0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MPC859DSLZP66A

MPC859DSLZP66A

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MPC859DSLZP66A - Hardware Specifications - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MPC859DSLZP66A 数据手册
Freescale Semiconductor Technical Data MPC866EC Rev. 2, 2/2006 MPC866/MPC859 Hardware Specifications This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC866/859 family (refer to Table 1 for a list of devices). The MPC866P is the superset device of the MPC866/859 family.This document describes pertinent electrical and physical characteristics of the MPC8245. For functional characteristics of the processor, refer to the MPC866 PowerQUICC Family Users Manual (MPC866UM/D). Contents Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 8 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 9 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Calculation and Measurement . . . . . . . . . . 12 Power Supply and Power Sequencing . . . . . . . . . . . 15 Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 16 IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 46 CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 48 UTOPIA AC Electrical Specifications . . . . . . . . . . . 72 FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 74 Mechanical Data and Ordering Information . . . . . . . 78 Document Revision History . . . . . . . . . . . . . . . . . . . 93 1 Overview The MPC866/859 is a derivative of Freescale’s MPC860 PowerQUICC™ family of devices. It is a versatile single-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications and communications and networking systems. The MPC866/859/859DSL provides enhanced ATM functionality over that of other ATM-enabled members of the MPC860 family. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. © Freescale Semiconductor, Inc., 2006. All rights reserved. Features Table 1 shows the functionality supported by the members of the MPC866/859 family. 2 Features Table 1. MPC866 Family Functionality Cache Part Instruction MPC866P MPC866T MPC859P MPC859T MPC859DSL MPC852T 3 1 Ethernet SCC Data 8 Kbytes 4 Kbytes 8 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 10T Up to 4 Up to 4 1 1 1 2 10/100 1 1 1 1 1 1 4 4 1 1 11 2 2 2 2 2 12 1 SMC 16 Kbytes 4 Kbytes 16 Kbytes 4 Kbytes 4 Kbytes 4 KBytes On the MPC859DSL, the SCC (SCC1) is for ethernet only. Also, the MPC859DSL does not support the Time Slot Assigner (TSA). 2 On the MPC859DSL, the SMC (SMC1) is for UART only. 3 For more details on the MPC852T, please refer to the MPC852T Hardware Specifications. The following list summarizes the key MPC866/859 features: • Embedded single-issue, 32-bit PowerPC™ core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs) — The core performs branch prediction with conditional prefetch, without conditional execution — 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1) – 16-Kbyte instruction cache (MPC866P and MPC859P) is four-way, set-associative with 256 sets; 4-Kbyte instruction cache (MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets. – 8-Kbyte data cache (MPC866P and MPC859P) is two-way, set-associative with 256 sets; 4-Kbyte data cache(MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets. – Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks – Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis. — MMUs with 32-entry TLB, fully associative instruction and data TLBs — MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups. — Advanced on-chip-emulation debug mode The MPC866/859 provides enhanced ATM functionality over that of the MPC860SAR. The MPC866/859 adds major new features available in 'enhanced SAR' (ESAR) mode, including the following: — Improved operation, administration, and maintenance (OAM) support — OAM performance monitoring (PM) support — Multiple APC priority levels available to support a range of traffic pace requirements MPC866/MPC859 Hardware Specifications, Rev. 2 2 Freescale Semiconductor • Features — — — — • • • • • • ATM port-to-port switching capability without the need for RAM-based microcode Simultaneous MII (10/100Base-T) and UTOPIA (half-duplex) capability Optional statistical cell counters per PHY UTOPIA level 2 compliant interface with added FIFO buffering to reduce the total cell transmission time. (The earlier UTOPIA level 1 specification is also supported.) – Multi-PHY support on the MPC866, MPC859P, and MPC859T – Four PHY support on the MPC866/859 — Parameter RAM for both SPI and I2C can be relocated without RAM-based microcode — Supports full-duplex UTOPIA both master (ATM side) and slave (PHY side) operation using a 'split' bus — AAL2/VBR functionality is ROM-resident. Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits) Thirty-two address lines Memory controller (eight banks) — Contains complete dynamic RAM (DRAM) controller — Each bank can be a chip select or RAS to support a DRAM bank — Up to 30 wait states programmable per memory bank — Glueless interface to page mode/EDO/SDRAM, SRAM, EPROMs, flash EPROMs, and other memory devices. — DRAM controller programmable to support most size and speed memory interfaces — Four CAS lines, four WE lines, and one OE line — Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory) — Variable block sizes (32 Kbytes–256 Mbytes) — Selectable write protection — On-chip bus arbitration logic General-purpose timers — Four 16-bit timers cascadable to be two 32-bit timers — Gate mode can enable/disable counting — Interrupt can be masked on reference match and event capture Fast Ethernet controller (FEC) — Simultaneous MII (10/100Base-T) and UTOPIA operation when using the UTOPIA multiplexed bus System integration unit (SIU) — Bus monitor — Software watchdog — Periodic interrupt timer (PIT) — Low-power stop mode — Clock synthesizer — Decrementer and time base from the PowerPC architecture — Reset controller — IEEE 1149.1 test access port (JTAG) MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 3 Features • • • • • Interrupts — Seven external interrupt request (IRQ) lines — Twelve port pins with interrupt capability — The MPC866P and MPC866T have 23 internal interrupt sources; the MPC859P, MPC859T, and MPC859DSL have 20 internal interrupt sources. — Programmable priority between SCCs (MPC866P and MPC866T) — Programmable highest priority request Communications processor module (CPM) — RISC controller — Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT) — Supports continuous mode transmission and reception on all serial channels — Up to 8-Kbytes of dual-port RAM — MPC866P and MPC866T have 16 serial DMA (SDMA) channels; MPC859P, MPC859T, and MPC859DSL have 10 serial DMA (SDMA) channels. — Three parallel I/O registers with open-drain capability Four baud rate generators — Independent (can be connected to any SCC or SMC) — Allow changes during operation — Autobaud support option MPC866P and MPC866T have four SCCs (serial communication controller); MPC859P, MPC859T, and MPC859DSL have