Freescale Semiconductor
Technical Data
Document Number: MPC862EC Rev. 3, 2/2006
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications
This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC862/857T/857DSL family (refer to Table 1 for a list of devices). The MPC862P, which contains a PowerPC™ core processor, is the superset device of the MPC862/857T/857DSL family. For functional characteristics of the processor, refer to the MPC862 PowerQUICC™ Family Users Manual (MPC862UM/D).
Contents Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 8 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . 10 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Calculation and Measurement . . . . . . . . . . 12 Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 15 IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 44 CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 46 UTOPIA AC Electrical Specifications . . . . . . . . . . . 68 FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 69 Mechanical Data and Ordering Information . . . . . . . 72 Document Revision History . . . . . . . . . . . . . . . . . . . 86
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
Overview
1
Overview
The MPC862/857T/857DSL is a derivative of Freescale’s MPC860 PowerQUICC™ family of devices. It is a versatile single-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications and communications and networking systems. The MPC862/857T/857DSL provides enhanced ATM functionality over that of other ATM-enabled members of the MPC860 family. Table 1 shows the functionality supported by the members of the MPC862/857T/857DSL family.
Table 1. MPC862 Family Functionality
Cache Part Instruction Cache 16 Kbyte 4 Kbyte 4 Kbyte 4 Kbyte Data Cache 8 Kbyte 4 Kbyte 4 Kbyte 4 Kbyte Ethernet SCC 10T Up to 4 Up to 4 1 1 10/100 1 1 1 1 4 4 1 11 2 2 2 12 SMC
MPC862P MPC862T MPC857T MPC857DSL
1
On the MPC857DSL, the SCC (SCC1) is for ethernet only. Also, the MPC857DSL does not support the Time Slot Assigner (TSA). 2 On the MPC857DSL, the SMC (SMC1) is for UART only.
2
Features
The following list summarizes the key MPC862/857T/857DSL features: • Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs) — The core performs branch prediction with conditional prefetch, without conditional execution — 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1). – 16-Kbyte instruction cache (MPC862P) is four-way, set-associative with 256 sets; 4-Kbyte instruction cache (MPC862T, MPC857T, and MPC857DSL) is two-way, set-associative with 128 sets. – 8-Kbyte data cache (MPC862P) is two-way, set-associative with 256 sets; 4-Kbyte data cache (MPC862T, MPC857T, and MPC857DSL) is two-way, set-associative with 128 sets. – Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks. – Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis. — MMUs with 32-entry TLB, fully associative instruction and data TLBs — MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups — Advanced on-chip-emulation debug mode
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 2 Freescale Semiconductor
Features
•
• • •
•
•
The MPC862/857T/857DSL provides enhanced ATM functionality over that of the MPC860SAR. The MPC862/857T/857DSL adds major new features available in “enhanced SAR” (ESAR) mode, including the following: — Improved operation, administration and maintenance (OAM) support — OAM performance monitoring (PM) support — Multiple APC priority levels available to support a range of traffic pace requirements — ATM port-to-port switching capability without the need for RAM-based microcode — Simultaneous MII (10/100Base-T) and UTOPIA (half-duplex) capability — Optional statistical cell counters per PHY — UTOPIA level 2 compliant interface with added FIFO buffering to reduce the total cell transmission time. (The earlier UTOPIA level 1 specification is also supported.) — Multi-PHY support on the MPC857T — Four PHY support on the MPC857DSL — Parameter RAM for both SPI and I2C can be relocated without RAM-based microcode — Supports full-duplex UTOPIA both master (ATM side) and slave (PHY side) operation using a “split” bus — AAL2/VBR functionality is ROM-resident Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits) 32 address lines Memory controller (eight banks) — Contains complete dynamic RAM (DRAM) controller — Each bank can be a chip select or RAS to support a DRAM bank — Up to 30 wait states programmable per memory bank — Glueless interface to Page mode/EDO/SDRAM, SRAM, EPROMs, flash EPROMs, and other memory devices. — DRAM controller programmable to support most size and speed memory interfaces — Four CAS lines, four WE lines, one OE line — Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory) — Variable block sizes (32 Kbyte–256 Mbyte) — Selectable write protection — On-chip bus arbitration logic General-purpose timers — Four 16-bit timers cascadable to be two 32-bit timers — Gate mode can enable/disable counting — Interrupt can be masked on reference match and event capture Fast Ethernet controller (FEC) — Simultaneous MII (10/100Base-T) and UTOPIA operation when using the UTOPIA multiplexed bus.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 3
Features
•
•
•
•
•
System integration unit (SIU) — Bus monitor — Software watchdog — Periodic interrupt timer (PIT) — Low-power stop mode — Clock synthesizer — Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture — Reset controller — IEEE 1149.1 test access port (JTAG) Interrupts — Seven external interrupt request (IRQ) lines — 12 port pins with interrupt capability — The MPC862P and MPC862T have 23 internal interrupt sources; the MPC857T and MPC857DSL have 20 internal interrupt sources — Programmable priority between SCCs (MPC862P and MPC862T) — Programmable highest priority request Communications processor module (CPM) — RISC controller — Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT) — Supports continuous mode transmission and reception on all serial channels — Up to 8-Kbytes of dual-port RAM — The MPC862P and MPC862T have 16 serial DMA (SDMA) channels; the MPC857T and MPC857DSL have 10 serial DMA (SDMA) channels — Three parallel I/O registers with open-drain capability Four baud rate generators — Independent (can be connected to any SCC or SMC) — Allow changes during operation — Autobaud support option The MPC862P and MPC862T have four SCCs (serial communication controller) The MPC857T and MPC857DSL have one SCC, SCC1; the MPC857DSL supports ethernet only — Serial ATM capability on all SCCs — Optional UTOPIA port on SCC4 — Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation — HDLC/SDLC — HDLC bus (implements an HDLC-based local area network (LAN)) — Asynchronous HDLC to support PPP (point-to-point protocol) — AppleTalk
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3
4
Freescale Semiconductor
Features
•
•
•
•
•
•
•
— Universal asynchronous receiver transmitter (UART) — Synchronous UART — Serial infrared (IrDA) — Binary synchronous communication (BISYNC) — Totally transparent (bit streams) — Totally transparent (frame based with optional cyclic redundancy check (CRC)) Two SMCs (serial management channels) (The MPC857DSL has one SMC, SMC1 for UART) — UART — Transparent — General circuit interface (GCI) controller — Can be connected to the time-division multiplexed (TDM) channels One serial peripheral interface (SPI) — Supports master and slave modes — Supports multiple-master operation on the same bus One inter-integrated circuit (I2C) port — Supports master and slave modes — Multiple-master environment support Time-slot assigner (TSA) (The MPC857DSL does not have the TSA) — Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation — Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined — 1- or 8-bit resolution — Allows independent transmit and receive routing, frame synchronization, clocking — Allows dynamic changes — On the MPC862P and MPC862T, can be internally connected to six serial channels (four SCCs and two SMCs); on the MPC857T, can be connected to three serial channels (one SCC and two SMCs) Parallel interface port (PIP) — Centronics interface support — Supports fast connection between compatible ports on MPC862/857T/857DSL or MC68360 PCMCIA interface — Master (socket) interface, release 2.1 compliant — Supports one or two PCMCIA sockets dependent upon whether ESAR functionality is enabled — 8 memory or I/O windows supported Low power support — Full on—All units fully powered — Doze—Core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-power standby
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 5
Features
•
• • •
— Sleep—All units disabled except RTC, PIT, time base, and decrementer with PLL active for fast wake up — Deep sleep—All units disabled including PLL except RTC, PIT, time base, and decrementer. — Power down mode— All units powered down except PLL, RTC, PIT, time base and decrementer Debug interface — Eight comparators: four operate on instruction address, two operate on data address, and two operate on data — Supports conditions: = ≠ < > — Each watchpoint can generate a break point internally 3.3 V operation with 5-V TTL compatibility except EXTAL and EXTCLK 357-pin plastic ball grid array (PBGA) package Operation up to 100MHz
The MPC862/857T/857DSL is comprised of three modules that each use the 32-bit internal bus: the MPC8xx core, the system integration unit (SIU), and the communication processor module (CPM). The MPC862P/862T block diagram is shown in Figure 1. The MPC857T/857DSL block diagram is shown in Figure 2.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 6 Freescale Semiconductor
Features
Instruction Bus Embedded MPC8xx Processor Core
16-Kbyte* Instruction Cache Instruction MMU 32-Entry ITLB Unified Bus
System Interface Unit (SIU) Memory Controller Internal External Bus Interface Bus Interface Unit Unit System Functions Real-Time Clock PCMCIA/ATA Interface
Load/Store Bus
8-Kbyte* Data Cache Data MMU 32-Entry DTLB
Fast Ethernet Controller DMAs FIFOs 10/100 Base-T Media Access Control MII Parallel I/O 4 Baud Rate Generators Parallel Interface Port and UTOPIA Timers 4 Timers
Interrupt 8-Kbyte Controllers Dual-Port RAM 32-Bit RISC Controller and Program ROM
16 Serial and 2 Independent DMA Channels
SCC1
SCC2
SCC3
SCC4
SMC1
SMC2
SPI
I2C
Time Slot Assigner Time Slot Assigner Serial Interface *The MPC862T contains 4-Kbyte instruction cache and 4-Kbyte data cache.
Figure 1. MPC862P/862T Block Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 7
Maximum Tolerated Ratings
Instruction Bus Embedded MPC8xx Processor Core
4-Kbyte Instruction Cache Instruction MMU 32-Entry ITLB Unified Bus
System Interface Unit (SIU) Memory Controller Internal External Bus Interface Bus Interface Unit Unit System Functions Real-Time Clock PCMCIA/ATA Interface
Load/Store Bus
4-Kbyte Data Cache Data MMU 32-Entry DTLB
Fast Ethernet Controller DMAs FIFOs 10/100 Base-T Media Access Control MII Parallel I/O 4 Baud Rate Generators Parallel Interface Port and UTOPIA Timers 4 Timers
Interrupt 8-Kbyte Controllers Dual-Port RAM 32-Bit RISC Controller and Program ROM
10 Serial and 2 Independent DMA Channels
SCC1 Time Slot Assigner Time Slot Assigner
SMC1
SMC2*
SPI
I2C
Serial Interface *The MPC857DSL does not contain SMC2 nor the Time Slot Assigner, and provides eight SDMA controllers.
Figure 2. MPC857T/MPC857DSL Block Diagram
3
Maximum Tolerated Ratings
Table 2. Maximum Tolerated Ratings
(GND = 0 V)
This section provides the maximum tolerated voltage and temperature ranges for the MPC862/857T/857DSL. Table 2 provides the maximum ratings.
Rating Supply voltage 1
Symbol VDDH VDDL KAPWR VDDSYN -0.3 to 4.0 -0.3 to 4.0 -0.3 to 4.0 -0.3 to 4.0
Value
Unit V V V V
Max Freq (MHz) -
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 8 Freescale Semiconductor
Maximum Tolerated Ratings
Table 2. Maximum Tolerated Ratings (continued)
(GND = 0 V)
Rating Input voltage 2 Temperature
3
Symbol Vin
Value GND-0.3 to VDDH 0 105 -40 115 -55 to +150
Unit V °C °C °C °C °C
Max Freq (MHz) 100 100 80 80 -
(standard)
4
TA(min) Tj(max)
Temperature
3
(extended)
TA(min) Tj(max)
Storage temperature range
1 2
Tstg
The power supply of the device must start its ramp from 0.0 V. Functional operating conditions are provided with the DC electrical specifications in Table 5. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to power-up and normal operation (that is, if the MPC862/857T/857DSL is unpowered, voltage greater than 2.5 V must not be applied to its inputs). 3 Minimum temperatures are guaranteed as ambient temperature, T . Maximum temperatures are guaranteed as A junction temperature, Tj. 4 JTAG is tested only at ambient, not at standard maximum or extended maximum.
