Pressure
Freescale Semiconductor Integrated Silicon Pressure Sensor, On-Chip Signal Conditioned, Temperature Compensated and Calibrated
The MP3V5004G series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This sensor combines a highly sensitive implanted strain gauge with advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.
MP3V5004G Rev 2, 06/2010
MP3V5004G Series
0 to 3.92 kPa (0 to 400 mm H2O) 0.6 to 3.0 V Output
Typical Applications
• Washing Machine Water Level • Ideally Suited for Microprocessor or Microcontroller-Based Systems
Features
• Temperature Compensated from 10°C to 60°C • Available in Gauge Surface Mount (SMT) Configuration • Durable Thermoplastic (PPS) Package ORDERING INFORMATION
Package Case Device Name Options No. Small Outline Package (MP3V5004 Series) MP3V5004GC6U Rail 482A MP3V5004GC6T1 Tape & Reel 482A MP3V5004DP Trays 1351 MP3V5004GVP MP3V5004GP Trays Trays 1368 1369 None # of Ports Single Dual Gauge
Pressure Type Differential Absolute
Device Marking MP3V5004G MP3V5004G
• • • • •
• • • • •
MP3V5004DP MP3V5004GV MP3V5004GP
SMALL OUTLINE PACKAGES
MP3V5004GC6U/6T1 CASE 482A
MP3V5004DP CASE 1351
MP3V5004GVP CASE 1368
MP3V5004GP CASE 1369
© Freescale Semiconductor, Inc., 2008, 2010. All rights reserved.
Pressure
Operating Characteristics
Table 1. Operating Characteristics (VS = 3.0 Vdc, TA = 25°C unless otherwise noted, P1 > P2.
Characteristic Pressure Range Supply Voltage(1) Supply Current Span at 306 mm H2O (3 Offset(3) (4) Sensitivity Accuracy(4) (5) 0 to 100 mm H2O (10 to 60°C) 100 to 400 mm H2O (10 to 60°C) kPa)(2) Symbol POP Min 0 Typ — Max 3.92 400 3.3 10 — 0.75 — Unit kPa mm H2O VDC mAdc V V V/kPa mV/mm H2O %VFSS %VFSS
VS IS VFSS VOFF V/P
2.7 — — 0.45 —
3.0 — 1.8 0.6 0.6 5.9 — —
— —
— —
±1.5 ±2.5
1. Device is ratiometric within this specified excitation range. 2. Span is defined as the algebraic difference between the output voltage at specified pressure and the output voltage at the minimum rated pressure. 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure. 4. Accuracy (error budget) consists of the following: Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range. Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C. Offset Stability: Output deviation, after 1000 temperature cycles, -30° to 100°C, and 1.5 million pressure cycles, with minimum rated pressure applied. TcSpan: Output deviation over the temperature range of 10° to 60°C, relative to 25°C. TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 10° to 60°C, relative to 25°C. Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C. 5. Auto-Zero at Factory Installation: Due to the sensitivity of the MP3V5004G, external mechanical stresses and mounting position can affect the zero pressure output reading. Auto-zeroing is defined as storing the zero pressure output reading and subtracting this from the device's output during normal operations. Reference AN1636 for specific information. The specified accuracy assumes a maximum temperature change of ±5°C between auto-zero and measurement.
MP3V5004G 2 Sensors Freescale Semiconductor
Pressure
Maximum Ratings
Table 2. Maximum Ratings(1)
Rating Maximum Pressure (P1 > P2) Storage Temperature Operating Temperature Symbol PMAX TSTG TA Value 16 –30 to +100 0 to +85 Units kPa °C °C
1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.
VS 2
Sensing Element
Thin Film Temperature Compensation and Gain Stage #1
Gain Stage #2 and Ground Reference Shift Circuitry
4
VOUT
GND
3
Pins 1, 5, 6, 7, and 8 are NO CONNECTS
Figure 1. Fully Integrated Pressure Sensor Schematic
MP3V5004G Sensors Freescale Semiconductor 3
Pressure
On-chip Temperature Compensation and Calibration
The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip. Figure 2 illustrates the gauge configuration in the basic chip carrier (Case 482A). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MP3V5004G series sensor operating characteristics are based on the use of dry air as pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Internal reliability and qualification test for dry air, and other media, are available from the factory. Contact the factory for information regarding media tolerance in your application. Figure 3 shows the recommended decoupling circuit for interfacing the output of the MP3V5004G to the A/D input of the microprocessor or microcontroller. Proper decoupling of the power supply is recommended. Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum and maximum output curves are shown for operation over a temperature range of 10°C to 60°C using the decoupling circuit shown in Figure 3 The output will saturate outside of the specified pressure range.