one SCC; and SCC1 on MPC859DSL supports Ethernet only. — Serial ATM capability on all SCCs — Optional UTOPIA port on SCC4 — Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation — HDLC/SDLC — HDLC bus (implements an HDLC-based local area network (LAN)) — Asynchronous HDLC to support PPP (point-to-point protocol) — AppleTalk — Universal asynchronous receiver transmitter (UART) — Synchronous UART — Serial infrared (IrDA) — Binary synchronous communication (BISYNC) — Totally transparent (bit streams) — Totally transparent (frame based with optional cyclic redundancy check (CRC) Two SMCs (serial management channels) (MPC859DSL has one SMC (SMC1) for UART.) — UART — Transparent — General circuit interface (GCI) controller — Can be connected to the time-division multiplexed (TDM) channels MPC866/MPC859 Hardware Specifications, Rev. 2 4 Freescale Semiconductor Features • • • • • • • • • • One serial peripheral interface (SPI) — Supports master and slave modes — Supports multiple-master operation on the same bus One inter-integrated circuit (I2C) port — Supports master and slave modes — Multiple-master environment support Time slot assigner (TSA) (MPC859DSL does not have TSA.) — Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation — Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined — 1- or 8-bit resolution — Allows independent transmit and receive routing, frame synchronization, and clocking — Allows dynamic changes — On MPC866P and MPC866T, can be internally connected to six serial channels (four SCCs and two SMCs); on MPC859P and MPC859T, can be connected to three serial channels (one SCC and two SMCs). Parallel interface port (PIP) — Centronics interface support — Supports fast connection between compatible ports on MPC866/859 or MC68360 PCMCIA interface — Master (socket) interface, compliant with PCI Local Bus Specification (Rev 2.1) — Supports one or two PCMCIA sockets whether ESAR functionality is enabled — Eight memory or I/O windows supported Debug interface — Eight comparators: four operate on instruction address, two operate on data address, and two operate on data. — Supports conditions: = ≠ < > — Each watchpoint can generate a breakpoint internally Normal high and normal low power modes to conserve power 1.8 V core and 3.3 V I/O operation with 5-V TTL compatibility; refer to Table 6 for a listing of the 5-V tolerant pins. 357-pin plastic ball grid array (PBGA) package Operation up to 133 MHz MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 5 Features The MPC866/859 is comprised of three modules that each use a 32-bit internal bus: MPC8xx core, system integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2. Instruction Bus Embedded MPC8xx Processor Core 16-Kbyte Instruction Cache Instruction MMU 32-Entry ITLB Unified Bus System Interface Unit (SIU) Memory Controller Internal External Bus Interface Bus Interface Unit Unit System Functions PCMCIA/ATA Interface Load/Store Bus 8-Kbyte Data Cache Data MMU 32-Entry DTLB Fast Ethernet Controller DMAs FIFOs 10/100 Base-T Media Access Control MII Parallel I/O 4 Baud Rate Generators Parallel Interface Port Timers and UTOPIA 4 Timers Interrupt 8-Kbyte Controllers Dual-Port RAM 32-Bit RISC Controller and Program ROM 16 Virtual Serial and 2 Independent DMA Channels SCC1 SCC2 SCC3 SCC4 SMC1 SMC2 SPI I 2C Time Slot Assigner Time Slot Assigner Serial Interface Figure 1. MPC866P Block Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 6 Freescale Semiconductor Features Instruction Bus Embedded MPC8xx Processor Core 4-Kbyte † Instruction Cache Instruction MMU 32-Entry ITLB Unified Bus System Interface Unit (SIU) Memory Controller Internal External Bus Interface Bus Interface Unit Unit System Functions PCMCIA/ATA Interface Load/Store Bus 4-Kbyte † Data Cache Data MMU 32-Entry DTLB Fast Ethernet Controller DMAs FIFOs 10/100 Base-T Media Access Control MII Parallel I/O 4 Baud Rate Generators Parallel Interface Port Timers and UTOPIA 4 Timers Interrupt 8-Kbyte Controllers Dual-Port RAM 32-Bit RISC Controller and Program ROM 10 Virtual Serial and 2 Independent DMA Channels SCC1 Time Slot Assigner* Time Slot Assigner SMC1 SMC2* SPI I2C Serial Interface † The MPC859P has a 16-Kbyte instruction cache and a 8-Kbyte data cache. * The MPC859DSL does not contain SMC2 nor the time slot assigner, and provides eight SDMA controllers. Figure 2. MPC859P/859T/MPC859DSL Block Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 7 Maximum Tolerated Ratings 3 Maximum Tolerated Ratings Table 2. Maximum Tolerated Ratings Rating Supply voltage 1 VDDH VDDL VDDSYN Difference between VDDL to VDDSYN Input voltage 2 Storage temperature range 1 2 This section provides the maximum tolerated voltage and temperature ranges for the MPC866/859. Table 2 shows the maximum tolerated ratings, and Table 3 shows the operating temperatures. Symbol Value – 0.3 to 4.0 – 0.3 to 2.0 – 0.3 to 2.0 100 GND – 0.3 to VDDH –55 to +150 Unit V V V mV V °C Vin Tstg The power supply of the device must start its ramp from 0.0 V. Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. See page 15. Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to power-up and normal operation (that is, if the MPC866/859 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs). Table 3. Operating Temperatures Rating Temperature 1 (standard) Symbol TA(min) Tj(max) Temperature (extended) TA(min) Tj(max) 1 Value 0 95 –40 100 Unit °C °C °C °C Minimum temperatures are guaranteed as ambient temperature, TA. Maximum temperatures are guaranteed as junction temperature, Tj. This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V DD). MPC866/MPC859 Hardware Specifications, Rev. 2 8 Freescale Semiconductor Thermal Characteristics 4 Thermal Characteristics Table 4. MPC866/859 Thermal Resistance Data Rating Junction-to-ambient 1 Environment Natural Convection Single-layer board (1s) Four-layer board (2s2p) Airflow (200 ft/min) Single-layer board (1s) Four-layer board (2s2p) Junction-to-board 4 Junction-to-case 5 Table 4 shows the thermal characteristics for the MPC866/859. Symbol Rθ JA 2 RθJMA 3 Value 37 23 30 19 13 6 2 2 Unit °C/W RθJMA3 RθJMA3 RθJB RθJC Junction-to-package top 6 Natural Convection Airflow (200 ft/min) ΨJT ΨJT 1 2 3 4 5 6 Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance. Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC JESD51-2. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 9 Power Dissipation 5 Power Dissipation Table 5. Power Dissipation (PD) Die Revision 0 Bus Mode 1:1 CPU Frequency 50 MHz 66 MHz 2:1 66 MHz 80 MHz 100 MHz 133 MHz 1 2 Table 5 shows power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice the bus speed. Typical 1 110 150 140 170 210 260 Maximum 2 140 180 160 200 250 320 Unit mW mW mW mW mW mW Typical power dissipation at VDDL and VDDSYN is at 1.8 V. and VDDH is at 3.3 V. Maximum power dissipation at VDDL and VDDSYN is at 1.9 V, and VDDH is at 3.465 V. NOTE Values in Table 5 represent VDDL based power dissipation and do not include I/O power dissipation over VDDH. I/O power dissipation varies widely by application due to buffer current, depending on external circuitry. The VDDSYN power dissipation is negligible. 