2T + 0.1 T – 4.45 0.5T – 0.9 0.5T – 5.55 T–0.5 0.5T – 1.15 9T + 8.9 0.5T–1 T 0.5T – 1.15 11.2 – — Tdl2 – 11.2 9T T – 3.45 10.5T — Tdl2
Max — — — — — — — — — — — — — — — — 2Taclk + T 2Taclk + T — T + 0.3 — 6T
In case of NUM_OF_DEVICES is greater than 0 (for example, interleaved mode), then only during the data phase of symmetric mode the setup time will equal 1.5T + 0.95. 2 tDSR is calculated by the following formula: Asymmetric mode: tDSR = tREpd + tDpd + 1/2T – Tdl2 Symmetric mode: tDSR = tREpd + tDpd – Tdl2 tREpd + tDpd = 11.2 ns (including clock skew) where tREpd is RE propogation delay in the chip including I/O pad delay, and tDpd is Data propogation delay from I/O pad to EXTMC including I/O pad delay. tDSR can be used to determine tREA max parameter with the following formula: tREA = 1.5T – tDSR. 3 Tdl is composed of 4 delay-line units each generates an equal delay with min 1.25 ns and max 1 aclk period (Taclk). Default is 1/4 aclk period for each delay-line unit, so all 4 delay lines together generates a total of 1 aclk period. Taclk is “emi_slow_clk” of the system, which default value is 7.5 ns (133 MHz).
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 51
Electrical Characteristics
4
NF17 is defined only in asymmetric operation mode. NF17 max value is equivalent to max tRHZ value that can be used with NFC. Taclk is “emi_slow_clk” of the system. 5 NF18 is defined only in Symmetric operation mode. Tdl2 – (tREpd + tDpd) tDHR (MIN) is calculated by the following formula: where tREpd is RE propogation delay in the chip including I/O pad delay, and tDpd is Data propogation delay from I/O pad to EXTMC including I/O pad delay. NF18 max value is equivalent to max tRHZ value that can be used with NFC. Taclk is “emi_slow_clk” of the system.
4.6.6
External Interface Module (EIM)
The following subsections provide information on the EIM.
4.6.6.1
EIM Signal Cross Reference
Table 36 is a guide intended to help the user identify signals in the External Interface Module Chapter of the Reference Manual which are identical to those mentioned in this data sheet.
Table 36. EIM Signal Cross Reference
Reference Manual EIM Chapter Nomenclature BCLK CSx WE_B OE_B BEy_B ADV ADDR ADDR/M_DATA DATA WAIT_B Data Sheet Nomenclature, Reference Manual External Signals and Pin Multiplexing Chapter, and IOMUXC Controller Chapter Nomenclature EIM_BCLK EIM_CSx EIM_RW EIM_OE EIM_EBx EIM_LBA EIM_A[25:16], EIM_DA[15:0] EIM_DAx (Addr/Data muxed mode) EIM_NFC_D (Data bus shared with NAND Flash) EIM_Dx (dedicated data bus) EIM_WAIT
4.6.6.2
EIM Interface Pads Allocation
EIM supports16-bit and 8-bit devices operating in address/data separate or multiplexed modes. In some of the modes the EIM and the NAND FLASH have shared data bus. Table 37 provides EIM interface pads allocation in different modes.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 52 Freescale Semiconductor
Electrical Characteristics
Table 37. EIM Internal Module Multiplexing
Non Multiplexed Address/Data Mode Setup MUM = 0, DSZ = 111 A[15:0] A[25:16] D[7:0], EIM_EB 0 D[15:8], EIM_EB 1 D[23:16] , EIM_EB 2 D[31:24] , EIM_EB 3
1 2 3
Multiplexed Address/Data mode 32 Bit MUM = 0, DSZ = 011 EIM_DA [15:0] EIM_A [24:16]1 NANDF_D [7:0] NANDF_D [15:8] EIM_D [23:16] 16 Bit MUM = 1, DSZ = 001 EIM_DA [15:0] EIM_A [25:16] EIM_DA [7:0] EIM_DA [15:8] — 32 Bit MUM = 1, DSZ = 011 EIM_DA [15:0] NANDF_D [8:0]1 EIM_DA [7:0] EIM_DA [15:8] NANDF_D [7:0]
8 Bit MUM = 0, DSZ = 111 EIM_DA [15:0] EIM_A [25:16] — MUM = 0, DSZ = 111 EIM_DA [15:0] EIM_A [25:16] —
16 Bit MUM = 0, DSZ = 001 EIM_DA [15:0] EIM_A [25:16] NANDF_D [7:0]2 NANDF_D [15:8]3 — MUM = 0, DSZ = 010 EIM_DA [15:0] EIM_A [25:16] —
EIM_DA [15:0] EIM_A [25:16] NANDF_D [7:0]2 —
NANDF_D [15:8]3 —
—
—
—
—
EIM_D [23:16]
—
—
EIM_D [31:24]
—
EIM_D [31:24]
EIM_D [31:24]
—
NANDF_D [15:8]
For 32-bit mode, the address range is A[24:0], due to address space allocation in memory map. NANDF_D[7:0] multiplexed on ALT3 mode of PATA_DATA[7:0] NANDF_D[15:8] multiplexed on ALT3 mode of PATA_DATA[15:8]
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 53
Electrical Characteristics
4.6.6.3
General EIM Timing-Synchronous Mode
Figure 16, Figure 17, and Table 38 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the BCLK rising edge according to corresponding assertion/negation control fields.
,
WE2
BCLK ...
WE3 WE5 WE7 WE9
WE4
Address
WE1
WE6
CSx_B
WE8
WE_B
WE10
OE_B
WE11
WE12
BEy_B
WE13
WE14
ADV_B
WE15 WE17
WE16
Output Data
Figure 16. EIM Outputs Timing Diagram
BCLK
WE18
Input Data
WE19 WE20
WAIT_B
WE21
Figure 17. EIM Inputs Timing Diagram Table 38. EIM Bus Timing Parameters 1
BCD = 0 ID Parameter Min WE1 BCLK Cycle time2 WE2 BCLK Low Level Width t 0.4*t Max Min 2*t 0.8*t Max Min 3*t 1.2*t Max Min 4*t 1.6*t Max BCD = 1 BCD = 2 BCD = 3
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 54 Freescale Semiconductor
Electrical Characteristics
Table 38. EIM Bus Timing Parameters (continued)1
BCD = 0 ID Parameter Min WE3 BCLK High Level Width WE4 Clock rise to address valid3 WE5 Clock rise to address invalid WE6 Clock rise to CSx_B valid WE7 Clock rise to CSx_B invalid WE8 Clock rise to WE_B Valid WE9 Clock rise to WE_B Invalid 0.4*t -0.5*t-1.25 0.5*t-1.25 -0.5*t-1.25 0.5*t-1.25 -0.5*t-1.25 0.5*t-1.25 -0.5*t+1.75 0.5*t+1.75 -0.5*t+1.75 0.5*t+1.75 -0.5*t+1.75 0.5*t+1.75 -0.5*t+1.75 0.5*t+1.75 -0.5*t+1.75 0.5*t+1.75 -0.5*t+1.75 0.5*t+1.75 -0.5*t+1.75 0.5*t+1.75 Max Min 0.8*t -t-1.25 t-1.25 -t-1.25 t-1.25 -t-1.25 t-1.25 -t-1.25 t-1.25 -t-1.25 t-1.25 -t-1.25 t-1.25 -t-1.25 t-1.25 -t+1.75 t+1.75 -t+1.75 t+1.75 -t+1.75 t+1.75 -t+1.75 t+1.75 -t+1.75 t+1.75 -t+1.75 t+1.75 -t+1.75 t+1.75 Max Min 1.2*t -1.5*t-1.2 5 -1.5*t +1.75 Max Min 1.6*t -2*t-1.25 2*t-1.25 -2*t-1.25 2*t-1.25 -2*t-1.25 2*t-1.25 -2*t-1.25 2*t-1.25 -2*t-1.25 2*t-1.25 -2*t-1.25 2*t-1.25 -2*t-1.25 2*t-1.25 -2*t+1.75 2*t+1.75 -2*t+1.75 2*t+1.75 -2*t+1.75 2*t+1.75 -2*t+1.75 2*t+1.75 -2*t+1.75 2*t+1.75 -2*t+1.75 2*t+1.75 -2*t+1.75 2*t+1.75 Max BCD = 1 BCD = 2 BCD = 3
1.5*t-1.2 1.5*t +1.75 5 -1.5*t-1.2 5 -1.5*t +1.75
1.5*t-1.2 1.5*t +1.75 5 -1.5*t-1.2 5 -1.5*t +1.75
1.5*t-1.2 1.5*t +1.75 5 -1.5*t-1.2 5 -1.5*t +1.75
WE10 Clock rise to OE_B -0.5*t-1.25 Valid WE11 Clock rise to OE_B Invalid WE12 Clock rise to BEy_B Valid WE13 Clock rise to BEy_B Invalid WE14 Clock rise to ADV_B Valid WE15 Clock rise to ADV_B Invalid WE16 Clock rise to Output Data Valid WE17 Clock rise to Output Data Invalid WE18 Input Data setup time to Clock rise WE19 Input Data hold time from Clock rise WE20 WAIT_B setup time to Clock rise WE21 WAIT_B hold time from Clock rise 0.5*t-1.25 -0.5*t-1.25 0.5*t-1.25 -0.5*t-1.25 0.5*t-1.25 -0.5*t-1.25 0.5*t-1.25
1.5*t-1.2 1.5*t +1.75 5 -1.5*t-1.2 5 -1.5*t +1.75
1.5*t-1.2 1.5*t +1.75 5 -1.5*t-1.2 5 -1.5*t +1.75
1.5*t-1.2 1.5*t +1.75 5 -1.5*t-1.2 5 -1.5*t +1.75
1.5*t-1.2 1.5*t +1.75 5 — — — —
2 2
— —
4 2
— —
— —
— —
2 2
— —
4 2
— —
— —
— —
— —
— —
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 55
Electrical Characteristics
1
t is the maximal EIM logic (axi_clk) cycle time. The maximum allowed axi_clk frequency is 133 MHz, whereas the maximum allowed BCLK frequency is 104 MHz. As a result, if BCD = 0, axi_clk must be ≤ 104 MHz. If BCD = 1, then 133 MHz is allowed for axi_clk, resulting in a BCLK of 66.5 MHz. When the clock branch to EIM is decreased to 104 MHz, other busses are impacted which are clocked from this source. See the CCM chapter of the i.MX53 Reference Manual for a detailed clock tree description. 2 BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is defined as 50% as signal value. 3 For signal measurements “High” is defined as 80% of signal value and “Low” is defined as 20% of signal value.
4.6.6.4
Examples of EIM Synchronous Accesses
Figure 18 to Figure 21 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings. BCLK
WE4 WE5
ADDR CSx_B WE_B
Last Valid Address
WE6
Address v1
WE7
WE14
ADV_B
WE10
WE15 WE11 WE13 WE18
OE_B
WE12
BEy_B DATA
D(v1)
WE19
Figure 18. Synchronous Memory Read Access, WSC=1
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 56 Freescale Semiconductor
Electrical Characteristics
BCLK
WE4
WE5
ADDR CSx_B
Last Valid Address
WE6 WE8
Address V1
WE7 WE9
WE_B
WE14
ADV_B OE_B
WE12
WE15 WE13
BEy_B
WE16
DATA
WE17
D(V1)
Figure 19. Synchronous Memory, Write Access, WSC=1, WBEA=0, and WADVN=0
BCLK ADDR/ M_DATA CSx_B
WE8 WE9 WE15 WE4 Valid Addr Last WE6 WE5 Address V1
WE16
WE17 Write Data WE7
WE_B ADV_B OE_B
WE14
WE10
WE11
BEy_B
Figure 20. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6, ADVA=0, ADVN=1, and ADH=1
NOTE In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 57
Electrical Characteristics
BCLK ADDR/ M_DATA CSx_B
WE7 WE4 Last Valid Addr WE6 WE5 Address V1 WE19 Data WE18
WE_B ADV_B OE_B
WE14
WE15 WE10 WE11
WE12
WE13
BEy_B
Figure 21. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, and OEA=0
4.6.6.5
General EIM Timing-Asynchronous Mode
Figure 22 through Figure 27, and Table 39 help to determine timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above. Asynchronous read and write access length in cycles may vary from what is shown in Figure 22 through Figure 25 as RWSC, OEN, and CSN is configured differently. Refer to i.MX53xA RM for the EIM programming model.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 58 Freescale Semiconductor
Electrical Characteristics start of access end of access
INT_CLK
MAXCSO
CSx_B ADDR/ M_DATA WE_B ADV_B OE_B
WE37 WE38 WE44 MAXCO WE39 WE35 WE40 WE36 WE31 WE32
Last Valid Address
Address V1
Next Address
BEy_B DATA[7:0]
WE43 MAXDI
D(V1)
Figure 22. Asynchronous Memory Read Access (RWSC = 5)
start of access
end of access
INT_CLK
MAXCSO
CSx_B
WE31 MAXDI
ADDR/ M_DATA WE_B ADV_B OE_B
WE37 WE39 WE35A
Addr. V1
WE32A
D(V1)
WE44
WE40A
WE36 WE38
BEy_B
MAXCO
Figure 23. Asynchronous A/D Muxed Read Access (RWSC = 5)
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 59
Electrical Characteristics
CSx_B WE31 ADDR WE_B WE39 ADV_B OE_B WE45 BEy_B WE42 DATA WE41 D(V1) WE46 WE40 Last Valid Address WE33 Address V1 WE34 WE32 Next Address
Figure 24. Asynchronous Memory Write Access
CSx_B
WE31 WE41
ADDR/ M_DATA
WE33
Addr. V1
WE32A
D(V1)
WE34 WE42
WE_B
WE40A
ADV_B OE_B
WE39
WE45
WE46 WE42
BEy_B
Figure 25. Asynchronous A/D Muxed Write Access
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 60 Freescale Semiconductor
Electrical Characteristics
CSx_B
WE31 WE32
ADDR WE_B
Last Valid Address
Address V1
Next Address
WE39
WE40 WE36 WE38 WE44
ADV_B
WE35
OE_B
WE37
BEy_B DATA[7:0]
WE43
D(V1)
WE48
DTACK
WE47
Figure 26. DTACK Read Access (DAP=0)
CSx_B
WE31 WE32
ADDR WE_B
Last Valid Address
WE33 WE39
Address V1
WE34 WE40
Next Address
ADV_B OE_B
WE45 WE46 WE42
BEy_B DATA
WE41
D(V1)
WE48
DTACK
WE47
Figure 27. DTACK Write Access (DAP=0)
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 61
Electrical Characteristics
Table 39. EIM Asynchronous Timing Parameters Table Relative Chip Select
Determination by Synchronous measured parameters 12 WE4 - WE6 - CSA3 WE7 - WE5 - CSN4 t5 + WE4 - WE7 + (ADVN + ADVA + 1 - CSA3) Max (If 133 Mhz is supported by SOC) 3 - CSA 3 - CSN
Ref No.
Parameter
Min
Unit
WE31 WE32
CSx_B valid to Address Valid Address Invalid to CSx_B invalid CSx_B valid to Address Invalid
— —
ns ns
WE32 A(mux ed A/D WE33 WE34
-3 + (ADVN + ADVA + 1 - CSA)
—
ns
CSx_B Valid to WE_B Valid WE_B Invalid to CSx_B Invalid CSx_B Valid to OE_B Valid CSx_B Valid to OE_B Valid
WE8 - WE6 + (WEA - CSA) WE7 - WE9 + (WEN - CSN)
— —
3 + (WEA - CSA) 3 - (WEN_CSN)
ns ns
WE35 WE35 A (muxe d A/D) WE36
WE10 - WE6 + (OEA - CSA) WE10 - WE6 + (OEA + RADVN + RADVA + ADH + 1 - CSA)
— -3 + (OEA + RADVN+RADVA +ADH+1-CSA)
3 + (OEA - CSA) 3 + (OEA + RADVN+RADVA+A DH+1-CSA)
ns ns
OE_B Invalid to CSx_B Invalid CSx_B Valid to BEy_B Valid (Read access) BEy_B Invalid to CSx_B Invalid (Read access) CSx_B Valid to ADV_B Valid ADV_B Invalid to CSx_B Invalid (ADVL is asserted) CSx_B Valid to ADV_B Invalid
WE7 - WE11 + (OEN - CSN)
—
3 - (OEN - CSN) 3 + (RBEA6 - CSA) 3 - (RBEN7- CSN)
ns
WE37
WE12 - WE6 + (RBEA - CSA)
—
ns
WE38
WE7 - WE13 + (RBEN - CSN)
—
ns
WE39 WE40
WE14 - WE6 + (ADVA - CSA) WE7 - WE15 - CSN
— —
3 + (ADVA - CSA) 3 - CSN
ns ns
WE40 A (muxe d A/D) WE41
WE14 - WE6 + (ADVN + ADVA + 1 - CSA)
-3 + (ADVN + ADVA + 1 - CSA)
3 + (ADVN + ADVA + 1 - CSA)
ns
CSx_B Valid to Output Data Valid CSx_B Valid to Output Data Valid
WE16 - WE6 - WCSA
—
3 - WCSA
ns
WE41 A (muxe d A/D) WE42
WE16 - WE6 + (WADVN + WADVA + ADH + 1 - WCSA)
—
3 + (WADVN + WADVA + ADH + 1 WCSA)
ns
Output Data Invalid to CSx_B Invalid
WE17 - WE7 - CSN
—
3 - CSN
ns
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 62 Freescale Semiconductor
Electrical Characteristics
Table 39. EIM Asynchronous Timing Parameters Table Relative Chip Select
Determination by Synchronous measured parameters 12 10 Max (If 133 Mhz is supported by SOC) —
Ref No.
Parameter
Min
Unit
MAXC O
Output max. delay from internal driving ADDR/control FFs to chip outputs. Output max. delay from CSx internal driving FFs to CSx out. DATA MAXIMUM delay from chip input data to its internal FF Input Data Valid to CSx_B Invalid
—
ns
MAXC SO
10
—
—
MAXDI
5
—
—
WE43
MAXCO - MAXCSO + MAXDI
MAXCO MAXCSO + MAXDI 0
—
ns
WE44
CSx_B Invalid to Input Data invalid CSx_B Valid to BEy_B Valid (Write access) BEy_B Invalid to CSx_B Invalid (Write access) DTACK MAXIMUM delay from chip dtack input to its internal FF + 2 cycles for synchronization Dtack Active to CSx_B Invalid
0
—
ns
WE45
WE12 - WE6 + (WBEA - CSA)
—
3 + (WBEA - CSA)
ns
WE46
WE7 - WE13 + (WBEN CSN)
—
-3 + (WBEN - CSN)
ns
MAXD TI
—
—
—
WE47
MAXCO - MAXCSO + MAXDTI
MAXCO MAXCSO + MAXDTI 0
—
ns
WE48
1 2 3 4 5 6 7
CSx_B Invalid to Dtack invalid
0
—
ns
Parameters WE4... WE21 value see column BCD = 0 in Table 38 All config. parameters (CSA,CSN,WBEA,WBEN,ADVA,ADVN,OEN,OEA,RBEA & RBEN) are in cycle units. CS Assertion. This bit field determines when CS signal is asserted during read/write cycles. CS Negation. This bit field determines when CS signal is negated during read/write cycles. t is axi_clk cycle time. BE Assertion. This bit field determines when BE signal is asserted during read cycles. BE Negation. This bit field determines when BE signal is negated during read cycles.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 63
Electrical Characteristics
4.6.7
DDR SDRAM Specific Parameters (DDR2/LVDDR2, LPDDR2, and DDR3)
The DDR2/LVDDR2 interface fully complies with JESD79-2E – DDR2 JEDEC release April, 2008, supporting DDR2-800 and LVDDR2-800. The DDR3 interface fully complies with JESD79-3D – DDR3 JEDEC release April 2008 supporting DDR3-800. The LPDDR2 interface fully complies with JESD209-2B, supporting LPDDR2-800. Figure 28 and Table 40 show the address and control timing parameters for DDR2 and DDR3.
DDR1 SDCLK SDCLK DDR2 DDR4 CS
DDR5 RAS
DDR5 DDR4 CAS DDR4 DDR5 WE
DDR5
ODT/CKE DDR6 DDR7 ADDR ROW/BA COL/BA DDR4
Figure 28. DDR SDRAM Address and Control Parameters for DDR2 and DDR3 Table 40. DDR SDRAM Timing Parameter Table1 2
SDCLK = 400 MHz ID Parameter Symbol Min DDR1 DDR2 SDRAM clock high-level width SDRAM clock low-level width tCH tCL 0.48 0.48 Max 0.52 0.52 tCK tCK Units
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 64 Freescale Semiconductor
Electrical Characteristics
Table 40. DDR SDRAM Timing Parameter Table1 2 (continued)
SDCLK = 400 MHz ID Parameter Symbol Min DDR4 DDR5 DDR6 DDR7
1 2
Units Max — — — — ns ns ns ns
CS, RAS, CAS, CKE, WE, ODT setup time CS, RAS, CAS, CKE, WE, ODT hold time Address output setup time Address output hold time
tIS tIH tIS tIH
0.6 0.6 0.6 0.6
All timings are refer to Vref level cross point. Reference load model is 25 ohm resistor from each of the DDR outputs to VDD_REF.
Figure 29 and Table 41 show the address and control timing parameters for LPDDR2.
CK
LP1
CS
LP3
LP4
LP2
CKE
LP4
LP3
LP3
CA
LP3 LP4
Figure 29. DDR SDRAM Address and Control Timing Parameters for LPDDR2 Table 41. DDR SDRAM Timing Parameter Table for LPDDR21 2
SDCLK = 400 MHz ID Parameter Symbol Min LP1 LP2 LP3 LP4 LP3 LP4
1 2
Units Max 0.55 0.55 — — — — tCK tCK ns ns ns ns
SDRAM clock high-level width SDRAM clock low-level width CS, CKE setup time CS, CKE hold time CA setup time CA hold time
tCH tCL tIS tIH tIS tIH
0.45 0.45 0.3 0.3 0.3 0.3
All timings are refer to Vref level cross point. Reference load model is 25 ohm resistor from each of the DDR outputs to VDD_REF.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 65
Electrical Characteristics
Figure 30 and Table 42 show the data write timing parameters.
SDCLK
SDCLK_B DDR21 DQS (output) DDR18 DDR17 DQ (output) Data Data DDR17 Data Data DDR22 DDR23 DDR18 Data Data Data Data
DQM (output) DDR17
DM
DM DDR18
DM DDR17
DM
DM DDR18
DM
DM
DM
Figure 30. DDR SDRAM Data Write Cycle Table 42. DDR SDRAM Write Cycle 1 2 3
SDCLK = 400 MHz ID Parameter Symbol Min DDR17 DDR18 DDR21 DDR22 DDR23
1 2
Unit Max — — +0.25 0.55 0.55 ns ns tCK tCK tCK
DQ and DQM setup time to DQS (differential strobe) DQ and DQM hold time to DQS (differential strobe) DQS latching rising transitions to associated clock edges DQS high level width DQS low level width
tDS tDH tDQSS tDQSH tDQSL
0.285 0.285 -0.25 0.45 0.45
All timings are refer to Vref level cross point. Reference load model is 25 ohm resistor from each of the DDR outputs to VDD_REF. 3 To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window.
