Freescale Semiconductor Technical Data
Document Number: MHVIC910HNR2 Rev. 9, 5/2006
921 MHz - 960 MHz SiFET RF Integrated Power Amplifier
The MHVIC910HNR2 integrated circuit is designed for GSM base stations, uses Freescale’s newest High Voltage (26 Volts) LDMOS IC technology, and contains a three - stage amplifier. Target applications include macrocell (driver function) and microcell base stations (final stage). The device is in a PFP - 16 Power Flat Pack package which gives excellent thermal performances through a solderable backside contact. • Typical GSM Performance: VDD = 26 Volts, IDQ = 150 mA, Pout = 10 Watts, Full Frequency Band (921 - 960 MHz) Power Gain — 39 dB (Typ) Power Added Efficiency — 48% (Typ) • Capable of Handling 10:1 VSWR, @ 26 Vdc, 945 MHz, 10 Watts CW Output Power • Stable into a 10:1 VSWR. All Spurs Below - 60 dBc @ 0 to 40 dBm CW Pout. Features • On - Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output) • Integrated ESD Protection • Usable Frequency Range — 921 to 960 MHz • RoHS Compliant • In Tape and Reel. R2 Suffix = 1,500 Units per 16 mm, 13 inch Reel. Table 1. Maximum Ratings
Rating Drain Supply Voltage Gate Supply Voltage RF Input Power Case Operating Temperature Storage Temperature Range Operating Channel Temperature Symbol VDD VGS Pin TC Tstg Tch
MHVIC910HNR2
960 MHz, 10 W, 26 V GSM CELLULAR RF LDMOS INTEGRATED CIRCUIT
16 1
CASE 978 - 03 PFP - 16
Value 28 6 5 - 30 to + 85 - 65 to + 150 150
Unit Vdc Vdc dBm °C °C °C
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case Symbol RθJC Value 2.9 Unit °C/W
VD1
VD2
VD3
N.C. VD2 VD1 GND
1 2 3 4 5 6 7 8 (Top View)
16
N.C. 15 VD3/RFout 14 VD3/RFout 13 VD3/RFout 12 VD3/RFout 11 VD3/RFout 10 N.C. 9 N.C.
RFin
RFout
RFin VGATE1 VGATE2 VGATE3
VGATE1
VGATE2
VGATE3
Note: Exposed backside flag is source terminal for transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
© Freescale Semiconductor, Inc., 2006. All rights reserved.
MHVIC910HNR2 1
RF Device Data Freescale Semiconductor
Table 3. ESD Protection Characteristics
Test Conditions Human Body Model Machine Model Class 0 (Minimum) M2 (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating 3 Package Peak Temperature 260 Unit °C
Table 5. Recommended Operating Ranges
Parameter Drain Supply Voltage 3rd Stage Quiescent Current 2nd Stage Quiescent Current 1st Stage Quiescent Current VDD = 26 V, VGS set for IDQ3 = 150 mA, frequency range 921 - 960 MHz Characteristic Frequency Range Output Power @ 1 dB Compression Point Power Gain @ P1dB Power Added Efficiency @ 1 dB Compression Point Input Return Loss @ P1dB Gain Flatness @ 40 dBm Variation (TC = - 30 to +85°C @ 40 dBm) Symbol VDD IDQ3 IDQ2 IDQ1 Value 26 150 50 25 Unit Vdc mA mA mA
Table 6. Electrical Characteristics (TA = 25°C matched to a 50 Ω system, unless otherwise noted)
Symbol fRF P @ 1dB G @ 1dB PAE @ 1dB IRL @ 1dB GF GV Min 921 39 38 43 — — — Typ — 40 39 48 - 15 .5 5 Max 960 — — — - 10 — — Unit MHz dBm dB % dB dB dB
MHVIC910HNR2 2 RF Device Data Freescale Semiconductor
1 VD2 2 VD1 C2 3 C3 RF INPUT 4
16
15 VD3 14 C7 13 C8 RF OUTPUT C9
5
12 C6
6 R3 VGS 7 R1 C5 8 R2 C1 C4
11
10
9
C1, C2, C3, C4, C5, C8 C6 C7 C9
1 μF Surface Mount Chip Capacitors 4.7 pF AVX Chip Capacitor, ACCU−P (08051J4R7BBT) 47 pF AVX Chip Capacitor, ACCU−P (08055K470JBTTR) 33 pF AVX Chip Capacitor, ACCU−P (08053J330JBT)
J1, J2 J3, J4 R1, R2, R3 PCB
Header (Break−away), HDR2X10STIMCSAFU SMA Connector 2052−1618−02 (Threaded) 100 Ω Chip Resistors (0402) Rogers 04350, 20 mils
Figure 3. 921 - 960 MHz Demo Board Schematic
MHVIC910HNR2 RF Device Data Freescale Semiconductor 3
C8 VD1 VD2 VD3
C2 C3 C7
RF Input
C6
C9
RF Output
C4
C5
C1
R3
R1 VG1
R2 VG2 VG3
MHVIC910HR2 900 MHz
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.