6 DC Characteristics Table 6. DC Electrical Specifications Characteristic Operating voltage Symbol VDDL (core) VDDH (I/O) VDDSYN 1 Table 6 shows the DC electrical characteristics for the MPC866/859. Min 1.7 3.135 1.7 — 2.0 Max 1.9 3.465 1.9 100 3.465 Unit V V V mV V Difference between VDDL to VDDSYN Input high voltage (all inputs except EXTAL and EXTCLK) 2 VIH MPC866/MPC859 Hardware Specifications, Rev. 2 10 Freescale Semiconductor DC Characteristics Table 6. DC Electrical Specifications (continued) Characteristic Input low voltage EXTAL, EXTCLK input high voltage Input leakage current, Vin = 5.5V (except TMS, TRST, DSCK and DSDI pins) for 5 Volts Tolerant Pins 2 Input leakage current, Vin = VDDH (except TMS, TRST, DSCK, and DSDI) Input leakage current, Vin = 0 V (except TMS, TRST, DSCK and DSDI pins) Input capacitance 3 Output high voltage, IOH = – 2.0 mA, except XTAL, and Open drain pins VIL VIHC Iin IIn IIn Cin VOH Symbol Min GND 0.7*(VDDH) — — — — 2.4 Max 0.8 VDDH 100 10 10 20 — Unit V V µA µA µA pF V Output low voltage VOL • IOL = 2.0 mA (CLKOUT) • IOL = 3.2 mA 4 • IOL = 5.3 mA 5 • IOL = 7.0 mA (TXD1/PA14, TXD2/PA12) • IOL = 8.9 mA (TS, TA, TEA , BI, BB, HRESET, SRESET) 1 2 — 0.5 V The difference between VDDL and VDDSYN can not be more than 100 m V. The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, MII_MDIO are 5 V tolerant. 3 Input capacitance is periodically sampled. 4 A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ (3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA /PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1TSYNCB/PC7, CD3/L1RSYNCB/PC6, CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB, PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3, PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3]. 5 BDIP/GPL_B (5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B (2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30). MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 11 Thermal Calculation and Measurement 7 Thermal Calculation and Measurement For the following discussions, PD = (VDDL x IDDL) + PI/O, where PI/O is the power dissipation of the I/O drivers. The VDDSYN power dissipation is negligible. 7.1 Estimation with Junction-to-Ambient Thermal Resistance TJ = TA +(RθJA x PD) An estimation of the chip junction temperature, TJ, in °C can be obtained from the equation: where: TA = ambient temperature (ºC) RθJA = package junction-to-ambient thermal resistance (ºC/W) PD = power dissipation in package The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity TJ-TA) are possible. 7.2 Estimation with Junction-to-Case Thermal Resistance Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance: RθJA = RθJC + RθCA where: RθJA = junction-to-ambient thermal resistance (ºC/W) RθJC = junction-to-case thermal resistance (ºC/W) RθCA = case-to-ambient thermal resistance (ºC/W) RθJC is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, RθCA. For instance, the user can change the airflow around the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required. 7.3 Estimation with Junction-to-Board Thermal Resistance A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see Figure 3. MPC866/MPC859 Hardware Specifications, Rev. 2 12 Freescale Semiconductor Thermal Calculation and Measurement Figure 3. Effect of Board Temperature Rise on Thermal Behavior If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation: TJ = TB +(RθJB x PD) where: RθJB = junction-to-board thermal resistance (ºC/W) TB = board temperature ºC PD = power dissipation in package If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane. 7.4 Estimation Using Simulation When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 13 Thermal Calculation and Measurement 7.5 Experimental Determination To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation: TJ = TT +(ΨJT x PD) where: ΨJT = thermal characterization parameter TT = thermocouple temperature on top of package PD = power dissipation in package The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. 7.6 References Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043 MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956 JEDEC Specifications http://www.jedec.org 1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. 2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220. MPC866/MPC859 Hardware Specifications, Rev. 2 14 Freescale Semiconductor Power Supply and Power Sequencing 8 Power Supply and Power Sequencing This section provides design considerations for the MPC866/859 power supply. The MPC866/859 has a core voltage (VDDL) and PLL voltage (VDDSYN) that operates at a lower voltage than the I/O voltage VDDH. The I/O section of the MPC866/859 is supplied with 3.3 V across VDDH and VSS (GND). Signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, and MII_MDIO are 5-V tolerant. All inputs cannot be more than 2.5 V greater than VDDH. In addition, 5-V tolerant pins cannot exceed 5.5 V and the remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and normal operation. One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply: • • VDDL must not exceed VDDH during power up and power down. VDDL must not exceed 1.9 V and VDDH must not exceed 3.465 V. These cautions are necessary for the long term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown in Figure 4 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on powerup and the 1N5820 diodes regulate the maximum potential difference on powerdown. VDDH MUR420 VDDL 1N5820 Figure 4. Example Voltage Sequencing Circuit 9 Layout Practices Each VDD pin on the MPC866/859 should be provided with a low-impedance path to the board’s supply. Furthermore, each GND pin should be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD power supply should be bypassed to ground using at least four 0.1 µF bypass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed-circuit traces connecting to chip V DD and GND should be kept to less than 1/2” per capacitor lead. At a minimum, a four-layer board employing two inner layers as VDD and GND planes should be used. All output pins on the MPC866/859 have fast rise and fall times. Printed-circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 15 Bus Signal Timing This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6” are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, please refer to Section 14.4.3, Clock Synthesizer Power (VDDSYN, VSSSYN, VSSSYN1), in the MPC866 User’s Manual. 10 Bus Signal Timing The maximum bus speed supported by the MPC866/859 is 66 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC866/859 used at 100 MHz must be configured for a 50-MHz bus). Table 7 and Table 8 show the frequency ranges for standard part frequencies. Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode) Part Freq Min Core 40 50 MHz Max 50 Min 40 66 MHz Max 66.67 Bus 40 50 40 66.67 Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode) Part Freq Min Core 40 50 MHz Max 50 Min 40 66 MHz Max 66.67 Min 40 100 MHz Max 100 Min 40 133 MHz Max 133.34 Bus 20 25 20 33.33 20 50 20 66.67 Table 9 shows the timings for the MPC866/859 at 33, 40, 50, and 66 MHz bus operation. The timing for the MPC866/859 bus shown in this table assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay. Table 9. Bus Operation Timings 33 MHz Num Characteristic Min B1 B1a B1b B1c Bus Period (CLKOUT) See Table 7 EXTCLK to CLKOUT phase skew CLKOUT frequency jitter peak-to-peak Frequency jitter on EXTCLK — –2 — — Max — +2 1 0.50 Min — –2 — — Max — +2 1 0.50 Min — –2 — — Max — +2 1 0.50 Min — –2 — — Max — +2 1 0.50 ns ns ns % 40 MHz 50 MHz 66 MHz Unit MPC866/MPC859 Hardware Specifications, Rev. 2 16 Freescale Semiconductor Bus Signal Timing Table 9. Bus Operation Timings (continued) 33 MHz Num Characteristic Min B1d CLKOUT phase jitter peak-to-peak for OSCLK ≥ 15 MHz CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz B2 B3 B4 B5 B7 CLKOUT pulse width low (MIN = 0.4 x B1, MAX = 0.6 x B1) CLKOUT pulse width high (MIN = 0.4 x B1, MAX = 0.6 x B1) CLKOUT rise time CLKOUT fall time CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3) output hold (MIN = 0.25 x B1) CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), BDIP PTR output hold (MIN = , 0.25 x B1) CLKOUT to BR, BG, FRZ, VFLS(0:1), VF(0:2), IWP(0:2), LWP(0:1), STS output hold (MIN = 0.25 x B1) CLKOUT to A(0:31), BADDR(28:30) RD/WR, BURST, D(0:31), DP(0:3), valid (MAX = 0.25 x B1 + 6.3) CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), BDIP, PTR valid (MAX = 0.25 x B1 + 6.3) CLKOUT to BR, BG, VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), STS valid 4 (MAX = 0.25 x B1 + 6.3) CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z (MAX = 0.25 x B1 + 6.3) CLKOUT to TS, BB assertion (MAX = 0.25 x B1 + 6.0) — Max 4 Min — Max 4 Min — Max 4 Min — Max 4 ns 40 MHz 50 MHz 66 MHz Unit — 5 — 5 — 5 — 5 ns 12.1 12.1 — — 7.60 18.2 18.2 4.00 4.00 — 10.0 10.0 — — 6.30 15.0 15.0 4.00 4.00 — 8.0 8.0 — — 5.00 12.0 12.0 4.00 4.00 — 6.1 6.1 — — 3.80 9.1 9.1 4.00 4.00 — ns ns ns ns ns B7a 7.60 — 6.30 — 5.00 — 3.80 — ns B7b 7.60 — 6.30 — 5.00 — 3.80 — ns B8 — 13.80 — 12.50 — 11.30 — 10.00 ns B8a — 13.80 — 12.50 — 11.30 — 10.00 ns B8b — 13.80 — 12.50 — 11.30 — 10.00 ns B9 7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns B11 7.60 2.50 13.60 9.30 6.30 2.50 12.30 9.30 5.00 2.50 11.00 9.30 3.80 2.50 9.80 9.80 ns ns B11a CLKOUT to TA , BI assertion (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.30 1) B12 CLKOUT to TS, BB negation (MAX = 0.25 x B1 + 4.8) 7.60 12.30 6.30 11.00 5.00 9.80 3.80 8.50 ns MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 17 Bus Signal Timing Table 9. Bus Operation Timings (continued) 33 MHz Num Characteristic Min B12a CLKOUT to TA , BI negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.00) B13 CLKOUT to TS, BB High-Z (MIN = 0.25 x B1) 2.50 Max 9.00 Min 2.50 Max 9.00 Min 2.50 Max 9.00 Min 2.50 Max 9.00 ns 40 MHz 50 MHz 66 MHz Unit 7.60 2.50 21.60 15.00 6.30 2.50 20.30 15.00 5.00 2.50 19.00 15.00 3.80 2.50 14.00 15.00 ns ns B13a CLKOUT to TA , BI High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 x B1 + 2.5) B14 B15 B16 CLKOUT to TEA assertion (MAX = 0.00 x B1 + 9.00) CLKOUT to TEA High-Z (MIN = 0.00 x B1 + 2.50) TA , BI valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 6.00) 2.50 2.50 6.00 4.50 4.00 1.00 9.00 15.00 — — — — 2.50 2.50 6.00 4.50 4.00 1.00 9.00 15.00 — — — — 2.50 2.50 6.00 4.50 4.00 1.00 9.00 15.00 — — — — 2.50 2.50 6.00 4.50 4.00 2.00 9.00 15.00 — — — — ns ns ns ns ns ns B16a TEA, KR, RETRY, CR valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 4.5) B16b BB, BG, BR, valid to CLKOUT (setup time) 2 (4 MIN = 0.00 x B1 + 0.00 ) B17 CLKOUT to TA , TEA, BI, BB, BG, BR valid (hold time) (MIN = 0.00 x B1 + 1.00 3) B17a CLKOUT to KR, RETRY, CR valid (hold time) (MIN = 0.00 x B1 + 2.00) B18 D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) 4 (MIN = 0.00 x B1 + 6.00) CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) 4 (MIN = 0.00 x B1 + 1.00 5) D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) 6(MIN = 0.00 x B1 + 4.00) CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) 6 (MIN = 0.00 x B1 + 2.00) CLKOUT rising edge to CS asserted GPCM ACS = 00 (MAX = 0.25 x B1 + 6.3) 2.00 6.00 — — 2.00 6.00 — — 2.00 6.00 — — 2.00 6.00 — — ns ns B19 1.00 — 1.00 — 1.00 — 2.00 — ns B20 4.00 — 4.00 — 4.00 — 4.00 — ns B21 2.00 — 2.00 — 2.00 — 2.00 — ns B22 7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns B22a CLKOUT falling edge to CS asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 x B1 + 8.00) — 8.00 — 8.00 — 8.00 — 8.00 ns MPC866/MPC859 Hardware Specifications, Rev. 2 18 Freescale Semiconductor Bus Signal Timing Table 9. Bus Operation Timings (continued) 33 MHz Num Characteristic Min B22b CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3) B22c CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6) B23 CLKOUT rising edge to CS negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00) A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00) 7.60 Max 13.80 Min 6.30 Max 12.50 Min 5.00 Max 11.30 Min 3.80 Max 10.00 ns 40 MHz 50 MHz 66 MHz Unit 10.90 18.00 10.90 16.00 7.00 14.10 5.20 12.30 ns 2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00 ns B24 5.60 — 4.30 — 3.00 — 1.80 — ns B24a A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 11, TRLX = 0 (MIN = 0.50 x B1 - 2.00) B25 B26 B27 CLKOUT rising edge to OE , WE (0:3) asserted (MAX = 0.00 x B1 + 9.00) CLKOUT rising edge to OE negated (MAX = 0.00 x B1 + 9.00) A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00) 13.20 — 10.50 — 8.00 — 5.60 — ns — 2.00 35.90 9.00 9.00 — — 2.00 29.30 9.00 9.00 — — 2.00 23.00 9.00 9.00 — — 2.00 16.90 9.00 9.00 — ns ns ns B27a A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00) B28 CLKOUT rising edge to WE(0:3) negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00) 43.50 — 35.50 — 28.00 — 20.70 — ns — 9.00 — 9.00 — 9.00 — 9.00 ns B28a CLKOUT falling edge to WE(0:3) negated GPCM write access TRLX = 0,1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80) B28b CLKOUT falling edge to CS negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80) B28c CLKOUT falling edge to WE(0:3) negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6) 7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns — 14.30 — 13.00 — 11.80 — 10.50 ns 10.90 18.00 10.90 18.00 7.00 14.30 5.20 12.30 ns MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 19 Bus Signal Timing Table 9. Bus Operation Timings (continued) 33 MHz Num Characteristic Min B28d CLKOUT falling edge to CS negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1 (MAX = 0.375 x B1 + 6.6) B29 WE (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, CSNT = 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00) — Max 18.00 