Figure 31 and Table 43 show the data read timing parameters.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 66 Freescale Semiconductor
Electrical Characteristics
SDCLK SDCLK_B DQS (input)
DDR27
DQ (input)
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DDR26
Figure 31. DDR SDRAM DQ vs. DQS and SDCLK Read Cycle Table 43. DDR SDRAM Read Cycle 1
SDCLK = 400 MHz ID Parameter Symbol Min DDR26 Minimum required DQ valid window width except from LPDDR2 — — — 0.6 0.425 0.275 Max — — 0.475 ns ns ns Unit
DDR26(LP Minimum required DQ valid window width DDR2) for LPDDR2 DDR27
1
DQS to DQ valid data
To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window.
4.7
External Peripheral Interfaces Parameters
The following subsections provide information on external peripheral interfaces.
4.7.1
AUDMUX Timing Parameters
The AUDMUX provides a programmable interconnect logic for voice, audio and data routing between internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI electrical specifications found within this document.
4.7.2
CSPI and ECSPI Timing Parameters
This section describes the timing parameters of the CSPI and ECSPI blocks. The CSPI and ECSPI have separate timing parameters for master and slave modes. The nomenclature used with the CSPI / ECSPI modules and the respective routing of these signals is shown in Table 44.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 67
Electrical Characteristics
Table 44. CSPI Nomenclature and Routing
Block Instance ECSPI-1 ECSPI-2 CSPI I/O Access GPIO, KPP, DISP0_DAT, CSI0_DAT and EIM_D through IOMUXC DISP0_DAT, CSI0_DAT and EIM through IOMUXC DISP0_DAT, EIM_A/D, SD1 and SD2 through IOMUXC
4.7.2.1
CSPI Master Mode Timing
Figure 32 depicts the timing of CSPI in master mode. Table 45 lists the CSPI master mode timing characteristics.
RDY
SSx
CS10 CS1 CS3 CS2 CS2 CS6 CS4 CS5
SCLK CS7 MOSI CS8 MISO CS9 CS3
Figure 32. CSPI/ECSPI Master Mode Timing Diagram Table 45. CSPI Master Mode Timing Parameters
ID CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 Parameter SCLK Cycle Time SCLK High or Low Time SCLK Rise or Fall1 SSx pulse width SSx Lead Time (Slave Select setup time) SSx Lag Time (SS hold time) MOSI Propagation Delay (CLOAD = 20 pF) MISO Setup Time Symbol tclk tSW tRISE/FALL tCSLH tSCS tHCS tPDmosi tSmiso Min 60 26 — 26 26 26 –1 5 Max — — — — — — 21 — Unit ns ns ns ns ns ns ns ns
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 68 Freescale Semiconductor
Electrical Characteristics
Table 45. CSPI Master Mode Timing Parameters (continued)
ID CS9 CS10
1 2
Parameter MISO Hold Time RDY to SSx Time2
Symbol tHmiso tSDRY
Min 5 5
Max — —
Unit ns ns
See specific I/O AC parameters Section 4.5, “I/O AC Parameters” SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
4.7.2.2
CSPI Slave Mode Timing
Figure 33 depicts the timing of CSPI in slave mode. Timing characteristics were not available at the time of publication.
SSx
CS1
CS2 CS2
CS6 CS4
CS5
SCLK CS9 MISO CS7 MOSI CS8
Figure 33. CSPI/ECSPI Slave Mode Timing Diagram
4.7.2.3
ECSPI Master Mode Timing
Figure 32 depicts the timing of ECSPI in master mode. Table 46 lists the ECSPI master mode timing characteristics.
Table 46. ECSPI Master Mode Timing Parameters
ID CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 Parameter SCLK Cycle Time–Read SCLK Cycle Time–Write SCLK High or Low Time–Read SCLK High or Low Time–Write SCLK Rise or Fall1 SSx pulse width SSx Lead Time (CS setup time) SSx Lag Time (CS hold time) MOSI Propagation Delay (CLOAD = 20 pF) MISO Setup Time Symbol tclk tSW tRISE/FALL tCSLH tSCS tHCS tPDmosi tSmiso Min 30 15 14 7 — Half SCLK period 5 5 -0.5 8.5 Max — — — — — — 2.5 — Unit ns ns ns ns ns ns ns ns
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 69
Electrical Characteristics
Table 46. ECSPI Master Mode Timing Parameters (continued)
ID CS9 CS10
1 2
Parameter MISO Hold Time RDY to SSx Time2
Symbol tHmiso tSDRY
Min 0 5
Max — —
Unit ns ns
See specific I/O AC parameters Section 4.5, “I/O AC Parameters” SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
4.7.2.4
ECSPI Slave Mode Timing
Figure 33 depicts the timing of ECSPI in slave mode. Table 47 lists the ECSPI slave mode timing characteristics.
Table 47. ECSPI Slave Mode Timing Parameters
ID CS1 CS2 CS4 CS5 CS6 CS7 CS8 CS9 Parameter SCLK Cycle Time–Read SCLK Cycle Time–Write SCLK High or Low Time–Read SCLK High or Low Time–Write SSx pulse width SSx Lead Time (CS setup time) SSx Lag Time (CS hold time) MOSI Setup Time MOSI Hold Time MISO Propagation Delay (CLOAD = 20 pF) Symbol tclk tSW tCSLH tSCS tHCS tSmosi tHmosi tPDmiso Min 15 40 7 20 Half SCLK period 5 5 4 4 4 Max — — — — — — — 17 Unit ns ns ns ns ns ns ns ns
4.7.3
Enhanced Serial Audio Interface (ESAI) Timing Parameters
The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 48 shows the interface timing values. The number field in the table refers to timing signals found in Figure 34 and Figure 35.
Table 48. Enhanced Serial Audio Interface (ESAI) Timing
No. 62 63 Clock cycle5 Clock high period • For internal clock • For external clock Characteristics1’2,3 Symbol tSSICC Expression3 4 × Tc 4 × Tc 2 × Tc − 9.0 2 × Tc Min 30.0 30.0 6 15 Max — — — — Condition4 Unit i ck i ck — — ns ns — —
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 70 Freescale Semiconductor
Electrical Characteristics
Table 48. Enhanced Serial Audio Interface (ESAI) Timing (continued)
No. 64 Characteristics1’2,3 Symbol Expression3 Min Max Condition4 Unit ns — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 2 × Tc − 9.0 2 × Tc — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 6 15 — — — — — — — — — — — — 12.0 19.0 3.5 9.0 2.0 12.0 2.0 12.0 2.5 8.5 — — — — — — — — — — — — — — — — 17.0 7.0 17.0 7.0 19.0 9.0 19.0 9.0 16.0 6.0 17.0 7.0 — — — — — — — — — — 18.0 8.0 20.0 10.0 20.0 10.0 22.0 12.0 19.0 9.0 20.0 10.0 22.0 17.0 — — x ck i ck a x ck i ck a x ck i ck a x ck i ck a x ck i ck a x ck i ck a x ck i ck x ck i ck x ck i ck a x ck i ck a x ck i ck a x ck i ck x ck i ck x ck i ck x ck i ck x ck i ck x ck i ck x ck i ck ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Clock low period • For internal clock • For external clock
65 66 67 68 69 70 71 72 73 74 75 78 79 80 81 82 83 84
SCKR rising edge to FSR out (bl) high SCKR rising edge to FSR out (bl) low SCKR rising edge to FSR out (wr) high6 SCKR rising edge to FSR out (wr) low6 SCKR rising edge to FSR out (wl) high SCKR rising edge to FSR out (wl) low Data in setup time before SCKR (SCK in synchronous mode) falling edge Data in hold time after SCKR falling edge FSR input (bl, wr) high before SCKR falling edge6 FSR input (wl) high before SCKR falling edge FSR input hold time after SCKR falling edge SCKT rising edge to FST out (bl) high SCKT rising edge to FST out (bl) low SCKT rising edge to FST out (wr) high6 SCKT rising edge to FST out (wr) low6 SCKT rising edge to FST out (wl) high SCKT rising edge to FST out (wl) low SCKT rising edge to data out enable from high impedance
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 71
Electrical Characteristics
Table 48. Enhanced Serial Audio Interface (ESAI) Timing (continued)
No. 86 87 89 90 91 95 96 97
1
Characteristics1’2,3
Symbol — — — — — — — — — — — — —
Expression3 — — — — — — — — — — 2 x TC — —
Min — — — — 2.0 18.0 2.0 18.0 4.0 5.0 15 — —
Max 18.0 13.0 21.0 16.0 — — — — — — — 18.0 18.0
Condition4 Unit x ck i ck x ck i ck x ck i ck x ck i ck x ck i ck — — — ns ns ns ns ns ns ns ns
SCKT rising edge to data out valid SCKT rising edge to data out high impedance 77 FST input (bl, wr) setup time before SCKT falling edge6 FST input (wl) setup time before SCKT falling edge FST input hold time after SCKT falling edge HCKR/HCKT clock cycle HCKT input rising edge to SCKT output HCKR input rising edge to SCKR output
2
3
4
5 6
7
VCORE_VDD= 1.00 +- 0.10V Tj = -40C to 125C CL=50pF i ck = internal clock x ck = external clock i ck a = internal clock, asynchronous mode (asynchronous implies that SCKT and SCKR are two different clocks) i ck s = internal clock, synchronous mode (synchronous implies that SCKT and SCKR are the same clock) bl = bit length wl = word length wr = word length relative SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame. Periodically sampled and not 100% tested.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 72 Freescale Semiconductor
Electrical Characteristics
62 63 SCKT (Input/Output) 78 FST (Bit) Out 82 FST (Word) Out 83 79 64
86 84
86 87
First Bit Last Bit
Data Out
89 91 FST (Bit) In 90 FST (Word) In 91
Figure 34. ESAI Transmitter Timing
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 73
Electrical Characteristics
62 63 SCKR (Input/Output) 65 FSR (Bit) Out 69 FSR (Word) Out 72 71 Data In 73 FSR (Bit) In 74 FSR (Word) In Figure 35. ESAI Receiver Timing 75 75 First Bit Last Bit 70 64 66
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 74 Freescale Semiconductor
Electrical Characteristics
4.7.4
Enhanced Secured Digital Host Controller(eSDHCv2/v3) AC timing
This section describes the electrical information of the eSDHCv2/v3, which includes SD/eMMC4.3 (Single Data Rate) timing and eMMC4.4 (Dual Date Rate) timing.
4.7.4.1
SD/eMMC4.3 (Single Data Rate) AC Timing
Figure 36 depicts the timing of SD/eMMC4.3, and Table 49 lists the SD/eMMC4.3 timing characteristics.
SD4 SD2 SD5 SD1
SCK SD3 CMD DAT0 DAT1 output from eSDHCv2 to card ...... DAT7 CMD DAT0 DAT1 input from card to eSDHCv2 ...... DAT7 SD6
SD7
SD8
Figure 36. SD/eMMC4.3 Timing Table 49. SD/eMMC4.3 Interface Timing Specification
ID Parameter Card Input Clock SD1 Clock Frequency (Low Speed) Clock Frequency (SD/SDIO Full Speed/High Speed) Clock Frequency (MMC Full Speed/High Speed) Clock Frequency (Identification Mode) SD2 SD3 SD4 SD5 Clock Low Time Clock High Time Clock Rise Time Clock Fall Time fPP1 fPP2 fPP3 fOD tWL tWH tTLH tTHL 0 0 0 100 7 7 — — 400 25/50 20/52 400 — — 3 3 kHz MHz MHz kHz ns ns ns ns Symbols Min Max Unit
eSDHC Output/Card Inputs CMD, DAT (Reference to CLK) SD6 eSDHC Output Delay tOD –5 5 ns
eSDHC Input/Card Outputs CMD, DAT (Reference to CLK)
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 75
Electrical Characteristics
Table 49. SD/eMMC4.3 Interface Timing Specification (continued)
ID SD7 SD8
1 2
Parameter eSDHC Input Setup Time eSDHC Input Hold Time4
Symbols tISU tIH
Min 2.5 2.5
Max — —
Unit ns ns
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz. 3 In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
4.7.4.2
eMMC4.4 (Dual Data Rate) eSDHCv3 AC Timing
Figure 37 depicts the timing of eMMC4.4. Table 50 lists the eMMC4.4 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).
SD1
SCK SD2 SD2 ...... SD3 DAT0 DAT1 input from card to eSDHCv3 ...... DAT7 SD4
DAT0 DAT1 output from eSDHCv3 to card ...... DAT7
......
Figure 37. eMMC4.4 Timing Table 50. eMMC4.4 Interface Timing Specification
ID Parameter Symbols Card Input Clock SD1 Clock Frequency (MMC Full Speed/High Speed) fPP 0 52 MHz Min Max Unit
eSDHC Output / Card Inputs CMD, DAT (Reference to CLK) SD2 eSDHC Output Delay tOD –5 5 ns
eSDHC Input / Card Outputs CMD, DAT (Reference to CLK)
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 76 Freescale Semiconductor
Electrical Characteristics
Table 50. eMMC4.4 Interface Timing Specification (continued)
ID SD3 SD4 Parameter eSDHC Input Setup Time eSDHC Input Hold Time Symbols tISU tIH Min 2.5 2.5 Max — — Unit ns ns
4.7.5
FEC AC Timing Parameters
This section describes the electrical information of the Fast Ethernet Controller (FEC) module. The FEC is designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The FEC supports the 10/100 Mbps MII (18 pins in total) and the 10 Mbps (only 7-wire interface, which uses 7 of the MII pins), for connection to an external Ethernet transceiver. For the pin list of MII and 7-wire, see the i.MX53 Reference Manual. This section describes the AC timing specifications of the FEC. The MII signals are compatible with transceivers operating at a voltage of 3.3 V.
4.7.5.1
MII Receive Signal Timing
The MII receive signal timing involves the FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER, and FEC_RX_CLK signals. The receiver functions correctly up to a FEC_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement but the processor clock frequency must exceed twice the FEC_RX_CLK frequency. Table 51 lists the MII receive channel signal timing parameters and Figure 38 shows MII receive signal timings.
.
Table 51. MII Receive Signal Timing
No. M1 M2 M3 M4 Characteristics1 2 FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER to FEC_RX_CLK setup FEC_RX_CLK to FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER hold FEC_RX_CLK pulse width high FEC_RX_CLK pulse width low Min 5 5 35% 35% Max — — 65% 65% Unit ns ns FEC_RX_CLK period FEC_RX_CLK period
1 2
FEC_RX_DV, FEC_RX_CLK, and FEC_RXD0 have same timing in 10 Mbps 7-wire interface mode. Test conditions: 25pF on each output signal.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 77
Electrical Characteristics
M3 FEC_RX_CLK (input)
M4 FEC_RXD[3:0] (inputs) FEC_RX_DV FEC_RX_ER M1 M2
Figure 38. MII Receive Signal Timing Diagram
4.7.5.2
MII Transmit Signal Timing
The MII transmit signal timing affects the FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER, and FEC_TX_CLK signals. The transmitter functions correctly up to a FEC_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the FEC_TX_CLK frequency. Table 52 lists MII transmit channel timing parameters. Figure 39 shows MII transmit signal timing diagram for the values listed in Table 52.
Table 52. MII Transmit Signal Timing
Num M5 M6 M7 M8
1 2
Characteristic1 2 FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER invalid FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER valid FEC_TX_CLK pulse width high FEC_TX_CLK pulse width low
Min 5 — 35% 35%
Max — 20 65% 65%
Unit ns ns FEC_TX_CLK period FEC_TX_CLK period
FEC_TX_EN, FEC_TX_CLK, and FEC_TXD0 have the same timing in 10 Mbps 7-wire interface mode. Test conditions: 25pF on each output signal.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 78 Freescale Semiconductor
Electrical Characteristics
.
M7 FEC_TX_CLK (input) M5 M8 FEC_TXD[3:0] (outputs) FEC_TX_EN FEC_TX_ER M6
Figure 39. MII Transmit Signal Timing Diagram
4.7.5.3
MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)
Table 53 lists MII asynchronous inputs signal timing information. Figure 40 shows MII asynchronous input timings listed in Table 53.
Table 53. MII Async Inputs Signal Timing
Num M92
1 2
Characteristic 1 FEC_CRS to FEC_COL minimum pulse width
Min 1.5
Max —
Unit FEC_TX_CLK period
Test conditions: 25pF on each output signal. FEC_COL has the same timing in 10 Mbit 7-wire interface mode.
.
FEC_CRS, FEC_COL M9
Figure 40. MII Async Inputs Timing Diagram
4.7.5.4
MII Serial Management Channel Timing (FEC_MDIO and FEC_MDC)
Table 54 lists MII serial management channel timings. Figure 41 shows MII serial management channel timings listed in Table 54. The MDC frequency should be equal to or less than 2.5 MHz to be compliant with the IEEE 802.3 MII specification. However, the FEC can function correctly with a maximum MDC frequency of 15 MHz.
Table 54. MII Transmit Signal Timing
ID Characteristics1 Min Max 0 — 18 — 5 — Unit ns ns ns
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum propagation delay) M11 FEC_MDC falling edge to FEC_MDIO output valid (max propagation delay) M12 FEC_MDIO (input) to FEC_MDC rising edge setup
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 79
Electrical Characteristics
Table 54. MII Transmit Signal Timing (continued)
ID Characteristics1 Min Max 0 40 % 40 % — Unit ns
M13 FEC_MDIO (input) to FEC_MDC rising edge hold M14 FEC_MDC pulse width high M15 FEC_MDC pulse width low
1
60% FEC_MDC period 60% FEC_MDC period
Test conditions: 25pF on each output signal.
M14 M15
FEC_MDC (output)
M10
FEC_MDIO (output)
M11
FEC_MDIO (input)
M12
M13
Figure 41. MII Serial Management Channel Timing Diagram
4.7.5.5
RMII Mode Timing
In RMII mode, FEC_TX_CLK is used as the REF_CLK which is a 50 MHz ±50 ppm continuous reference clock. FEC_RX_DV is used as the CRS_DV in RMII, and other signals under RMII mode include FEC_TX_EN, FEC_TXD[1:0], FEC_RXD[1:0] and optional FEC_RX_ER. The RMII mode timings are shown in Table 55 and Figure 42.
Table 55. RMII Signal Timing
No. M16 M17 M18 M19 Characteristics1 REF_CLK(FEC_TX_CLK) pulse width high REF_CLK(FEC_TX_CLK) pulse width low REF_CLK to FEC_TXD[1:0], FEC_TX_EN invalid REF_CLK to FEC_TXD[1:0], FEC_TX_EN valid Min 35% 35% 2 — Max 65% 65% — 16 Unit REF_CLK period REF_CLK period ns ns
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 80 Freescale Semiconductor
Electrical Characteristics
Table 55. RMII Signal Timing (continued)
No. M20 M21
1
Characteristics1 FEC_RXD[1:0], CRS_DV(FEC_RX_DV), FEC_RX_ER to REF_CLK setup REF_CLK to FEC_RXD[1:0], FEC_RX_DV, FEC_RX_ER hold
Min 4 2
Max — — ns ns
Unit
Test conditions: 25pF on each output signal.
M16
M17
REF_CLK (input)
M18
FEC_TXD[1:0] (output) FEC_TX_EN
M19
CRS_DV (input) FEC_RXD[1:0] FEC_RX_ER
M20 M21
Figure 42. RMII Mode Signal Timing Diagram
4.7.6
Flexible Controller Area Network (FLEXCAN) AC Electrical Specifications
The electrical characteristics are related to the CAN transceiver external to i.MX53xA such as MC33902 from Freescale.The i.MX53xA has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX53 Reference Manual to see which pins expose Tx and Rx pins; these ports are named TXCAN and RXCAN, respectively.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 81
Electrical Characteristics
4.7.7
I2C Module Timing Parameters
This section describes the timing parameters of the I2C module. Figure 43 depicts the timing of I2C module, and Table 56 lists the I2C module timing characteristics.
IC10 IC11 IC9
I2DAT IC2 IC8
I2CLK
IC4
IC7
IC3
START
IC10 IC6 IC1 IC5
IC11
START
STOP
START
Figure 43. I2C Bus Timing Table 56. I2C Module Timing Parameters
Standard Mode Fast Mode Supply Voltage = Supply Voltage = 1.65 V–1.95 V, 2.7 V–3.3 V 2.7 V–3.3 V Unit Min IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12
1
ID
Parameter
Max — — — 3.452 — — — — — 1000 300 400
Min 2.5 0.6 0.6 0
1
Max — — — 0.92 — — — — —
4
I2CLK cycle time Hold time (repeated) START condition Set-up time for STOP condition Data hold time HIGH Period of I2CLK Clock LOW Period of the I2CLK Clock Set-up time for a repeated START condition Data set-up time Bus free time between a STOP and START condition Rise time of both I2DAT and I2CLK signals Fall time of both I2DAT and I2CLK signals Capacitive load for each bus line (Cb)
10 4.0 4.0 01 4.0 4.7 4.7 250 4.7 — — —
µs µs µs µs µs µs µs
ns
0.6 1.3 0.6 100
3
1.3 20 + 0.1Cb
µs
ns ns pF
300 300 400
20 + 0.1Cb4 —
A device must internally provide a hold time of at least 300 ns for I2DAT signal in order to bridge the undefined region of the falling edge of I2CLK. 2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2CLK signal. 3 A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2CLK signal. If such a device does stretch the LOW period of the I2CLK signal, it must output the next data bit to the I2DAT line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2CLK line is released. 4 Cb = total capacitance of one bus line in pF.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 82 Freescale Semiconductor
Electrical Characteristics
4.7.8
Image Processing Unit (IPU) Module Parameters
The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor and/or to a display device. This support covers all aspects of these activities: • Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders. • Related image processing and manipulation: sensor image signal processing, display processing, image conversions, and other related functions. • Synchronization and control capabilities, such as avoidance of tearing artifacts.
4.7.8.1
IPU Sensor Interface Signal Mapping
The IPU supports a number of sensor input formats. Table 57 defines the mapping of the Sensor Interface Pins used for various supported interface formats.
Table 57. Camera Input Signal Cross Reference, Format and Bits per Cycle
Signal Name1 CSIx_DAT0 CSIx_DAT1 CSIx_DAT2 CSIx_DAT3 CSIx_DAT4 CSIx_DAT5 CSIx_DAT6 CSIx_DAT7 CSIx_DAT8 CSIx_DAT9 CSIx_DAT10 CSIx_DAT11 CSIx_DAT12 CSIx_DAT13 CSIx_DAT14 CSIx_DAT15 CSIx_DAT16 CSIx_DAT17 CSIx_DAT18 CSIx_DAT19
1
RGB565 8 bits 2 cycles — — — — — — — — — — — — B[0], G[3] B[1], G[4] B[2], G[5] B[3], R[0] B[4], R[1] G[0], R[2] G[1], R[3] G[2], R[4]
RGB5652 8 bits 3 cycles — — — — — — — — — — — — R[2],G[4],B[2] R[3],G[5],B[3] R[4],G[0],B[4] R[0],G[1],B[0] R[1],G[2],B[1] R[2],G[3],B[2] R[3],G[4],B[3] R[4],G[5],B[4]
RGB6663 8 bits 3 cycles — — — — — — — — — — — — R/G/B[4] R/G/B[5] R/G/B[0] R/G/B[1] R/G/B[2] R/G/B[3] R/G/B[4] R/G/B[5]
RGB888 8 bits 3 cycles — — — — — — — — — — — — R/G/B[0] R/G/B[1] R/G/B[2] R/G/B[3] R/G/B[4] R/G/B[5] R/G/B[6] R/G/B[7]
YCbCr 8 bits 2 cycles — — — — — — — — — — — — Y/C[0] Y/C[1] Y/C[2] Y/C[3] Y/C[4] Y/C[5] Y/C[6] Y/C[7]
RGB5654 16 bits 2 cycles — — — — B[0] B[1] B[2] B[3] B[4] G[0] G[1] G[2] G[3] G[4] G[5] R[0] R[1] R[2] R[3] R[4]
YCbCr5 16 bits 1 cycle — — — — C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] Y[0] Y[1] Y[2] Y[3] Y[4] Y[5] Y[6] Y[7]
YCbCr6 16 bits 1 cycle 0 0 C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] 0 0 Y[0] Y[1] Y[2] Y[3] Y[4] Y[5] Y[6] Y[7]
YCbCr7 20 bits 1 cycle C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] Y[0] Y[1] Y[2] Y[3] Y[4] Y[5] Y[6] Y[7] Y[8] Y[9]
CSIx stands for CSI1 or CSI2
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 83
Electrical Characteristics
2 3 4 5 6 7
The MSB bits are duplicated on LSB bits implementing color extension The two MSB bits are duplicated on LSB bits implementing color extension RGB 16 bits – supported in two ways: (1) As a “generic data” input – with no on-the-fly processing; (2) With on-the-fly processing, but only under some restrictions on the control protocol. YCbCr 16 bits - supported as a “generic-data” input – with no on-the-fly processing. YCbCr 16 bits - supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol). YCbCr, 20 bits, supported only within the BT.1120 protocol (syncs embedded within the data stream).