This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or VCC).
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 9
Thermal Characteristics
4
Thermal Characteristics
Table 3. MPC862/857T/857DSL Thermal Resistance Data
Rating Junction to ambient 1 Environment Natural Convection Single layer board (1s) Four layer board (2s2p) Air flow (200 ft/min) Single layer board (1s) Four layer board (2s2p) Junction to board 4 Junction to case
5
Table 3 shows the thermal characteristics for the MPC862/857T/857DSL.
Symbol RθJA 2 RθJMA
3
Value 37 23 30 19 13 6 2 2
Unit °C/W
Rθ JMA3 Rθ JMA3 RθJB Rθ JC Ψ JT Ψ JT
Junction to package top 6 Natural Convection Air flow (200 ft/min)
1
2 3 4 5
6
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction to case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
5
Power Dissipation
Table 4. Power Dissipation (PD)
Die Revision 0 (1:1 Mode) A.1, B.0 (1:1 Mode) Frequency 50 MHz 66 MHz 50 MHz 66 MHz Typical 1 656 TBD 630 890 Maximum 2 735 TBD 760 1000 Unit mW mW mW mW
Table 4 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice bus speed.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 10 Freescale Semiconductor
DC Characteristics
Table 4. Power Dissipation (PD) (continued)
Die Revision A.1, B.0 (2:1 Mode) B.0 (2:1 Mode)
1 2
Frequency 66 MHz 80 MHz 100 MHz
Typical 1 910 1.06 1.35
Maximum 2 1060 1.20 1.54
Unit mW W W
Typical power dissipation is measured at 3.3 V. Maximum power dissipation is measured at 3.5 V.
NOTE Values in Table 4 represent VDDL based power dissipation and do not include I/O power dissipation over VDDH. I/O power dissipation varies widely by application due to buffer current, depending on external circuitry.
6
DC Characteristics
Table 5. DC Electrical Specifications
Characteristic Operating voltage Symbol VDDH, VDDL, KAPWR, VDDSYN KAPWR (power-down mode) KAPWR (all other operating modes) Input High Voltage (all inputs except EXTAL and EXTCLK) Input Low Voltage 1 EXTAL, EXTCLK Input High Voltage Input Leakage Current, Vin = 5.5 V (Except TMS, TRST, DSCK and DSDI pins) Input Leakage Current, Vin = 3.6 V (Except TMS, TRST, DSCK, and DSDI) Input Leakage Current, Vin = 0 V (Except TMS, TRST, DSCK, and DSDI pins) Input Capacitance 2 Output High Voltage, IOH = -2.0 mA, VDDH = 3.0 V (Except XTAL, XFC, and Open drain pins) VOH VIH VIL VIHC Iin IIn IIn Cin 2.4 Min 3.135 Max 3.465 Unit V
Table 5 provides the DC electrical characteristics for the MPC862/857T/857DSL.
2.0
3.6
V
VDDH – 0.4
VDDH
V
2.0 GND 0.7*(VCC) — — — — —
5.5 0.8 VCC+0.3 100 10 10 20 V
V V V µA µA µA pF
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 11
Thermal Calculation and Measurement
Table 5. DC Electrical Specifications (continued)
Characteristic Output Low Voltage IOL = 2.0 mA (CLKOUT) IOL = 3.2 mA 3 IOL = 5.3 mA 4 IOL = 7.0 mA (TXD1/PA14, TXD2/PA12) IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)
1 2
Symbol VOL —
Min 0.5
Max V
Unit
VIL(max) for the I2C interface is 0.8 V rather than the 1.5 V as specified in the I2C standard. Input capacitance is periodically sampled. 3 A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ (3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA /PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1TSYNCB/PC7, CD3/L1RSYNCB/PC6, CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB, PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3, PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3]. 4 BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).
7
Thermal Calculation and Measurement
For the following discussions, PD= (VDD x IDD) + PI/O, where PI/O is the power dissipation of the I/O drivers.
7.1
Estimation with Junction-to-Ambient Thermal Resistance
An estimation of the chip junction temperature, TJ, in °C can be obtained from the equation: TJ = TA +(RθJA x PD) where: TA = ambient temperature (ºC) RθJA = package junction-to-ambient thermal resistance (ºC/W) PD = power dissipation in package The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity TJ-TA) are possible.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 12 Freescale Semiconductor
Thermal Calculation and Measurement
7.2
Estimation with Junction-to-Case Thermal Resistance
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance: RθJA = RθJC + RθCA where: RθJA = junction-to-ambient thermal resistance (ºC/W) RθJC = junction-to-case thermal resistance (ºC/W) RθCA = case-to-ambient thermal resistance (ºC/W) RθJC is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, RθCA. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.
7.3
Estimation with Junction-to-Board Thermal Resistance
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see Figure 3.
100 90 80 70 60 50 40 30 20 10 0 0 20 40 60 80
Board Temperture Rise Above Ambient Divided by Package Power
Figure 3. Effect of Board Temperature Rise on Thermal Behavior
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 13
Thermal Calculation and Measurement
If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation: TJ = TB +(RθJB x PD) where: RθJB = junction-to-board thermal resistance (ºC/W) TB = board temperature (ºC) PD = power dissipation in package If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.
7.4
Estimation Using Simulation
When the board temperature is not known, a thermal simulation of the application is needed. The simple two resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.
7.5
Experimental Determination
To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation: TJ = TT +(ΨJT x PD) where: ΨJT = thermal characterization parameter TT = thermocouple temperature on top of package PD = power dissipation in package The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 14 Freescale Semiconductor
Layout Practices
7.6
References
(415) 964-5111
Semiconductor Equipment and Materials International 805 East Middlefield Rd. Mountain View, CA 94043 MIL-SPEC and EIA/JESD (JEDEC) Specifications (Available from Global Engineering Documents) JEDEC Specifications
800-854-7179 or 303-397-7956 http://www.jedec.org
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. 2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.
8
Layout Practices
Each VCC pin on the MPC862/857T/857DSL should be provided with a low-impedance path to the board’s supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VCC power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip VCC and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and GND planes. All output pins on the MPC862/857T/857DSL have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.
9
Bus Signal Timing
The maximum bus speed supported by the MPC862/857T/857DSL is 66 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC862/857T/857DSL used at 80MHz must be configured for a 40 MHz bus). Table 6 shows the period ranges for standard part frequencies.
Table 6. Period Range for Standard Part Frequencies
50 MHz Freq Min Period 20.00 Max 30.30 Min 15.15 Max 30.30 Min 25.00 Max 30.30 Min 20.00 Max 30.30 66 MHz 80 MHz 100 MHz
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 15
Bus Signal Timing
Table 7 provides the bus operation timing for the MPC862/857T/857DSL at 33 MHz, 40 Mhz, 50 MHz and 66 Mhz. The timing for the MPC862/857T/857DSL bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays.
Table 7. Bus Operation Timings
33 MHz Num Characteristic Min B1 CLKOUT period 30.30 -0.90 -2.30 -0.60 -2.00 — — — — 12.10 12.10 — — 7.60 Max 30.30 0.90 2.30 0.60 2.00 0.50 2.00 3.00 0.50 — — 4.00 4.00 — Min 25.00 -0.90 -2.30 -0.60 -2.00 — — — — 10.00 10.00 — — 6.30 Max 30.30 0.90 2.30 0.60 2.00 0.50 2.00 3.00 0.50 — — 4.00 4.00 — Min 20.00 -0.90 -2.30 -0.60 -2.00 — — — — 8.00 8.00 — — 5.00 Max 30.30 0.90 2.30 0.60 2.00 0.50 2.00 3.00 0.50 — — 4.00 4.00 — Min 15.15 -0.90 -2.30 -0.60 -2.00 — — — — 6.10 6.10 — — 3.80 Max 30.30 0.90 2.30 0.60 2.00 0.50 2.00 3.00 0.50 — — 4.00 4.00 — ns ns ns ns ns % % % % ns ns ns ns ns 40 MHz 50 MHz 66 MHz Unit
B1a EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF 10 MHz and MF < 10) B1c CLKOUT phase jitter (EXTCLK > 15 MHz and MF 500) 1 B1h Frequency jitter on EXTCLK 2 B2 B3 B4 CLKOUT pulse width low (MIN = 0.040 x B1) CLKOUT width high (MIN = 0.040 x B1) CLKOUT rise time 3 (MAX = 0.00 x B1 + 4.00)
B533 CLKOUT fall time3 (MAX = 0.00 x B1 + 4.00) B7 CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3) invalid (MIN = 0.25 x B1)
B7a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), BDIP, PTR invalid (MIN = 0.25 x B1) B7b CLKOUT to BR, BG, FRZ, VFLS(0:1), VF(0:2) IWP(0:2), LWP(0:1), STS invalid 4 (MIN = 0.25 x B1) B8 CLKOUT to A(0:31), BADDR(28:30) RD/WR, BURST, D(0:31), DP(0:3) valid (MAX = 0.25 x B1 + 6.3)
7.60
—
6.30
—
5.00
—
3.80
—
ns
7.60
—
6.30
—
5.00
—
3.80
—
ns
7.60
13.80
6.30
12.50
5.00
11.30
3.80
10.00
ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 16 Freescale Semiconductor
Bus Signal Timing
Table 7. Bus Operation Timings (continued)
33 MHz Num Characteristic Min B8a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3) BDIP, PTR valid (MAX = 0.25 x B1 + 6.3) B8b CLKOUT to BR, BG, VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), STS Valid 4 (MAX = 0.25 x B1 + 6.3) B9 CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z (MAX = 0.25 x B1 + 6.3) 7.60 Max 13.80 Min 6.30 Max 12.50 Min 5.00 Max 11.30 Min 3.80 Max 10.00 ns 40 MHz 50 MHz 66 MHz Unit
7.60
13.80
6.30
12.50
5.00
11.30
3.80
10.00
ns
7.60
13.80
6.30
12.50
5.00
11.30
3.80
10.00
ns
B11 CLKOUT to TS, BB assertion (MAX = 0.25 x B1 + 6.0) B11a CLKOUT to TA , BI assertion (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.30 5) B12 CLKOUT to TS, BB negation (MAX = 0.25 x B1 + 4.8) B12a CLKOUT to TA , BI negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.00) B13 CLKOUT to TS, BB High-Z (MIN = 0.25 x B1) B13a CLKOUT to TA , BI High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 x B1 + 2.5) B14 CLKOUT to TEA assertion (MAX = 0.00 x B1 + 9.00) B15 CLKOUT to TEA High-Z (MIN = 0.00 x B1 + 2.50) B16 TA , BI valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 6.00) B16a TEA, KR, RETRY, CR valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 4.5) B16b BB, BG, BR, valid to CLKOUT (setup time) 6 (4MIN = 0.00 x B1 + 0.00) B17 CLKOUT to TA , TEA, BI, BB, BG , BR valid (hold time) (MIN = 0.00 x B1 + 1.00 7)
7.60 2.50
13.60 9.30
6.30 2.50
12.30 9.30
5.00 2.50
11.00 9.30
3.80 2.50
11.30 9.80
ns ns
7.60 2.50
12.30 9.00
6.30 2.50
11.00 9.00
5.00 2.50
9.80 9.00
3.80 2.50
8.50 9.00
ns ns
7.60 2.50
21.60 15.00
6.30 2.50
20.30 15.00
5.00 2.50
19.00 15.00
3.80 2.50
14.00 15.00
ns ns
2.50 2.50 6.00 4.50
9.00 15.00 — —
2.50 2.50 6.00 4.50
9.00 15.00 — —
2.50 2.50 6.00 4.50
9.00 15.00 — —
2.50 2.50 6.00 4.50
9.00 15.00 — —
ns ns ns ns
4.00 1.00
— —
4.00 1.00
— —