Min — Max 18.00 Min — Max 14.30 Min — Max 12.30 ns 40 MHz 50 MHz 66 MHz Unit 5.60 — 4.30 — 3.00 — 1.80 — ns B29a WE (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0 (MIN = 0.50 x B1 – 2.00) B29b CS negated to D(0:31), DP(0:3), High Z GPCM write access, ACS = 00, TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x B1– 2.00) B29c CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0 (MIN = 0.50 x B1 – 2.00) B29d WE (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 (MIN = 1.50 x B1 – 2.00) B29e CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0 (MIN = 1.50 x B1 – 2.00) B29f WE (0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 – 6.30) B29g CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 – 6.30) B29h WE (0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 – 3.30) B29i CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 – 3.30) 13.20 — 10.50 — 8.00 — 5.60 — ns 5.60 — 4.30 — 3.00 — 1.80 — ns 13.20 — 10.50 — 8.00 — 5.60 — ns 43.50 — 35.50 — 28.00 — 20.70 — ns 43.50 — 35.50 — 28.00 — 20.70 — ns 5.00 — 3.00 — 1.10 — 0.00 — ns 5.00 — 3.00 — 1.10 — 0.00 — ns 38.40 — 31.10 — 24.20 — 17.50 — ns 38.40 — 31.10 — 24.20 — 17.50 — ns MPC866/MPC859 Hardware Specifications, Rev. 2 20 Freescale Semiconductor Bus Signal Timing Table 9. Bus Operation Timings (continued) 33 MHz Num Characteristic Min B30 CS, WE (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access 7 (MIN = 0.25 x B1 – 2.00) 5.60 Max — Min 4.30 Max — Min 3.00 Max — Min 1.80 Max — ns 40 MHz 50 MHz 66 MHz Unit B30a WE (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM, write access, TRLX = 0, CSNT = 1, CS negated to A(0:31) invalid GPCM write access TRLX = 0, CSNT =1 ACS = 10, or ACS == 11, EBDF = 0 (MIN = 0.50 x B1 – 2.00) B30b WE (0:3) negated to A(0:31) invalid GPCM BADDR(28:30) invalid GPCM write access, TRLX = 1, CSNT = 1. CS negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10, or ACS == 11 EBDF = 0 (MIN = 1.50 x B1 – 2.00) B30c WE (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access, TRLX = 0, CSNT = 1. CS negated to A(0:31) invalid GPCM write access, TRLX = 0, CSNT = 1 ACS = 10, ACS == 11, EBDF = 1 (MIN = 0.375 x B1 – 3.00) B30d WE (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1 B31 CLKOUT falling edge to CS valid, as requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00) 13.20 — 10.50 — 8.00 — 5.60 — ns 43.50 — 35.50 — 28.00 — 20.70 — ns 8.40 — 6.40 — 4.50 — 2.70 — ns 38.67 — 31.38 — 24.50 — 17.83 — ns 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns B31a CLKOUT falling edge to CS valid, as requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80) B31b CLKOUT rising edge to CS valid, as requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00) B31c CLKOUT rising edge to CS valid, as requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30) 7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns 1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns 7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 21 Bus Signal Timing Table 9. Bus Operation Timings (continued) 33 MHz Num Characteristic Min B31d CLKOUT falling edge to CS valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6) B32 CLKOUT falling edge to BS valid, as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00) 13.30 Max 18.00 Min 11.30 Max 16.00 Min 9.40 Max 14.10 Min 7.60 Max 12.30 ns 40 MHz 50 MHz 66 MHz Unit 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns B32a CLKOUT falling edge to BS valid, as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80) B32b CLKOUT rising edge to BS valid, as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00) B32c CLKOUT rising edge to BS valid, as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80) B32d CLKOUT falling edge to BS valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60) B33 CLKOUT falling edge to GPL valid, as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00) 7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns 1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns 7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns 13.30 18.00 11.30 16.00 9.40 14.10 7.60 12.30 ns 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns B33a CLKOUT rising edge to GPL valid, as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80) B34 A(0:31), BADDR(28:30), and D(0:31) to CS valid, as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00) 7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns 5.60 — 4.30 — 3.00 — 1.80 — ns B34a A(0:31), BADDR(28:30), and D(0:31) to CS valid, as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 – 2.00) B34b A(0:31), BADDR(28:30), and D(0:31) to CS valid, as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 – 2.00) 13.20 — 10.50 — 8.00 — 5.60 — ns 20.70 — 16.70 — 13.00 — 9.40 — ns MPC866/MPC859 Hardware Specifications, Rev. 2 22 Freescale Semiconductor Bus Signal Timing Table 9. Bus Operation Timings (continued) 33 MHz Num Characteristic Min B35 A(0:31), BADDR(28:30) to CS valid, as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 – 2.00) 5.60 Max — Min 4.30 Max — Min 3.00 Max — Min 1.80 Max — ns 40 MHz 50 MHz 66 MHz Unit B35a A(0:31), BADDR(28:30), and D(0:31) to BS valid, as Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 – 2.00) B35b A(0:31), BADDR(28:30), and D(0:31) to BS valid, as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 – 2.00) B36 A(0:31), BADDR(28:30), and D(0:31) to GPL valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 – 2.00) UPWAIT valid to CLKOUT falling edge 8 (MIN = 0.00 x B1 + 6.00) CLKOUT falling edge to UPWAIT valid8 (MIN = 0.00 x B1 + 1.00) AS valid to CLKOUT rising edge 9 (MIN = 0.00 x B1 + 7.00) A(0:31), TSIZ(0:1), RD/WR , BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00) TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00) CLKOUT rising edge to TS valid (hold time) (MIN = 0.00 x B1 + 2.00) AS negation to memory controller signals negation (MAX = TBD) 13.20 — 10.50 — 8.00 — 5.60 — ns 20.70 — 16.70 — 13.00 — 9.40 — ns 5.60 — 4.30 — 3.00 — 1.80 — ns B37 B38 B39 B40 6.00 1.00 7.00 7.00 — — — — 6.00 1.00 7.00 7.00 — — — — 6.00 1.00 7.00 7.00 — — — — 6.00 1.00 7.00 7.00 — — — — ns ns ns ns B41 B42 B43 1 2 3 4 5 6 7.00 2.00 — — — TBD 7.00 2.00 — — — TBD 7.00 2.00 — — — TBD 7.00 2.00 — — — TBD ns ns ns 7 For part speeds above 50 MHz, use 9.80 ns for B11a. The timing required for BR input is relevant when the MPC866/859 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC866/859 is selected to work with the external bus arbiter. For part speeds above 50 MHz, use 2 ns for B17. The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal is asserted. For part speeds above 50 MHz, use 2 ns for B19. The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.) The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 23 Bus Signal Timing 8 The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 20. 