Figure 4. 921 - 960 MHz Demo Board Component Layout
MHVIC910HNR2 4 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
43 PAE, POWER ADDED EFFICIENCY (%) 42 G ps, POWER GAIN (dB) 41 40 39 38 37 36 35 0 2 4 6 8 10 12 Pout, OUTPUT POWER (WATTS) TC = +85°C, IDQ3 = 150 mA TC = −30°C, IDQ3 = 150 mA TC = +25°C, IDQ3 = 150 mA TC = +25°C, IDQ3 = 120 mA TC = +25°C, IDQ3 = 110 mA 50 45 40 35 30 25 20 15 10 0 2 4 6 8 10 12 Pout, OUTPUT POWER (WATTS) IDQ3 = 150 mA f = 960 MHz TC = −30°C +85°C +25°C
Figure 5. Power Gain versus Output Power
100 Pout , OUTPUT POWER (WATTS) 43 42 Gps , POWER GAIN (dB) 41 40 39 38 37 36 −13 −11 −9 −7 −5 −3 −1 1 3 5 910
Figure 6. Power Added Efficiency versus Output Power
TC = −30°C, IDQ3 = 150 mA
+25°C 10 TC = −30°C +85°C IDQ3 = 150 mA f = 960 MHz 1 −15
TC = +25°C, IDQ3 = 150 mA TC = +25°C, IDQ3 = 120 mA
TC = +85°C, IDQ3 = 150 mA
920
930
940
950
960
970
Pin, INPUT POWER (dBm)
f, FREQUENCY (MHz)
Figure 7. Output Power versus Input Power
43 PAE, POWER ADDED EFFICIENCY (%) 42 Gps , POWER GAIN (dB) 41 40 39 38 37 36 910 920 930 940 950 960 970 f, FREQUENCY (MHz) TC = +25°C, IDQ3 = 150 mA TC = +25°C, IDQ3 = 120 mA TC = +25°C, IDQ3 = 110 mA TC = +85°C, IDQ3 = 150 mA TC = −30°C, IDQ3 = 150 mA 48 47.5 47 46.5 46 45.5 45 44.5 44 43.5 43 910
Figure 8. Power Gain versus Frequency Pout = 10 W
TC = +25°C, IDQ3 = 120 mA
TC = +25°C, IDQ3 = 150 mA
f = 960 MHz 920 930 940 950 960 970
f, FREQUENCY (MHz)
Figure 9. Power Gain versus Frequency Pout = P1dB
Figure 10. Power Added Efficiency versus Frequency Pout = 10 W
MHVIC910HNR2 RF Device Data Freescale Semiconductor 5
TYPICAL CHARACTERISTICS
−12 IRL, INPUT RETURN LOSS (dB) IRL, INPUT RETURN LOSS (dB) −12
−14
−14
−16
TC = +85°C +25°C
−16
TC = +85°C +25°C
−18
−18
−20
−30°C VDD = 26 Vdc
−20
−30°C VDD = 26 Vdc
−22 910 920 930 940 950 960 970 f, FREQUENCY(MHz)
−22 910 920 930 940 950 960 970 f, FREQUENCY(MHz)
Figure 11. Input Return Loss versus Frequency Pout = 10 W
4.5 EVM, ERROR VECTOR MAGNITUDE (%) 4 3.5 3 2.5 2 1.5 1 0.5 0.1 W (RMS) 0 140 150 160 170 180 190 200 IDQ, DRAIN QUIESCENT CURRENT (mA) VDD = 26 Vdc f = 880 MHz 0.5 W (RMS) Pout = 2.0 W (RMS) ACPR, ADJACENT CHANNEL POWER RATIO (dBc) −50 −55 −60 −65 −70 −75 −80 −85 −90
Figure 12. Input Return Loss versus Frequency Pout = P1dB
Pout = 2.0 W (RMS) 0.5 W (RMS) 0.1 W (RMS) 2.0 W (RMS) 0.5 W (RMS) 0.1 W (RMS) = 400 kHz = 600 kHz 160 170 180 VDD = 26 Vdc f = 880 MHz 190 200