4.00 1.00
— —
4.00 2.00
— —
ns ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 17
Bus Signal Timing
Table 7. Bus Operation Timings (continued)
33 MHz Num Characteristic Min B17a CLKOUT to KR, RETRY, CR valid (hold time) (MIN = 0.00 x B1 + 2.00) B18 D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) 8 (MIN = 0.00 x B1 + 6.00) B19 CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) 8 (MIN = 0.00 x B1 + 1.00 9) B20 D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) 10(MIN = 0.00 x B1 + 4.00) B21 CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) 10 (MIN = 0.00 x B1 + 2.00) B22 CLKOUT rising edge to CS asserted GPCM ACS = 00 (MAX = 0.25 x B1 + 6.3) B22a CLKOUT falling edge to CS asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 x B1 + 8.00) B22b CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3) B22c CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6) B23 CLKOUT rising edge to CS negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00) B24 A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00) B24a A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 11 TRLX = 0 (MIN = 0.50 x B1 - 2.00) B25 CLKOUT rising edge to OE , WE(0:3) asserted (MAX = 0.00 x B1 + 9.00) B26 CLKOUT rising edge to OE negated (MAX = 0.00 x B1 + 9.00) 2.00 6.00 Max — — Min 2.00 6.00 Max — — Min 2.00 6.00 Max — — Min 2.00 6.00 Max — — ns ns 40 MHz 50 MHz 66 MHz Unit
1.00
—
1.00
—
1.00
—
2.00
—
ns
4.00
—
4.00
—
4.00
—
4.00
—
ns
2.00
—
2.00
—
2.00
—
2.00
—
ns
7.60
13.80
6.30
12.50
5.00
11.30
3.80
10.00
ns
—
8.00
—
8.00
—
8.00
—
8.00
ns
7.60
13.80
6.30
12.50
5.00
11.30
3.80
10.00
ns
10.90
18.00
10.90
18.00
7.00
14.30
5.20
12.30
ns
2.00
8.00
2.00
8.00
2.00
8.00
2.00
8.00
ns
5.60
—
4.30
—
3.00
—
1.80
—
ns
13.20
—
10.50
—
8.00
—
5.60
—
ns
— 2.00
9.00 9.00 2.00
9.00 9.00 2.00
9.00 9.00 2.00
9.00 9.00
ns ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 18 Freescale Semiconductor
Bus Signal Timing
Table 7. Bus Operation Timings (continued)
33 MHz Num Characteristic Min B27 A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00) B27a A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00) B28 CLKOUT rising edge to WE(0:3) negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00) B28a CLKOUT falling edge to WE(0:3) negated GPCM write access TRLX = 0, 1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80) B28b CLKOUT falling edge to CS negated GPCM write access TRLX = 0,1, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80) B28c CLKOUT falling edge to WE(0:3) negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6) B28d CLKOUT falling edge to CS negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1 (MAX = 0.375 x B1 + 6.6) B29 WE (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, CSNT = 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00) 35.90 Max — Min 29.30 Max — Min 23.00 Max — Min 16.90 Max — ns 40 MHz 50 MHz 66 MHz Unit
43.50
—
35.50
—
28.00
—
20.70
—
ns
—
9.00
—
9.00
—
9.00
—
9.00
ns
7.60
14.30
6.30
13.00
5.00
11.80
3.80
10.50
ns
—
14.30
—
13.00
—
11.80
—
10.50
ns
10.90
18.00
10.90
18.00
7.00
14.30
5.20
12.30
ns
—
18.00
—
18.00
—
14.30
—
12.30
ns
5.60
—
4.30
—
3.00
—
1.80
—
ns
B29a WE (0:3) negated to D(0:31), DP(0:3) 13.20 High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0 (MIN = 0.50 x B1 - 2.00) B29b CS negated to D(0:31), DP(0:3), High Z GPCM write access, ACS = 00, TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x B1 - 2.00) 5.60
—
10.50
—
8.00
—
5.60
—
ns
—
4.30
—
3.00
—
1.80
—
ns
13.20 B29c CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 0.50 x B1 - 2.00)
—
10.50
—
8.00
—
5.60
—
ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 19
Bus Signal Timing
Table 7. Bus Operation Timings (continued)
33 MHz Num Characteristic Min B29d WE (0:3) negated to D(0:31), DP(0:3) 43.50 High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 (MIN = 1.50 x B1 - 2.00) 43.50 B29e CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 1.50 x B1 - 2.00) B29f WE (0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 6.30) B29g CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 6.30) B29h WE (0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 3.30) 5.00 Max — Min 35.50 Max — Min 28.00 Max — Min 20.70 Max — ns 40 MHz 50 MHz 66 MHz Unit
—
35.50
—
28.00
—
20.70
—
ns
—
3.00
—
1.10
—
0.00
—
ns
5.00
—
3.00
—
1.10
—
0.00
—
ns
38.40
—
31.10
—
24.20
—
17.50
—
ns
38.40 B29i CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 3.30) B30 CS, WE (0:3) negated to A(0:31), BADDR(28:30) Invalid GPCM write access 11 (MIN = 0.25 x B1 - 2.00) B30a WE (0:3) negated to A(0:31), BADDR(28:30) Invalid GPCM, write access, TRLX = 0, CSNT = 1, CS negated to A(0:31) invalid GPCM write access TRLX = 0, CSNT =1 ACS = 10, or ACS == 11, EBDF = 0 (MIN = 0.50 x B1 - 2.00) B30b WE (0:3) negated to A(0:31) Invalid GPCM BADDR(28:30) invalid GPCM write access, TRLX = 1, CSNT = 1. CS negated to A(0:31) Invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10, or ACS == 11 EBDF = 0 (MIN = 1.50 x B1 - 2.00) 5.60
—
31.10
—
24.20
—
17.50
—
ns
—
4.30
—
3.00
—
1.80
—
ns
13.20
—
10.50
—
8.00
—
5.60
—
ns
43.50
—
35.50
—
28.00
—
20.70
—
ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 20 Freescale Semiconductor
Bus Signal Timing
Table 7. Bus Operation Timings (continued)
33 MHz Num Characteristic Min B30c WE (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access, TRLX = 0, CSNT = 1. CS negated to A(0:31) invalid GPCM write access, TRLX = 0, CSNT = 1 ACS = 10, ACS == 11, EBDF = 1 (MIN = 0.375 x B1 - 3.00) B30d WE (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1 B31 CLKOUT falling edge to CS valid - as requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00) B31a CLKOUT falling edge to CS valid - as requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80) B31b CLKOUT rising edge to CS valid - as requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00) B31c CLKOUT rising edge to CS valid- as requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30) B31d CLKOUT falling edge to CS valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6) B32 CLKOUT falling edge to BS valid- as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00) B32a CLKOUT falling edge to BS valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80) B32b CLKOUT rising edge to BS valid - as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00) 8.40 Max — Min 6.40 Max — Min 4.50 Max — Min 2.70 Max — ns 40 MHz 50 MHz 66 MHz Unit
38.67
—
31.38
—
24.50
—
17.83
—
ns
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
7.60
14.30
6.30
13.00
5.00
11.80
3.80
10.50
ns
1.50
8.00
1.50
8.00
1.50
8.00
1.50
8.00
ns
7.60
13.80
6.30
12.50
5.00
11.30
3.80
10.00
ns
9.40
18.00
7.60
16.00
13.30
14.10
11.30
12.30
ns
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
7.60
14.30
6.30
13.00
5.00
11.80
3.80
10.50
ns
1.50
8.00
1.50
8.00
1.50
8.00
1.50
8.00
ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 21
Bus Signal Timing
Table 7. Bus Operation Timings (continued)
33 MHz Num Characteristic Min B32c CLKOUT rising edge to BS valid - as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80) B32d CLKOUT falling edge to BS valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60) B33 CLKOUT falling edge to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00) B33a CLKOUT rising edge to GPL Valid - as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80) B34 A(0:31), BADDR(28:30), and D(0:31) to CS valid - as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00) 7.60 Max 14.30 Min 6.30 Max 13.00 Min 5.00 Max 11.80 Min 3.80 Max 10.50 ns 40 MHz 50 MHz 66 MHz Unit
9.40
18.00
7.60
16.00
13.30
14.10
11.30
12.30
ns
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
7.60
14.30
6.30
13.00
5.00
11.80
3.80
10.50
ns
5.60
—
4.30
—
3.00
—
1.80
—
ns
B34a A(0:31), BADDR(28:30), and D(0:31) 13.20 to CS valid - as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00) B34b A(0:31), BADDR(28:30), and D(0:31) to CS valid - as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 - 2.00) B35 A(0:31), BADDR(28:30) to CS valid as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00) B35a A(0:31), BADDR(28:30), and D(0:31) to BS valid - As Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00) 20.70
—
10.50
—
8.00
—
5.60
—
ns
—
16.70
—
13.00
—
9.40
—
ns
5.60
—
4.30
—
3.00
—
1.80
—
ns
13.20
—
10.50
—
8.00
—
5.60
—
ns
B35b A(0:31), BADDR(28:30), and D(0:31) 20.70 to BS valid - as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 - 2.00) B36 A(0:31), BADDR(28:30), and D(0:31) to GPL valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00) 5.60
—
16.70
—
13.00
—
9.40
—
ns
—
4.30
—
3.00
—
1.80
—
ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 22 Freescale Semiconductor
Bus Signal Timing
Table 7. Bus Operation Timings (continued)
33 MHz Num Characteristic Min B37 UPWAIT valid to CLKOUT falling edge 12 (MIN = 0.00 x B1 + 6.00) B38 CLKOUT falling edge to UPWAIT valid 12 (MIN = 0.00 x B1 + 1.00) B39 AS valid to CLKOUT rising edge 13 (MIN = 0.00 x B1 + 7.00) B40 A(0:31), TSIZ(0:1), RD/WR , BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00) B41 TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00) B42 CLKOUT rising edge to TS valid (hold time) (MIN = 0.00 x B1 + 2.00) B43 AS negation to memory controller signals negation (MAX = TBD)
1 2
40 MHz Min 6.00 1.00 7.00 7.00 Max — — — —
50 MHz Min 6.00 1.00 7.00 7.00 Max — — — —
66 MHz Unit Min 6.00 1.00 7.00 7.00 Max — — — — ns ns ns ns
Max — — — —
6.00 1.00 7.00 7.00
7.00 2.00 —
— — TBD
7.00 2.00 —
— — TBD
7.00 2.00 —
— — TBD
7.00 2.00 —
— — TBD
ns ns ns
Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value. If the rate of change of the frequency of EXTAL is slow (I.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (I.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%. 3 The timings specified in B4 and B5 are based on full strength clock. 4 The timing for BR output is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter. 5 For part speeds above 50MHz, use 9.80ns for B11a. 6 The timing required for BR input is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter. The timing for BG input is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter. 7 For part speeds above 50MHz, use 2ns for B17. 8 The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted. 9 For part speeds above 50MHz, use 2ns for B19. 10 The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.) 11 The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0. 12 The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 19. 13 The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 22.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 23
Bus Signal Timing
Figure 4 is the control timing diagram.