4.7.8.2
Sensor Interface Timings
There are three camera timing modes supported by the IPU. 4.7.8.2.1 BT.656 and BT.1120 Video Mode
Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the SENSB_VSYNC and SENSB_HSYNC signals. The timing syntax is defined by the BT.656/BT.1120 standards. This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only control signal used is SENSB_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering SENSB_VSYNC and SENSB_HSYNC signals for internal use. On BT.656 one component per cycle is received over the SENSB_DATA bus. On BT.1120 two components per cycle are received over the SENSB_DATA bus. 4.7.8.2.2 Gated Clock Mode
The SENSB_VSYNC, SENSB_HSYNC, and SENSB_PIX_CLK signals are used in this mode. See Figure 44.
Start of Frame nth frame Active Line n+1th frame
SENSB_VSYNC
SENSB_HSYNC SENSB_PIX_CLK SENSB_DATA[19:0] invalid invalid
1st byte
1st byte
Figure 44. Gated Clock Mode Timing Diagram
A frame starts with a rising edge on SENSB_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then SENSB_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as SENSB_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 84 Freescale Semiconductor
Electrical Characteristics
SENSB_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI stops receiving data from the stream. For next line the SENSB_HSYNC timing repeats. For next frame the SENSB_VSYNC timing repeats. 4.7.8.2.3 Non-Gated Clock Mode
The timing is the same as the gated-clock mode (described in Section 4.7.8.2.2, “Gated Clock Mode,”) except for the SENSB_HSYNC signal, which is not used (see Figure 45). All incoming pixel clocks are valid and cause data to be latched into the input FIFO. The SENSB_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.
Start of Frame nth frame n+1th frame
SENSB_VSYNC
SENSB_PIX_CLK SENSB_DATA[19:0] invalid invalid
1st byte
1st byte
Figure 45. Non-Gated Clock Mode Timing Diagram
The timing described in Figure 45 is that of a typical sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered SENSB_VSYNC; active-high/low SENSB_HSYNC; and rising/falling-edge triggered SENSB_PIX_CLK.
4.7.8.3
Electrical Characteristics
Figure 46 depicts the sensor interface timing. SENSB_MCLK signal described here is not generated by the IPU. Table 58 lists the sensor interface timing characteristics.
SENSB_PIX_CLK (Sensor Output) IP3 SENSB_DATA, SENSB_VSYNC, SENSB_HSYNC IP2
1/IP1
Figure 46. Sensor Interface Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 85
Electrical Characteristics
Table 58. Sensor Interface Timing Characteristics
ID IP1 IP2 IP3 Parameter Sensor output (pixel) clock frequency Data and control setup time Data and control holdup time Symbol Fpck Tsu Thd Min 0.01 2 1 Max 180 — — Unit MHz ns ns
4.7.8.4
IPU Display Interface Signal Mapping
The IPU supports a number of display output video formats. Table 59 defines the mapping of the Display Interface Pins used during various supported video interface formats.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 86 Freescale Semiconductor
Electrical Characteristics
Table 59. Video Signal Cross-Reference
i.MX53xA LCD RGB/TV Signal Allocation (Example) RGB, Signal Name 16-bit 18-bit 24 Bit 8-bit 16-bit 20-bit (General) RGB RGB RGB YCrCb2 YCrCb YCrCb DAT[0] DAT[1] DAT[2] DAT[3] DAT[4] DAT[5] DAT[6] DAT[7] DAT[8] DAT[9] DAT[10] DAT[11] DAT[12] DAT[13] DAT[14] DAT[15] DAT[16] DAT[17] DAT[18] DAT[19] DAT[20] DAT[21] B[0] B[1] B[2] B[3] B[4] G[0] G[1] G[2] G[3] G[4] G[5] R[0] R[1] R[2] R[3] R[4] — — — — — — B[0] B[1] B[2] B[3] B[4] B[5] G[0] G[1] G[2] G[3] G[4] G[5] R[0] R[1] R[2] R[3] R[4] R[5] — — — — B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] G[0] G[1] G[2] G[3] G[4] G[5] G[6] G[7] R[0] R[1] R[2] R[3] R[4] R[5] Y/C[0] Y/C[1] Y/C[2] Y/C[3] Y/C[4] Y/C[5] Y/C[6] Y/C[7] — — — — — — — — — — — — — — C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] Y[0] Y[1] Y[2] Y[3] Y[4] Y[5] Y[6] Y[7] — — — — — — C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] Y[0] Y[1] Y[2] Y[3] Y[4] Y[5] Y[6] Y[7] Y[8] Y[9] — — Smart Signal Name DAT[0] DAT[1] DAT[2] DAT[3] DAT[4] DAT[5] DAT[6] DAT[7] DAT[8] DAT[9] DAT[10] DAT[11] DAT[12] DAT[13] DAT[14] DAT[15] — — — — — — The restrictions are as follows: a) There are maximal three continuous groups of bits that could be independently mapped to the external bus. Groups should not be overlapped. b) The bit order is expressed in each of the bit groups, for example B[0] = least significant blue pixel bit Comment1
Port Name (x=0, 1)
DISPx_DAT0 DISPx_DAT1 DISPx_DAT2 DISPx_DAT3 DISPx_DAT4 DISPx_DAT5 DISPx_DAT6 DISPx_DAT7 DISPx_DAT8 DISPx_DAT9 DISPx_DAT10 DISPx_DAT11 DISPx_DAT12 DISPx_DAT13 DISPx_DAT14 DISPx_DAT15 DISPx_DAT16 DISPx_DAT17 DISPx_DAT18 DISPx_DAT19 DISPx_DAT20 DISPx_DAT21
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 87
Electrical Characteristics
Table 59. Video Signal Cross-Reference (continued)
i.MX53xA LCD RGB/TV Signal Allocation (Example) RGB, Signal 16-bit 20-bit Name 16-bit 18-bit 24 Bit 8-bit (General) RGB RGB RGB YCrCb2 YCrCb YCrCb DAT[22] DAT[23] — — — — R[6] R[7] PixCLK — — — — — — — Smart Signal Name — — — — — — Comment1
Port Name (x=0, 1)
DISPx_DAT22 DISPx_DAT23 DIx_DISP_CLK DIx_PIN1
VSYNC_IN May be required for anti-tearing
DIx_PIN2 DIx_PIN3 DIx_PIN4 DIx_PIN5 DIx_PIN6 DIx_PIN7 DIx_PIN8 DIx_D0_CS DIx_D1_CS DIx_PIN11 DIx_PIN12 DIx_PIN13 DIx_PIN14 DIx_PIN15 DIx_PIN16 DIx_PIN17
1 2
HSYNC VSYNC — — — — — — — — — — — DRDY/DV — Q
— — — — — — — CS0 CS1 WR RD RS1 RS2 DRDY — —
— VSYNC out Additional frame/row synchronous signals with programmable timing
— Alternate mode of PWM output for contrast or brightness control — — Register select signal Optional RS2 Data validation/blank, data enable Additional data synchronous signals with programmable features/timing
Signal mapping (both data and control/synchronization) is flexible. The table provides examples. This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 88 Freescale Semiconductor
Electrical Characteristics
NOTE Table 59 provides information for both the Disp0 and Disp1 ports. However, Disp1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all the above configurations. See the IOMUXC table for details.
4.7.8.5
IPU Display Interface Timing
The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls accordantly. 4.7.8.5.1 Synchronous Controls
The synchronous control changes its value as a function of a system or of an external clock. This control has a permanent period and a permanent wave form. There are special physical outputs to provide synchronous controls: • The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display (component, pixel) clock for a display. • The ipp_pin_1– ipp_pin_7 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any else independent signal to a display. The IPU has a system of internal binding counters for internal events (such as HSYNC/VSYCN and so on) calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control’s changing points with half DI_CLK resolution. A full description of the counters system can be found in the IPU chapter of the i.MX53 Reference Manual. 4.7.8.5.2 Asynchronous Controls
The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data. There are special physical outputs to provide asynchronous controls, as follows: • The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays. • The ipp_pin_11– ipp_pin_17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data oriented signal to display. NOTE The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data in the bus, a new internal start (local start point) is generated. The signals generators calculate predefined UP and DOWN values to change pins states with half DI_CLK resolution.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 89
Electrical Characteristics
4.7.8.6
4.7.8.6.1
Synchronous Interfaces to Standard Active Matrix TFT LCD Panels
IPU Display Operating Signals
The IPU uses four control signals and data to operate a standard synchronous interface: • IPP_DISP_CLK—Clock to display • HSYNC—Horizontal synchronization • VSYNC—Vertical synchronization • DRDY—Active data All synchronous display controls are generated on the base of an internally generated “local start point”. The synchronous display controls can be placed on time axis with DI’s offset, up and down parameters. The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only. 4.7.8.6.2 LCD Interface Functional Description
Figure 47 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with negative polarity. The sequence of events for active matrix interface timing is: • DI_CLK internal DI clock, used for calculation of other controls. • IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, IPP_DISP_CLK runs continuously. • HSYNC causes the panel to start a new line. (Usually IPP_PIN_2 is used as HSYNC.) • VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. (Usually IPP_PIN_3 is used as VSYNC.) • DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. (DRDY can be used either synchronous or asynchronous generic purpose pin as well.)
VSYNC HSYNC LINE 1 LINE 2 LINE 3 LINE 4 LINE n-1 LINE n
HSYNC DRDY 1 IPP_DISP_CLK IPP_DATA 2 3 m–1 m
Figure 47. Interface Timing Diagram for TFT (Active Matrix) Panels
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 90 Freescale Semiconductor
Electrical Characteristics
4.7.8.6.3
TFT Panel Sync Pulse Timing Diagrams
Figure 48 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All the parameters shown in the figure are programmable. All controls are started by corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of the IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals.
IP13o IP5o IP8o IP8 IP7 IP5
DI clock IPP_DISP_CLK VSYNC HSYNC DRDY IPP_DATA IP9 local start point local start point local start point IP9o IP6 D0 D1 Dn IP10
Figure 48. TFT Panels Timing Diagram—Horizontal Sync Pulse
Figure 49 depicts the vertical timing (timing of one frame). All parameters shown in the figure are programmable.
Start of frame End of frame
IP13
VSYNC HSYNC DRDY IP11
IP14 IP12
IP15
Figure 49. TFT Panels Timing Diagram—Vertical Sync Pulse
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 91
Electrical Characteristics
Table 60 shows timing characteristics of signals presented in Figure 48 and Figure 49.
Table 60. Synchronous Display Interface Timing Characteristics (Pixel Level)
ID IP5 IP6 Parameter Display interface clock period Display pixel clock period Symbol Tdicp Tdpcp Value (1) Description Display interface clock. IPP_DISP_CLK Unit ns ns
DISP_CLK_PER_PIXEL Time of translation of one pixel to display, × Tdicp DISP_CLK_PER_PIXEL—number of pixel components in one pixel (1.n). The DISP_CLK_PER_PIXEL is virtual parameter to define Display pixel clock period. The DISP_CLK_PER_PIXEL is received by DC/DI one access division to n components. (SCREEN_WIDTH) × Tdicp SCREEN_WIDTH—screen width in, interface clocks. horizontal blanking included. The SCREEN_WIDTH should be built by suitable DI’s counter2. HSYNC_WIDTH—Hsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI’s counter. BGXP—width of a horizontal blanking before a first active data in a line (in interface clocks). The BGXP should be built by suitable DI’s counter. Width a horizontal blanking after a last active data in a line (in interface clocks) FW—with of active line in interface clocks. The FW should be built by suitable DI’s counter. SCREEN_HEIGHT— screen height in lines with blanking. The SCREEN_HEIGHT is a distance between 2 VSYNCs. The SCREEN_HEIGHT should be built by suitable DI’s counter. VSYNC_WIDTH—Vsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI’s counter BGYP—width of first Vertical blanking interval in line.The BGYP should be built by suitable DI’s counter. Width of second Vertical blanking interval in line.The FH should be built by suitable DI’s counter.
IP7
Screen width time
Tsw
ns
IP8
HSYNC width time
Thsw
(HSYNC_WIDTH)
ns
IP9
Horizontal blank interval 1
Thbi1
BGXP × Tdicp
ns
IP10
Horizontal blank interval 2
Thbi2
(SCREEN_WIDTH – BGXP – FW) × Tdicp
ns
IP12
Screen height
Tsh
(SCREEN_HEIGHT) × Tsw
ns
IP13
VSYNC width
Tvsw
VSYNC_WIDTH
ns
IP14
Vertical blank interval 1
Tvbi1
BGYP × Tsw
ns
IP15
Vertical blank interval 2
Tvbi2
(SCREEN_HEIGHT – BGYP – FH) × Tsw
ns
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 92 Freescale Semiconductor
Electrical Characteristics
Table 60. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)
ID IP5o Parameter Offset of IPP_DISP_CLK Symbol Todicp Value DISP_CLK_OFFSET × Tdiclk Description DISP_CLK_OFFSET—offset of IPP_DISP_CLK edges from local start point, in DI_CLK×2 (0.5 DI_CLK Resolution) Defined by DISP_CLK counter VSYNC_OFFSET—offset of Vsync edges from a local start point, when a Vsync should be active, in DI_CLK×2 (0.5 DI_CLK Resolution).The VSYNC_OFFSET should be built by suitable DI’s counter. HSYNC_OFFSET—offset of Hsync edges from a local start point, when a Hsync should be active, in DI_CLK×2 (0.5 DI_CLK Resolution).The HSYNC_OFFSET should be built by suitable DI’s counter. DRDY_OFFSET—offset of DRDY edges from a suitable local start point, when a corresponding data has been set on the bus, in DI_CLK×2 (0.5 DI_CLK Resolution) The DRDY_OFFSET should be built by suitable DI’s counter. Unit ns
IP13o Offset of VSYNC
Tovs
VSYNC_OFFSET × Tdiclk
ns
IP8o
Offset of HSYNC
Tohs
HSYNC_OFFSET × Tdiclk
ns
IP9o
Offset of DRDY
Todrdy
DRDY_OFFSET × Tdiclk
ns
1
Display interface clock period immediate value. ⎧ DISP_CLK_PERIOD ⎪ T diclk × --------------------------------------------------- , DI_CLK_PERIOD ⎪ Tdicp = ⎨ DISP_CLK_PERIOD ⎪T ⎛ ⎞ --------------------------------------------------⎪ diclk ⎝ floor DI_CLK_PERIOD + 0.5 ± 0.5⎠ , ⎩ for integer DISP_CLK_PERIOD --------------------------------------------------DI_CLK_PERIOD for fractional DISP_CLK_PERIOD --------------------------------------------------DI_CLK_PERIOD
DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK. DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency Display interface clock period average value. DISP_CLK_PERIOD Tdicp = T diclk × --------------------------------------------------DI_CLK_PERIOD
2
DI’s counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the counter. Same of parameters in the table are not defined by DI’s registers directly (by name), but can be generated by corresponding DI’s counter. The SCREEN_WIDTH is an input value for DI’s HSYNC generation counter. The distance between HSYNCs is a SCREEN_WIDTH.
The maximal accuracy of UP/DOWN edge of controls is:
Accuracy = ( 0.5 × T diclk ) ± 0.62ns
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 93
Electrical Characteristics
The maximal accuracy of UP/DOWN edge of IPP_DATA is:
Accuracy = T diclk ± 0.62ns
The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are programmed through the registers. Figure 50 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and DISP_CLK_UP parameters are set through the Register. Table 61 lists the synchronous display interface timing characteristics.
IP20o IP20 VSYNC HSYNC DRDY other controls IPP_DISP_CLK
Tdicu IPP_DATA
Tdicd
IP16
IP17
IP19
IP18
local start point
Figure 50. Synchronous Display Interface Timing Diagram—Access Level Table 61. Synchronous Display Interface Timing Characteristics (Access Level)
ID IP16 IP17 IP18 IP19 IP20o Parameter Symbol Min Tdicd-Tdicu–1.24 Tdicp–Tdicd+Tdicu–1.24 Tdicd–1.24 Tdicp–Tdicd–1.24 Tocsu–1.24 Typ1 Tdicd2–Tdicu3 Tdicp–Tdicd+Tdicu Tdicu Tdicp–Tdicu Tocsu Max Tdicd–Tdicu+1.24 Tdicp–Tdicd+Tdicu+1.2 — — Tocsu+1.24 Unit ns ns ns ns ns
Display interface clock Tckl low time Display interface clock Tckh high time Data setup time Data holdup time Tdsu Tdhd
Control signals offset Tocsu times (defines for each pin) Control signals setup time to display interface clock (defines for each pin) Tcsu
IP20
Tdicd–1.24–Tocsu%Tdicp Tdicu
—
ns
The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.
1
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 94 Freescale Semiconductor
Electrical Characteristics
2
Display interface clock down time 2 × DISP_CLK_DOWN 1 Tdicd = -- ⎛ T diclk × ceil ---------------------------------------------------------- ⎞ ⎠ DI_CLK_PERIOD 2⎝
3
Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity. 2 × DISP_CLK_UP Tdicu = 1 ⎛ T diclk × ceil ----------------------------------------------- ⎞ -- ⎝ DI_CLK_PERIOD ⎠ 2
4.7.8.7
Interface to a TV Encoder (TVDAC)
The interface has an 8-bit data bus, transferring a single 8-bit value (Y/U/V) in each cycle. The timing of the interface is described in Figure 51. • • • • • NOTE The frequency of the clock DISP_CLK is 27 MHz (within 10%) The HSYNC, VSYNC signals are active low. The DRDY signal is shown as active high. The transition to the next row is marked by the negative edge of the HSYNC signal. It remains low for a single clock cycle. The transition to the next field/frame is marked by the negative edge of the VSYNC signal. It remains low for at least one clock cycles. — At a transition to an odd field (of the next frame), the negative edges of VSYNC and HSYNC coincide. At a transition is to an even field (of the same frame), they do not coincide.
—
•
The active intervals—during which data is transferred—are marked by the HSYNC signal being high.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 95
Electrical Characteristics DISP_CLK HSYNC VSYNC DRDY IPP_DATA Cb Y Cr Y Cb Y Cr
Pixel Data Timing HSYNC DRDY VSYNC Even Field HSYNC DRDY VSYNC 261 262 263 264 265 266 267 Odd Field 268 269 273 523 524 525 1 2 3 4 5 6 10
Odd Field Line and Field Timing - NTSC HSYNC DRDY VSYNC Even Field 621 622 623 624 625 1 2 3
Even Field
4
23
Odd Field
HSYNC DRDY VSYNC
308
309
310
311
312
313
314
315
316
336
Odd Field Line and Field Timing - PAL
Even Field
Figure 51. TV Encoder Interface Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 96 Freescale Semiconductor
Electrical Characteristics
4.7.8.7.1
TVEv2 TV Encoder Performance Specifications
The TV encoder output specifications are shown in Table 62. All the parameters in the table are defined under the following conditions: • Rset = 1.05 kΩ ±1%, resistor on TVDAC_VREF pin to GND • Rload = 37.5 Ω ±1%, output load to the GND
Table 62. TV Encoder Video Performance Specifications
Parameter DAC STATIC PERFORMANCE Resolution1 Integral Nonlinearity (INL)2 Differential Nonlinearity (DNL)
2
Conditions
Min
Typ
Max
Unit
— — — — Rset = 1.05 kΩ ±1% Rload = 37.5 Ω ±1%
— — — — 1.24
10 1 0.6 2 1.306
— 2 1 — 1.37
Bits LSBs LSBs % V
Channel-to-channel gain matching2 Full scale output voltage2
DAC DYNAMIC PERFORMANCE Spurious Free Dynamic Range (SFDR) Spurious Free Dynamic Range (SFDR) VIDEO PERFORMANCE IN SD MODE2 Short Term Jitter (Line to Line) Long Term Jitter (Field to Field) Frequency Response 0-4.0 MHz 5.75 MHz Luminance Nonlinearity Differential Gain Differential Phase Signal-to-Noise Ratio (SNR) Hue Accuracy Color Saturation Accuracy Chroma AM Noise Chroma PM Noise Chroma Nonlinear Phase Chroma Nonlinear Gain Chroma/Luma Intermodulation Chroma/Luma Gain Inequality — — — Flat field full bandwidth — — — — — — — — — — — — –0.1 –0.7 — — — — — — — — — — — — 2.5 3.5 — — 0.5 0.35 0.6 75 0.8 1.5 –70 –47 0.5 2.5 0.1 1.0 — — 0.1 0 — — — — — — — — — — — — ±ns ±ns dB dB ±% % Degrees dB ±Degrees ±% dB dB ±Degrees ±% ±% ±% Fout = 3.38 MHz Fsamp = 216 MHz Fout = 9.28 MHz Fsamp = 297 MHz — — 59 54 — — dBc dBc
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 97
Electrical Characteristics
Table 62. TV Encoder Video Performance Specifications (continued)
Parameter Chroma/Luma Delay Inequality VIDEO PERFORMANCE IN HD MODE2 Luma Frequency Response Chroma Frequency Response Luma Nonlinearity Chroma Nonlinearity Luma Signal-to-Noise Ratio Chroma Signal-to-Noise Ratio
1 2
Conditions —
Min —
Typ 1.0
Max —
Unit ±ns
0-30 MHz 0-15 MHz, YCbCr 422 mode — — 0-30 MHz 0-15 MHz
–0.2 –0.2 — — — —
— — 3.2 3.4 62 72
0.2 0.2 — — — —
dB dB % % dB dB
Guaranteed by design. Guaranteed by characterization.