9 The AS signal is considered asynchronous to CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 23. Figure 5 shows the control timing diagram. CLKOUT 2.0 V A B Outputs 2.0 V 0.8 V 2.0 V 0.8 V A B Outputs 2.0 V 0.8 V D C Inputs 2.0 V 0.8 V 2.0 V 0.8 V D C Inputs 2.0 V 0.8 V 2.0 V 0.8 V 2.0 V 0.8 V 2.0 V 0.8 V 0.8 V A B C D Maximum output delay specification Minimum output hold time Minimum input setup time specification Minimum input hold time specification Figure 5. Control Timing MPC866/MPC859 Hardware Specifications, Rev. 2 24 Freescale Semiconductor Bus Signal Timing Figure 6 shows the timing for the external clock. CLKOUT B1 B1 B4 B5 B3 B2 Figure 6. External Clock Timing Figure 7 shows the timing for the synchronous output signals. CLKOUT B8 B7 Output Signals B8a B7a Output Signals B8b B7b Output Signals B9 B9 Figure 7. Synchronous Output Signals Timing MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 25 Bus Signal Timing Figure 8 shows the timing for the synchronous active pull-up and open-drain output signals. CLKOUT B13 B11 TS, BB B13a B11a TA, BI B14 B15 TEA B12a B12 Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing Figure 9 shows the timing for the synchronous input signals. CLKOUT B16 B17 TA, BI B16a B17a TEA, KR, RETRY, CR B16b B17 BB, BG, BR Figure 9. Synchronous Input Signals Timing MPC866/MPC859 Hardware Specifications, Rev. 2 26 Freescale Semiconductor Bus Signal Timing Figure 10 shows normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller. CLKOUT B16 B17 TA B18 B19 D[0:31], DP[0:3] Figure 10. Input Data Timing in Normal Case Figure 11 shows the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.) CLKOUT TA B20 B21 D[0:31], DP[0:3] Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1 MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 27 Bus Signal Timing Figure 12 through Figure 15 show the timing for the external bus read controlled by various GPCM factors. CLKOUT B11 TS B8 A[0:31] B22 CSx B25 OE B28 WE[0:3] B18 D[0:31], DP[0:3] B19 B26 B23 B12 Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00) MPC866/MPC859 Hardware Specifications, Rev. 2 28 Freescale Semiconductor Bus Signal Timing CLKOUT B11 TS B8 A[0:31] B22a CSx B24 OE B18 D[0:31], DP[0:3] B19 B25 B26 B23 B12 Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10) CLKOUT B11 TS B8 A[0:31] B22c CSx B24a OE B18 D[0:31], DP[0:3] B19 B25 B26 B23 B22b B12 Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 11) MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 29 Bus Signal Timing CLKOUT B11 TS B8 A[0:31] B22a CSx B27 OE B27a B22b B22c D[0:31], DP[0:3] B18 B19 B26 B23 B12 Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11) MPC866/MPC859 Hardware Specifications, Rev. 2 30 Freescale Semiconductor Bus Signal Timing Figure 16 through Figure 18 show the timing for the external bus write controlled by various GPCM factors. CLKOUT B11 TS B8 A[0:31] B22 CSx B25 WE[0:3] B26 OE B8 D[0:31], DP[0:3] B9 B29b B29 B28 B23 B30 B12 Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0) MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 31 Bus Signal Timing CLKOUT B11 TS B8 A[0:31] B22 CSx B25 WE[0:3] B26 OE B8 D[0:31], DP[0:3] B28a B28c B9 B29a B29f B29c B29g B28b B28d B23 B30a B30c B12 Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1) MPC866/MPC859 Hardware Specifications, Rev. 2 32 Freescale Semiconductor Bus Signal Timing CLKOUT B11 TS B8 A[0:31] B22 CSx B25 WE[0:3] B26 OE B8 D[0:31], DP[0:3] B28a B28c B29d B29h B29b B9 B29e B29i B28b B28d B23 B30b B30d B12 Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1) MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 33 Bus Signal Timing Figure 19 shows the timing for the external bus controlled by the UPM. CLKOUT B8 A[0:31] B31a B31d B31 CSx B34 B34a B34b B32a B32d B32 BS_A[0:3], BS_B[0:3] B35 B36 B35a B35b B33 GPL_A[0:5], GPL_B[0:5] B33a B32b B32c B31b B31c Figure 19. External Bus Timing (UPM Controlled Signals) MPC866/MPC859 Hardware Specifications, Rev. 2 34 Freescale Semiconductor Bus Signal Timing Figure 20 shows the timing for the asynchronous asserted UPWAIT signal controlled by the UPM. CLKOUT B37 UPWAIT B38 CSx BS_A[0:3], BS_B[0:3] GPL_A[0:5], GPL_B[0:5] Figure 20. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing Figure 21 shows the timing for the asynchronous negated UPWAIT signal controlled by the UPM. CLKOUT B37 UPWAIT B38 CSx BS_A[0:3], BS_B[0:3] GPL_A[0:5], GPL_B[0:5] Figure 21. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 35 Bus Signal Timing Figure 22 shows the timing for the synchronous external master access controlled by the GPCM. CLKOUT B41 TS B40 A[0:31], TSIZ[0:1], R/W, BURST B22 CSx B42 Figure 22. Synchronous External Master Access Timing (GPCM Handled ACS = 00) MPC866/MPC859 Hardware Specifications, Rev. 2 36 Freescale Semiconductor Bus Signal Timing Figure 23 shows the timing for the asynchronous external master memory access controlled by the GPCM. CLKOUT B39 AS B40 A[0:31], TSIZ[0:1], R/W B22 CSx Figure 23. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00) Figure 24 shows the timing for the asynchronous external master control signals negation. AS B43 CSx, WE[0:3], OE, GPLx, BS[0:3] Figure 24. Asynchronous External Master—Control Signals Negation Timing Table 10 shows the interrupt timing for the MPC866/859. Table 10. Interrupt Timing All Frequencies Num Characteristic 1 Min I39 I40 I41 I42 I43 1 Unit Max — — — — — ns ns ns ns — IRQ x valid to CLKOUT rising edge (setup time) IRQ x hold time after CLKOUT IRQ x pulse width low IRQ x pulse width high IRQ x edge-to-edge time 6.00 2.00 3.00 3.00 4xTCLOCKOUT The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT. The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC866/859 is able to support. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 37 Bus Signal Timing Figure 25 shows the interrupt detection timing for the external level-sensitive lines. CLKOUT I39 I40 IRQx Figure 25. Interrupt Detection Timing for External Level Sensitive Lines Figure 26 shows the interrupt detection timing for the external edge-sensitive lines. CLKOUT I41 IRQx I43 I43 I42 Figure 26. Interrupt Detection Timing for External Edge Sensitive Lines Table 11 shows the PCMCIA timing for the MPC866/859. Table 11. PCMCIA Timing 33 MHz Num Characteristic Min A(0:31), REG valid to PCMCIA Strobe asserted 1 (MIN = 0.75 x B1 – 2.00) 20.70 Max — Min 16.70 Max — Min 13.00 Max — Min 9.40 Max — ns 40 MHz 50 MHz 66 MHz Unit P44 P45 P46 P47 P48 P49 A(0:31), REG valid to ALE 28.30 negation1 (MIN = 1.00 x B1 – 2.00) CLKOUT to REG valid (MAX = 0.25 x B1 + 8.00) CLKOUT to REG invalid (MIN = 0.25 x B1 + 1.00) CLKOUT to CE1, CE2 asserted (MAX = 0.25 x B1 + 8.00) CLKOUT to CE1, CE2 negated (MAX = 0.25 x B1 + 8.00) 7.60 8.60 7.60 7.60 — 15.60 — 15.60 15.60 23.00 6.30 7.30 6.30 6.30 — 14.30 — 14.30 14.30 18.00 5.00 6.00 5.00 5.00 — 13.00 — 13.00 13.00 13.20 3.80 4.80 3.80 3.80 — 11.80 — 11.80 11.80 ns ns ns ns ns MPC866/MPC859 Hardware Specifications, Rev. 2 38 Freescale Semiconductor Bus Signal Timing Table 11. PCMCIA Timing (continued) 33 MHz Num Characteristic Min CLKOUT to PCOE , IORD, PCWE , IOWR assert time (MAX = 0.00 x B1 + 11.00) CLKOUT to PCOE , IORD, PCWE , IOWR negate time (MAX = 0.00 x B1 + 11.00) CLKOUT to ALE assert time (MAX = 0.25 x B1 + 6.30) CLKOUT to ALE negate time (MAX = 0.25 x B1 + 8.00) PCWE, IOWR negated to D(0:31) invalid1 (MIN = 0.25 x B1 – 2.00) WAITA and WAITB valid to CLKOUT rising edge1 (MIN = 0.00 x B1 + 8.00) CLKOUT rising edge to WAITA and WAITB invalid1 (MIN = 0.00 x B1 + 2.00) — Max 11.00 Min — Max 11.00 Min — Max 11.00 Min — Max 11.00 ns 40 MHz 50 MHz 66 MHz Unit P50 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 ns P51 P52 P53 P54 7.60 — 5.60 8.00 13.80 15.60 — — 6.30 — 4.30 8.00 12.50 14.30 — — 5.00 — 3.00 8.00 11.30 13.00 — — 3.80 — 1.80 8.00 10.00 11.80 — — ns ns ns ns P55 2.00 — 2.00 — 2.00 — 2.00 — ns P56 1 PSST = 1. Otherwise, add PSST times cycle time. PSHT = 0. Otherwise, add PSHT times cycle time. These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the M PC866 PowerQUICC User’s Manual. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 39 Bus Signal Timing Figure 27 shows the PCMCIA access cycle timing for the external bus read. CLKOUT TS P44 A[0:31] P46 REG P48 CE1 /CE2 P50 PCOE, IORD P52 ALE B18 D[0:31] B19 P53 P52 P51 P49 P45 P47 Figure 27. PCMCIA Access Cycles Timing External Bus Read MPC866/MPC859 Hardware Specifications, Rev. 2 40 Freescale Semiconductor Bus Signal Timing Figure 28 shows the PCMCIA access cycle timing for the external bus write. CLKOUT TS P44 A[0:31] P46 REG P48 CE1 /CE2 P50 PCWE, IOWR P52 ALE B8 D[0:31] B9 P53 P52 P51 P54 P49 P45 P47 Figure 28. PCMCIA Access Cycles Timing External Bus Write Figure 29 shows the PCMCIA WAIT signals detection timing. CLKOUT P55 P56 WAIT x Figure 29. PCMCIA WAIT Signals Detection Timing MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 41 Bus Signal Timing Table 12 shows the PCMCIA port timing for the MPC866/859. Table 12. PCMCIA Port Timing 33 MHz Num Characteristic Min P57 P58 P59 P60 1 40 MHz Min — 21.70 5.00 1.00 Max 19.00 — — — 50 MHz Min — 18.00 5.00 1.00 Max 19.00 — — — 66 MHz Unit Min — 14.40 5.00 1.00 Max 19.00 — — — ns ns ns ns Max 19.00 — — — CLKOUT to OPx, valid (MAX = 0.00 x B1 + 19.00) HRESET negated to OPx drive 1(MIN = 0.75 x B1 + 3.00) IP_Xx valid to CLKOUT rising edge (MIN = 0.00 x B1 + 5.00) CLKOUT rising edge to IP_Xx invalid (MIN = 0.00 x B1 + 1.00) — 25.70 5.00 1.00 OP2 and OP3 only. Figure 30 shows the PCMCIA output port timing for the MPC866/859. CLKOUT P57 Output Signals HRESET P58 OP2, OP3 Figure 30. PCMCIA Output Port Timing Figure 31 shows the PCMCIA output port timing for the MPC866/859. CLKOUT P59 P60 Input Signals Figure 31. PCMCIA Input Port Timing MPC866/MPC859 Hardware Specifications, Rev. 2 42 Freescale Semiconductor Bus Signal Timing Table 13 shows the debug port timing for the MPC866/859. Table 13. Debug Port Timing All Frequencies Num Characteristic Min D61 D62 D63 D64 D65 D66 D67 DSCK cycle time DSCK clock pulse width DSCK rise and fall times DSDI input data setup time DSDI data hold time DSCK low to DSDO data valid DSCK low to DSDO invalid 3xT CLOCKOUT 1.25xT CLOCKOUT 0.00 8.00 5.00 0.00 0.00 Max — — 3.00 — — 15.00 2.00 ns ns ns ns ns Unit Figure 32 shows the input timing for the debug port clock. DSCK D61 D61 D63 D62 D62 D63 Figure 32. Debug Port Clock Input Timing Figure 33 shows the timing for the debug port. DSCK D64 D65 DSDI D66 D67 DSDO Figure 33. Debug Port Timings MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 43 Bus Signal Timing Table 14 shows the reset timing for the MPC866/859. Table 14. Reset Timing 33 MHz Num Characteristic Min R69 R70 R71 R72 R73 CLKOUT to HRESET high impedance (MAX = 0.00 x B1 + 20.00) CLKOUT to SRESET high impedance (MAX = 0.00 x B1 + 20.00) RSTCONF pulse width (MIN = 17.00 x B1) — Configuration data to HRESET rising edge setup time (MIN = 15.00 x B1 + 50.00) Configuration data to RSTCONF rising edge setup time (MIN = 0.00 x B1 + 350.00) — — Max Min Max Min Max Min Max 20.00 ns 20.00 ns ns — ns 40 MHz 50 MHz 66 MHz Unit 20.00 — 20.00 — 20.00 — 20.00 — 20.00 — 20.00 — 515.20 — — — 425.00 — — — 340.00 — — — 257.60 — — — 504.50 — 425.00 — 350.00 — 277.30 — 350.00 — 350.00 — 350.00 — 350.00 — ns R74 R75 Configuration data hold time after 0.00 RSTCONF negation (MIN = 0.00 x B1 + 0.00) Configuration data hold time after HRESET negation (MIN = 0.00 x B1 + 0.00) HRESET and RSTCONF asserted to data out drive (MAX = 0.00 x B1 + 25.00) RSTCONF negated to data out high impedance (MAX = 0.00 x B1 + 25.00) 0.00 — 0.00 — 0.00 — 0.00 — ns — 0.00 — 0.00 — 0.00 — ns R76 — 25.00 — 25.00 — 25.00 — 25.00 ns R77 R78 — 25.00 — 25.00 — 25.00 — 25.00 — 25.00 — 25.00 — 25.00 ns 25.00 ns R79 R80 R81 CLKOUT of last rising edge before chip — three-states HRESET to data out high impedance (MAX = 0.00 x B1 + 25.00) DSDI, DSCK setup (MIN = 3.00 x B1) 90.90 — — 75.00 0.00 — — 60.00 0.00 — — 45.50 0.00 — — ns ns ns DSDI, DSCK hold time (MIN = 0.00 x B1 0.00 + 0.00) R82 242.40 — SRESET negated to CLKOUT rising edge for DSDI and DSCK sample (MIN = 8.00 x B1) 200.00 — 160.00 — 121.20 — MPC866/MPC859 Hardware Specifications, Rev. 2 44 Freescale Semiconductor Bus Signal Timing Figure 34 shows the reset timing for the data bus configuration. HRESET R71 R76 RSTCONF R73 R74 D[0:31] (IN) R75 Figure 34. Reset Timing—Configuration from Data Bus Figure 35 shows the reset timing for the data bus weak drive during configuration. CLKOUT R69 HRESET R79 RSTCONF R77 D[0:31] (OUT) (Weak) R78 Figure 35. Reset Timing—Data Bus Weak Drive During Configuration MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 45 IEEE 1149.1 Electrical Specifications Figure 36 shows the reset timing for the debug port configuration. CLKOUT R70 R82 SRESET R80 R81 DSCK, DSDI R80 R81 Figure 36. Reset Timing—Debug Port Configuration 11 IEEE 1149.1 Electrical Specifications Table 15 shows the JTAG timings for the MPC866/859 shown in Figure 37 through Figure 40. Table 15. JTAG Timing All Frequencies Num Characteristic Min J82 J83 J84 J85 J86 J87 J88 J89 J90 J91 J92 J93 J94 J95 J96 TCK cycle time TCK clock pulse width measured at 1.5 V TCK rise and fall times TMS, TDI data setup time TMS, TDI data hold time TCK low to TDO data valid TCK low to TDO data invalid TCK low to TDO high impedance TRST assert time TRST setup time to TCK low TCK falling edge to output valid TCK falling edge to output valid out of high impedance TCK falling edge to output high impedance Boundary scan input valid to TCK rising edge TCK rising edge to boundary scan input invalid 100.00 40.00 0.00 5.00 25.00 — 0.00 — 100.00 40.00 — — — 50.00 50.00 Max — — 10.00 — — 27.00 — 20.00 — — 50.00 50.00 50.00 — — ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit MPC866/MPC859 Hardware Specifications, Rev. 2 46 Freescale Semiconductor IEEE 1149.1 Electrical Specifications TCK J82 J82 J84 J83 J83 J84 Figure 37. JTAG Test Clock Input Timing TCK J85 J86 TMS, TDI J87 J88 TDO J89 Figure 38. JTAG Test Access Port Timing Diagram TCK J91 J90 TRST Figure 39. JTAG TRST Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 47 CPM Electrical Characteristics TCK J92 Output Signals J93 Output Signals J95 Output Signals J96 J94 Figure 40. Boundary Scan (JTAG) Timing Diagram 12 CPM Electrical Characteristics This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC866/859. 