CLKOUT 2.0 V A B Outputs 2.0 V 0.8 V 2.0 V 0.8 V A B Outputs 2.0 V 0.8 V D C Inputs 2.0 V 0.8 V 2.0 V 0.8 V D C Inputs Legend: A B C D Maximum output delay specification. Minimum output hold time. Minimum input setup time specification. Minimum input hold time specification. 2.0 V 0.8 V 2.0 V 0.8 V 2.0 V 0.8 V 0.8 V 0.8 V 2.0 V
Figure 4. Control Timing
Figure 5 provides the timing for the external clock.
CLKOUT B1 B1 B4 B5 B3 B2
Figure 5. External Clock Timing
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 24 Freescale Semiconductor
Bus Signal Timing
Figure 6 provides the timing for the synchronous output signals.
CLKOUT B8 B7 Output Signals B8a B7a Output Signals B8b B7b Output Signals B9 B9
Figure 6. Synchronous Output Signals Timing
Figure 7 provides the timing for the synchronous active pull-up and open-drain output signals.
CLKOUT B13 B11 TS, BB B13a B11a TA, BI B14 B15 TEA B12a B12
Figure 7. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 25
Bus Signal Timing
Figure 8 provides the timing for the synchronous input signals.
CLKOUT B16 B17 TA, BI B16a B17a TEA, KR, RETRY, CR B16b B17 BB, BG, BR
Figure 8. Synchronous Input Signals Timing
Figure 9 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.
CLKOUT B16 B17 TA B18 B19 D[0:31], DP[0:3]
Figure 9. Input Data Timing in Normal Case
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 26 Freescale Semiconductor
Bus Signal Timing
Figure 10 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
CLKOUT
TA B20 B21 D[0:31], DP[0:3]
Figure 10. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1
Figure 11 through Figure 14 provide the timing for the external bus read controlled by various GPCM factors.
CLKOUT B11 TS B8 A[0:31] B22 CSx B25 OE B28 WE[0:3] B18 D[0:31], DP[0:3] B19 B26 B23 B12
Figure 11. External Bus Read Timing (GPCM Controlled—ACS = 00)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 27
Bus Signal Timing
CLKOUT B11 TS B8 A[0:31] B22a CSx B24 OE B18 D[0:31], DP[0:3] B19 B25 B26 B23 B12
Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)
CLKOUT B11 TS B8 A[0:31] B22c CSx B24a OE B18 D[0:31], DP[0:3] B19 B25 B26 B23 B22b B12
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 28 Freescale Semiconductor
Bus Signal Timing
CLKOUT B11 TS B8 A[0:31] B22a CSx B27 OE B27a B22b B22c D[0:31], DP[0:3] B18 B19 B26 B23 B12
Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 29
Bus Signal Timing
Figure 15 through Figure 17 provide the timing for the external bus write controlled by various GPCM factors.
CLKOUT B11 TS B8 A[0:31] B22 CSx B25 WE[0:3] B26 OE B8 D[0:31], DP[0:3] B9 B29b B29 B28 B23 B30 B12
Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0,1 CSNT = 0)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 30 Freescale Semiconductor
Bus Signal Timing
CLKOUT B11 TS B8 A[0:31] B22 CSx B25 WE[0:3] B26 OE B8 D[0:31], DP[0:3] B28a B28c B9 B29a B29f B29c B29g B28b B28d B23 B30a B30c B12
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0,1 CSNT = 1)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 31
Bus Signal Timing
CLKOUT B11 TS B8 A[0:31] B22 CSx B25 WE[0:3] B26 OE B8 D[0:31], DP[0:3] B28a B28c B29d B29h B29b B9 B29e B29i B28b B28d B23 B30b B30d B12
Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0,1, CSNT = 1)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 32 Freescale Semiconductor
Bus Signal Timing
Figure 18 provides the timing for the external bus controlled by the UPM.
CLKOUT B8 A[0:31] B31a B31d B31 CSx B34 B34a B34b B32a B32d B32 BS_A[0:3], BS_B[0:3] B35 B36 B35a B35b B33 GPL_A[0:5], GPL_B[0:5] B33a B32b B32c B31b B31c
Figure 18. External Bus Timing (UPM Controlled Signals)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 33
Bus Signal Timing
Figure 19 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.
CLKOUT B37 UPWAIT B38 CSx
BS_A[0:3], BS_B[0:3]
GPL_A[0:5], GPL_B[0:5]
Figure 19. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing
Figure 20 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.
CLKOUT B37 UPWAIT B38 CSx
BS_A[0:3], BS_B[0:3]
GPL_A[0:5], GPL_B[0:5]
Figure 20. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 34 Freescale Semiconductor
Bus Signal Timing
Figure 21 provides the timing for the synchronous external master access controlled by the GPCM.
CLKOUT B41 TS B40 A[0:31], TSIZ[0:1], R/W, BURST B22 CSx B42
Figure 21. Synchronous External Master Access Timing (GPCM Handled ACS = 00)
Figure 22 provides the timing for the asynchronous external master memory access controlled by the GPCM.
CLKOUT B39 AS B40 A[0:31], TSIZ[0:1], R/W B22 CSx
Figure 22. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)
Figure 23 provides the timing for the asynchronous external master control signals negation.
AS B43 CSx, WE[0:3], OE, GPLx, BS[0:3]
Figure 23. Asynchronous External Master—Control Signals Negation Timing
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 35
Bus Signal Timing
Table 8 provides interrupt timing for the MPC862/857T/857DSL.
Table 8. Interrupt Timing
All Frequencies Num Characteristic 1 Min I39 I40 I41 I42 I43
1
Unit Max ns ns ns ns —
IRQx valid to CLKOUT rising edge (set up time) IRQx hold time after CLKOUT IRQx pulse width low IRQx pulse width high IRQx edge-to-edge time
6.00 2.00 3.00 3.00 4xTCLOCKOUT
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT. The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC862/857T/857DSL is able to support.
Figure 24 provides the interrupt detection timing for the external level-sensitive lines.
CLKOUT I39 I40 IRQx
Figure 24. Interrupt Detection Timing for External Level Sensitive Lines
Figure 25 provides the interrupt detection timing for the external edge-sensitive lines.
CLKOUT
I41 IRQ x I43 I43
I42
Figure 25. Interrupt Detection Timing for External Edge Sensitive Lines
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 36 Freescale Semiconductor
Bus Signal Timing
Table 9 shows the PCMCIA timing for the MPC862/857T/857DSL.
Table 9. PCMCIA Timing
33 MHz Num Characteristic Min A(0:31), REG valid to PCMCIA Strobe asserted. 1 (MIN = 0.75 x B1 - 2.00) A(0:31), REG valid to ALE negation.1 (MIN = 1.00 x B1 2.00) CLKOUT to REG valid (MAX = 0.25 x B1 + 8.00) CLKOUT to REG Invalid. (MIN = 0.25 x B1 + 1.00) CLKOUT to CE1, CE2 asserted. (MAX = 0.25 x B1 + 8.00) CLKOUT to CE1, CE2 negated. (MAX = 0.25 x B1 + 8.00) CLKOUT to PCOE, IORD, PCWE , IOWR assert time. (MAX = 0.00 x B1 + 11.00) CLKOUT to PCOE, IORD, PCWE , IOWR negate time. (MAX = 0.00 x B1 + 11.00) CLKOUT to ALE assert time (MAX = 0.25 x B1 + 6.30) CLKOUT to ALE negate time (MAX = 0.25 x B1 + 8.00) PCWE, IOWR negated to D(0:31) invalid.1 (MIN = 0.25 x B1 - 2.00) WAITA and WAITB valid to CLKOUT rising edge.1 (MIN = 0.00 x B1 + 8.00) CLKOUT rising edge to WAITA and WAITB invalid.1 (MIN = 0.00 x B1 + 2.00) 20.70 Max — Min 16.70 Max — Min 13.00 Max — Min 9.40 Max — ns 40 MHz 50 MHz 66 MHz Unit
P44
28.30
—
23.00
—
18.00
—
13.20
—
ns
P45
P46 P47 P48 P49
7.60 8.60 7.60 7.60 —
15.60 — 15.60 15.60 11.00
6.30 7.30 6.30 6.30 —
14.30 — 14.30 14.30 11.00
5.00 6.00 5.00 5.00 —
13.00 — 13.00 13.00 11.00
3.80 4.80 3.80 3.80 —
11.80 — 11.80 11.80 11.00
ns ns ns ns ns
P50
2.00
11.00
2.00
11.00
2.00
11.00
2.00
11.00
ns
P51
P52 P53 P54
7.60 — 5.60 8.00
13.80 15.60 — —
6.30 — 4.30 8.00
12.50 14.30 — —
5.00 — 3.00 8.00
11.30 13.00 — —
3.80 — 1.80 8.00
10.00 11.80 — —
ns ns ns ns
P55
2.00
—
2.00
—
2.00
—
2.00
—
ns
P56
1
PSST = 1. Otherwise add PSST times cycle time. PSHT = 0. Otherwise add PSHT times cycle time. These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC862 PowerQUICC User s Manual.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 37
Bus Signal Timing
Figure 26 provides the PCMCIA access cycle timing for the external bus read.
CLKOUT
TS P44 A[0:31] P46 REG P48 CE1/CE2 P50 PCOE, IORD P52 ALE B18 D[0:31] B19 P53 P52 P51 P49 P45 P47
Figure 26. PCMCIA Access Cycles Timing External Bus Read
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 38 Freescale Semiconductor
Bus Signal Timing
Figure 27 provides the PCMCIA access cycle timing for the external bus write.
CLKOUT
TS P44 A[0:31] P46 REG P48 CE1 /CE2 P50 PCOE, IOWR P52 ALE B18 D[0:31] B19 P53 P52 P51 P54 P49 P45 P47
Figure 27. PCMCIA Access Cycles Timing External Bus Write
Figure 28 provides the PCMCIA WAIT signals detection timing.
CLKOUT P55 P56 WAITx
Figure 28. PCMCIA WAIT Signals Detection Timing
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 39
Bus Signal Timing
Table 10 shows the PCMCIA port timing for the MPC862/857T/857DSL.
Table 10. PCMCIA Port Timing
33 MHz Num Characteristic Min P57 P58 P59 P60
1
40 MHz Min — 21.70 5.00 1.00 Max 19.00 — — —
50 MHz Min — 18.00 5.00 1.00 Max 19.00 — — —
66 MHz Unit Min — 14.40 5.00 1.00 Max 19.00 — — — ns ns ns ns
Max 19.00 — — —
CLKOUT to OPx Valid (MAX = 0.00 x B1 + 19.00) HRESET negated to OPx drive 1 (MIN = 0.75 x B1 + 3.00) IP_Xx valid to CLKOUT rising edge (MIN = 0.00 x B1 + 5.00) CLKOUT rising edge to IP_Xx invalid (MIN = 0.00 x B1 + 1.00)
— 25.70 5.00 1.00
OP2 and OP3 only.
Figure 29 provides the PCMCIA output port timing for the MPC862/857T/857DSL.
CLKOUT P57 Output Signals
HRESET P58 OP2, OP3
Figure 29. PCMCIA Output Port Timing
Figure 30 provides the PCMCIA output port timing for the MPC862/857T/857DSL.