4.7.8.8
Asynchronous Interfaces
The following sections describes the types of asynchronous interfaces. 4.7.8.8.1 Standard Parallel Interfaces
The IPU has four signal generator machines for asynchronous signal. Each machine generates IPU’s internal control levels (0 or 1) by UP and DOWN that are defined in registers. Each asynchronous pin has a dynamic connection with one of the signal generators. This connection is redefined again with a new display access (pixel/component). The IPU can generate control signals according to system 80/68 requirements. The burst length is received as a result from predefined behavior of the internal signal generator machines. The access to a display is realized by the following: • CS (IPP_CS) chip select • WR (IPP_PIN_11) write strobe • RD (IPP_PIN_12) read strobe • RS (IPP_PIN_13) Register select (A0) Both system 80 and system 68k interfaces are supported for all described modes as depicted in Figure 52, Figure 53, Figure 54, and Figure 55. The timing images correspond to active-low IPP_CS, WR and RD signals. Each asynchronous access is defined by an access size parameter. This parameter can be different between different kinds of accesses. This parameter defines a length of windows, when suitable controls of the current access are valid. A pause between two different display accesses can be guaranteed by programing suitable access sizes. There are no minimal/maximal hold/setup times hard defined by DI. Each control signal can be switched at any time during access size.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 98 Freescale Semiconductor
Electrical Characteristics IPP_CS
RS WR RD IPP_DATA
Burst access mode with sampling by CS signal IPP_CS
RS WR RD IPP_DATA
Single access mode (all control signals are not active for one display interface clock after each display access)
Figure 52. Asynchronous Parallel System 80 Interface (Type 1) Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 99
Electrical Characteristics
IPP_CS
RS WR RD
IPP_DATA Burst access mode with sampling by WR/RD signals IPP_CS
RS WR RD IPP_DATA
Single access mode (all control signals are not active for one display interface clock after each display access)
Figure 53. Asynchronous Parallel System 80 Interface (Type 2) Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 100 Freescale Semiconductor
Electrical Characteristics
IPP_CS
RS WR (READ/WRITE) RD (ENABLE) IPP_DATA
Burst access mode with sampling by CS signal IPP_CS
RS WR (READ/WRITE) RD (ENABLE) IPP_DATA
Single access mode (all control signals are not active for one display interface clock after each display access)
Figure 54. Asynchronous Parallel System 68k Interface (Type 1) Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 101
Electrical Characteristics
IPP_CS
RS WR (READ/WRITE) RD (ENABLE) IPP_DATA
Burst access mode with sampling by ENABLE signal IPP_CS
RS WR (READ/WRITE) RD (ENABLE) IPP_DATA
Single access mode (all control signals are not active for one display interface clock after each display access)
Figure 55. Asynchronous Parallel System 68k Interface (Type 2) Timing Diagram
Display operation can be performed with IPP_WAIT signal. The DI reacts to the incoming IPP_WAIT signal with 2 DI_CLK delay. The DI finishes a current access and a next access is postponed until IPP_WAIT release. Figure 56 shows timing of the parallel interface with IPP_WAIT control.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 102 Freescale Semiconductor
Electrical Characteristics
DI clock IPP_CS
IPP_DATA WR RD IPP_WAIT IPP_DATA_IN IP39 waiting waiting
Figure 56. Parallel Interface Timing Diagram—Read Wait States
4.7.8.8.2
Asynchronous Parallel Interface Timing Parameters
Figure 57 depicts timing of asynchronous parallel interfaces based on the system 80 and system 68k interfaces. Table 64 shows timing characteristics at display access level. All timing diagrams are based on active low control signals (signals polarity is controlled through the DI_DISP_SIG_POL register).
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 103
Electrical Characteristics
IP29 IP35 IP33
IP32
IP36
IP34
IP47
IP30
IP31
DI clock IPP_CS
RS WR RD IPP_DATA A0 D0 D1 D2 IP28a local start point local start point local start point IP28d local start point IP27 local start point IP37 D3 IP38
PP_DATA_IN
Figure 57. Asynchronous Parallel Interface Timing Diagram Table 63. Asynchronous Display Interface Timing Parameters (Pixel Level)
ID IP28a IP28d IP29 IP30 IP31 IP32 Parameter Symbol Value ACCESS_SIZE_# ACCESS_SIZE_# UP# UP# DOWN# DOWN# Description predefined value in DI REGISTER predefined value in DI REGISTER RS strobe switch, predefined value in DI REGISTER CS strobe switch, predefined value in DI REGISTER CS strobe release, predefined value in DI REGISTER RS strobe release, predefined value in DI REGISTER Unit ns ns ns ns — —
Address Write system cycle time Tcycwa Data Write system cycle time RS start CS start CS hold RS hold Tcycwd Tdcsrr Tdcsc Tdchc Tdchrr
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 104 Freescale Semiconductor
Electrical Characteristics
Table 63. Asynchronous Display Interface Timing Parameters (Pixel Level) (continued)
ID IP35 IP36 Write start Controls hold time for write Parameter Symbol Tdcsw Tdchw Value UP# DOWN# Description write strobe switch, predefined value in DI REGISTER write strobe release, predefined value in DI REGISTER Unit ns ns
Table 64. Asynchronous Parallel Interface Timing Parameters (Access Level)
ID Parameter Symbol Tcycw Tdcsrr Tdcsc Tdchc Tdchrr Tdcsw Tdchw Troh Min Tdicpw – 1.24 Tdicurs – 1.24 Tdicucs – 1.24 Typ1 Tdicpw2 Tdicurs Tdicur Max Tdicpw+1.24 Tdicurs+1.24 Tdicucs+1.24 Tdicdcs – Tdicucs+1.24 Tdicdrs – Tdicurs+1.24 Tdicuw+1.24 Tdicdw–Tdicuw+1.24 Tdicpr – Tdicdr – 1.24 Unit ns ns ns ns ns ns ns ns
IP28 Write system cycle time IP29 RS start IP30 CS start IP31 CS hold IP32 RS hold IP35 Controls setup time for write IP36 Controls hold time for write IP38 Slave device data hold time8
1The
Tdicdcs – Tdicucs – 1.2 Tdicdcs3–Tdicucs4 4 Tdicdrs – Tdicurs – 1.24 Tdicdrs5–Tdicurs6 Tdicuw – 1.24 Tdicuw
Tdicdw – Tdicuw – 1.24 Tdicpw7–Tdicuw8 Tdrp – Tlbd – Tdicdr+1. 24 —
exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific. 2Display period value for write DI_ACCESS_SIZE_# Tdicpw = T DI_CLK × ceil ---------------------------------------------------DI_CLK_PERIOD ACCESS_SIZE is predefined in REGISTER. 3Display control down for CS 2 × DISP_DOWN_# Tdicdcs = 1 ⎛ T DI_CLK × ceil ------------------------------------------------- ⎞ -DI_CLK_PERIOD ⎠ 2⎝ DISP_DOWN is predefined in REGISTER. 4Display control up for CS 2 × DISP_UP_# 1 Tdicucs = -- ⎛ T DI_CLK × ceil --------------------------------------------- ⎞ DI_CLK_PERIOD ⎠ 2⎝ DISP_UP is predefined in REGISTER. 5Display control down for RS 2 × DISP_DOWN_# Tdicdrs = 1 ⎛ T DI_CLK × ceil ------------------------------------------------- ⎞ -- ⎝ DI_CLK_PERIOD ⎠ 2 DISP_DOWN is predefined in REGISTER.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 105
Electrical Characteristics
6
Display control up for RS 2 × DISP_UP_# 1 Tdicurs = -- ⎛ T DI_CLK × ceil --------------------------------------------- ⎞ DI_CLK_PERIOD ⎠ 2⎝
DISP_UP is predefined in REGISTER. 7 Display control down for read 2 × DISP_DOWN_# Tdicdrw = 1 ⎛ T DI_CLK × ceil ------------------------------------------------- ⎞ -- ⎝ DI_CLK_PERIOD ⎠ 2 DISP_DOWN is predefined in REGISTER. 8 Display control up for write 2 × DISP_UP_# Tdicuw = 1 ⎛ T DI_CLK × ceil --------------------------------------------- ⎞ -DI_CLK_PERIOD ⎠ 2⎝ DISP_UP is predefined in REGISTER.
4.7.9
LVDS Display Bridge (LDB) Module Parameters
The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits”.
4.7.10
MediaLB (MLB) Controller AC Timing Electrical Specifications
This section describes the timing electrical information of the MediaLB Controller module. Figure 58 and Figure 59 show the timing of MediaLB Controller, and Table 65 and Table 66 lists the MediaLB controller timing characteristics.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 106 Freescale Semiconductor
Electrical Characteristics
Figure 58. MediaLB Timing
Figure 59. MediaLB Pulse Width Variation Timing
Ground = 0.0 V; Load Capacitance = 60 pF; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.
Table 65. MLB 256/512 Fs Timing Parameters
Parameter MLBCLK operating frequency1 Symbol fmck Min 11.264 12.288 24.576 24.6272 25.600 MLBCLK rise time MLB fall time MLBCLK cycle time tmckr tmckf tmckc — — — — — — 81 40 3 3 — — ns ns ns Typ Max Units MHz Comment Min: 256*fs at 44.0 kHz Typ: 256*fs at 48.0 kHz Typ: 512*fs at 48.0 kHz Max: 512*fs at 48.1 kHz Max: 512*fs PLL unlocked VIL TO VIH VIH TO VIL 256*Fs 512*Fs
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 107
Electrical Characteristics
Table 65. MLB 256/512 Fs Timing Parameters (continued)
Parameter MLBCLK low time Symbol tmckl Min 31.5 30 14.5 14 MLBCLK high time tmckh 31.5 30 14.5 14 MLBCLK pulse width variation MLBSIG/MLBDAT input valid to MLBCLK falling MLBSIG/MLBDAT input hold from MLBCLK low MLBSIG/MLBDAT output high impedance from MLBCLK low Bus Hold Time
1 2
Typ 37 35.5 17 16.5 38 36.5 17 16.5 — — — — —
Max — — — — — — — — 2 — — tmckl —
Units ns ns ns ns ns pp ns ns ns ns
Comment 256*Fs 256*Fs PLL unlocked 512*Fs 512*Fs PLL unlocked 256*Fs 256*Fs PLL unlocked 512*Fs 512*Fs PLL unlocked Note2 — — — Note3
tmpwv tdsmcf tdhmcf tmcfdz tmdzh
— 1 0 0 4
The MLB controller can shut off MLBCLK to place MediaLB in a low-power state. Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp) 3 The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.
Ground = 0.0 V; load capacitance = 40 pF; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed in Table 66; unless otherwise noted.
Table 66. MLB Device 1024 Fs Timing Parameters
Parameter MLBCLK Operating Frequency1 Symbol fmck Min 45.056 49.152 49.2544 51.200 MLBCLK rise time MLB fall time MLBCLK cycle time MLBCLK low time MLBCLK high time MLBCLK pulse width variation tmckr tmckf tmckc tmckl tmckh tmpwv — — — 6.5 6.1 9.7 9.3 — — — 20.3 7.7 7.3 10.6 10.2 — 1 1 — — — — 0.7 ns ns ns ns PLL unlocked ns PLL unlocked ns pp Note2 Typ Max Units MHz Comment Min: 1024*fs at 44.0 kHz Typ: 1024*fs at 48.0 kHz Max: 1024fs*fs at 48.1 kHz Max: 1024*fs PLL unlocked VIL TO VIH VIH TO VIL —
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 108 Freescale Semiconductor
Electrical Characteristics
Table 66. MLB Device 1024 Fs Timing Parameters (continued)
Parameter MLBSIG/MLBDAT input valid to MLBCLK falling MLBSIG/MLBDAT input hold from MLBCLK low MLBSIG/MLBDAT output high impedance from MLBCLK low Bus Hold Time
1 2
Symbol tdsmcf tdhmcf tmcfdz tmdzh
Min 1 0 0 2
Typ — — — —
Max — — tmckl —
Units ns ns ns ns
Comment — — — Note3
The MLB Controller can shut off MLBCLK to place MediaLB in a low-power state. Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp). 3 The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.
4.7.11
One-Wire (OWIRE) Timing Parameters
Figure 60 depicts the RPP timing, and Table 67 lists the RPP timing parameters.
One-WIRE Tx “Reset Pulse” One-Wire bus (BATT_LINE) One Wire Device Tx “Presence Pulse” OW2
OW1 tR
OW3 OW4
Figure 60. Reset and Presence Pulses (RPP) Timing Diagram Table 67. RPP Sequence Delay Comparisons Timing Parameters
ID OW1 OW2 OW3 OW4
1
Parameters Reset Time Low Presence Detect High Presence Detect Low Reset Time High (includes recovery time)
Symbol tRSTL tPDH tPDL tRSTH
Min 480 15 60 480
Typ 511 — — 512
Max —1 60 240 —
Unit µs µs µs µs
In order not to mask signaling by other devices on the 1-Wire bus, tRSTL + tR should always be less than 960 µs.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 109
Electrical Characteristics
Figure 61 depicts Write 0 Sequence timing, and Table 68 lists the timing parameters.
OW6 One-Wire bus (BATT_LINE) tREC
OW5
Figure 61. Write 0 Sequence Timing Diagram Table 68. WR0 Sequence Timing Parameters
ID OW5 OW6 Parameter Write 0 Low Time Transmission Time Slot Recovery time Symbol tLOW0 tSLOT tREC Min 60 OW5 1 Typ 100 117 — Max 120 120 — Unit µs µs µs
Figure 62 depicts Write 1 Sequence timing, Figure 63 depicts the Read Sequence timing, and Table 69 lists the timing parameters.
OW8 One-Wire bus (BATT_LINE)
OW7
Figure 62. Write 1 Sequence Timing Diagram
OW8 One-Wire bus (BATT_LINE)
tSU OW9 OW10 OW11
Figure 63. Read Sequence Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 110 Freescale Semiconductor
Electrical Characteristics
Table 69. WR1 /RD Timing Parameters
ID OW7 OW8 Parameter Write 1 Low Time Transmission Time Slot Read Data Setup OW9 OW10 OW11 Read Low Time Read Data Valid Release Time Symbol tLOW1 tSLOT tSU tLOWR tRDV tRELEASE Min 1 60 — 1 — 0 Typ 5 117 — 5 15 — Max 15 120 1 15 — 45 Unit µs µs µs µs µs µs
4.7.12
Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 64 depicts the timing of the PWM, and Table 70 lists the PWM timing parameters.
2a System Clock 2b 3a 4a PWM Output 1 3b
4b
Figure 64. PWM Timing Table 70. PWM Output Timing Parameter
Ref. No. 1 2a 2b 3a 3b 4a 4b
1
Parameter System CLK frequency1 Clock high time Clock low time Clock fall time Clock rise time Output delay time Output setup time
Min 0 12.29 9.91 — — — 8.71
Max ipg_clk — — 0.5 0.5 9.37 —
Unit MHz ns ns ns ns ns ns
CL of PWMO = 30 pF
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 111
Electrical Characteristics
4.7.13
PATA Timing Parameters
This section describes the timing parameters of the Parallel ATA module which are compliant with ATA/ATAPI-6 specification. Parallel ATA module can work on PIO/Multi-Word DMA/Ultra DMA transfer modes. Each transfer mode has different data transfer rate, Ultra DMA mode 4 data transfer rate is up to 100MB/s. Parallel ATA module interface consist of a total of 29 pins. Some pins act on different function in different transfer mode. There are different requirements of timing relationships among the function pins conform with ATA/ATAPI-6 specification and these requirements are configurable by the ATA module registers. Table 71 and Figure 65 define the AC characteristics of all the PATA interface signals in all data transfer modes.
ATA Interface Signals
SI2
SI1
Figure 65. PATA Interface Signals Timing Diagram Table 71. AC Characteristics of All Interface Signals
ID SI1 SI2 SI3
1
Parameter Rising edge slew rate for any signal on ATA interface1 Falling edge slew rate for any signal on ATA interface1 Host interface signal capacitance at the host connector
Symbol Srise Sfall Chost
Min — — —
Max 1.25 1.25 20
Unit V/ns V/ns pF
SRISE and SFALL shall meet this requirement when measured at the sender’s connector from 10–90% of full signal amplitude with all capacitive loads from 15–40 pF where all signals have the same capacitive load value.
The user must use level shifters for 5.0 V compatibility on the ATA interface. The i.MX53xA PATA interface is 3.3 V compatible. The use of bus buffers introduces delay on the bus and skew between signal lines. These factors make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. If fast UDMA mode operation is needed, this may not be compatible with bus buffers. Another area of attention is the slew rate limit imposed by the ATA specification on the ATA bus. According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with a 40 pF load. Not many vendors of bus buffers specify slew rate of the outgoing signals. When bus buffers are used, the ata_data bus buffer is special. This is a bidirectional bus buffer, so a direction control signal is needed. This direction control signal is ata_buffer_en. When its high, the bus should drive from host to device. When its low, the bus should drive from device to host. Steering of the signal is such that contention on the host and device tri-state busses is always avoided.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 112 Freescale Semiconductor
Electrical Characteristics
In the timing equations, some timing parameters are used. These parameters depend on the implementation of the i.MX53xA PATA interface on silicon, the bus buffer used, the cable delay and cable skew. Table 72 shows ATA timing parameters.
Table 72. PATA Timing Parameters
Name T ti_ds Description Bus clock period (AHB_CLK_ROOT) Set-up time ata_data to ata_iordy edge (UDMA-in only) UDMA0 UDMA1 UDMA2, UDMA3 UDMA4 UDMA5 ti_dh Hold time ata_iordy edge to ata_data (UDMA-in only) UDMA0, UDMA1, UDMA2, UDMA3, UDMA4 UDMA5 Propagation delay bus clock L-to-H to ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data, ata_buffer_en Set-up time ata_data to bus clock L-to-H Set-up time ata_iordy to bus clock H-to-L Hold time ata_iordy to bus clock H to L Max difference in propagation delay bus clock L-to-H to any of following signals ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data (write), ata_buffer_en Max difference in buffer propagation delay for any of following signals: ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data (write), ata_buffer_en Max difference in buffer propagation delay for any of following signals ata_iordy, ata_data (read) Max buffer propagation delay Cable propagation delay for ata_data Cable propagation delay for control signals ata_dior, ata_diow, ata_iordy, ata_dmack Max difference in cable propagation delay between ata_iordy and ata_data (read) Max difference in cable propagation delay between (ata_dior, ata_diow, ata_dmack) and ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_data(write) Max difference in cable propagation delay without accounting for ground bounce 15 ns 10 ns 7 ns 5 ns 4 ns 5.0 ns 4.6 ns 12.0 ns Value/ Contributing Factor1 Peripheral clock frequency (7.5 ns for 133 MHz clock)
tco
tsu tsui thi tskew1
8.5 ns 8.5 ns 2.5 ns 7 ns
tskew2
Transceiver
tskew3 tbuf tcable1 tcable2 tskew4 tskew5 tskew6
1
Transceiver Transceiver Cable Cable Cable Cable Cable
Values provided where applicable.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 113
Electrical Characteristics
4.7.13.1
PIO Mode Read Timing
Figure 66 shows timing for PIO read. Table 73 lists the timing parameters for PIO read.
Figure 66. PIO Read Timing Diagram Table 73. PIO Read Timing Parameters
ATA Parameter Parameter from Figure 66 t1 t2 (read) t9 t5 t6 tA trd t1 t2r t9 t5 t6 tA trd1 Value t1(min) = time_1 * T – (tskew1 + tskew2 + tskew5) t2(min) = time_2r * T – (tskew1 + tskew2 + tskew5) t9(min) = time_9 * T – (tskew1 + tskew2 + tskew6) t5(min) = tco + tsu + tbuf + tbuf+ tcable1 + tcable2 0 tA(min) = (1.5 + time_ax) * T – (tco + tsui + tcable2 + tcable2 + 2*tbuf) trd1(max) = (–trd)+ (tskew3 + tskew4) trd1(min) = (time_pio_rdx – 0.5)*T – (tsu + thi) (time_pio_rdx – 0.5) * T > tsu + thi + tskew3 + tskew4 t0(min) = (time_1 + time_2r+ time_9) * T Controlling Variable time_1 time_2r time_9 time_2 (affects tsu and tco) — time_ax time_pio_rdx
t0
—
time_1, time_2r, time_9
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 114 Freescale Semiconductor
Electrical Characteristics
Figure 67 shows timing for PIO write. Table 74 lists the timing parameters for PIO write.
Figure 67. Multi-word DMA (MDMA) Timing Table 74. PIO Write Timing Parameters
ATA Parameter Paramete from Figure 67 r t1 t2 (write) t9 t3 t4 tA t0 — — t1 t2w t9 — t4 tA — — — Value Controlling Variable time_1 time_2w time_9 If not met, increase time_2w time_4 time_ax time_1, time_2r, time_9 — —
t1(min) = time_1 * T – (tskew1 + tskew2 + tskew5) t2(min) = time_2w * T – (tskew1 + tskew2 + tskew5) t9(min) = time_9 * T – (tskew1 + tskew2 + tskew6) t3(min) = (time_2w – time_on)* T – (tskew1 + tskew2 +tskew5) t4(min) = time_4 * T – tskew1 tA = (1.5 + time_ax) * T – (tco + tsui + tcable2 + tcable2 + 2*tbuf) t0(min) = (time_1 + time_2 + time_9) * T Avoid bus contention when switching buffer on by making ton long enough Avoid bus contention when switching buffer off by making toff long enough
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 115
Electrical Characteristics
Figure 68 shows timing for MDMA read, Figure 69 shows timing for MDMA write, and Table 75 lists the timing parameters for MDMA read and write.
Figure 68. MDMA Read Timing Diagram
Figure 69. MDMA Write Timing Diagram Table 75. MDMA Read and Write Timing Parameters
ATA Parameter tm, ti td tk t0 tg(read) tf(read) tg(write) tf(write) tL Parameter from Figure 68 (Read), Figure 69 (Write) tm td, td1 tk1 — tgr tfr — — — Value Controlling Variable time_m time_d time_k time_d, time_k time_d — time_d time_k time_d, time_k2
tm(min) = ti(min) = time_m * T – (tskew1 + tskew2 + tskew5) td1(min) = td(min) = time_d * T – (tskew1 + tskew2 + tskew6) tk(min) = time_k * T – (tskew1 + tskew2 + tskew6) t0(min) = (time_d + time_k) * T tgr(min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2 tgr(min-drive) = td – te(drive) tfr(min) = 5 ns tg(min-write) = time_d * T – (tskew1 + tskew2 + tskew5) tf(min-write) = time_k * T – (tskew1 + tskew2 + tskew6) tL (max) = (time_d + time_k – 2)×T – (tsu + tco + 2×tbuf + 2×tcable2)
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 116 Freescale Semiconductor
Electrical Characteristics
Table 75. MDMA Read and Write Timing Parameters (continued)
ATA Parameter tn, tj —
1 2
Parameter from Figure 68 (Read), Figure 69 (Write) tkjn ton toff
Value
Controlling Variable time_jn —
tn= tj= tkjn = time_jn * T – (tskew1 + tskew2 + tskew6) ton = time_on × T – tskew1 toff = time_off × T – tskew1
tk1 in the MDMA figures (Figure 68 and Figure 69) equals (tk – 2*T). tk1 in the MDMA figures equals (tk – 2*T).
4.7.13.2
Ultra DMA (UDMA) Input Timing
Figure 70 shows timing when the UDMA in transfer starts, Figure 71 shows timing when the UDMA in host terminates transfer, Figure 72 shows timing when the UDMA in device terminates transfer, and Table 76 lists the timing parameters for UDMA in burst.
Figure 70. UDMA in Transfer Starts Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 117
Electrical Characteristics
Figure 71. UDMA in Host Terminates Transfer Timing Diagram
Figure 72. UDMA in Device Terminates Transfer Timing Diagram Table 76. UDMA in Burst Timing Parameters
Parameter from Figure 70, Figure 71, Figure 72 tack tenv tds1 tdh1
ATA Parameter
Description
Controlling Variable
tack tenv tds tdh
tack (min) = (time_ack × T) – (tskew1 + tskew2) tenv (min) = (time_env × T) – (tskew1 + tskew2) tenv (max) = (time_env × T) + (tskew1 + tskew2) tds – (tskew3) – ti_ds > 0 tdh – (tskew3) – ti_dh > 0
time_ack time_env tskew3, ti_ds, ti_dh should be low enough
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 118 Freescale Semiconductor
Electrical Characteristics
Table 76. UDMA in Burst Timing Parameters (continued)
Parameter from Figure 70, Figure 71, Figure 72 tc1 trp tx11 tmli1 tzah tdzfs tcvh ton toff2 (tcyc – tskew) > T trp (min) = time_rp × T – (tskew1 + tskew2 + tskew6) (time_rp × T) – (tco + tsu + 3T + 2 ×tbuf + 2×tcable2) > trfs (drive) tmli1 (min) = (time_mlix + 0.4) × T tzah (min) = (time_zah + 0.4) × T tdzfs = (time_dzfs × T) – (tskew1 + tskew2) tcvh = (time_cvh ×T) – (tskew1 + tskew2) ton = time_on × T – tskew1 toff = time_off × T – tskew1
ATA Parameter
Description
Controlling Variable
tcyc trp — tmli tzah tdzfs tcvh —
1
T big enough time_rp time_rp time_mlix time_zah time_dzfs time_cvh —
There is a special timing requirement in the ATA host that requires the internal DIOW to go only high 3 clocks after the last active edge on the DSTROBE signal. The equation given on this line tries to capture this constraint. 2 Make ton and toff big enough to avoid bus contention.