140
150
IDQ, DRAIN QUIESCENT CURRENT (mA)
Figure 13. Error Vector Magnitude versus IDQ Total
Figure 14. Adjacent Channel Power Ratio versus IDQ Total
8 Pout , OUTPUT POWER (WATTS) 7 6 5 4 3 2 1 0 16 17 18 19 20 21 22 IDQ total = 170 mA f = 880 MHz 23 24 25 26 Pin = 1.0 mW 0.8 mW 0.6 mW 0.4 mW
8 Pout , OUTPUT POWER (WATTS) 7 6 5 0.6 mW 4 3 2 1 0 16 17 18 19 20 21 22 23 24 25 26 VDD, SUPPLY VOLTAGE (VOLTS) IDQ total = 180 mA f = 880 MHz 0.4 mW Pin = 1.0 mW 0.8 mW
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 15. Output Power versus Supply Voltage MHVIC910HNR2 6
Figure 16. Output Power versus Supply Voltage
RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) IRL, INPUT RETURN LOSS (dB) IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) IMD, INTERMODULATION DISTORTION (dBc)
45 40 35 30 25 20 15 10 820 IMD Gps
0 −5 −10 −15 VDD = 26 Vdc Pout = 10 W (PEP) IDQ total = 200 mA Two−Tone Measurement, 100 kHz Tone Spacing −20 −25 −30 −35 960
45 40 35 30 IRL 25 20 15 10 820 IMD VDD = 26 Vdc Pout = 10 W (PEP) IDQ total = 200 mA Two−Tone Measurement, 100 kHz Tone Spacing Gps η
0 −5 −10 −15 −20 −25 −30 −35 960
η IRL
840
860
880
900
920
940
840
860
880
900
920
940
f, FREQUENCY (MHz)
f, FREQUENCY (MHz)
Figure 17. Two - Tone Broadband Performance
Figure 18. Two - Tone Broadband Performance
η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
40 35 30 25 20 15 10 820
Gps η
VDD = 26 Vdc Pout = 10 W (PEP), IDQ total = 200 mA Two−Tone Measurement 100 kHz Tone Spacing
−5 −10 −15 −20 −25 −30 −35 960
Pout , OUTPUT POWER (WATTS)
12
Gps η Pout
40
9
30
IRL IMD
6 VDD = 26 Vdc IDQ total = 180 mA f = 880 MHz 0 0.5 1 1.5 2 2.5 3 3.5
20
3
10
0 Pin, INPUT POWER (mW)
0
840
860
880
900
920
940
f, FREQUENCY (MHz)
Figure 19. Two - Tone Broadband Performance
Figure 20. CW Performance @ 880 MHz
η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
Pout , OUTPUT POWER (WATTS)
η 9
Pout , OUTPUT POWER (WATTS)
12
Gps Pout
40
12
Gps η Pout
40
30
9
30
6 VDD = 26 Vdc IDQ total = 170 mA f = 880 MHz 0 0.5 1 1.5 2 2.5 3 3.5
20
6 VDD = 26 Vdc IDQ total = 160 mA f = 880 MHz 0 0.5 1 1.5 2 2.5 3 3.5
20
3
10
3
10
0 Pin, INPUT POWER (mW)
0
0 Pin, INPUT POWER (mW)
0
Figure 21. CW Performance @ 880 MHz
Figure 22. CW Performance @ 880 MHz
MHVIC910HNR2 RF Device Data Freescale Semiconductor 7
η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