CLKOUT P59 P60 Input Signals
Figure 30. PCMCIA Input Port Timing
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 40 Freescale Semiconductor
Bus Signal Timing
Table 11 shows the debug port timing for the MPC862/857T/857DSL.
Table 11. Debug Port Timing
All Frequencies Num Characteristic Min D61 D62 D63 D64 D65 D66 D67 DSCK cycle time DSCK clock pulse width DSCK rise and fall times DSDI input data setup time DSDI data hold time DSCK low to DSDO data valid DSCK low to DSDO invalid 3 x TCLOCKOUT 1.25 x TCLOCKOUT 0.00 8.00 5.00 0.00 0.00 15.00 2.00 3.00 Max ns ns ns ns ns Unit
Figure 31 provides the input timing for the debug port clock.
DSCK D61 D61 D63 D62 D62 D63
Figure 31. Debug Port Clock Input Timing
Figure 32 provides the timing for the debug port.
DSCK D64 D65 DSDI D66 D67 DSDO
Figure 32. Debug Port Timings
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 41
Bus Signal Timing
Table 12 shows the reset timing for the MPC862/857T/857DSL.
Table 12. Reset Timing
33 MHz Num Characteristic Min R69 R70 R71 R72 R73 CLKOUT to HRESET high impedance (MAX = 0.00 x B1 + 20.00) CLKOUT to SRESET high impedance (MAX = 0.00 x B1 + 20.00) RSTCONF pulse width (MIN = 17.00 x B1) — Configuration data to HRESET rising edge set up time (MIN = 15.00 x B1 + 50.00) Configuration data to RSTCONF rising edge set up time (MIN = 0.00 x B1 + 350.00) Configuration data hold time after RSTCONF negation (MIN = 0.00 x B1 + 0.00) Configuration data hold time after HRESET negation (MIN = 0.00 x B1 + 0.00) HRESET and RSTCONF asserted to data out drive (MAX = 0.00 x B1 + 25.00) RSTCONF negated to data out high impedance. (MAX = 0.00 x B1 + 25.00) CLKOUT of last rising edge before chip three-states HRESET to data out high impedance. (MAX = 0.00 x B1 + 25.00) DSDI, DSCK set up (MIN = 3.00 x B1) DSDI, DSCK hold time (MIN = 0.00 x B1 + 0.00) SRESET negated to CLKOUT rising edge for DSDI and DSCK sample (MIN = 8.00 x B1) — — 515.20 — 504.50 Max 20.00 20.00 — — — Min — — 425.00 — 425.00 Max 20.00 20.00 — — — Min — — 340.00 — 350.00 Max 20.00 20.00 — — — Min — — 257.60 — 277.30 Max 20.00 20.00 — — — ns ns ns — ns 40 MHz 50 MHz 66 MHz Unit
350.00
—
350.00
—
350.00
—
350.00
—
ns
R74
0.00
—
0.00
—
0.00
—
0.00
—
ns
R75
0.00
—
0.00
—
0.00
—
0.00
—
ns
R76
R77 R78
— — —
25.00 25.00 25.00
— — —
25.00 25.00 25.00
— — —
25.00 25.00 25.00
— — —
25.00 25.00 25.00
ns ns ns
R79 R80 R81
90.90 0.00 242.40
— — —
75.00 0.00 200.00
— — —
60.00 0.00 160.00
— — —
45.50 0.00 121.20
— — —
ns ns ns
R82
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 42 Freescale Semiconductor
Bus Signal Timing
Figure 33 shows the reset timing for the data bus configuration.
HRESET R71 R76 RSTCONF R73 R74 D[0:31] (IN) R75
Figure 33. Reset Timing—Configuration from Data Bus
Figure 34 provides the reset timing for the data bus weak drive during configuration.
CLKOUT R69 HRESET R79 RSTCONF R77 D[0:31] (OUT) (Weak) R78
Figure 34. Reset Timing—Data Bus Weak Drive during Configuration
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 43
IEEE 1149.1 Electrical Specifications
Figure 35 provides the reset timing for the debug port configuration.
CLKOUT R70 R82 SRESET R80 R81 DSCK, DSDI R80 R81
Figure 35. Reset Timing—Debug Port Configuration
10 IEEE 1149.1 Electrical Specifications
Table 13 provides the JTAG timings for the MPC862/857T/857DSL shown in Figure 36 though Figure 39.
Table 13. JTAG Timing
All Frequencies Num Characteristic Min J82 J83 J84 J85 J86 J87 J88 J89 J90 J91 J92 J93 J94 J95 J96 TCK cycle time TCK clock pulse width measured at 1.5 V TCK rise and fall times TMS, TDI data setup time TMS, TDI data hold time TCK low to TDO data valid TCK low to TDO data invalid TCK low to TDO high impedance TRST assert time TRST setup time to TCK low TCK falling edge to output valid TCK falling edge to output valid out of high impedance TCK falling edge to output high impedance Boundary scan input valid to TCK rising edge TCK rising edge to boundary scan input invalid 100.00 40.00 0.00 5.00 25.00 — 0.00 — 100.00 40.00 — — — 50.00 50.00 Max — — 10.00 — — 27.00 — 20.00 — — 50.00 50.00 50.00 — — ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 44 Freescale Semiconductor
IEEE 1149.1 Electrical Specifications
TCK J82 J82 J84 J83 J83 J84
Figure 36. JTAG Test Clock Input Timing
TCK J85 J86 TMS, TDI J87 J88 TDO J89
Figure 37. JTAG Test Access Port Timing Diagram
TCK J91 J90 TRST
Figure 38. JTAG TRST Timing Diagram
TCK J92 Output Signals J93 Output Signals J95 Output Signals J96 J94
Figure 39. Boundary Scan (JTAG) Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 45
CPM Electrical Characteristics
11 CPM Electrical Characteristics
This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC862/857T/857DSL.
11.1
PIP/PIO AC Electrical Specifications
Table 14. PIP/PIO Timing
All Frequencies
Table 14 provides the PIP/PIO AC timings as shown in Figure 40 though Figure 44.
Num
Characteristic Min Max — — — — — — 2 — — — 25
Unit
21 22 23 24 25 26 27 28 29 30 31
1
Data-in setup time to STBI low Data-in hold time to STBI high STBI pulse width STBO pulse width Data-out setup time to STBO low Data-out hold time from STBO high STBI low to STBO low (Rx interlock) STBI low to STBO high (Tx interlock) Data-in setup time to clock high Data-in hold time from clock high Clock low to data-out valid (CPU writes data, control, or direction)
0 2.5 – t3 1 1.5 1 clk – 5 ns 2 5 — 2 15 7.5 —
ns clk clk ns clk clk clk clk ns ns ns
t3 = Specification 23
DATA-IN 21 23 STBI 27 24 STBO 22
Figure 40. PIP Rx (Interlock Mode) Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 46 Freescale Semiconductor
CPM Electrical Characteristics
DATA-OUT 25 24 STBO (Output) 28 23 STBI (Input) 26
Figure 41. PIP Tx (Interlock Mode) Timing Diagram
DATA-IN 21 23 STBI (Input) 22
24 STBO (Output)
Figure 42. PIP Rx (Pulse Mode) Timing Diagram
DATA-OUT 25 24 STBO (Output) 26
23 STBI (Input)
Figure 43. PIP TX (Pulse Mode) Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 47
CPM Electrical Characteristics
CLKO 29 30 DATA-IN
31 DATA-OUT
Figure 44. Parallel I/O Data-In/Data-Out Timing Diagram
11.2
Port C Interrupt AC Electrical Specifications
Table 15. Port C Interrupt Timing
33.34 MHz
Table 15 provides the timings for port C interrupts.
Num
Characteristic Min Max — —
Unit
35 36
Port C interrupt pulse width low (edge-triggered mode) Port C interrupt minimum time between active edges
55 55
ns ns
Figure 45 shows the port C interrupt detection timing.
36 Port C (Input) 35
Figure 45. Port C Interrupt Detection Timing
11.3
IDMA Controller AC Electrical Specifications
Table 16. IDMA Controller Timing
All Frequencies
Table 16 provides the IDMA controller timings as shown in Figure 46 though Figure 49.
Num
Characteristic Min Max — — 12
Unit
40 41 42
DREQ setup time to clock high DREQ hold time from clock high SDACK assertion delay from clock high
7 3 —
ns ns ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 48 Freescale Semiconductor
CPM Electrical Characteristics
Table 16. IDMA Controller Timing (continued)
All Frequencies Num Characteristic Min 43 44 45 46 SDACK negation delay from clock low SDACK negation delay from TA low SDACK negation delay from clock high TA assertion to falling edge of the clock setup time (applies to external TA) — — — 7 Max 12 20 15 — ns ns ns ns Unit
CLKO (Output) 41 40 DREQ (Input)
Figure 46. IDMA External Requests Timing Diagram
CLKO (Output)
TS (Output)
R/W (Output) 42 DATA 46 TA (Input) 43
SDACK
Figure 47. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 49
CPM Electrical Characteristics
CLKO (Output)
TS (Output)
R/W (Output) 42 DATA 44
TA (Output)
SDACK
Figure 48. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA
CLKO (Output)
TS (Output)
R/W (Output) 42 DATA 45
TA (Output)
SDACK
Figure 49. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 50 Freescale Semiconductor
CPM Electrical Characteristics
11.4
Baud Rate Generator AC Electrical Specifications
Table 17. Baud Rate Generator Timing
All Frequencies
Table 17 provides the baud rate generator timings as shown in Figure 50.
Num
Characteristic Min Max 10 60 —
Unit
50 51 52
BRGO rise and fall time BRGO duty cycle BRGO cycle
— 40 40
ns % ns
50 BRGOX 51 52
50
51
Figure 50. Baud Rate Generator Timing Diagram
11.5
Timer AC Electrical Specifications
Table 18. Timer Timing
All Frequencies
Table 18 provides the general-purpose timer timings as shown in Figure 51.
Num
Characteristic Min Max — — — — 25
Unit
61 62 63 64 65
TIN/TGATE rise and fall time TIN/TGATE low time TIN/TGATE high time TIN/TGATE cycle time CLKO low to TOUT valid
10 1 2 3 3
ns clk clk clk ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 51
CPM Electrical Characteristics
CLKO 60 61 TIN/TGATE (Input) 61 65 TOUT (Output) 64 63 62
Figure 51. CPM General-Purpose Timers Timing Diagram
11.6
Serial Interface AC Electrical Specifications
Table 19. SI Timing
All Frequencies
Table 19 provides the serial interface timings as shown in Figure 52 though Figure 56.