4.7.13.3
UDMA Output Timing
Figure 73 shows timing when the UDMA out transfer starts, Figure 74 shows timing when the UDMA out host terminates transfer, Figure 75 shows timing when the UDMA out device terminates transfer, and Table 77 lists the timing parameters for UDMA out burst.
Figure 73. UDMA Out Transfer Starts Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 119
Electrical Characteristics
Figure 74. UDMA Out Host Terminates Transfer Timing Diagram
Figure 75. UDMA Out Device Terminates Transfer Timing Diagram Table 77. UDMA Out Burst Timing Parameters
Parameter from Figure 73, Figure 74, Figure 75 tack tenv tdvs tdvh tcyc —
ATA Parameter
Value
Controlling Variable
tack tenv tdvs tdvh tcyc t2cyc
tack (min) = (time_ack × T) – (tskew1 + tskew2) tenv (min) = (time_env × T) – (tskew1 + tskew2) tenv (max) = (time_env × T) + (tskew1 + tskew2) tdvs = (time_dvs × T) – (tskew1 + tskew2) tdvs = (time_dvh × T) – (tskew1 + tskew2) tcyc = time_cyc × T – (tskew1 + tskew2) t2cyc = time_cyc × 2 × T
time_ack time_env time_dvs time_dvh time_cyc time_cyc
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 120 Freescale Semiconductor
Electrical Characteristics
Table 77. UDMA Out Burst Timing Parameters (continued)
Parameter from Figure 73, Figure 74, Figure 75 trfs tdzfs tss tdzfs_mli tli1 tli2 tli3 tcvh ton toff
ATA Parameter
Value
Controlling Variable
trfs1 — tss tmli tli tli tli tcvh —
trfs = 1.6 × T + tsui + tco + tbuf + tbuf tdzfs = time_dzfs × T – (tskew1) tss = time_ss × T – (tskew1 + tskew2) tdzfs_mli =max (time_dzfs, time_mli) × T – (tskew1 + tskew2) tli1 > 0 tli2 > 0 tli3 > 0 tcvh = (time_cvh ×T) – (tskew1 + tskew2) ton = time_on × T – tskew1 toff = time_off × T – tskew1
— time_dzfs time_ss — — — — time_cvh —
4.7.14
SATA PHY Parameters
This section describes SATA PHY electrical specifications.
4.7.14.1
Reference Clock Electrical and Jitter Specifications
The refclk signal is differential and supports frequencies of 25 MHz or 50-156.25 MHz (100 MHz and 125 MHz are common frequencies). The frequency is pin-selectable (for more information about the signal, see “Per-Transceiver Control and Status Signals” in the SATA PHY chapter in the Reference Manual). Table 78 provides the SATA PHY reference clock specifications.
Table 78. Reference Clock Specifications
Parameters Differential peak voltage (typically 0.71 V) Common mode voltage (refclk_p + refclk_m) / 2 Total phase jitter Test Conditions — — For information about total phase jitter, see following section — — Min 350 Max 850 2,000 3 Unit mV mV ps RMS
175
—
Minimum/maximum duty cycle Frequency range
40 25
60 156.25
% UI MHz
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 121
Electrical Characteristics
4.7.14.1.1
Reference Clock Jitter Measurement
The total phase jitter on the reference clock is specified at 3 ps RMS. There are numerous ways to measure the reference clock jitter, one of which is as follows. Using a high-speed sampling scope (20 GSamples/s), 1 million samples of the differential reference clock are taken, and the zero-crossing times of each rising edge are calculated. From the zero-crossing data, an average reference clock period is calculated. This average reference clock period is subtracted from each sequential, instantaneous period to find the difference between each reference clock rising edge and the ideal placement to produce the phase jitter sequence. The power spectral density (PSD) of the phase jitter is calculated and integrated after being weighted with the transfer function shown in Figure 76. The square root of the resultant integral is the RMS total phase jitter.
Figure 76. Weighting Function for RMS Phase Jitter Calculation
4.7.14.2
Transmitter and Receiver Characteristics
The SATA PHY meets or exceeds the electrical compliance requirements defined in the SATA specification. The following subsections provide values obtained from a combination of simulations and silicon characterization. NOTE The tables in the following sections indicate any exceptions to the SATA specification or aspects of the SATA PHY that exceed the standard, as well as provide information about parameters not defined in the standard. 4.7.14.2.1 SATA PHY Transmitter Characteristics
Table 79. SATA2 PHY Transmitter Characteristics
Parameters Transmit common mode voltage Transmitter pre-emphasis accuracy (measured change in de-emphasized bit) VCTM — Symbol Min 0.4 –0.5 Typ — — Max 0.6 0.5 Unit V dB
Table 79 provides specifications for SATA PHY transmitter characteristics.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 122 Freescale Semiconductor
Electrical Characteristics
4.7.14.2.2
SATA PHY Receiver Characteristics
Table 80 provides specifications for SATA PHY receiver characteristics.
Table 80. SATA PHY Receiver Characteristics
Parameters Symbol Min — –400 Typ — — Max 175 400 Unit mV ppm
Minimum Rx eye height (differential peak-to-peak) VMIN_RX_EYE_HEIGHT Tolerance PPM
4.7.14.3
SATA_REXT Reference Resistor Connection
The impedance calibration process requires connection of reference resistor 191 Ω. 1% precision resistor on SATA_REXT pad to ground. Resistor calibration consists of learning which state of the internal Resistor Calibration register causes an internal, digitally trimmed calibration resistor to best match the impedance applied to the SATA_REXT pin. The calibration register value is then supplied to all Tx and Rx termination resistors. During the calibration process (for a few tens of microseconds), up to 0.3 mW can be dissipated in the external SATA_REXT resistor. At other times, no power is dissipated by the SATA_REXT resistor.
4.7.14.4
SATA Connectivity When Not in Use
NOTE The Temperature Sensor is part of the SATA module. If SATA IP is disabled, the Temperature Sensor will not work as well. Temperature Sensor functionality is important in supporting high performance applications without overheating the device (at high ambient temp).
When both SATA and thermal sensor are not required, connect VP and VPH supplies to ground. The rest of the ports, both inputs and outputs (SATA_REFCLKM, SATA_REFCLKP, SATA_REXT, SATA_RXM, SATA_RXP, SATA_TXM) can be left floating. It is not recommended to turn off the VPH while the VP is active. When SATA is not in use but thermal sensor is still required, both VP and VPH supplies must be powered on according to their nominal voltage levels. The reference clock input frequency must fall within the specified range of 25 MHz to 156.25 MHz. SATA_REXT does not need to be connected, as the termination impedance is not of consequence.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 123
Electrical Characteristics
4.7.15
SCAN JTAG Controller (SJC) Timing Parameters
Figure 77 depicts the SJC test clock input timing. Figure 78 depicts the SJC boundary scan timing. Figure 79 depicts the SJC test access port. Signal parameters are listed in Table 81.
SJ1 SJ2 TCK (Input) SJ3 VIH VIL SJ3 VM SJ2 VM
Figure 77. Test Clock Input Timing Diagram
TCK (Input) VIL SJ4 Data Inputs SJ6 Data Outputs SJ7 Data Outputs SJ6 Data Outputs Output Data Valid Output Data Valid SJ5
VIH
Input Data Valid
Figure 78. Boundary Scan (JTAG) Timing Diagram
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 124 Freescale Semiconductor
Electrical Characteristics TCK (Input) VIL SJ8 TDI TMS (Input) SJ10 TDO (Output) SJ11 TDO (Output) SJ10 TDO (Output) Output Data Valid Output Data Valid Input Data Valid SJ9
VIH
Figure 79. Test Access Port Timing Diagram
TCK (Input) SJ13 TRST (Input) SJ12
Figure 80. TRST Timing Diagram Table 81. JTAG Timing
All Frequencies ID Parameter1,2 Min SJ0 SJ1 SJ2 SJ3 SJ4 SJ5 SJ6 SJ7 SJ8 TCK frequency of operation 1/(3•TDC)1 TCK cycle time in crystal mode TCK clock pulse width measured at VM2 TCK rise and fall times Boundary scan input data set-up time Boundary scan input data hold time TCK low to output data valid TCK low to output high impedance TMS, TDI data set-up time 0.001 45 22.5 — 5 24 — — 5 Max 22 — — 3 — — 40 40 — MHz ns ns ns ns ns ns ns ns Unit
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 125
Electrical Characteristics
Table 81. JTAG Timing (continued)
All Frequencies ID Parameter1,2 Min SJ9 SJ10 SJ11 SJ12 SJ13
1 2
Unit Max — 44 44 — — ns ns ns ns ns
TMS, TDI data hold time TCK low to TDO data valid TCK low to TDO high impedance TRST assert time TRST set-up time to TCK low
25 — — 100 40
TDC = target frequency of SJC VM = mid-point voltage
4.7.16
SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 82 and Figures , show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SRCK) for SPDIF in Rx mode and the timing of the modulating Tx clock (STCLK) for SPDIF in Tx mode.
Table 82. SPDIF Timing Parameters
Timing Parameter Range Characteristics Symbol Min SPDIFIN Skew: asynchronous inputs, no specs apply SPDIFOUT output (Load = 50pf) • Skew • Transition rising • Transition falling SPDIFOUT1 output (Load = 30pf) • Skew • Transition rising • Transition falling Modulating Rx clock (SRCK) period SRCK high period SRCK low period Modulating Tx clock (STCLK) period STCLK high period STCLK low period — — — — — — — — Max 0.7 1.5 24.2 31.3 ns ns Units
— — — srckp srckph srckpl stclkp stclkph stclkpl
— — — 40.0 16.0 16.0 40.0 16.0 16.0
1.5 13.6 18.0 — — — — — —
ns
ns ns ns ns ns ns
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 126 Freescale Semiconductor
Electrical Characteristics
srckp srckpl SRCK (Output) VM srckph VM
Figure 81. SPDIF Timing Diagram
stclkp stclkpl STCLK (Input) VM stclkph VM
Figure 82. STCLK Timing
4.7.17
SSI Timing Parameters
This section describes the timing parameters of the SSI module. The connectivity of the serial synchronous interfaces are summarized in Table 83.
Table 83. AUDMUX Port Allocation
Port AUDMUX port 1 AUDMUX port 2 AUDMUX port 3 AUDMUX port 4 AUDMUX port 5 AUDMUX port 6 AUDMUX port 7 Signal Nomenclature SSI 1 SSI 2 AUD3 AUD4 AUD5 AUD6 SSI 3 Internal Internal External – AUD3 I/O External – EIM or CSPI1 I/O through IOMUXC External – EIM or SD1 I/O through IOMUXC External – EIM or DISP2 through IOMUXC Internal Type and Access
• •
NOTE The terms WL and BL used in the timing diagrams and tables refer to Word Length (WL) and Bit Length (BL). The SSI timing diagrams use generic signal names wherein the names used in the i.MX53 Reference Manual are channel specific signal names. For example, a channel clock referenced in the IOMUXC chapter as AUD3_TXC appears in the timing diagram as TXC.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 127
Electrical Characteristics
4.7.17.1
SSI Transmitter Timing with Internal Clock
Figure 83 depicts the SSI transmitter internal clock timing and Table 84 lists the timing parameters for the SSI transmitter internal clock.
.
SS1 SS2 TXC SS6 TXFS (bl) (Output) TXFS (wl) (Output) SS16 TXD (Output) RXD (Input) Note: SRXD input in synchronous mode only : SRXD input in synchronous mode only SS8
SS5 SS4
SS3
SS10 SS14 SS15 SS17 SS18
SS12
SS43 SS42
SS19
Figure 83. SSI Transmitter Internal Clock Timing Diagram Table 84. SSI Transmitter Timing with Internal Clock
ID Parameter Internal Clock Operation SS1 SS2 SS3 SS4 SS5 SS6 SS8 SS10 SS12 SS14 SS15 SS16 (Tx/Rx) CK clock period (Tx/Rx) CK clock high period (Tx/Rx) CK clock rise time (Tx/Rx) CK clock low period (Tx/Rx) CK clock fall time (Tx) CK high to FS (bl) high (Tx) CK high to FS (bl) low (Tx) CK high to FS (wl) high (Tx) CK high to FS (wl) low (Tx/Rx) Internal FS rise time (Tx/Rx) Internal FS fall time (Tx) CK high to STXD valid from high impedance 81.4 36.0 — 36.0 — — — — — — — — — — 6.0 — 6.0 15.0 15.0 15.0 15.0 6.0 6.0 15.0 ns ns ns ns ns ns ns ns ns ns ns ns Min Max Unit
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 128 Freescale Semiconductor
Electrical Characteristics
Table 84. SSI Transmitter Timing with Internal Clock (continued)
ID SS17 SS18 SS19 Parameter (Tx) CK high to STXD high/low (Tx) CK high to STXD high impedance STXD rise/fall time Synchronous Internal Clock Operation SS42 SS43 SS52 SRXD setup before (Tx) CK falling SRXD hold after (Tx) CK falling Loading 10.0 0.0 — — — 25.0 ns ns pF Min — — — Max 15.0 15.0 6.0 Unit ns ns ns
•
• • • •
NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. The terms WL and BL refer to Word Length (WL) and Bit Length (BL). “Tx” and “Rx” refer to the Transmit and Receive sections of the SSI. For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 129
Electrical Characteristics
4.7.17.2
SSI Receiver Timing with Internal Clock
Figure 84 depicts the SSI receiver internal clock timing and Table 85 lists the timing parameters for the receiver timing with the internal clock
SS1 SS2 TXC (Output) SS7 TXFS (bl) (Output) TXFS (wl) (Output) RXD (Input) SS47 SS48 RXC (Output) SS51 SS50 SS49 SS5 SS4 SS3
SS9
SS11
SS13
SS20 SS21
Figure 84. SSI Receiver Internal Clock Timing Diagram Table 85. SSI Receiver Timing with Internal Clock
ID Parameter Internal Clock Operation SS1 SS2 SS3 SS4 SS5 SS7 SS9 SS11 SS13 SS20 SS21 (Tx/Rx) CK clock period (Tx/Rx) CK clock high period (Tx/Rx) CK clock rise time (Tx/Rx) CK clock low period (Tx/Rx) CK clock fall time (Rx) CK high to FS (bl) high (Rx) CK high to FS (bl) low (Rx) CK high to FS (wl) high (Rx) CK high to FS (wl) low SRXD setup time before (Rx) CK low SRXD hold time after (Rx) CK low 81.4 36.0 — 36.0 — — — — — 10.0 0.0 — — 6.0 — 6.0 15.0 15.0 15.0 15.0 — — ns ns ns ns ns ns ns ns ns ns ns Min Max Unit
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 130 Freescale Semiconductor
Electrical Characteristics
Table 85. SSI Receiver Timing with Internal Clock (continued)
ID Parameter Oversampling Clock Operation SS47 SS48 SS49 SS50 SS51 Oversampling clock period Oversampling clock high period Oversampling clock rise time Oversampling clock low period Oversampling clock fall time 15.04 6.0 — 6.0 — — — 3.0 — 3.0 ns ns ns ns ns Min Max Unit
•
• • • •
NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. “Tx” and “Rx” refer to the Transmit and Receive sections of the SSI. The terms WL and BL refer to Word Length (WL) and Bit Length (BL). For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 131
Electrical Characteristics
4.7.17.3
SSI Transmitter Timing with External Clock
Figure 85 depicts the SSI transmitter external clock timing and Table 86 lists the timing parameters for the transmitter timing with the external clock
SS22 SS23 SS25 SS26
SS24
TXC (Input) SS27 TXFS (bl) (Input) TXFS (wl) (Input) SS37 TXD (Output) SS44 RXD (Input) Note: SRXD Input in Synchronous mode only SS46 SS45 SS38 SS29
SS31
SS33
SS39
Figure 85. SSI Transmitter External Clock Timing Diagram Table 86. SSI Transmitter Timing with External Clock
ID Parameter External Clock Operation SS22 SS23 SS24 SS25 SS26 SS27 SS29 SS31 SS33 SS37 SS38 (Tx/Rx) CK clock period (Tx/Rx) CK clock high period (Tx/Rx) CK clock rise time (Tx/Rx) CK clock low period (Tx/Rx) CK clock fall time (Tx) CK high to FS (bl) high (Tx) CK high to FS (bl) low (Tx) CK high to FS (wl) high (Tx) CK high to FS (wl) low (Tx) CK high to STXD valid from high impedance (Tx) CK high to STXD high/low 81.4 36.0 — 36.0 — –10.0 10.0 –10.0 10.0 — — — — 6.0 — 6.0 15.0 — 15.0 — 15.0 15.0 ns ns ns ns ns ns ns ns ns ns ns Min Max Unit
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 132 Freescale Semiconductor
Electrical Characteristics
Table 86. SSI Transmitter Timing with External Clock (continued)
ID SS39 Parameter (Tx) CK high to STXD high impedance Synchronous External Clock Operation SS44 SS45 SS46 SRXD setup before (Tx) CK falling SRXD hold after (Tx) CK falling SRXD rise/fall time 10.0 2.0 — — — 6.0 ns ns ns Min — Max 15.0 Unit ns
•
• • • •
NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. “Tx” and “Rx” refer to the Transmit and Receive sections of the SSI. The terms WL and BL refer to Word Length (WL) and Bit Length (BL). For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 133
Electrical Characteristics
4.7.17.4
SSI Receiver Timing with External Clock
Figure 86 depicts the SSI receiver external clock timing and Table 87 lists the timing parameters for the receiver timing with the external clock.
SS22 SS26 SS23 SS25 SS24
TXC SS28 TXFS (bl) SS32 SS35 TXFS (wl) SS40 RXD (Input) SS41 SS36 SS34 SS30
Figure 86. SSI Receiver External Clock Timing Diagram Table 87. SSI Receiver Timing with External Clock
ID Parameter External Clock Operation SS22 SS23 SS24 SS25 SS26 SS28 SS30 SS32 SS34 SS35 SS36 SS40 SS41 (Tx/Rx) CK clock period (Tx/Rx) CK clock high period (Tx/Rx) CK clock rise time (Tx/Rx) CK clock low period (Tx/Rx) CK clock fall time (Rx) CK high to FS (bl) high (Rx) CK high to FS (bl) low (Rx) CK high to FS (wl) high (Rx) CK high to FS (wl) low (Tx/Rx) External FS rise time (Tx/Rx) External FS fall time SRXD setup time before (Rx) CK low SRXD hold time after (Rx) CK low 81.4 36 — 36 — –10 10 –10 10 — — 10 2 — — 6.0 — 6.0 15.0 — 15.0 — 6.0 6.0 — — ns ns ns ns ns ns ns ns ns ns ns ns ns Min Max Unit
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 134 Freescale Semiconductor
Electrical Characteristics
•
• • • •
NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. “Tx” and “Rx” refer to the Transmit and Receive sections of the SSI. The terms WL and BL refer to Word Length (WL) and Bit Length (BL). For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).
4.7.18
4.7.18.1
UART I/O Configuration and Timing Parameters
UART RS-232 I/O Configuration in Different Modes
The i.MX53xA UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0 – DCE mode). Table 88 shows the UART I/O configuration based on the enabled mode.
Table 88. UART I/O Configuration vs. Mode
DTE Mode Port Direction RTS CTS DTR DSR DCD RI TXD_MUX RXD_MUX Output Input Output Input Input Input Input Output Description RTS from DTE to DCE CTS from DCE to DTE DTR from DTE to DCE DSR from DCE to DTE DCD from DCE to DTE RING from DCE to DTE Serial data from DCE to DTE Serial data from DTE to DCE Direction Input Output Input Output Output Output Output Input Description RTS from DTE to DCE CTS from DCE to DTE DTR from DTE to DCE DSR from DCE to DTE DCD from DCE to DTE RING from DCE to DTE Serial data from DCE to DTE Serial data from DTE to DCE DCE Mode
4.7.18.2
UART RS-232 Serial Mode Timing
The following sections describe the electrical information of the UART module in the RS-232 mode. 4.7.18.2.1 UART Transmitter
Figure 87 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 89 lists the UART RS-232 serial mode transmit timing characteristics.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 135
Electrical Characteristics
Possible Parity Bit Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT
UA1
Start Bit
UA1
TXD (output)
Bit 0
Bit 1
Bit 2
Bit 3
Next Start Bit
UA1
UA1
Figure 87. UART RS-232 Serial Mode Transmit Timing Diagram Table 89. RS-232 Serial Mode Transmit Timing Parameters
ID UA1
1 2
Parameter Transmit Bit Time
Symbol tTbit
Min 1/Fbaud_rate1 – Tref_clk2
Max 1/Fbaud_rate + Tref_clk
Units —
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
4.7.18.2.2
UART Receiver
Figure 88 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 90 lists serial mode receive timing characteristics.
UA2
Start Bit
UA2
Possible Parity Bit Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT
RXD (input)
Bit 0
Bit 1
Bit 2
Bit 3
Next Start Bit
UA2
UA2
Figure 88. UART RS-232 Serial Mode Receive Timing Diagram Table 90. RS-232 Serial Mode Receive Timing Parameters
ID UA2
1
Parameter Receive Bit Time1
Symbol tRbit
Min 1/Fbaud_rate2 – 1/(16*Fbaud_rate)
Max 1/Fbaud_rate + 1/(16*Fbaud_rate)
Units —
The UART receiver can tolerate 1/(16*Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16*Fbaud_rate). 2F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
4.7.18.3
UART IrDA Mode Timing
The following subsections give the UART transmit and receive timings in IrDA mode. 4.7.18.3.3 UART IrDA Mode Transmitter
Figure 89 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 91 lists the transmit timing characteristics.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 136 Freescale Semiconductor
Electrical Characteristics UA4
UA3
UA3
UA3
UA3
TXD (output) Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Possible Parity Bit STOP BIT
Figure 89. UART IrDA Mode Transmit Timing Diagram Table 91. IrDA Mode Transmit Timing Parameters
ID UA3 UA4
1 2
Parameter Transmit Bit Time in IrDA mode Transmit IR Pulse Duration
Symbol tTIRbit tTIRpulse
Min 1/Fbaud_rate1 – Tref_clk2 (3/16)*(1/Fbaud_rate) – Tref_clk
Max 1/Fbaud_rate + Tref_clk (3/16)*(1/Fbaud_rate) + Tref_clk
Units — —
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
4.7.18.3.4
UART IrDA Mode Receiver
Figure 90 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 92 lists the receive timing characteristics.
UA5 UA5 UA6 UA5 UA5
RXD (input) Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Possible Parity Bit STOP BIT
Figure 90. UART IrDA Mode Receive Timing Diagram Table 92. IrDA Mode Receive Timing Parameters
ID UA5 UA6
1
Parameter Receive Bit Time1 in IrDA mode Receive IR Pulse Duration
Symbol tRIRbit tRIRpulse
Min 1/Fbaud_rate2 – 1/(16*Fbaud_rate) 1.41 us
Max 1/Fbaud_rate + 1/(16*Fbaud_rate) (5/16)*(1/Fbaud_rate)
Units — —
The UART receiver can tolerate 1/(16*Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16*Fbaud_rate). 2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 137
Electrical Characteristics
4.7.19
USB-OH-3 Parameters
This section describes the electrical parameters of the USB OTG port and USB HOST ports. For on-chip USB PHY parameters see Section 4.7.20, “USB PHY Parameters.”