Fluorosilicone Gel Die Coat P1 Wire Bond Lead Frame P2 Differential Sensing Element
Die
Stainless Steel Cap Thermoplastic
+3 V
Vout Vs IPS 1.0 μF 0.01 μF GND
OUTPUT
470 pF
Die Bond
Figure 2. Cross Sectional Diagram SSOP (not to scale)
Figure 3. Recommended Power Supply Decoupling and Output Filtering. (For additional output filtering, please refer to Application Note AN1646.)
3.0
2.0 Output (V)
TRANSFER FUNCTION: Vout = VS*[(0.2*P) + 0.2] ± 2.5% VFSS VS = 3.0 V ± 0.30 Vdc TEMP = 10 to 60°C
Typical 1.0 Max Min
0.6 2 kPa 200 mm H2O 4 kPa 400 mm H2O
Figure 4. Output vs. Pressure Differential at ±2.5% VFSS (See Note 5 in Operating Characteristics table)
MP3V5004G 4 Sensors Freescale Semiconductor
Pressure
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE
Freescale Semiconductor designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The
Part Number MP3V5004GC6U/T1 MP3V5004GP MP3V5004DP MP3V5004GVP
Freescale Semiconductor pressure sensor is designed to operate with positive differential pressure applied, P1 > P2. The Pressure (P1) side may be identified by using the table below.
Pressure (P1) Side Identifier Side with Port Attached Side with Port Attached Side with Part Marking Stainless Steel Cap
Case Type 482A 1369 1351 1368
MINIMUM RECOMMENDED FOOTPRINT FOR SMALL OUTLINE PACKAGES
Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.
0.660 16.76
0.100 TYP 8X 2.54
0.060 TYP 8X 1.52
0.300 7.62
0.100 TYP 8X 2.54
inch mm
SCALE 2:1
Figure 5. SOP Footprint
MP3V5004G Sensors Freescale Semiconductor 5
Pressure
PACKAGE DIMENSIONS
–A–
5 4
D 8 PL 0.25 (0.010)
M
TB
S
A
S
N –B–
8
G
1
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5 TYPICAL DRAFT. DIM A B C D G H J K M N S V W INCHES MIN MAX 0.415 0.425 0.415 0.425 0.500 0.520 0.038 0.042 0.100 BSC 0.002 0.010 0.009 0.011 0.061 0.071 0 7 0.444 0.448 0.709 0.725 0.245 0.255 0.115 0.125 MILLIMETERS MIN MAX 10.54 10.79 10.54 10.79 12.70 13.21 0.96 1.07 2.54 BSC 0.05 0.25 0.23 0.28 1.55 1.80 0 7 11.28 11.38 18.01 18.41 6.22 6.48 2.92 3.17
S
W
V C J K M
PIN 1 IDENTIFIER
H –T–
SEATING PLANE
CASE 482A-01 ISSUE A SMALL OUTLINE PACKAGE
MP3V5004G 6 Sensors Freescale Semiconductor
Pressure
PACKAGE DIMENSIONS
CASE 1351-01 ISSUE A SMALL OUTLINE PACKAGE
MP3V5004G Sensors Freescale Semiconductor 7
Pressure
PACKAGE DIMENSIONS
CASE 1351-01 ISSUE A SMALL OUTLINE PACKAGE
MP3V5004G 8 Sensors Freescale Semiconductor
Pressure
PACKAGE DIMENSIONS
CASE 1368-01 ISSUE C SMALL OUTLINE PACKAGE
MP3V5004G Sensors Freescale Semiconductor 9
Pressure
PACKAGE DIMENSIONS
CASE 1368-01 ISSUE C SMALL OUTLINE PACKAGE
MP3V5004G 10 Sensors Freescale Semiconductor
Pressure
PACKAGE DIMENSIONS
CASE 1368-01 ISSUE C SMALL OUTLINE PACKAGE
MP3V5004G Sensors Freescale Semiconductor 11
Pressure
PACKAGE DIMENSIONS
CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE
MP3V5004G 12 Sensors Freescale Semiconductor
Pressure
PACKAGE DIMENSIONS
CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE
MP3V5004G Sensors Freescale Semiconductor 13
How to Reach Us:
Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010. All rights reserved.
MP3V5004G Rev. 2 06/2010