Num
Characteristic Min Max SYNCCLK/2.5 — — 15.00 — — 15.00 — — 45.00 45.00 45.00 55.00 55.00 42.00 16.00 or SYNCCLK/2 — L1RCLK, L1TCLK frequency (DSC = 0) 1, 2 L1RCLK, L1TCLK width low (DSC = 0) 2 L1RCLK, L1TCLK width high (DSC = 0)
3
Unit
70 71 71a 72 73 74 75 76 77 78 78A 79 80 80A 81 82 83
— P + 10 P + 10 — 20.00 35.00 — 17.00 13.00 10.00 10.00 10.00 10.00 10.00 0.00 — P + 10
MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz ns
L1TXD, L1ST(1–4), L1RQ , L1CLKO rise/fall time L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time) L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time) L1RSYNC, L1TSYNC rise/fall time L1RXD valid to L1CLK edge (L1RXD setup time) L1CLK edge to L1RXD invalid (L1RXD hold time) L1CLK edge to L1ST(1–4) valid 4 L1SYNC valid to L1ST(1–4) valid L1CLK edge to L1ST(1–4) invalid L1CLK edge to L1TXD valid L1TSYNC valid to L1TXD valid 4 L1CLK edge to L1TXD high impedance L1RCLK, L1TCLK frequency (DSC =1) L1RCLK, L1TCLK width low (DSC =1)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 52 Freescale Semiconductor
CPM Electrical Characteristics
Table 19. SI Timing (continued)
All Frequencies Num Characteristic Min 83a 84 85 86 87 88
1 2
Unit Max — 30.00 — — — 0.00 ns ns L1TCL K ns ns ns
L1RCLK, L1TCLK width high (DSC = 1)3 L1CLK edge to L1CLKO valid (DSC = 1) L1RQ valid before falling edge of L1TSYNC 4 L1GR setup time2 L1GR hold time L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)
P + 10 — 1.00 42.00 42.00 —
The ratio SyncCLK/L1RCLK must be greater than 2.5/1. These specs are valid for IDL mode only. 3 Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns. 4 These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.
L1RCLK (FE=0, CE=0) (Input) 71 72 L1RCLK (FE=1, CE=1) (Input) RFSD=1 75 L1RSYNC (Input) 73 74 L1RXD (Input) 76 78 L1ST(4-1) (Output) 79 BIT0 77 70 71a
Figure 52. SI Receive Timing Diagram with Normal Clocking (DSC = 0)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 53
CPM Electrical Characteristics
L1RCLK (FE=1, CE=1) (Input) 72 82 L1RCLK (FE=0, CE=0) (Input) RFSD=1 75 L1RSYNC (Input) 73 74 L1RXD (Input) 76 78 L1ST(4-1) (Output) 79 BIT0 77 83a
84 L1CLKO (Output)
Figure 53. SI Receive Timing with Double-Speed Clocking (DSC = 1)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 54 Freescale Semiconductor
CPM Electrical Characteristics
L1TCLK (FE=0, CE=0) (Input) 71 72 L1TCLK (FE=1, CE=1) (Input) 73 TFSD=0 75 L1TSYNC (Input) 74 80a L1TXD (Output) BIT0 80 78 L1ST(4-1) (Output) 79 81 70
Figure 54. SI Transmit Timing Diagram (DSC = 0)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 55
CPM Electrical Characteristics
L1RCLK (FE=0, CE=0) (Input) 72 82 L1RCLK (FE=1, CE=1) (Input) TFSD=0 75 L1RSYNC (Input) 73 74 L1TXD (Output) BIT0 80 78a L1ST(4-1) (Output) 78 84 L1CLKO (Output) 79 81 83a
Figure 55. SI Transmit Timing with Double Speed Clocking (DSC = 1)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 56 Freescale Semiconductor
Freescale Semiconductor
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
L1RCLK (Input) 73 71
L1RSYNC (Input) 71 74 B17 B16 72 77 B17 B16 B15 B14 B13 76 78 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M 81 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
80
L1TXD (Output)
Figure 56. IDL Timing
85 86 87
L1RXD (Input)
L1ST(4-1) (Output)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3
L1RQ (Output)
L1GR (Input)
CPM Electrical Characteristics
57
CPM Electrical Characteristics
11.7
SCC in NMSI Mode Electrical Specifications
Table 20. NMSI External Clock Timing
All Frequencies
Table 20 provides the NMSI external clock timing.
Num
Characteristic Min Max — — 15.00 50.00 50.00 — — — — RCLK1 and TCLK1 width high 1 RCLK1 and TCLK1 width low RCLK1 and TCLK1 rise/fall time TXD1 active delay (from TCLK1 falling edge) RTS1 active/inactive delay (from TCLK1 falling edge) CTS1 setup time to TCLK1 rising edge RXD1 setup time to RCLK1 rising edge RXD1 hold time from RCLK1 rising edge 2
Unit
100 101 102 103 104 105 106 107 108
1 2
1/SYNCCLK 1/SYNCCLK +5 — 0.00 0.00 5.00 5.00 5.00 5.00
ns ns ns ns ns ns ns ns ns
CD1 setup Time to RCLK1 rising edge
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1. Also applies to CD and CTS hold time when they are used as an external sync signal.
Table 21 provides the NMSI internal clock timing.
Table 21. NMSI Internal Clock Timing
All Frequencies Num Characteristic Min 100 102 103 104 105 106 107 108
1 2
Unit Max SYNCCLK/3 — 30.00 30.00 — — — — MHz ns ns ns ns ns ns ns
RCLK1 and TCLK1 frequency 1 RCLK1 and TCLK1 rise/fall time TXD1 active delay (from TCLK1 falling edge) RTS1 active/inactive delay (from TCLK1 falling edge) CTS1 setup time to TCLK1 rising edge RXD1 setup time to RCLK1 rising edge RXD1 hold time from RCLK1 rising edge 2 CD1 setup time to RCLK1 rising edge
0.00 — 0.00 0.00 40.00 40.00 0.00 40.00
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1. Also applies to CD and CTS hold time when they are used as an external sync signals.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 58 Freescale Semiconductor
CPM Electrical Characteristics
Figure 57 through Figure 59 show the NMSI timings.
RCLK1 102 106 RxD1 (Input) 107 108 CD1 (Input) 102 101 100
107 CD1 (SYNC Input)
Figure 57. SCC NMSI Receive Timing Diagram
TCLK1 102 102 101 100 TxD1 (Output) 103 105 RTS1 (Output) 104 104
CTS1 (Input)
107 CTS1 (SYNC Input)
Figure 58. SCC NMSI Transmit Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 59
CPM Electrical Characteristics
TCLK1 102 102 101 100 TxD1 (Output) 103
RTS1 (Output) 104 105 CTS1 (Echo Input) 107 104
Figure 59. HDLC Bus Timing Diagram
11.8
Ethernet Electrical Specifications
Table 22. Ethernet Timing
All Frequencies
Table 22 provides the Ethernet timings as shown in Figure 60 though Figure 64.
Num
Characteristic Min Max — 15 — 120 — — — — 15 — 101 50 50 50
Unit
120 121 122 123 124 125 126 127 128 129 130 131 132 133
CLSN width high RCLK1 rise/fall time RCLK1 width low RCLK1 clock period 1
40 — 40 80 20 5 10 100 — 40 99 10 10 10
ns ns ns ns ns ns ns ns ns ns ns ns ns ns
RXD1 setup time RXD1 hold time RENA active delay (from RCLK1 rising edge of the last data bit) RENA width low TCLK1 rise/fall time TCLK1 width low TCLK1 clock period1 TXD1 active delay (from TCLK1 rising edge) TXD1 inactive delay (from TCLK1 rising edge) TENA active delay (from TCLK1 rising edge)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 60 Freescale Semiconductor
CPM Electrical Characteristics
Table 22. Ethernet Timing (continued)
All Frequencies Num Characteristic Min 134 135 136 137 138 139
1 2
Unit Max 50 50 50 — 20 20 ns ns ns CLK ns ns
TENA inactive delay (from TCLK1 rising edge) RSTRT active delay (from TCLK1 falling edge) RSTRT inactive delay (from TCLK1 falling edge) REJECT width low CLKO1 low to SDACK asserted 2 CLKO1 low to SDACK negated
2
10 10 10 1 — —
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1. SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.
CLSN(CTS1) (Input) 120
Figure 60. Ethernet Collision Timing Diagram
RCLK1 121 124 RxD1 (Input) 125 126 127 RENA(CD1) (Input) 121 123 Last Bit
Figure 61. Ethernet Receive Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 61
CPM Electrical Characteristics
TCLK1 128 131 TxD1 (Output) 132 133 TENA(RTS1) (Input) 134 128 121 129
RENA(CD1) (Input) (NOTE 2)
NOTES: 1. Transmit clock invert (TCI) bit in GSMR is set. 2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in the buffer descriptor at the end of the frame transmission.
Figure 62. Ethernet Transmit Timing Diagram
RCLK1
RxD1 (Input)
0
1 Start Frame Delimiter
1
BIT1
BIT2 136
125 RSTRT (Output)
Figure 63. CAM Interface Receive Start Timing Diagram
REJECT 137
Figure 64. CAM Interface REJECT Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 62 Freescale Semiconductor
CPM Electrical Characteristics
11.9
SMC Transparent AC Electrical Specifications
Table 23. SMC Transparent Timing
All Frequencies
Table 23 provides the SMC transparent timings as shown in Figure 65.
Num SMCLK clock period 1 SMCLK width low SMCLK width high SMCLK rise/fall time
Characteristic Min Max — — — 15 50 — —
Unit
150 151 151A 152 153 154 155
1
100 50 50 — 10 20 5
ns ns ns ns ns ns ns
SMTXD active delay (from SMCLK falling edge) SMRXD/SMSYNC setup time RXD1/SMSYNC hold time
SyncCLK must be at least twice as fast as SMCLK.
SMCLK 152 152 151 150 SMTXD (Output) 154 155 SMSYNC 154 155 SMRXD (Input)
NOTE: 1. This delay is equal to an integer number of character-length clocks.
151A
NOTE 1 153
Figure 65. SMC Transparent Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 63
CPM Electrical Characteristics
11.10 SPI Master AC Electrical Specifications
Table 24 provides the SPI master timings as shown in Figure 66 though Figure 67.
Table 24. SPI Master Timing
All Frequencies Num Characteristic Min 160 161 162 163 164 165 166 167 MASTER cycle time MASTER clock (SCK) high or low time MASTER data setup time (inputs) Master data hold time (inputs) Master data valid (after SCK edge) Master data hold time (outputs) Rise time output Fall time output 4 2 15 0 — 0 — — Max 1024 512 — — 10 — 15 15 tcyc tcyc ns ns ns ns ns ns Unit
SPICLK (CI=0) (Output) 161 161 SPICLK (CI=1) (Output) 163 162 SPIMISO (Input) msb Data 165 167 SPIMOSI (Output) msb Data lsb 166 lsb 164 166 msb msb 167 167 160 166
Figure 66. SPI Master (CP = 0) Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 64 Freescale Semiconductor
CPM Electrical Characteristics
SPICLK (CI=0) (Output) 161 161 SPICLK (CI=1) (Output) 163 162 SPIMISO (Input) msb 166 Data 165 167 SPIMOSI (Output) msb Data lsb lsb 164 166 msb msb 167 167 160 166
Figure 67. SPI Master (CP = 1) Timing Diagram
11.11 SPI Slave AC Electrical Specifications
Table 25 provides the SPI slave timings as shown in Figure 68 though Figure 69.
Table 25. SPI Slave Timing
All Frequencies Num Characteristic Min 170 171 172 173 174 175 176 177 Slave cycle time Slave enable lead time Slave enable lag time Slave clock (SPICLK) high or low time Slave sequential transfer delay (does not require deselect) Slave data setup time (inputs) Slave data hold time (inputs) Slave access time 2 15 15 1 1 20 20 — Max — — — — — — — 50 tcyc ns ns tcyc tcyc ns ns ns Unit
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 65
CPM Electrical Characteristics
SPISEL (Input) 172 174 SPICLK (CI=0) (Input) 173 173 SPICLK (CI=1) (Input) 177 180 SPIMISO (Output) msb 175 176 SPIMOSI (Input) msb Data Data 179 181 182 lsb msb lsb 181 182 178 Undef msb 182 170 181 171
Figure 68. SPI Slave (CP = 0) Timing Diagram
SPISEL (Input) 172 171 SPICLK (CI=0) (Input) 173 173 SPICLK (CI=1) (Input) 177 180 SPIMISO (Output) Undef 175 176 SPIMOSI (Input) msb msb 179 181 182 Data lsb msb Data lsb 182 178 msb 182 181 181 170 174
Figure 69. SPI Slave (CP = 1) Timing Diagram
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 66 Freescale Semiconductor
CPM Electrical Characteristics
11.12 I2C AC Electrical Specifications
Table 26 provides the I2C (SCL < 100 KHz) timings.