4.7.19.1
Serial Interface
In order to support four serial different interfaces, the USB serial transceiver can be configured to operate in one of four modes: • • • • DAT_SE0 bidirectional, 3-wire mode DAT_SE0 unidirectional, 6-wire mode VP_VM bidirectional, 4-wire mode VP_VM unidirectional, 6-wire mode DAT_SE0 Bidirectional Mode
Table 93. Signal Definitions - DAT_SE0 Bidirectional Mode
Name USB_TXOE_B USB_DAT_VP USB_SE0_VM Out Out In Out In Direction Signal Description Transmit enable, active low TX data when USB_TXOE_B is low Differential RX data when USB_TXOE_B is high SE0 drive when USB_TXOE_B is low SE0 RX indicator when USB_TXOE_B is high
4.7.19.1.1
Transmit USB_TXOE_B
US3
USB_DAT_VP USB_SE0_VM US4 US1 US2
Figure 91. USB Transmit Waveform in DAT_SE0 Bidirectional Mode
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 138 Freescale Semiconductor
Electrical Characteristics
Receive
USB_TXOE_B USB_DAT_VP USB_SE0_VM
US7
US8
USB_SE0_VM
Figure 92. USB Receive Waveform in DAT_SE0 Bidirectional Mode Table 94. Definitions of USB Waveform in DAT_SE0 Bi-Directional Mode
No. US1 US2 US3 US4 US7 US8 Parameter TX Rise/Fall Time TX Rise/Fall Time TX Rise/Fall Time TX Duty Cycle RX Rise/Fall Time RX Rise/Fall Time Signal Name USB_DAT_VP USB_SE0_VM USB_TXOE_B USB_DAT_VP USB_DAT_VP USB_SE0_VM Direction Out Out Out Out In In Min -— — — 49.0 — — Max 5.0 5.0 5.0 51.0 3.0 3.0 Unit ns ns ns % ns ns Conditions / Reference Signal 50 pF 50 pF 50 pF — 35 pF 35 pF
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 139
Electrical Characteristics
4.7.19.1.2
DAT_SE0 Unidirectional Mode
Table 95. Signal Definitions - DAT_SE0 Unidirectional Mode
Direction Out Out Out In In Signal Description Transmit enable, active low TX data when USB_TXOE_B is low SE0 drive when USB_TXOE_B is low Buffered data on DP when USB_TXOE_B is high Buffered data on DM when USB_TXOE_B is high
Name USB_TXOE_B USB_DAT_VP USB_SE0_VM USB_VP1 USB_VM1
Transmit
USB_TXOE_B
US11
USB_DAT_VP
USB_SE0_VM
US9 US12 US10
Figure 93. USB Transmit Waveform in DAT_SE0 Unidirectional Mode
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 140 Freescale Semiconductor
Electrical Characteristics
Receive
USB_TXOE_B USB_DAT_VP
US15
US16
USB_SE0_VM
Figure 94. USB Receive Waveform in DAT_SE0 Unidirectional Mode Table 96. USB Port Timing Specification in DAT_SE0 Unidirectional Mode
No. US9 US10 US11 US12 US15 US16 Parameter TX Rise/Fall Time TX Rise/Fall Time TX Rise/Fall Time TX Duty Cycle RX Rise/Fall Time RX Rise/Fall Time Signal Name USB_DAT_VP USB_SE0_VM USB_TXOE_B USB_DAT_VP USB_VP1 USB_VM1 Signal Source Out Out Out Out In In Min — — — 49.0 — — Max 5.0 5.0 5.0 51.0 3.0 3.0 Unit ns ns ns % ns ns Condition / Reference Signal 50 pF 50 pF 50 pF — 35 pF 35 pF
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 141
Electrical Characteristics
4.7.19.1.3
VP_VM Bidirectional Mode
Table 97. Signal Definitions - VP_VM Bidirectional mode
Name Direction Out Out (Tx) In (Rx) Out (Tx) In (Rx) Signal Description Transmit enable, active low TX VP data when USB_TXOE_B is low RX VP data when USB_TXOE_B is high TX VM data when USB_TXOE_B low RX VM data when USB_TXOE_B high
USB_TXOE_B USB_DAT_VP USB_SE0_VM
Transmit US20
USB_TXOE_B
USB_DAT_VP
USB_SE0_VM
US18 US21 US22 US22 US19
Figure 95. USB Transmit Waveform in VP_VM Bidirectional Mode
Receive
US26
USB_DAT_VP
USB_SE0_VM
US28
US27
Figure 96. USB Receive Waveform in VP_VM Bidirectional Mode
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 142 Freescale Semiconductor
Electrical Characteristics
Table 98. USB Port Timing Specification in VP_VM Bidirectional Mode
No. Parameter TX Rise/Fall Time TX Rise/Fall Time TX Rise/Fall Time TX Duty Cycle TX Overlap RX Rise/Fall Time RX Rise/Fall Time RX Skew Signal Name Direction Min — — — Max Unit Condition / Reference Signal
US18 US19 US20 US21 US22 US26 US27 US28
USB_DAT_V P USB_SE0_V M USB_TXOE _B USB_DAT_V P USB_SE0_V M USB_DAT_V P USB_SE0_V M USB_DAT_V P
Out Out Out Out Out In In In
5.0 5.0 5.0 51.0 +3.0 3.0 3.0 +4.0
ns ns ns % ns ns ns ns
50 pF 50 pF 50 pF
—
49.0 -3.0
— —
USB_DAT_VP 35 pF 35 pF USB_SE0_VM
-4.0
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 143
Electrical Characteristics
4.7.19.1.4
VP_VM Unidirectional Mode
Table 99. Signal Definitions - VP_VM Unidirectional mode
Direction Out Out Out In In Signal Description Transmit enable, active low TX VP data when USB_TXOE_B is low TX VM data when USB_TXOE_B is low RX VP data when USB_TXOE_B is high RX VM data when USB_TXOE_B is high
Name USB_TXOE_B USB_DAT_VP USB_SE0_VM USB_VP1 USB_VM1
Transmit US32
USB_TXOE_B
USB_DAT_VP
USB_SE0_VM
US30 US33 US31
US34
Figure 97. USB Transmit Waveform in VP_VM Unidirectional Mode
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 144 Freescale Semiconductor
Electrical Characteristics
Receive
USB_TXOE_B
USB_VP1
US38
USB_VM1
US40 US39
Figure 98. USB Receive Waveform in VP_VM Unidirectional Mode
Table 100. USB Timing Specification in VP_VM Unidirectional Mode
No. US30 US31 US32 US33 US34 US38 US39 US40 Parameter TX Rise/Fall Time TX Rise/Fall Time TX Rise/Fall Time TX Duty Cycle TX Overlap RX Rise/Fall Time RX Rise/Fall Time RX Skew Signal USB_DAT_VP USB_SE0_V M USB_TXOE_ B USB_DAT_VP USB_SE0_V M USB_VP1 USB_VM1 USB_VP1 Direction Out Out Out Out Out In In In Min — — — 49.0 -3.0 — — -4.0 Max 5.0 5.0 5.0 51.0 3.0 3.0 3.0 +4.0 Unit ns ns ns % ns ns ns ns Conditions / Reference Signal 50 pF 50 pF 50 pF — USB_DAT_VP 35 pF 35 pF USB_VM1
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 145
Electrical Characteristics
4.7.19.2
Parallel Interface (Normal ULPI) Timing
Electrical and timing specifications of Parallel Interface (Normal ULPI) for Host Port2 and Port3 are presented in the subsequent sections.
Table 101. Signal Definitions - Parallel Interface (Normal ULPI)
Name USB_Clk USB_Data[7:0] USB_Dir USB_Stp USB_Nxt Direction Signal Description Interface clock. All interface signals are synchronous to Clock. Bi-directional data bus, driven low by the link during idle. Bus ownership is determined by Dir. Direction. Control the direction of the Data bus. Stop. The link asserts this signal for 1 clock cycle to stop the data stream currently on the bus. Next. The PHY asserts this signal to throttle the data.
In I/O In Out In
USB_Clk
US15 USB_Dir/Nxt US15 USB_Data
US16
US16
US17 USB_Stp
US17
Figure 99. USB Transmit/Receive Waveform in Parallel Mode Table 102. USB Timing Specification for Normal ULPI Mode
ID US15 US16 US17 Parameter Setup Time (Dir&Nxt in, Data in) Hold Time (Dir&Nxt in, Data in) Output Delay Time (Stp out, Data out Min 6.0 0.0 — Max — — 9.0 Unit ns ns ns Conditions / Reference Signal 10 pF 10 pF 10 pF
4.7.20
USB PHY Parameters
This section describes the USB-OTG PHY and the USB Host port PHY parameters.
4.7.20.1
USB PHY AC Parameters
Table 103 lists the AC timing parameters for USB PHY.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 146 Freescale Semiconductor
Electrical Characteristics
Table 103. USB PHY AC Timing Parameters
Parameter trise Conditions 1.5 Mbps 12 Mbps 480 Mbps 1.5 Mbps 12 Mbps 480 Mbps 1.5 Mbps 12 Mbps 480 Mbps Min 75 4 0.5 75 4 0.5 — Typ — Max 300 20 300 20 10 1 0.2 Unit ns
tfall
—
ns
Jitter
—
ns
4.7.20.2
USB PHY Additional Electrical Parameters
Table 104. Additional Electrical Characteristics for USB PHY
Parameter Conditions HS Mode LS/FS Mode LS Mode FS Mode < 160 MHz < 1.2 MHz > 1.2 MHz All conditions Min –0.05 0.8 1.3 1.3 –50 –10 –50 –50 Typ — — 0 0 0 0 Max 0.5 2.5 2 2 50 10 50 50 Unit V V mV mV mV
Table 104 lists the parameters for additional electrical characteristics for USB PHY.
Vcm DC (dc level measured at receiver connector) Crossover Voltage Power supply ripple noise (analog 3.3 V) Power supply ripple noise (analog 2.5 V) Power supply ripple noise (Digital 1.2 V)
4.7.20.3
USB PHY System Clocking (SYSCLK)
Table 105. USB PHY System Clocking Parameters
Table 105 lists the USB PHY system clocking parameters.
Parameter Clock deviation Rise/fall time Jitter (peak-peak) Jitter (peak-peak) Duty-cycle
Conditions Reference Clock frequency 24 MHz — < 1.2 MHz > 1.2 MHz Reference Clock frequency 24 MHz
Min –150 — 0 0 40
Typ — — — — —
Max 150 200 50 100 60
Unit ppm ps ps ps %
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 147
Electrical Characteristics
4.7.20.4
USB PHY Voltage Thresholds
Table 106. VBUS Comparators Thresholds
Parameter Conditions — — — — Min 0.8 0.8 0.2 4.4 Typ 1.4 1.4 0.45 4.6 Max 2.0 4.0 0.8 4.75 Unit V V V V
Table 106 lists the USB PHY voltage thresholds.
A-Device Session Valid B-Device Session Valid B-Device Session End VBUS Valid Comparator Threshold1
1
For VBUS maximum rating, see Table 4 on page 18
4.7.20.5
USB PHY Termination
USB driver impedance in FS and HS modes is 45 Ω ±10% (steady state). No external resistors required.
4.8
XTAL Electrical Specifications
Table 107 shows the XTALOSC electrical specifications. Table 108 shows the XTALOSC_32K electrical specifications.
Table 107. XTALOSC Electrical Specifications
Parameter Frequency Min 22 Typ 24 Max 27 Units MHz
Table 108. XTALOSC_32K Electrical Specifications
Parameter Frequency
1
Min --
Typ 32.768/32.01
Max --
Units kHz
Recommended nominal frequency 32.768 kHz.
4.9
Integrated LDO Voltage Regulators Parameters
The PLL supplies VDD_DIG_PLL and VDD_ANA_PLL can be powered ON from internal LDO voltage regulator (default case). In this case VDD_REG is used as internal regulator’s power source. The regulator’s output can be used as a supply for other domains such as VDDA and VDDAL1. Table 109 shows the VDD_DIG_PLL and VDD_ANA_PLL Integrated Voltage Regulators Parameters.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 148 Freescale Semiconductor
Boot Mode Configuration
Table 109. LDO Voltage Regulators Electrical Specifications
Parameter VDD_DIG_PLL functional Voltage Range1 VDD_ANA_PLL functional Voltage Range1 VDD_DIG_PLL and VDD_ANA_PLL accuracy VDD_DIG_PLL power-supply rejection ratio2 VDD_ANA_PLL power-supply rejection ratio2 Output current3
1
Symbol VVID_DIG_PLL VVDD_ANA_PLL — — — IVID_DIG_PLL+ IVDD_ANA_PLL
Min 1.15 1.7 — — — —
Typ 1.2 1.8 — –18 –15 —
Max 1.3 1.95 +/–3 — — 125
Units V V % dB dB mA
VDD_DIG_PLL and VDD_ANA_PLL voltages are programmable, but should not be set outside the target functional range for proper PLL operation. 2 The gain or attenuation from the input supply variation to the output of the LDO (by design). 3 The limitation is for sum of the VDD_DIG_PLL and VDD_ANA_PLL current.
5
Boot Mode Configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.
5.1
Boot Mode Configuration Pins
Table 110 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, please refer to the i.MX53 Fuse Map document and Boot chapter in i.MX53 Reference Manual.
Table 110. Fuses and Associated Pins Used for Boot
Pin BOOT_MODE[1] BOOT_MODE[0] Direction at Reset Input Input E-Fuse Name N/A Details Boot Mode selection
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 149
Boot Mode Configuration
Table 110. Fuses and Associated Pins Used for Boot (continued)
Pin EIM_A22 EIM_A21 EIM_A20 EIM_A19 EIM_A18 EIM_A17 EIM_A16 EIM_LBA EIM_EB0 EIM_EB1 EIM_DA0 EIM_DA1 EIM_DA2 EIM_DA3 EIM_DA4 EIM_DA5 EIM_DA6 EIM_DA7 EIM_DA8 EIM_DA9 EIM_DA10 Direction at Reset Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input E-Fuse Name BOOT_CFG1[7]/Test Mode Selection Details
Boot Options, Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. BOOT_CFG1[6]/Test Mode Selection Signal Configuration as Fuse Override BOOT_CFG1[5]/Test Mode Selection Input at Power Up. These are special I/O lines that control the boot up configuration BOOT_CFG1[4] during product development. In production, the boot configuration can be controlled by BOOT_CFG1[3] fuses. BOOT_CFG1[2] BOOT_CFG1[1] BOOT_CFG1[0] BOOT_CFG2[7] BOOT_CFG2[6] BOOT_CFG2[5] BOOT_CFG2[4] BOOT_CFG2[3] BOOT_CFG2[2] BOOT_CFG3[7] BOOT_CFG3[6] BOOT_CFG3[5] BOOT_CFG3[4] BOOT_CFG3[3] BOOT_CFG3[2] BOOT_CFG3[1]
5.2
Boot Devices Interfaces Allocation
Table 111 lists the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate.
Table 111. Interfaces Allocation During Boot
Interface SPI SPI SPI IP Instance CSPI ECSPI-1 ECSPI-2 Allocated Pads During Boot EIM_A25, EIM_D21, EIM_D22, EIM_D28 EIM_D[19:16] CSI_DAT[10:8], EIM_LBA Comment Only SS1 is supported Only SS1 is supported Only SS1 is supported
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 150 Freescale Semiconductor
Boot Mode Configuration
Table 111. Interfaces Allocation During Boot (continued)
Interface EIM IP Instance EIM EIM Allocated Pads During Boot Comment • Lower 16 bit data bus A/D multiplexed or upper 16 bit data bus non multiplexed • Only CS0 is supported. • 8/16 bit • NAND data can be muxed either over EIM data or PATA data • Only CS0 is supported 1, 4 or 8 bit 1, 4 or 8 bit 1, 4 or 8 bit 1, 4 or 8 bit — — — —
NAND Flash
EXTMC
NAND
SD/MMC SD/MMC SD/MMC SD/MMC I2C I2C I2C PATA
eSDHCv2-1 eSDHCv2-2 eSDHCv3-3 eSDHCv2-4 I2C-1 I2C-2 I2C-3 PATA
PATA_DATA[11:8], SD1_DATA[3:0], SD1_CMD, SD1_CLK PATA_DATA[15:12], SD2_CLK, SD2_CMD, SD2_DATA[3:0] PATA_RESET_B, PATA_IORDY, PATA_DA_0, PATA_DATA[3:0], PATA_DATA[11:8] PATA_DA1, PATA_DA_2, PATA_DATA[7:4], PATA_DATA[15:12] EIM_D21, EIM_D28 EIM_D16, EIM_EB2 EIM_D[18:17] PATA_DIOW, PATA_DMACK, PATA_DMARQ, PATA_BUFFER_EN, PATA_INTRQ, PATA_DIOR, PATA_RESET_B, PATA_IORDY, PATA_DA_[2:0], PATA_CS_[1:0], PATA_DATA[15:0] SATA_TXM, SATA_TXP, SATA_RXP, SATA_RXM, SATA_REXT, SATA_REFCLKM, SATA_REFCLKP CSI0_DAT[11:10] PATA_DMARQ, PATA_BUFFER_EN EIM_D24, EIM_D25 CSI0_DAT[13:12] CSI0_DAT[15:14] USB_H1_GPANAIO USB_H1_RREFEXT USB_H1_DP USB_H1_DN USB_H1_VBUS
SATA UART UART UART UART UART USB
SATA_PHY UARTv2-1 UARTv2-2 UARTv2-3 UARTv2-4 UARTv2-5 USB-OTG PHY
— RXD/TXD only RXD/TXD only RXD/TXD only RXD/TXD only RXD/TXD only —
5.3
Power setup during Boot
By default, VDD_DIG_PLL is driven from internal on-die 1.2 V linear regulator (LDO). In order to achieve the standard operating mode (see VDD_DIG_PLL on Table 6), LDO output to VDD_DIG_PLL should be configured by software by boot code after power-up to 1.3 V output. This is done by programming the PLL1P2_VREG bits.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 151
Package Information and Contact Assignments
6
6.1
Package Information and Contact Assignments
19x19 mm Package Information
This section includes the contact assignment information and mechanical package drawing.
This section contains the outline drawing, signal assignment map, ground/power reference ID (by ball grid location) for the 19 × 19 mm, 0.8 mm pitch package.
6.1.1
Case TEPBGA-2, 19 x 19 mm, 0.8 mm Pitch, 23 x 23 Ball Matrix
Figure 100 shows the top view of the 19×19 mm package, Figure 101 shows the bottom view and the ball location (529 solder balls) of the 19×19 mm package, and Figure 102 shows the side view of the 19×19 mm package.
Figure 100. 19 x 19 mm Package Top View
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 152 Freescale Semiconductor
Package Information and Contact Assignments
Figure 101. 19 x 19 mm Package, 529 Solder Balls, Bottom View
Figure 102. 19 x 19 mm Package Side View
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 153
Package Information and Contact Assignments
The following notes apply to Figure 100, Figure 101, and Figure 102. 1. All dimensions are in millimeters. 2. Dimensions and tolerancing per ASME Y14.5M1–994.
6.1.2
19 x 19 mm Signal Assignments, Power Rails, and I/O
Table 112 shows the device connection list for ground, power, sense, and reference contact signals. Table 113 displays an alpha-sorted list of the signal assignments including associated power supplies. The table also includes out of reset pad state. Table 114 shows the package ball map.
6.1.2.1
19 x 19 mm Ground, Power, Sense, and Reference Contact Assignments
Table 112 shows the device connection list for ground, power, sense, and reference contact signals alpha-sorted by name.