15
50
15
50
η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
IRL, INPUT RETURN LOSS (dB) IMD, INTERMODULATION DISTORTION (dBc)
45
0
15
50
TYPICAL CHARACTERISTICS
IMD, INTERMODULATION DISTORTION (dBc) −25 −30 −35 −40 −45 −50 −55 −60 0.01 0.1 1 10 VDD = 26 Vdc f1 = 880.0 MHz, f2 = 880.1 MHz Two−Tone Measurement 100 kHz Tone Spacing IDQ total = 140 mA 160 mA 170 mA 180 mA
Pout, OUTPUT POWER (WATTS) PEP
Figure 23. Intermodulation Distortion versus Output Power
MHVIC910HNR2 8 RF Device Data Freescale Semiconductor
VDD = 26 V, IDQ = 225 mA, Pout = 40 dBm f MHz 900 920 940 960 980 1000 Zload Ω 7.81 + j4.61 7.27 + j4.90 6.77 + j5.23 6.31 + j5.59 5.90 + j5.96 5.53 + j6.36 Zo = 10 Ω f = 1000 MHz
Zload
Zload = Test circuit impedance as measured from drain to ground.
f = 900 MHz
Device Under Test
Output Matching Network
Z
load
Figure 24. Series Equivalent Load Impedance
MHVIC910HNR2 RF Device Data Freescale Semiconductor 9
NOTES
MHVIC910HNR2 10 RF Device Data Freescale Semiconductor
PACKAGE DIMENSIONS
h X 45 _ A E2
1 16 NOTES: 1. CONTROLLING DIMENSION: MILLIMETER. 2. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DATUM PLANE −H− IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −H−. 5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS 0.127 TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. MILLIMETERS MIN MAX 2.000 2.300 0.025 0.100 1.950 2.100 6.950 7.100 4.372 5.180 8.850 9.150 6.950 7.100 4.372 5.180 0.466 0.720 0.250 BSC 0.300 0.432 0.300 0.375 0.180 0.279 0.180 0.230 0.800 BSC −−− 0.600 0_ 7_ 0.200 0.200 0.100
14 x e
D e/2
D1
8
9
E1
8X
B
BOTTOM VIEW
E CB
S
bbb Y A A2
M
b1 c
C
DATUM PLANE SEATING PLANE
H
SECT W - W
L1
ccc C
q
W W L 1.000 0.039 DETAIL Y A1
GAUGE PLANE
CASE 978 - 03 ISSUE C PFP - 16
RF Device Data Freescale Semiconductor
ÇÇÇ ÉÉ ÇÇÇ ÉÉ
b aaa
M
c1
CA
S
DIM A A1 A2 D D1 E E1 E2 L L1 b b1 c c1 e h q aaa bbb ccc
MHVIC910HNR2 11
How to Reach Us:
Home Page: www.freescale.com E - mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp.
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.
RoHS- compliant and/or Pb - free versions of Freescale products have the functionality and electrical characteristics of their non - RoHS- compliant and/or non - Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.
MHVIC910HNR2 1Rev. 9, 5/2006 2
Document Number: MHVIC910HNR2
RF Device Data Freescale Semiconductor