Table 26. I2C Timing (SCL < 100 KHZ)
All Frequencies Num 200 200 202 203 204 205 206 207 208 209 210 211
1
Characteristic Min SCL clock frequency (slave) SCL clock frequency (master)
1
Unit Max 100 100 — — — — — — — 1 300 — kHz kHz μs μs μs μs μs μs ns μs ns μs 0 1.5 4.7 4.7 4.0 4.7 4.0 0 250 — — 4.7
Bus free time between transmissions Low period of SCL High period of SCL Start condition setup time Start condition hold time Data hold time Data setup time SDL/SCL rise time SDL/SCL fall time Stop condition setup time
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.
Table 27 provides the I2C (SCL > 100 kHz) timings.
Table 27. I2C Timing (SCL > 100 kHZ)
All Frequencies Num 200 200 202 203 204 205 206 207 208 209 210 211
1
Characteristic SCL clock frequency (slave) SCL clock frequency (master)
1
Expression Min fSCL fSCL — — — — — — — — — — 0 BRGCLK/16512 1/(2.2 * fSCL) 1/(2.2 * fSCL) 1/(2.2 * fSCL) 1/(2.2 * fSCL) 1/(2.2 * fSCL) 0 1/(40 * fSCL) — — 1/2(2.2 * fSCL) Max BRGCLK/48 BRGCLK/48 — — — — — — — 1/(10 * fSCL) 1/(33 * fSCL) —
Unit Hz Hz s s s s s s s s s s
Bus free time between transmissions Low period of SCL High period of SCL Start condition setup time Start condition hold time Data hold time Data setup time SDL/SCL rise time SDL/SCL fall time Stop condition setup time
SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 67
UTOPIA AC Electrical Specifications
Figure 70 shows the I2C bus timing.
SDA 202 205 SCL 206 209 210 211 203 207 204 208
Figure 70. I2C Bus Timing Diagram
12 UTOPIA AC Electrical Specifications
Table 28 shows the AC electrical specifications for the UTOPIA interface.
Table 28. UTOPIA AC Electrical Specifications
Num U1 Signal Characteristic UtpClk rise/fall time (Internal clock option) Duty cycle Frequency U1a UtpClk rise/fall time (external clock option) Duty cycle Frequency U2 U3 U4 U5 RxEnb and TxEnb active delay UTPB, SOC, Rxclav and Txclav setup time UTPB, SOC, Rxclav and Txclav hold time UTPB, SOC active delay (and PHREQ and PHSEL active delay in MPHY mode) Output Input Input Output 2 ns 4 ns 1 ns 2 ns 16 ns Input 40 Direction Output 50 Min Max 4 ns 50 33 4ns 60 33 16 ns Unit ns % MHz ns % MHz ns ns ns ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 68 Freescale Semiconductor
FEC Electrical Characteristics
Figure 71 shows signal timings during UTOPIA receive operations.
U1 UtpClk U5 PHREQn U3 3 RxClav HighZ at MPHY U2 2 U4 4 HighZ at MPHY U1
RxEnb UTPB SOC
U3 3
U4 4
Figure 71. UTOPIA Receive Timing
Figure 72 shows signal timings during UTOPIA transmit operations.
U1 1 UtpClk U5 5 PHSELn U3 3 TxClav HighZ at MPHY TxEnb UTPB SOC U2 2 HighZ at MPHY U4 4 U1
U5 5
Figure 72. UTOPIA Transmit Timing
13 FEC Electrical Characteristics
This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Furthermore, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 69
FEC Electrical Characteristics
13.1
MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency - 1%. Table 29 provides information on the MII receive signal timing.
Table 29. MII Receive Signal Timing
Num M1 M2 M3 M4 Characteristic MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold MII_RX_CLK pulse width high MII_RX_CLK pulse width low Min 5 5 35% 35% Max — — 65% 65% Unit ns ns MII_RX_CLK period MII_RX_CLK period
Figure 73 shows MII receive signal timing.
M3
MII_RX_CLK (input) M4 MII_RXD[3:0] (inputs) MII_RX_DV MII_RX_ER M1 M2
Figure 73. MII Receive Signal Timing Diagram
13.2
MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, MII_TX_ER, MII_TX_CLK)
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency - 1%. Table 30 provides information on the MII transmit signal timing.
Table 30. MII Transmit Signal Timing
Num M5 M6 Characteristic MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid Min 5 — Max — 25 Unit ns
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 70 Freescale Semiconductor
FEC Electrical Characteristics
Table 30. MII Transmit Signal Timing (continued)
Num M7 M8 Characteristic MII_TX_CLK pulse width high MII_TX_CLK pulse width low Min 35% 35% Max 65% 65% Unit MII_TX_CLK period MII_TX_CLK period
Figure 74 shows the MII transmit signal timing diagram.
M7
MII_TX_CLK (input) M5 M8 MII_TXD[3:0] (outputs) MII_TX_EN MII_TX_ER M6
Figure 74. MII Transmit Signal Timing Diagram
13.3
MII Async Inputs Signal Timing (MII_CRS, MII_COL)
Table 31. MII Async Inputs Signal Timing
Table 31 provides information on the MII async inputs signal timing.
Num M9
Characteristic MII_CRS, MII_COL minimum pulse width
Min 1.5
Max —
Unit MII_TX_CLK period
Figure 75 shows the MII asynchronous inputs signal timing diagram.
MII_CRS, MII_COL M9
Figure 75. MII Async Inputs Timing Diagram
13.4
MII Serial Management Channel Timing (MII_MDIO, MII_MDC)
Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 71
Mechanical Data and Ordering Information
Table 32. MII Serial Management Channel Timing
Num M10 M11 M12 M13 M14 M15 Characteristic MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay) MII_MDC falling edge to MII_MDIO output valid (max prop delay) MII_MDIO (input) to MII_MDC rising edge setup MII_MDIO (input) to MII_MDC rising edge hold MII_MDC pulse width high MII_MDC pulse width low Min 0 — 10 0 40% 40% Max — 25 — — 60% 60% Unit ns ns ns ns MII_MDC period MII_MDC period
Figure 76 shows the MII serial management channel timing diagram.
M14
MM15 MII_MDC (output) M10
MII_MDIO (output)
M11
MII_MDIO (input)
M12
M13
Figure 76. MII Serial Management Channel Timing Diagram
14 Mechanical Data and Ordering Information
Table 33 provides information on the MPC862/857T/857DSL derivative devices.
Table 33. MPC862/857T/857DSL Derivatives
Number of SCCs 1 Four Four Ethernet Support 10/100 Mbps 10/100 Mbps Multi-Channel HDLC Support Yes Yes Cache Size ATM Support Instruction Yes Yes 4 Kbytes 16 Kbytes Data 4 Kbytes 8 Kbytes
Device
MPC862T MPC862P
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 72 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 33. MPC862/857T/857DSL Derivatives (continued)
Number of SCCs 1 One (SCC1) One (SCC1) Ethernet Support 10/100 Mbps 10/100 Mbps Multi-Channel HDLC Support Yes No Cache Size ATM Support Instruction Yes Up to 4 addresses 4 Kbytes 4 Kbytes Data 4 Kbytes 4 Kbytes
Device
MPC857T MPC857DSL
1
Serial communications controller (SCC)
Table 34 identifies the packages and operating frequencies orderable for the MPC862/857T/857DSL derivative devices.
Table 34. MPC862/857T/857DSL Package/Frequency Orderable
Package Type Plastic ball grid array (ZP suffix) Temperature (Tj) 0°C to 105°C Frequency (MHz) 50 Order Number XPC862PZP50B XPC862TZP50B XPC857TZP50B XPC857DSLZP50B XPC862PZP66B XPC862TZP66B XPC857TZP66B XPC857DSLZP66B XPC862PZP80B XPC862TZP80B XPC857TZP80B XPC862PZP100B XPC862TZP100B XPC857TZP100B XPC862PCZP66B XPC857TCZP66B
66
80
100
Plastic ball grid array (CZP suffix)
1
-40°C to 115°C
66 1
Additional extended temperature devices can be made available at 50MHz, 66MHz, and 80MHz
14.1
.Pin Assignments
Figure 77 shows the top view pinout of the PBGA package. For additional information, see the MPC862 PowerQUICC Family User s Manual.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 73
Mechanical Data and Ordering Information
NOTE: This is the top view of the device.
W PD10 PD8 PD3 IRQ7 D0 D4 D1 D2 D3 D5 VDDL D6 D7 D29 DP2 CLKOUT IPA3 V PD14 PD13 PD9 PD6 M_Tx_EN IRQ0 D13 D27 D10 D14 D18 D20 D24 D28 DP1 DP3 DP0 N/C VSSSYN1 U PA0 PA1 PB14 PD15 PC5 PC4 PD4 PD11 PD5 PD7 IRQ1 D8 D23 D17 D11 D9 D16 D15 D19 D22 D21 D25 D26 D31 D30 IPA6 IPA5 IPA0 IPA4 IPA1 IPA2 IPA7 N/C VSSSYN T VDDH D12 VDDH XFC VDDSYN
PC6
PA2
PB15
PD12
R VDDH WAIT_B WAIT_A PORESET KAPWR P GND GND VDDL RSTCONF SRESET XTAL N
PA4
PB17
PA3
VDDL
PB19
PA5
PB18
PB16
HRESET TEXP EXTCLK EXTAL M
PA7
PC8
PA6
PC7
MODCK2 BADDR28 BADDR29 VDDL
L PB22 PC9 PA8 PB20 OP0 AS OP1 MODCK1 K PC10 PA9 PB23 PB21 GND BADDR30 IPB6 ALEA IRQ4 J PC11 PB24 PA10 PB25 IPB5 IPB1 IPB2 ALEB H VDDL M_MDIO TDI TCK M_COL IRQ2 IPB0 IPB7 G TRST TMS TDO PA11 GND VDDH GND VDDH BR IRQ6 IPB4 IPB3 F PB26 PC12 PA12 VDDL VDDL TS IRQ3 BURST E PB27 PC13 PA13 PB29 CS3 BI BG BB D PB28 PC14 PA14 PC15 A8 N/C N/C A15 A19 A25 A18 BSA0 GPLA0 N/C CS6 CS2 GPLA5 BDIP TEA C PB30 PA15 PB31 A3 A9 A12 A16 A20 A24 A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS7 CS0 TA GPLA4 B A0 A1 A4 A6 A10 A13 A17 A21 A23 A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CS5 CE1A WR GPLB4 A A2 19 18 A5 17 A7 16 A11 15 A14 14 A27 13 A29 12 A30 11 A28 10 A31 9 VDDL BSA2 8 7 WE1 6 WE3 5 CS4 4 CE2A 3 CS1 2 1
Figure 77. Pinout of the PBGA Package
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 74 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 35 contains a list of the MPC862 input and output signals and shows multiplexing and pin assignments.