Table 112. 19 x 19 mm Ground, Power, Sense, and Reference Contact Assignments
Contact Name DDR_VREF GND L17 A1, A11, A13, A18, A2, A22, A23, AA11, AA15, AA20, AA21, AB1, AB18, AB2, AB22, AB23, AC1, AC18, AC2, AC22, AC23, B1, B11, B13, B18, B23, C12, C20, C21, D19, E19, F19, F20, F21, F22, G19, G7, H10, H12, H8, J11, J13, J15, J17, J20, J9, K10, K12, K14, K16, K21, K8, L11, L13, L15, L7, L9, M10, M12, M14, M16, M8, N11, N13, N15, N9, P10, P12, P14, P16, P21, P7, P8, R11, R13, R15, R17, R20, R9, T10, T14, T16, T8, U15, U19, V15, V18, V19, V20, V21, V22, W19, Y14, Y15, Y19 G17 R7 U10, U9 U7 H18, K17, N17, P17, T18 F11 F8 G9 F7 J6, J7 U13 U14 T12 N7 H16 H15 Package Contact Assignment(s)
NVCC_CKIH NVCC_CSI NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_EMI_DRAM NVCC_FEC NVCC_GPIO NVCC_JTAG NVCC_KEYPAD NVCC_LCD NVCC_LVDS NVCC_LVDS_BG NVCC_NANDF NVCC_PATA NVCC_RESET NVCC_SD1
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 154 Freescale Semiconductor
Package Information and Contact Assignments
Table 112. 19 x 19 mm Ground, Power, Sense, and Reference Contact Assignments (continued)
Contact Name NVCC_SD2 NVCC_SRTC_POW NVCC_XTAL SVCC SVDDGP TVDAC_AHVDDRGB TVDAC_DHVDD USB_H1_VDDA25 USB_H1_VDDA33 USB_OTG_VDDA25 USB_OTG_VDDA33 VCC VDDA VDDAL1 VDD_ANA_PLL VDD_DIG_PLL VDD_FUSE VDDGP VDD_REG VP VPH H14 V11 V12 B22 B2 U17, V16 U16 F13 G13 F14 G14 H13, J14, J16, K13, K15, L14, L16, M11, M13, M15, M9, N10, N12, N14, N16, N8, P11, P13, P15, P9, R10, R12, R14, R16, R8, T11, T13, T15, T17, T7, T9, U18, U8 G12, M17, M7, U12 F9 G16 H17 G15 G10, G11, G8, H11, H7, H9, J10, J12, J8, K11, K7, K9, L10, L12, L8 G18 A15, B15 A9, B9 Package Contact Assignment(s)
Table 113 displays an alpha-sorted list of the signal assignments including power rails. The table also includes out of reset pad state.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 155
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
BOOT_MODE C18 0 BOOT_MODE B20 1 CKIH1 CKIH2 CKIL CSI0_DAT10 CSI0_DAT11 CSI0_DAT12 CSI0_DAT13 CSI0_DAT14 CSI0_DAT15 CSI0_DAT16 CSI0_DAT17 CSI0_DAT18 CSI0_DAT19 CSI0_DAT4 CSI0_DAT5 CSI0_DAT6 CSI0_DAT7 CSI0_DAT8 CSI0_DAT9 B21 D18 AB10 R5 T2 T3 T6 U1 U2 T4 T5 U3 U4 R1 R2 R6 R3 T1 R4
NVCC_RESET NVCC_RESET NVCC_CKIH NVCC_CKIH NVCC_SRTC_POW NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI NVCC_CSI
LVIO LVIO ANALOG ANALOG ANALOG UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO
ALT0 ALT0 ALT0 ALT0 — ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1
SRC SRC CAMP1 CAMP2 SRCT
src_BOOT_MOD E[0] src_BOOT_MOD E[1] camp1_CKIH camp2_CKIH CKIL
Input Input Input Input — Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input
100 KΩ PD 100 KΩ PD Analog Analog — 100 KΩ PU 100 KΩ PU 360 KΩ PD 360 KΩ PD 360 KΩ PD 360 KΩ PD 360 KΩ PD 360 KΩ PD 360 KΩ PD 360 KΩ PD 100 KΩ PU 360 KΩ PD 100 KΩ PU 100 KΩ PU 100 KΩ PU 360 KΩ PD 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU
GPIO-5 gpio5_GPIO[28] GPIO-5 gpio5_GPIO[29] GPIO-5 gpio5_GPIO[30] GPIO-5 gpio5_GPIO[31] GPIO-6 gpio6_GPIO[0] GPIO-6 gpio6_GPIO[1] GPIO-6 gpio6_GPIO[2] GPIO-6 gpio6_GPIO[3] GPIO-6 gpio6_GPIO[4] GPIO-6 gpio6_GPIO[5] GPIO-5 gpio5_GPIO[22] GPIO-5 gpio5_GPIO[23] GPIO-5 gpio5_GPIO[24] GPIO-5 gpio5_GPIO[25] GPIO-5 gpio5_GPIO[26] GPIO-5 gpio5_GPIO[27] GPIO-5 gpio5_GPIO[20] GPIO-5 gpio5_GPIO[19] GPIO-5 gpio5_GPIO[18] GPIO-5 gpio5_GPIO[21]
CSI0_DATA_E P3 N CSI0_MCLK CSI0_PIXCLK CSI0_VSYNC P2 P1 P4
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 156 Freescale Semiconductor
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
DI0_DISP_CL K DI0_PIN15 DI0_PIN2 DI0_PIN3 DI0_PIN4 DISP0_DAT0 DISP0_DAT1
H4 E4 D3 C2 D2 J5 J4
NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD NVCC_LCD
GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO
ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1
GPIO-4 gpio4_GPIO[16] GPIO-4 gpio4_GPIO[17] GPIO-4 gpio4_GPIO[18] GPIO-4 gpio4_GPIO[19] GPIO-4 gpio4_GPIO[20] GPIO-4 gpio4_GPIO[21] GPIO-4 gpio4_GPIO[22] GPIO-4 gpio4_GPIO[31] GPIO-5 gpio5_GPIO[5] GPIO-5 gpio5_GPIO[6] GPIO-5 gpio5_GPIO[7] GPIO-5 gpio5_GPIO[8] GPIO-5 gpio5_GPIO[9] GPIO-5 gpio5_GPIO[10] GPIO-5 gpio5_GPIO[11] GPIO-5 gpio5_GPIO[12] GPIO-5 gpio5_GPIO[13] GPIO-4 gpio4_GPIO[23] GPIO-5 gpio5_GPIO[14] GPIO-5 gpio5_GPIO[15] GPIO-5 gpio5_GPIO[16] GPIO-5 gpio5_GPIO[17] GPIO-4 gpio4_GPIO[24] GPIO-4 gpio4_GPIO[25] GPIO-4 gpio4_GPIO[26] GPIO-4 gpio4_GPIO[27] GPIO-4 gpio4_GPIO[28] GPIO-4 gpio4_GPIO[29]
Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input
100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PD 100 KΩ PD 100 KΩ PU 100 KΩ PD 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PD 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PD 100 KΩ PD 100 KΩ PD 100 KΩ PD 100 KΩ PD 100 KΩ PU
DISP0_DAT10 G3 DISP0_DAT11 H5 DISP0_DAT12 H1 DISP0_DAT13 E1 DISP0_DAT14 F2 DISP0_DAT15 F3 DISP0_DAT16 D1 DISP0_DAT17 F5 DISP0_DAT18 G4 DISP0_DAT19 G5 DISP0_DAT2 H2
DISP0_DAT20 F4 DISP0_DAT21 C1 DISP0_DAT22 E3 DISP0_DAT23 C3 DISP0_DAT3 DISP0_DAT4 DISP0_DAT5 DISP0_DAT6 DISP0_DAT7 DISP0_DAT8 F1 G2 H3 G1 H6 G6
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 157
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
DISP0_DAT9 DRAM_A0 DRAM_A1 DRAM_A10 DRAM_A11 DRAM_A12 DRAM_A13 DRAM_A14 DRAM_A15 DRAM_A2 DRAM_A3 DRAM_A4 DRAM_A5 DRAM_A6 DRAM_A7 DRAM_A8 DRAM_A9
E2 M19 L21 K19 L22 L20 L23 N18 M18 M20 N20 K20 N21 M22 N22 N23 M21
NVCC_LCD NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM
GPIO DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 special
ALT1 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 —
GPIO-4 gpio4_GPIO[30] EXTMC emi_DRAM_A[0] EXTMC emi_DRAM_A[1] EXTMC emi_DRAM_A[10 ] EXTMC emi_DRAM_A[11 ] EXTMC emi_DRAM_A[12 ] EXTMC emi_DRAM_A[13 ] EXTMC emi_DRAM_A[14 ] EXTMC emi_DRAM_A[15 ] EXTMC emi_DRAM_A[2] EXTMC emi_DRAM_A[3] EXTMC emi_DRAM_A[4] EXTMC emi_DRAM_A[5] EXTMC emi_DRAM_A[6] EXTMC emi_DRAM_A[7] EXTMC emi_DRAM_A[8] EXTMC emi_DRAM_A[9] — (used in DRAM driver calibration. See Special Signal Considerations {add xref} above)
Input Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Input
100 KΩ PU Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low —
DRAM_CALIB M23 RATION
DRAM_CAS DRAM_CS0 DRAM_CS1
L18 K18 P19
NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM
DDR3 DDR3 DDR3
ALT0 ALT0 ALT0
EXTMC emi_DRAM_CAS EXTMC emi_DRAM_CS[ 0] EXTMC emi_DRAM_CS[ 1]
Output Output Output
High High High
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 158 Freescale Semiconductor
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
DRAM_D0 DRAM_D1 DRAM_D10 DRAM_D11 DRAM_D12 DRAM_D13 DRAM_D14 DRAM_D15 DRAM_D16 DRAM_D17 DRAM_D18 DRAM_D19 DRAM_D2 DRAM_D20 DRAM_D21 DRAM_D22 DRAM_D23 DRAM_D24 DRAM_D25
H20 G21 E22 D20 E23 C23 F23 C22 U20 T21 U21 R21 J21 U23 R22 U22 R23 Y20 W21
NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM
DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3
ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0
EXTMC emi_DRAM_D[0] EXTMC emi_DRAM_D[1] EXTMC emi_DRAM_D[10 ] EXTMC emi_DRAM_D[11 ] EXTMC emi_DRAM_D[12 ] EXTMC emi_DRAM_D[13 ] EXTMC emi_DRAM_D[14 ] EXTMC emi_DRAM_D[15 ] EXTMC emi_DRAM_D[16 ] EXTMC emi_DRAM_D[17 ] EXTMC emi_DRAM_D[18 ] EXTMC emi_DRAM_D[19 ] EXTMC emi_DRAM_D[2] EXTMC emi_DRAM_D[20 ] EXTMC emi_DRAM_D[21 ] EXTMC emi_DRAM_D[22 ] EXTMC emi_DRAM_D[23 ] EXTMC emi_DRAM_D[24 ] EXTMC emi_DRAM_D[25 ]
Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output
High High High High High High High High High High High High High High High High High High High
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 159
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
DRAM_D26 DRAM_D27 DRAM_D28 DRAM_D29 DRAM_D3 DRAM_D30 DRAM_D31 DRAM_D4 DRAM_D5 DRAM_D6 DRAM_D7 DRAM_D8 DRAM_D9
Y21 W22 AA23 V23 G20 AA22 W23 J23 G23 J22 G22 E21 D21
NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM
DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3
ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0
EXTMC emi_DRAM_D[26 ] EXTMC emi_DRAM_D[27 ] EXTMC emi_DRAM_D[28 ] EXTMC emi_DRAM_D[29 ] EXTMC emi_DRAM_D[3] EXTMC emi_DRAM_D[30 ] EXTMC emi_DRAM_D[31 ] EXTMC emi_DRAM_D[4] EXTMC emi_DRAM_D[5] EXTMC emi_DRAM_D[6] EXTMC emi_DRAM_D[7] EXTMC emi_DRAM_D[8] EXTMC emi_DRAM_D[9] EXTMC emi_DRAM_DQ M[0] EXTMC emi_DRAM_DQ M[1] EXTMC emi_DRAM_DQ M[2] EXTMC emi_DRAM_DQ M[3] EXTMC emi_DRAM_RAS EXTMC emi_DRAM_RES ET EXTMC emi_DRAM_SDB A[0] EXTMC emi_DRAM_SDB A[1]
Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output
High High High High High High High High High High High High High Low Low Low Low High Low Low Low
DRAM_DQM0 H21 DRAM_DQM1 E20 DRAM_DQM2 T20 DRAM_DQM3 W20 DRAM_RAS DRAM_RESE T DRAM_SDBA 0 DRAM_SDBA 1 J19 P18 R19 P20
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 160 Freescale Semiconductor
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
DRAM_SDBA 2 DRAM_SDCK E0 DRAM_SDCK E1 DRAM_SDCL K_0 DRAM_SDCL K_0_B DRAM_SDCL K_1 DRAM_SDCL K_1_B
N19 H19 T19 K23 K22 P22 P23
NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM
DDR3 DDR3 DDR3 DDR3CLK DDR3CLK DDR3CLK DDR3CLK DDR3 DDR3 DDR3CLK DDR3CLK DDR3CLK DDR3CLK DDR3CLK DDR3CLK DDR3CLK DDR3CLK DDR3
ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0
EXTMC emi_DRAM_SDB A[2] EXTMC emi_DRAM_SDC KE[0] EXTMC emi_DRAM_SDC KE[1] EXTMC emi_DRAM_SDC LK0 EXTMC emi_DRAM_SDC LK0_B EXTMC emi_DRAM_SDC LK1 EXTMC emi_DRAM_SDC LK1_B EXTMC emi_DRAM_ODT [0] EXTMC emi_DRAM_ODT [1] EXTMC emi_DRAM_SDQ S[0] EXTMC emi_DRAM_SDQ S_B[0] EXTMC emi_DRAM_SDQ S[1] EXTMC emi_DRAM_SDQ S_B[1] EXTMC emi_DRAM_SDQ S[2] EXTMC emi_DRAM_SDQ S_B[2] EXTMC emi_DRAM_SDQ S[3] EXTMC emi_DRAM_SDQ S_B[3] EXTMC emi_DRAM_SD WE
Output Output Output Output Output Output Output Output Output Input Input Input Input Input Input Input Input Output
Low Low Low Floating Floating Floating Floating Low Low Low High Low High Low High Low High High
DRAM_SDOD J18 T0 DRAM_SDOD R18 T1 DRAM_SDQS 0 DRAM_SDQS 0_B DRAM_SDQS 1 DRAM_SDQS 1_B DRAM_SDQS 2 DRAM_SDQS 2_B DRAM_SDQS 3 DRAM_SDQS 3_B H23 H22 D23 D22 T22 T23 Y22 Y23
DRAM_SDWE L19
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 161
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
ECKIL
AC10
NVCC_SRTC_POW
ANALOG
—
SRTC
ECKIL {no block I/O by this name in RM}
—
—
EIM_A16 EIM_A17 EIM_A18 EIM_A19 EIM_A20 EIM_A21 EIM_A22 EIM_A23 EIM_A24 EIM_A25 EIM_BCLK EIM_CS0 EIM_CS1 EIM_D16 EIM_D17 EIM_D18 EIM_D19 EIM_D20 EIM_D21 EIM_D22 EIM_D23 EIM_D24 EIM_D25 EIM_D26 EIM_D27 EIM_D28 EIM_D29
AA5 V7 AB3 W7 Y6 AA4 AA3 V6 Y5 W6 W11 W8 Y7 U6 U5 V1 V2 W1 V3 W2 Y1 Y2 W3 V5 V4 AA1 AA2
NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_SEC
UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO
ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1
EXTMC emi_EIM_A[16] EXTMC emi_EIM_A[17] EXTMC emi_EIM_A[18] EXTMC emi_EIM_A[19] EXTMC emi_EIM_A[20] EXTMC emi_EIM_A[21] EXTMC emi_EIM_A[22] EXTMC emi_EIM_A[23] EXTMC emi_EIM_A[24] EXTMC emi_EIM_A[25] EXTMC emi_EIM_BCLK EXTMC emi_EIM_CS[0] EXTMC emi_EIM_CS[1] GPIO-3 gpio3_GPIO[16] GPIO-3 gpio3_GPIO[17] GPIO-3 gpio3_GPIO[18] GPIO-3 gpio3_GPIO[19] GPIO-3 gpio3_GPIO[20] GPIO-3 gpio3_GPIO[21] GPIO-3 gpio3_GPIO[22] GPIO-3 gpio3_GPIO[23] GPIO-3 gpio3_GPIO[24] GPIO-3 gpio3_GPIO[25] GPIO-3 gpio3_GPIO[26] GPIO-3 gpio3_GPIO[27] GPIO-3 gpio3_GPIO[28] GPIO-3 gpio3_GPIO[29]
Output2 Output2 Output2 Output2 Output2 Output2 Output2 Output Output Output Output Output Output Input Input Input Input Input Input Input Input Input Input Input Input Input Input
— — — — — — — — — — — — — 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 360 KΩ PD 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 162 Freescale Semiconductor
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
EIM_D30 EIM_D31 EIM_DA0 EIM_DA1 EIM_DA10 EIM_DA11 EIM_DA12 EIM_DA13 EIM_DA14 EIM_DA15 EIM_DA2 EIM_DA3 EIM_DA4 EIM_DA5 EIM_DA6 EIM_DA7 EIM_DA8 EIM_DA9 EIM_EB0
W4 W5 Y8 AC4 AB7 AC6 V10 AC7 Y10 AA9 AA7 W9 AB6 V9 Y9 AC5 AA8 W10 AC3
NVCC_EIM_SEC NVCC_EIM_SEC NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN
UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO
ALT1 ALT1 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0
GPIO-3 gpio3_GPIO[30] GPIO-3 gpio3_GPIO[31] EXTMC emi_NAND_EIM _DA[0] EXTMC emi_NAND_EIM _DA[1] EXTMC emi_NAND_EIM _DA[10] EXTMC emi_NAND_EIM _DA[11] EXTMC emi_NAND_EIM _DA[12] EXTMC emi_NAND_EIM _DA[13] EXTMC emi_NAND_EIM _DA[14] EXTMC emi_NAND_EIM _DA[15] EXTMC emi_NAND_EIM _DA[2] EXTMC emi_NAND_EIM _DA[3] EXTMC emi_NAND_EIM _DA[4] EXTMC emi_NAND_EIM _DA[5] EXTMC emi_NAND_EIM _DA[6] EXTMC emi_NAND_EIM _DA[7] EXTMC emi_NAND_EIM _DA[8] EXTMC emi_NAND_EIM _DA[9] EXTMC emi_EIM_EB[0]
Input Input Input2 Input2 Input2 Input Input Input Input Input Input2 Input2 Input2 Input2 Input2 Input2 Input2 Input2 Output2
100 KΩ PU 360 KΩ PD 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU —
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 163
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
EIM_EB1 EIM_EB2 EIM_EB3 EIM_LBA EIM_OE EIM_RW EIM_WAIT EXTAL FASTR_ANA FASTR_DIG
AB5 Y3 Y4 AA6 V8 AB4 AB9 AB11 E18 E17
NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_XTAL NVCC_CKIH NVCC_CKIH NVCC_FEC NVCC_FEC NVCC_FEC NVCC_FEC NVCC_FEC NVCC_FEC NVCC_FEC NVCC_FEC NVCC_FEC NVCC_FEC NVCC_GPIO NVCC_GPIO TVDAC_AHVDDRG B TVDAC_AHVDDRG B TVDAC_AHVDDRG B
UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO ANALOG ANALOG ANALOG UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO GPIO GPIO GPIO
ALT0 ALT1 ALT1 ALT0 ALT0 ALT0 ALT0 — — — ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT0 ALT0 ALT0
EXTMC emi_EIM_EB[1] GPIO-2 gpio2_GPIO[30] GPIO-2 gpio2_GPIO[31] EXTMC emi_EIM_LBA EXTMC emi_EIM_OE EXTMC emi_EIM_RW EXTMC emi_EIM_WAIT EXTAL OSC — — EXTAL (reserved, tie to ground) (reserved, tie to ground)
Output2 Input Input Output
2
— 100 KΩ PU 100 KΩ PU — — — — — — — 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 360 KΩ PD 100 KΩ PU 100 KΩ PU 360 KΩ PD 360 KΩ PD 100 KΩ PU 100 KΩ PU 100 KΩ PU
Output Output Output — — — Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input
FEC_CRS_DV D11 FEC_MDC FEC_MDIO E10 D12
GPIO-1 gpio1_GPIO[25] GPIO-1 gpio1_GPIO[31] GPIO-1 gpio1_GPIO[22] GPIO-1 gpio1_GPIO[23] GPIO-1 gpio1_GPIO[24] GPIO-1 gpio1_GPIO[27] GPIO-1 gpio1_GPIO[26] GPIO-1 gpio1_GPIO[28] GPIO-1 gpio1_GPIO[30] GPIO-1 gpio1_GPIO[29] GPIO-1 gpio1_GPIO[0] GPIO-1 gpio1_GPIO[1] GPIO-4 gpio4_GPIO[0] GPIO-4 gpio4_GPIO[1] GPIO-4 gpio4_GPIO[2]
FEC_REF_CL E12 K FEC_RX_ER FEC_RXD0 FEC_RXD1 FEC_TX_EN FEC_TXD0 FEC_TXD1 GPIO_0 GPIO_1 GPIO_10 GPIO_11 GPIO_12 F12 C11 E11 C10 F10 D10 C8 B7 W16 V17 W17
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 164 Freescale Semiconductor
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
GPIO_13 GPIO_14 GPIO_16 GPIO_17 GPIO_18 GPIO_19 GPIO_2 GPIO_3 GPIO_4 GPIO_5 GPIO_6 GPIO_7 GPIO_8 GPIO_9 JTAG_MOD JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_TRSTB KEY_COL0 KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4 KEY_ROW0 KEY_ROW1 KEY_ROW2
AA18 W18 C6 A3 D7 B4 C7 A6 D8 A5 B6 A4 B5 E8 C9 D9 B8 A7 A8 E9 C5 E7 C4 F6 E5 B3 D6 D5
TVDAC_AHVDDRG B TVDAC_AHVDDRG B NVCC_GPIO NVCC_GPIO NVCC_GPIO NVCC_KEYPAD NVCC_GPIO NVCC_GPIO NVCC_GPIO NVCC_GPIO NVCC_GPIO NVCC_GPIO NVCC_GPIO NVCC_GPIO NVCC_JTAG NVCC_JTAG NVCC_JTAG NVCC_JTAG NVCC_JTAG NVCC_JTAG NVCC_KEYPAD NVCC_KEYPAD NVCC_KEYPAD NVCC_KEYPAD NVCC_KEYPAD NVCC_KEYPAD NVCC_KEYPAD NVCC_KEYPAD
GPIO GPIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO GPIO GPIO GPIO GPIO GPIO GPIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO
ALT0 ALT0 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1
GPIO-4 gpio4_GPIO[3] GPIO-4 gpio4_GPIO[4] GPIO-7 gpio7_GPIO[11] GPIO-7 gpio7_GPIO[12] GPIO-7 gpio7_GPIO[13] GPIO-4 gpio4_GPIO[5] GPIO-1 gpio1_GPIO[2] GPIO-1 gpio1_GPIO[3] GPIO-1 gpio1_GPIO[4] GPIO-1 gpio1_GPIO[5] GPIO-1 gpio1_GPIO[6] GPIO-1 gpio1_GPIO[7] GPIO-1 gpio1_GPIO[8] GPIO-1 gpio1_GPIO[9] SJC SJC SJC SJC SJC SJC sjc_MOD sjc_TCK sjc_TDI sjc_TDO sjc_TMS sjc_TRSTB
Input Input Input Input Input Input3 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input4 Input Input Input Input Input Input Input
100 KΩ PU 100 KΩ PU 360 KΩ PD 360 KΩ PD 360 KΩ PD 100 KΩ PU 360 KΩ PD 360 KΩ PD 100 KΩ PU 360 KΩ PD 360 KΩ PD 360 KΩ PD 360 KΩ PD 100 KΩ PU 100 KΩ PU 100 KΩ PD 47 KΩ PU Keeper 47 KΩ PU 47 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 360 KΩ PD 100 KΩ PU 100 KΩ PU
GPIO-4 gpio4_GPIO[6] GPIO-4 gpio4_GPIO[8] GPIO-4 gpio4_GPIO[10] GPIO-4 gpio4_GPIO[12] GPIO-4 gpio4_GPIO[14] GPIO-4 gpio4_GPIO[7] GPIO-4 gpio4_GPIO[9] GPIO-4 gpio4_GPIO[11]
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 165
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
KEY_ROW3 KEY_ROW4
D4 E6
NVCC_KEYPAD NVCC_KEYPAD NVCC_LVDS_BG NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS NVCC_LVDS
UHVIO UHVIO ANALOG LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS LVDS
ALT1 ALT1 — ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0
GPIO-4 gpio4_GPIO[13] GPIO-4 gpio4_GPIO[15] LDB LVDS_BG_RES
Input Input — Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input
100 KΩ PU 360 KΩ PD — Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating
LVDS_BG_RE AA14 S LVDS0_CLK_ N LVDS0_CLK_ P LVDS0_TX0_ N AB16 AC16 Y17
GPIO-7 gpio7_GPI[25] GPIO-7 gpio7_GPI[24] GPIO-7 gpio7_GPI[31] GPIO-7 gpio7_GPI[30] GPIO-7 gpio7_GPI[29] GPIO-7 gpio7_GPI[28] GPIO-7 gpio7_GPI[27] GPIO-7 gpio7_GPI[26] GPIO-7 gpio7_GPI[23] GPIO-7 gpio7_GPI[22] GPIO-6 gpio6_GPI[27] GPIO-6 gpio6_GPI[26] GPIO-6 gpio6_GPI[31] GPIO-6 gpio6_GPI[30] GPIO-6 gpio6_GPI[29] GPIO-6 gpio6_GPI[28] GPIO-6 gpio6_GPI[25] GPIO-6 gpio6_GPI[24]
LVDS0_TX0_P AA17 LVDS0_TX1_ N AB17
LVDS0_TX1_P AC17 LVDS0_TX2_ N Y16
LVDS0_TX2_P AA16 LVDS0_TX3_ N AB15
LVDS0_TX3_P AC15 LVDS1_CLK_ N LVDS1_CLK_ P LVDS1_TX0_ N AA13 Y13 AC14
LVDS1_TX0_P AB14 LVDS1_TX1_ N AC13
LVDS1_TX1_P AB13 LVDS1_TX2_ N AC12
LVDS1_TX2_P AB12
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 166 Freescale Semiconductor
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
LVDS1_TX3_ N
AA12
NVCC_LVDS NVCC_LVDS NVCC_NANDF NVCC_NANDF NVCC_NANDF NVCC_NANDF NVCC_NANDF NVCC_NANDF NVCC_NANDF NVCC_EIM_MAIN NVCC_EIM_MAIN NVCC_NANDF NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA
LVDS LVDS UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO
ALT0 ALT0 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1
GPIO-6 gpio6_GPI[23] GPIO-6 gpio6_GPI[22] GPIO-6 gpio6_GPIO[8] GPIO-6 gpio6_GPIO[7] GPIO-6 gpio6_GPIO[11] GPIO-6 gpio6_GPIO[14] GPIO-6 gpio6_GPIO[15] GPIO-6 gpio6_GPIO[16] GPIO-6 gpio6_GPIO[10] GPIO-6 gpio6_GPIO[13] GPIO-6 gpio6_GPIO[12] GPIO-6 gpio6_GPIO[9] GPIO-7 gpio7_GPIO[1] GPIO-7 gpio7_GPIO[9] GPIO-7 gpio7_GPIO[10] GPIO-7 gpio7_GPIO[6] GPIO-7 gpio7_GPIO[7] GPIO-7 gpio7_GPIO[8] GPIO-2 gpio2_GPIO[0] GPIO-2 gpio2_GPIO[1] GPIO-2 gpio2_GPIO[10] GPIO-2 gpio2_GPIO[11] GPIO-2 gpio2_GPIO[12] GPIO-2 gpio2_GPIO[13] GPIO-2 gpio2_GPIO[14] GPIO-2 gpio2_GPIO[15]
Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input
Floating Floating 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU
LVDS1_TX3_P Y12 NANDF_ALE NANDF_CLE NANDF_CS0 NANDF_CS1 NANDF_CS2 NANDF_CS3 NANDF_RB0 Y11 AA10 W12 V13 V14 W13 U11
NANDF_RE_B AC8 NANDF_WE_ B NANDF_WP_ B PATA_BUFFE R_EN PATA_CS_0 PATA_CS_1 PATA_DA_0 PATA_DA_1 PATA_DA_2 PATA_DATA0 PATA_DATA1 PATA_DATA10 PATA_DATA11 PATA_DATA12 PATA_DATA13 PATA_DATA14 PATA_DATA15 AB8 AC9 K4 L5 L2 K6 L3 L4 L1 M1 N4 M6 N5 N6 P6 P5
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 167
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
PATA_DATA2 PATA_DATA3 PATA_DATA4 PATA_DATA5 PATA_DATA6 PATA_DATA7 PATA_DATA8 PATA_DATA9 PATA_DIOR PATA_DIOW
L6 M2 M3 M4 N1 M5 N2 N3 K3 J3
NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_PATA NVCC_SRTC_POW NVCC_SRTC_POW NVCC_RESET NVCC_RESET VPH VPH VPH VPH VPH VPH VPH
UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO GPIO GPIO LVIO LVIO ANALOG ANALOG ANALOG ANALOG ANALOG ANALOG ANALOG
ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT0 ALT0 ALT0 ALT0 — — — — — — —
GPIO-2 gpio2_GPIO[2] GPIO-2 gpio2_GPIO[3] GPIO-2 gpio2_GPIO[4] GPIO-2 gpio2_GPIO[5] GPIO-2 gpio2_GPIO[6] GPIO-2 gpio2_GPIO[7] GPIO-2 gpio2_GPIO[8] GPIO-2 gpio2_GPIO[9] GPIO-7 gpio7_GPIO[3] GPIO-6 gpio6_GPIO[17] GPIO-6 gpio6_GPIO[18] GPIO-7 gpio7_GPIO[0] GPIO-7 gpio7_GPIO[2] GPIO-7 gpio7_GPIO[5] GPIO-7 gpio7_GPIO[4] SRTC CCM SRC SRC SATA SATA SATA SATA SATA SATA SATA srtc_SRTCALAR M ccm_PMIC_VST BY_REQ src_POR_B src_RESET_B SATA_REFCLKM SATA_REFCLKP SATA_REXT SATA_RXM SATA_RXP SATA_TXM SATA_TXP
Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Output Output Input Input — — — — — — —
100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU — — 100 KΩ PU 100 KΩ PU — — — — — — —
PATA_DMACK J2 PATA_DMARQ J1 PATA_INTRQ PATA_IORDY PATA_RESET _B K5 K1 K2
PMIC_ON_RE W14 Q PMIC_STBY_ REQ POR_B RESET_IN_B SATA_REFCL KM SATA_REFCL KP SATA_REXT SATA_RXM SATA_RXP SATA_TXM SATA_TXP W15 C19 A21 A14 B14 C13 A12 B12 B10 A10
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 168 Freescale Semiconductor
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
SD1_CLK SD1_CMD SD1_DATA0 SD1_DATA1 SD1_DATA2 SD1_DATA3 SD2_CLK SD2_CMD SD2_DATA0 SD2_DATA1 SD2_DATA2 SD2_DATA3 TEST_MODE TVCDC_IOB_ BACK
E16 F18 A20 C17 F17 F16 E14 C15 D13 C14 D14 E13 D17 AB19
NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_RESET TVDAC_AHVDDRG B TVDAC_AHVDDRG B TVDAC_AHVDDRG B TVDAC_AHVDDRG B TVDAC_AHVDDRG B TVDAC_AHVDDRG B TVDAC_AHVDDRG B TVDAC_AHVDDRG B USB_H1_VDDA25, USB_H1_VDDA33
UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO UHVIO LVIO ANALOG ANALOG ANALOG ANALOG ANALOG ANALOG ANALOG ANALOG
ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT1 ALT0 — — — — — — — —
GPIO-1 gpio1_GPIO[20] GPIO-1 gpio1_GPIO[18] GPIO-1 gpio1_GPIO[16] GPIO-1 gpio1_GPIO[17] GPIO-1 gpio1_GPIO[19] GPIO-1 gpio1_GPIO[21] GPIO-1 gpio1_GPIO[10] GPIO-1 gpio1_GPIO[11] GPIO-1 gpio1_GPIO[15] GPIO-1 gpio1_GPIO[14] GPIO-1 gpio1_GPIO[13] GPIO-1 gpio1_GPIO[12] tcu_TEST_MOD E TVE TVE TVE TVE TVE TVE TVE TVE USB TVCDC_IOB_BA CK TVCDC_IOG_BA CK TVCDC_IOR_BA CK TVDAC_COMP TVDAC_IOB TVDAC_IOG TVDAC_IOR TVDAC_VREF USB_H1_DN
Input Input Input Input Input Input Input Input Input Input Input Input Input — — — — — — — — —
100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PU 100 KΩ PD — — — — — — — — —
TVCDC_IOG_ AC20 BACK TVCDC_IOR_ BACK TVDAC_COM P TVDAC_IOB TVDAC_IOG TVDAC_IOR AB21 AA19 AC19 AB20 AC21
TVDAC_VREF Y18 USB_H1_DN B17
ANALOG50 —
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 169
Package Information and Contact Assignments
Table 113. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Out of Reset Condition1 I/O Buffer Type Block Instance Package Contact Contact Name Assign ment
Power Rail
Alt. Mode
Block I/O
Direction
Config./ Value
USB_H1_DP
A17
USB_H1_VDDA25, USB_H1_VDDA33 USB_H1_VDDA25, USB_H1_VDDA33 USB_H1_VDDA25, USB_H1_VDDA33 USB_H1_VDDA25, USB_H1_VDDA33
ANALOG50 — ANALOG25 — ANALOG25 — ANALOG50 —
USB USB USB USB USB USB USB USB USB USB XTALO SC
USB_H1_DP USB_H1_GPANA IO USB_H1_RREFE XT USB_H1_VBUS USB_OTG_DN USB_OTG_DP USB_OTG_GPA NAIO USB_OTG_ID USB_OTG_RRE FEXT USB_OTG_VBU S XTAL
— — — — — — — — — — —
— — — — — — — — — — —
USB_H1_GPA A16 NAIO USB_H1_RRE B16 FEXT USB_H1_VBU D15 S USB_OTG_D N A19
USB_OTG_VDDA25, ANALOG50 — USB_OTG_VDDA33 USB_OTG_VDDA25, ANALOG50 — USB_OTG_VDDA33 USB_OTG_VDDA25, ANALOG25 — USB_OTG_VDDA33 USB_OTG_VDDA25, ANALOG25 — USB_OTG_VDDA33 USB_OTG_VDDA25, ANALOG25 — USB_OTG_VDDA33 USB_OTG_VDDA25, ANALOG50 — USB_OTG_VDDA33 NVCC_XTAL ANALOG —
USB_OTG_DP B19 USB_OTG_G PANAIO USB_OTG_ID USB_OTG_R REFEXT F15 C16 D16
USB_OTG_VB E15 US XTAL
1 2
AC11
The state immediately after reset and before ROM firmware or software has executed. During power-on reset, this port acts as input for fuse override. See Section 5.1, “Boot Mode Configuration Pins” for details. For appropriate resistor values, see Chapter 1 of i.MX53 System Development User's Guide, document number MX53UG. 3 During power-on reset this port acts as output for diagnostic signal INT_BOOT 4 During power-on reset this port acts as output for diagnostic signal ANY_PU_RST
NOTE KEY_COL0 and GPIO_19 act as output for diagnostic signals during power-on reset.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 170 Freescale Semiconductor
6.2
E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 E DRAM_D12 DRAM_D10 DRAM_D8 DRAM_DQM1 GND GND DRAM_D11 DRAM_D9 DRAM_SDQS1_B DRAM_SDQS1 D FASTR_ANA CKIH2 FASTR_DIG TEST_MODE SD1_CLK USB_OTG_RREFEXT USB_OTG_VBUS USB_H1_VBUS SD2_CMD USB_OTG_ID SD1_DATA1 BOOT_MODE0 POR_B GND GND DRAM_D15 DRAM_D13 C SD2_CLK SD2_DATA2 SD2_DATA1 SD2_DATA3 SD2_DATA0 SATA_REXT FEC_REF_CLK FEC_MDIO GND FEC_RXD1 FEC_CRS_DV FEC_RXD0 GND SATA_RXP GND SATA_REFCLKP VP USB_H1_RREFEXT USB_H1_DN GND USB_OTG_DP BOOT_MODE1 CKIH1 SVCC GND B FEC_MDC FEC_TXD1 FEC_TX_EN SATA_TXM JTAG_TRSTB JTAG_TCK JTAG_MOD VPH GPIO_9 GPIO_4 GPIO_0 JTAG_TDI KEY_COL1 GPIO_18 GPIO_2 GPIO_1 KEY_ROW4 KEY_ROW1 GPIO_16 GPIO_6 GPIO_3 JTAG_TDO JTAG_TMS VPH SATA_TXP GND SATA_RXM GND SATA_REFCLKM VP USB_H1_GPANAIO USB_H1_DP GND USB_OTG_DN SD1_DATA0 RESET_IN_B GND GND A KEY_COL4 KEY_ROW2 KEY_COL0 GPIO_8 GPIO_5 DI0_PIN15 KEY_ROW3 KEY_COL2 GPIO_19 GPIO_7 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 DISP0_DAT22 3 DI0_PIN2 DISP0_DAT23 KEY_ROW0 GPIO_17 DISP0_DAT9 2 DI0_PIN4 DI0_PIN3 SVDDGP GND DISP0_DAT13 1 DISP0_DAT16 DISP0_DAT21 GND GND
Freescale Semiconductor
Table 114 shows the 19 × 19 mm, 0.8 pitch ball map.
D
C
B
A
19 x 19 mm, 0.8 Pitch Ball Map
Table 114. 19 x 19 mm, 0.8 Pitch Ball Map
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2
Package Information and Contact Assignments
171
172 L K PATA_IORDY 1 2 3 4 5 6 NVCC_KEYPAD NVCC_GPIO VDDAL1 FEC_TXD0 VDDGP VDDGP VDDA USB_H1_VDDA33 USB_OTG_VDDA33 VDD_FUSE NVCC_SD1 NVCC_RESET VDD_DIG_PLL NVCC_EMI_DRAM DRAM_SDCKE0 GND DRAM_D2 DRAM_D6 DRAM_D4 K J DRAM_D0 DRAM_DQM0 DRAM_SDQS0_B DRAM_SDQS0 H VDD_ANA_PLL NVCC_CKIH VDD_REG GND DRAM_D3 DRAM_D1 DRAM_D7 DRAM_D5 G NVCC_FEC FEC_RX_ER USB_H1_VDDA25 USB_OTG_VDDA25 USB_OTG_GPANAIO SD1_DATA3 SD1_DATA2 SD1_CMD GND GND GND GND DRAM_D14 F 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 PATA_RESET_B PATA_DIOR PATA_BUFFER_EN PATA_INTRQ PATA_DA_0 VDDGP GND VDDGP GND VDDGP GND VCC GND VCC GND NVCC_EMI_DRAM DRAM_CS0 DRAM_A10 DRAM_A4 GND DRAM_SDCLK_0_B DRAM_SDCLK_0 GND DRAM_SDODT0 DRAM_RAS VCC GND VCC NVCC_SD2 GND VCC VDDGP GND GND VDDGP VDDGP GND GND VDDGP NVCC_JTAG VDDGP GND VDDGP NVCC_LCD VDDGP GND NVCC_LCD DISP0_DAT7 DISP0_DAT8 DISP0_DAT0 DISP0_DAT11 DISP0_DAT19 DISP0_DAT1 DI0_DISP_CLK DISP0_DAT18 DISP0_DAT20 DISP0_DAT17 KEY_COL3 PATA_DIOW DISP0_DAT5 DISP0_DAT10 DISP0_DAT15 PATA_DMACK DISP0_DAT2 DISP0_DAT4 DISP0_DAT14 PATA_DMARQ DISP0_DAT12 DISP0_DAT6 DISP0_DAT3 J H G F GND GND GND GND VCC GND VCC
1
PATA_DATA0
2
PATA_CS_1
3
PATA_DA_1
4
PATA_DA_2
5
PATA_CS_0
6
PATA_DATA2
7
8
VDDGP
Package Information and Contact Assignments
9
10
VDDGP
11
12
VDDGP
13
14
15
Table 114. 19 x 19 mm, 0.8 Pitch Ball Map
16
17
DDR_VREF
18
DRAM_CAS
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 L
19
DRAM_SDWE
20
DRAM_A12
21
DRAM_A1
22
DRAM_A11
Freescale Semiconductor
23
DRAM_A13
U T CSI0_DAT8 1 2 3 4 5 6 VDDA GND VCC GND VCC GND VCC GND VCC GND VCC GND NVCC_EMI_DRAM DRAM_RESET DRAM_CS1 GND DRAM_D19 DRAM_D21 DRAM_D23 T R DRAM_SDBA1 GND DRAM_SDCLK_1 DRAM_SDCLK_1_B P VCC NVCC_EMI_DRAM DRAM_A14 DRAM_SDBA2 DRAM_A3 DRAM_A5 DRAM_A7 DRAM_A8 N VCC GND VCC GND VCC GND VDDA DRAM_A15 DRAM_A0 DRAM_A2 DRAM_A9 DRAM_A6 DRAM_CALIBRATION M 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 CSI0_DAT11 CSI0_DAT12 CSI0_DAT16 CSI0_DAT17 CSI0_DAT13 VCC GND VCC GND VCC NVCC_NANDF VCC GND VCC GND VCC NVCC_EMI_DRAM DRAM_SDCKE1 DRAM_DQM2 DRAM_D17 DRAM_SDQS2 DRAM_SDQS2_B GND DRAM_SDODT1 DRAM_SDBA0 VCC GND VCC GND GND VCC VCC GND GND VCC VCC GND GND VCC GND VCC GND VCC NVCC_CSI GND NVCC_PATA CSI0_DAT6 PATA_DATA14 PATA_DATA13 CSI0_DAT10 PATA_DATA15 PATA_DATA12 CSI0_DAT9 CSI0_VSYNC PATA_DATA10 PATA_DATA5 PATA_DATA7 PATA_DATA11 CSI0_DAT7 CSI0_DATA_EN PATA_DATA9 PATA_DATA4 CSI0_DAT5 CSI0_MCLK PATA_DATA8 PATA_DATA3 CSI0_DAT4 CSI0_PIXCLK PATA_DATA6 PATA_DATA1 R P N M
1
CSI0_DAT14
2
CSI0_DAT15
3
CSI0_DAT18
Freescale Semiconductor
4
CSI0_DAT19
5
EIM_D17
6
EIM_D16
7
NVCC_EIM_SEC
8
VCC
9
NVCC_EIM_MAIN
10
NVCC_EIM_MAIN
11
NANDF_RB0
12
VDDA
13
NVCC_LVDS
14
NVCC_LVDS_BG
15
GND
Table 114. 19 x 19 mm, 0.8 Pitch Ball Map
16
TVDAC_DHVDD
17
TVDAC_AHVDDRGB
18
VCC
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2
19
GND
20
DRAM_D16
21
DRAM_D18
22
DRAM_D22
23
DRAM_D20
Package Information and Contact Assignments
173
U
174 AC GND 1 2 3 4 5 6 EIM_A17 EIM_OE EIM_DA5 EIM_DA12 EIM_DA9 EIM_BCLK NANDF_CS0 NANDF_CS3 PMIC_ON_REQ GND GND LVDS0_TX2_N LVDS0_TX0_N TVDAC_VREF GND TVDAC_COMP GND GND DRAM_D30 GND GND AB DRAM_D28 AA DRAM_D24 DRAM_D26 DRAM_SDQS3 DRAM_SDQS3_B Y PMIC_STBY_REQ GPIO_10 GPIO_12 GPIO_14 GND DRAM_DQM3 DRAM_D25 DRAM_D27 DRAM_D31 W NVCC_SRTC_POW NVCC_XTAL NANDF_CS1 NANDF_CS2 GND TVDAC_AHVDDRGB GPIO_11 GND GND GND GND GND DRAM_D29 V 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 GND EIM_A18 EIM_RW EIM_EB1 EIM_DA4 EIM_DA10 NANDF_WE_B EIM_WAIT CKIL EXTAL LVDS1_TX2_P LVDS1_TX1_P LVDS1_TX0_P LVDS0_TX3_N LVDS0_CLK_N LVDS0_TX1_N GND TVCDC_IOB_BACK TVDAC_IOG TVCDC_IOR_BACK LVDS0_TX0_P GPIO_13 LVDS0_TX2_P GND LVDS_BG_RES LVDS1_CLK_N LVDS1_CLK_P LVDS1_TX3_N LVDS1_TX3_P GND NANDF_ALE NANDF_CLE EIM_DA14 EIM_DA15 EIM_DA6 EIM_DA3 EIM_DA8 EIM_DA0 EIM_CS0 EIM_DA2 EIM_CS1 EIM_A19 EIM_LBA EIM_A20 EIM_A25 EIM_A16 EIM_A24 EIM_D31 EIM_A21 EIM_EB3 EIM_D30 EIM_D27 EIM_D26 EIM_A23 EIM_A22 EIM_EB2 EIM_D25 EIM_D21 GND EIM_D29 EIM_D24 EIM_D22 EIM_D19 GND EIM_D28 EIM_D23 EIM_D20 EIM_D18 AB AA Y W V ECKIL XTAL
1
2
3
EIM_EB0
4
EIM_DA1
5
EIM_DA7
6
EIM_DA11
7
EIM_DA13
8
NANDF_RE_B
Package Information and Contact Assignments
9
NANDF_WP_B
10
11
12
LVDS1_TX2_N
13
LVDS1_TX1_N
14
LVDS1_TX0_N
15
LVDS0_TX3_P
Table 114. 19 x 19 mm, 0.8 Pitch Ball Map
16
LVDS0_CLK_P
17 GND
LVDS0_TX1_P
18
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 GND GND AC
19
TVDAC_IOB
20
TVCDC_IOG_BACK
21
TVDAC_IOR
22
Freescale Semiconductor
23
Revision History
7
Revision History
Table 115. i.MX53xA Data Sheet Document Revision History
Rev. Number Rev 2 Date Substantive Change(s)
Table 115 provides a revision history for this data sheet.
05/2011 • Updated Table 1, "Ordering Information," on page 3. • Updated the note on page 6 in Section 1.2, “Features.” • Modified VDD_FUSE design best practice footnote on Table 6, "i.MX53xA Operating Ranges," on page 20. • Changed VDD_FUSE max current to 120 mA in Table 8, "Maximal Supply Currents," on page 22. • In Table 9, "USB Interface Current Consumption," on page 24, removed the row for Suspend specification. • Made changes related to text, tables, and figures in Section 4.6.7, “DDR SDRAM Specific Parameters (DDR2/LVDDR2, LPDDR2, and DDR3). Changes include adding LPDDR2 waves, updating timings by ACCZ test results, and changing note about DDR load model. • Removed the Standard Serial Interfaces section. • In Table 10, "GPIO I/O DC Electrical Characteristics," on page 28, changed input current with no pull-up/down from 250/120 nA to 2 μA, all input currents with pull-up from 0.12 μΑ to 2 μA when Vin = OVDD, and input current with pull-down from 0.25 μA to 2 μA when Vin = 0. • In Table 11, Table 12, and Table 13, changed input current from the nA range to 1 μA. • In Table 14, "LVIO DC Electrical Characteristics," on page 32, changed input current with no pull-up/down from 250/120 nA to 1 μA, all input currents with pull-up from 0.12 μΑ to 1 μA when Vin = OVDD, and input current with pull-down from 0.25 μA to 1 μA when Vin = 0. • In Table 15, "UHVIO DC Electrical Characteristics," on page 33, changed input current with no pull-up/down from 300/63 nA to 1 μA, all input currents with pull-up from 0.06 μΑ to 1 μA when Vin = OVDD, and input current with pull-down from 0.3 μA to 1 μA when Vin = 0. • Updated keeper values in Table 10 through Table 15. • Fixed titles of Figure 18 through Figure 26, to fit original EIM AC spec. • Updated Figure 2, "Power Up Detailed Sequence," on page 26. • Added Figure 27, "DTACK Write Access (DAP=0)," on page 61. • Added Table 18, "DDR Output Driver Average Impedance," on page 37. • Deleted the second footnote of Table 32, "CAMP Electrical Parameters (CKIH1, CKIH2)," on page 46. • Deleted the Revision 1.0 EIM Internal Module Multiplexing table. • Deleted the CKIL Electrical Specifications table. • Deleted the CSPI Slave Mode Timing Parameters table . • Changed the title of Section 4.4.2, “DDR Output Driver Average Impedance,” from “LPDDR2 I/O Output Buffer Impedance.” • Updated the last paragragh of Section 4.7.8.6.1, “IPU Display Operating Signals.” • Updated Table 35, " NFC—Timing Characteristics," on page 51. • Removed the “Differential pulse skew” row from Table 29, "AC Electrical Characteristics of LVDS Pad," on page 44. • Updated Table 63, "Asynchronous Display Interface Timing Parameters (Pixel Level)," on page 104. • Updated Table 64, "Asynchronous Parallel Interface Timing Parameters (Access Level)," on page 105. • Updated Table 102, "USB Timing Specification for Normal ULPI Mode," on page 146. • Updated the second footnote on Table 113, "19 x 19 mm Signal Assignments, Power Rails, and I/O," on page 156.
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 175
Revision History
Table 115. i.MX53xA Data Sheet Document Revision History (continued)
Rev. Number Rev 1 Date Substantive Change(s)
03/2011 • Updated the first sentence of Section 3.1, “Special Signal Considerations.” • Deleted two tables, “Special Signal Considerations” and “JTAG Controller Interface Summary,” in Section 3.1, “Special Signal Considerations.” • Updated Table 6, "i.MX53xA Operating Ranges," on page 20. • Changed VDDGP voltages as follows: — 800 MHz from 1.0/1.05/1.1 to 1.05/1.1/1.15 V minimum/nominal/maximum. — Stop mode from 0.9/0.95/1.1 to 0.8/0.85/1.15 V minimum/nominal/maximum. • Added statements to footnotes 4 and 5. 02/2011 Initial release.
Rev 0
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 176 Freescale Semiconductor
THIS PAGE INTENTIONALLY LEFT BLANK
i.MX53xA Automotive and Infotainment Applications Processors, Rev. 2 Freescale Semiconductor 177
How to Reach Us:
Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM Cortex A8 is a trademark of ARM Limited. © Freescale Semiconductor, Inc., 2011. All rights reserved.
Document Number: IMX53AEC Rev. 2 5/2011