Table 35. Pin Assignments
Name A[0:31] Pin Number Type
B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15, C14, Bidirectional B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10, Three-state C10, A13, A10, A12, A11, A9 B9 C9 B2 F1 D2 F3 C2 D1 E3 H3 K1 Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state Output Bidirectional Active Pull-up Bidirectional Active Pull-up Open-drain Bidirectional Active Pull-up Bidirectional Three-state Bidirectional Three-state
TSIZ0 REG TSIZ1 RD/WR BURST BDIP GPL_B5 TS TA TEA BI IRQ2 RSV IRQ4 KR RETRY SPKROUT CR IRQ3 D[0:31]
F2
Input
Bidirectional W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11, T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, Three-state V12, V6, W5, U6, T7 V3 V5 W4 V4 Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state
DP0 IRQ3 DP1 IRQ4 DP2 IRQ5 DP3 IRQ6
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 75
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name BR BG BB FRZ IRQ6 IRQ0 IRQ1 M_TX_CLK IRQ7 CS[0:5] CS6 CE1_B CS7 CE2_B WE0 BS_B0 IORD WE1 BS_B1 IOWR WE2 BS_B2 PCOE WE3 BS_B3 PCWE BS_A[0:3] GPL_A0 GPL_B0 OE GPL_A1 GPL_B1 GPL_A[2:3] GPL_B[2:3] CS[2–3] UPWAITA GPL_A4 UPWAITB GPL_B4 G4 E2 E1 G3 V14 U14 W15 C3, A2, D4, E4, A4, B4 D5 C4 C7 Pin Number Type Bidirectional Bidirectional Bidirectional Active Pull-up Bidirectional Input Input Input Output Output Output Output
A6
Output
B6
Output
A5
Output
D8, C8, A7, B8 D7 C6
Output Output Output
B5, C5
Output
C1 B1
Bidirectional Bidirectional
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 76 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name GPL_A5 PORESET RSTCONF HRESET SRESET XTAL EXTAL XFC CLKOUT EXTCLK TEXP ALE_A MII-TXD1 CE1_A MII-TXD2 CE2_A MII-TXD3 WAIT_A SOC_Split2 WAIT_B IP_A0 UTPB_Split02 MII-RXD3 IP_A1 UTPB_Split12 MII-RXD2 IP_A2 IOIS16_A UTPB_Split22 MII-RXD1 IP_A3 UTPB_Split32 MII-RXD0 IP_A4 UTPB_Split42 MII-RXCLK IP_A5 UTPB_Split52 MII-RXERR D3 R2 P3 N4 P2 P1 N1 T2 W3 N2 N3 K2 B3 A3 R3 R4 T5 Pin Number Output Input Input Open-drain Open-drain Analog Output Analog Input (3.3 V only) Analog Input Output Input (3.3 V only) Output Output Output Output Input Input Input Type
T4
Input
U3
Input
W2
Input
U4
Input
U5
Input
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 77
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name IP_A6 UTPB_Split62 MII-TXERR IP_A7 UTPB_Split72 MII-RXDV ALE_B DSCK/AT1 IP_B[0:1] IWP[0:1] VFLS[0:1] IP_B2 IOIS16_B AT2 IP_B3 IWP2 VF2 IP_B4 LWP0 VF0 IP_B5 LWP1 VF1 IP_B6 DSDI AT0 IP_B7 PTR AT3 OP0 MII-TXD0 UtpClk_Split2 OP1 OP2 MODCK1 STS OP3 MODCK2 DSDO BADDR30 REG BADDR[28:29] AS T6 Pin Number Input Type
T3
Input
J1 H2, J3
Bidirectional Three-state Bidirectional
J2
Bidirectional Three-state Bidirectional
G1
G2
Bidirectional
J4
Bidirectional
K3
Bidirectional Three-state Bidirectional Three-state Bidirectional
H1
L4
L2 L1
Output Bidirectional
M4
Bidirectional
K4 M3, M2 L3
Output Output Input
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 78 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name PA15 RXD1 RXD4 PA14 TXD1 TXD4 PA13 RXD2 PA12 TXD2 PA11 L1TXDB RXD3 PA10 L1RXDB TXD3 PA9 L1TXDA RXD4 PA8 L1RXDA TXD4 PA7 CLK1 L1RCLKA BRGO1 TIN1 PA6 CLK2 TOUT1 PA5 CLK3 L1TCLKA BRGO2 TIN2 PA4 CLK4 TOUT2 PA3 CLK5 BRGO3 TIN3 L17 Bidirectional (Optional: Open-drain) Bidirectional C18 Pin Number Type Bidirectional
D17
Bidirectional (Optional: Open-drain) Bidirectional Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain)
E17 F17 G16
J17
K18
M19
M17
Bidirectional
N18
Bidirectional
P19
Bidirectional
P17
Bidirectional
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 79
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name PA2 CLK6 TOUT3 L1RCLKB PA1 CLK7 BRGO4 TIN4 PA0 CLK8 TOUT4 L1TCLKB PB31 SPISEL REJECT1 PB30 SPICLK RSTRT2 PB29 SPIMOSI PB28 SPIMISO BRGO4 PB27 I2CSDA BRGO1 PB26 I2CSCL BRGO2 PB25 RXADDR32 SMTXD1 PB24 TXADDR32 SMRXD1 PB23 TXADDR22 SDACK1 SMSYN1 PB22 TXADDR42 SDACK2 SMSYN2 R18 Pin Number Type Bidirectional
T19
Bidirectional
U19
Bidirectional
C17
Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain)
C19
E16 D19
E19
F19
J16
J18
K17
L19
Bidirectional (Optional: Open-drain)
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 80 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name PB21 SMTXD2 L1CLKOB PHSEL1 1 TXADDR1 2 PB20 SMRXD2 L1CLKOA PHSEL01 TXADDR02 PB19 RTS1 L1ST1 PB18 RXADDR42 RTS2 L1ST2 PB17 L1RQb L1ST3 RTS3 PHREQ11 RXADDR12 PB16 L1RQa L1ST4 RTS4 PHREQ01 RXADDR02 PB15 BRGO3 TxClav PB14 RXADDR22 RSTRT1 PC15 DREQ0 RTS1 L1ST1 RxClav PC14 DREQ1 RTS2 L1ST2 K16 Pin Number Type Bidirectional (Optional: Open-drain)
L16
Bidirectional (Optional: Open-drain)
N19
Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain)
N17
P18
Bidirectional (Optional: Open-drain)
N16
Bidirectional (Optional: Open-drain)
R17
Bidirectional
U18
Bidirectional
D16
Bidirectional
D18
Bidirectional
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 81
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name PC13 L1RQb L1ST3 RTS3 PC12 L1RQa L1ST4 RTS4 PC11 CTS1 PC10 CD1 TGATE1 PC9 CTS2 PC8 CD2 TGATE2 PC7 CTS3 L1TSYNCB SDACK2 PC6 CD3 L1RSYNCB PC5 CTS4 L1TSYNCA SDACK1 PC4 CD4 L1RSYNCA PD15 L1TSYNCA MII-RXD3 UTPB0 PD14 L1RSYNCA MII-RXD2 UTPB1 PD13 L1TSYNCB MII-RXD1 UTPB2 E18 Pin Number Type Bidirectional
F18
Bidirectional
J19 K19
Bidirectional Bidirectional
L18 M18
Bidirectional Bidirectional
M16
Bidirectional
R19
Bidirectional
T18
Bidirectional
T17
Bidirectional
U17
Bidirectional
V19
Bidirectional
V18
Bidirectional
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 82 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name PD12 L1RSYNCB MII-MDC UTPB3 PD11 RXD3 MII-TXERR RXENB PD10 TXD3 MII-RXD0 TXENB PD9 RXD4 MII-TXD0 UTPCLK PD8 TXD4 MII-MDC MII-RXCLK PD7 RTS3 MII-RXERR UTPB4 PD6 RTS4 MII-RXDV UTPB5 PD5 REJECT2 MII-TXD3 UTPB6 PD4 REJECT3 MII-TXD2 UTPB7 PD3 REJECT4 MII-TXD1 SOC TMS TDI DSDI TCK DSCK R16 Pin Number Type Bidirectional
T16
Bidirectional
W18
Bidirectional
V17
Bidirectional
W17
Bidirectional
T15
Bidirectional
V16
Bidirectional
U15
Bidirectional
U16
Bidirectional
W16
Bidirectional
G18 H17 H16
Input Input Input
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 83
Mechanical Data and Ordering Information
Table 35. Pin Assignments (continued)
Name TRST TDO DSDO M_CRS M_MDIO M_TXEN M_COL KAPWR GND G19 G17 B7 H18 V15 H4 R1 Pin Number Input Output Input Bidirectional Output Input Power Type
F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, Power G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14 A8, M1, W8, H19, F4, F16, P4, P16 E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14 D6, D13, D14, U2, V2 Power Power
VDDL VDDH
N/C
1 2
No-connect
Classic SAR mode only ESAR mode only
14.2
Mechanical Dimensions of the PBGA Package
For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to Plastic Ball Grid Array Application Note (order number: AN1231/D) available from your local Freescale sales office. Figure 78 shows the mechanical dimensions of the PBGA package.
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 84 Freescale Semiconductor
Mechanical Data and Ordering Information
4X
D
0.2 A
0.2 C 0.25 C 0.35 C
C
E2
E
D2 TOP VIEW
B A2 A3 A1 A
D1
18X e
W V U T R P N M L K J H G F E D C B A 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18
SIDE VIEW
E1
NOTES: 1. Dimensions and tolerancing per ASME Y14.5M, 1994. 2. Dimensions in millimeters. 3. Dimension b is the maximum solder ball diameter measured parallel to datum C.
MILLIMETERS MIN MAX --2.05 0.50 0.70 0.95 1.35 0.70 0.90 0.60 0.90 25.00 BSC 22.86 BSC 22.40 22.60 1.27 BSC 25.00 BSC 22.86 BSC 22.40 22.60
357X
b
BOTTOM VIEW
0.3 M C A B 0.15 M C
DIM A A1 A2 A3 b D D1 D2 e E E1 E2
Case No. 1103-01 Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 85
Document Revision History
15 Document Revision History
Table 36 lists significant changes between revisions of this document.
Table 36. Document Revision History
Rev. No. 0 0.1 0.2 0.3 1.0 Date 2001 9/2001 11/2001 4/2002 9/2002 Initial revision Change extended temperature from 95 to 105 Revised for new template, changed Table 7 B23 max value @ 66 MHz from 2 ns to 8 ns. • Timing modified and equations added, for Rev. A and B devices. • Modified power numbers and temperature ranges. Added ESAR UTOPIA timing. • • • • • • • Specification changed to include the MPC857T and MPC857DSL. Changed maximum operating frequency from 80 MHz to 100 MHz. Removed MPC862DP, DT, and SR derivatives and part numbers. Corrected power dissipation numbers. Changed UTOPIA maximum frequency from 50 MHz to 33 MHz. Changed part number ordering information to Rev. B devices only. To maximum ratings for temperature, added frequency ranges. Substantive Changes
1.1 1.2 2.0
5/2003 8/2003 11/2004
Changed SPI Master Timing Specs. 162 and 164 • Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. • Non-technical reformatting • Added a table footnote to Table 5 DC Electrical Specifications about meeting the VIL Max of the I2C Standard. • Updated document template. • Changed Tj from 95C to 105C in table 34
3.0
2/2006
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 86 Freescale Semiconductor
Document Revision History
THIS PAGE INTENTIONALLY LEFT BLANK
MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3 Freescale Semiconductor 87
How to Reach Us:
Home Page: www.freescale.com email: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc., 2006.
Document Number: MPC862EC Rev. 3 2/2006