12.1 PIP/PIO AC Electrical Specifications Table 16 shows the PIP/PIO AC timings as shown in Figure 41 through Figure 45. Table 16. PIP/PIO Timing All Frequencies Num Characteristic Min 21 22 23 24 25 26 27 28 29 30 31 1 Unit Max — 1 Data-in setup time to STBI low Data-In hold time to STBI high STBI pulse width STBO pulse width Data-out setup time to STBO low Data-out hold time from STBO high STBI low to STBO low (Rx interlock) STBI low to STBO high (Tx interlock) Data-in setup time to clock high Data-in hold time from clock high Clock low to data-out valid (CPU writes data, control, or direction) 0 2.5 – t3 1.5 1 clk – 5ns 2 5 — 2 15 7.5 — ns clk clk ns clk clk clk clk ns ns ns — — — — — 2 — — — 25 t3 = Specification 23 MPC866/MPC859 Hardware Specifications, Rev. 2 48 Freescale Semiconductor CPM Electrical Characteristics DATA-IN 21 23 STBI 27 24 STBO 22 Figure 41. PIP Rx (Interlock Mode) Timing Diagram DATA-OUT 25 24 STBO (Output) 28 23 STBI (Input) 26 Figure 42. PIP Tx (Interlock Mode) Timing Diagram DATA-IN 21 23 STBI (Input) 22 24 STBO (Output) Figure 43. PIP Rx (Pulse Mode) Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 49 CPM Electrical Characteristics DATA-OUT 25 24 STBO (Output) 26 23 STBI (Input) Figure 44. PIP TX (Pulse Mode) Timing Diagram CLKO 29 30 DATA-IN 31 DATA-OUT Figure 45. Parallel I/O Data-In/Data-Out Timing Diagram 12.2 Port C Interrupt AC Electrical Specifications Table 17 shows timings for port C interrupts. Table 17. Port C Interrupt Timing 33.34 MHz Num Characteristic Min 35 36 Port C interrupt pulse width low (edge-triggered mode) Port C interrupt minimum time between active edges 55 55 Max — — ns ns Unit Figure 46 shows the port C interrupt detection timing. MPC866/MPC859 Hardware Specifications, Rev. 2 50 Freescale Semiconductor CPM Electrical Characteristics 36 Port C (Input) 35 Figure 46. Port C Interrupt Detection Timing 12.3 IDMA Controller AC Electrical Specifications Table 18 shows the IDMA controller timings as shown in Figure 47 through Figure 50. Table 18. IDMA Controller Timing All Frequencies Num Characteristic Min 40 41 42 43 44 45 46 DREQ setup time to clock high DREQ hold time from clock high SDACK assertion delay from clock high SDACK negation delay from clock low SDACK negation delay from TA low SDACK negation delay from clock high TA assertion to falling edge of the clock setup time (applies to external TA) 7 3 — — — — 7 Max — — 12 12 20 15 — ns ns ns ns ns ns ns Unit CLKO (Output) 41 40 DREQ (Input) Figure 47. IDMA External Requests Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 51 CPM Electrical Characteristics CLKO (Output) TS (Output) R/W (Output) 42 DATA 46 TA (Input) 43 SDACK Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA CLKO (Output) TS (Output) R/W (Output) 42 DATA 44 TA (Output) SDACK Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA MPC866/MPC859 Hardware Specifications, Rev. 2 52 Freescale Semiconductor CPM Electrical Characteristics CLKO (Output) TS (Output) R/W (Output) 42 DATA 45 TA (Output) SDACK Figure 50. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA 12.4 Baud Rate Generator AC Electrical Specifications Table 19 shows the baud rate generator timings as shown in Figure 51. Table 19. Baud Rate Generator Timing All Frequencies Num Characteristic Min 50 51 52 BRGO rise and fall time BRGO duty cycle BRGO cycle — 40 40 Max 10 60 — ns % ns Unit 50 BRGOX 51 52 50 51 Figure 51. Baud Rate Generator Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 53 CPM Electrical Characteristics 12.5 Timer AC Electrical Specifications Table 20 shows the general-purpose timer timings as shown in Figure 52. Table 20. Timer Timing All Frequencies Num Characteristic Min 61 62 63 64 65 TIN/TGATE rise and fall time TIN/TGATE low time TIN/TGATE high time TIN/TGATE cycle time CLKO low to TOUT valid 10 1 2 3 3 Max — — — — 25 ns clk clk clk ns Unit CLKO 60 61 TIN/TGATE (Input) 61 65 TOUT (Output) 64 63 62 Figure 52. CPM General-Purpose Timers Timing Diagram 12.6 Serial Interface AC Electrical Specifications Table 21 shows the serial interface timings as shown in Figure 53 through Figure 57. Table 21. SI Timing All Frequencies Num Characteristic Min 70 71 71a 72 73 L1RCLK, L1TCLK frequency (DSC = 0) 1, 2 L1RCLK, L1TCLK width low (DSC = 0) 2 Unit Max SYNCCLK/2.5 — — 15.00 — MHz ns ns ns ns — P + 10 P + 10 — 20.00 L1RCLK, L1TCLK width high (DSC = 0) 3 L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time) MPC866/MPC859 Hardware Specifications, Rev. 2 54 Freescale Semiconductor CPM Electrical Characteristics Table 21. SI Timing (continued) All Frequencies Num Characteristic Min 74 75 76 77 78 78A 79 80 80A 81 82 83 83a 84 85 86 87 88 1 2 Unit Max — 15.00 — — 45.00 45.00 45.00 55.00 55.00 42.00 16.00 or SYNCCLK/2 — — 30.00 — — — 0.00 ns ns ns ns ns ns ns ns ns ns MHz ns ns ns L1TCLK ns ns ns L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time) L1RSYNC, L1TSYNC rise/fall time L1RXD valid to L1CLK edge (L1RXD setup time) L1CLK edge to L1RXD invalid (L1RXD hold time) L1CLK edge to L1ST(1–4) valid 4 L1SYNC valid to L1ST(1–4) valid L1CLK edge to L1ST(1–4) invalid L1CLK edge to L1TXD valid L1TSYNC valid to L1TXD valid 4 L1CLK edge to L1TXD high impedance L1RCLK, L1TCLK frequency (DSC =1) L1RCLK, L1TCLK width low (DSC =1) L1RCLK, L1TCLK width high (DSC = 1)3 L1CLK edge to L1CLKO valid (DSC = 1) L1RQ valid before falling edge of L1TSYNC4 L1GR setup time2 35.00 — 17.00 13.00 10.00 10.00 10.00 10.00 10.00 0.00 — P + 10 P + 10 — 1.00 42.00 42.00 — L1GR hold time L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0) The ratio SyncCLK/L1RCLK must be greater than 2.5/1. These specs are valid for IDL mode only. 3 Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns. 4 These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 55 CPM Electrical Characteristics L1RCLK (FE=0, CE=0) (Input) 71 72 L1RCLK (FE=1, CE=1) (Input) RFSD=1 75 L1RSYNC (Input) 73 74 L1RXD (Input) 76 78 L1ST(4-1) (Output) 79 BIT0 77 70 71a Figure 53. SI Receive Timing Diagram with Normal Clocking (DSC = 0) MPC866/MPC859 Hardware Specifications, Rev. 2 56 Freescale Semiconductor CPM Electrical Characteristics L1RCLK (FE=1, CE=1) (Input) 72 82 L1RCLK (FE=0, CE=0) (Input) RFSD=1 75 L1RSYNC (Input) 73 74 L1RXD (Input) 76 78 L1ST(4-1) (Output) 79 BIT0 77 83a 84 L1CLKO (Output) Figure 54. SI Receive Timing with Double-Speed Clocking (DSC = 1) MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 57 CPM Electrical Characteristics L1TCLK (FE=0, CE=0) (Input) 71 72 L1TCLK (FE=1, CE=1) (Input) 73 TFSD=0 75 L1TSYNC (Input) 74 80a L1TXD (Output) BIT0 80 78 L1ST(4-1) (Output) 79 81 70 Figure 55. SI Transmit Timing Diagram (DSC = 0) MPC866/MPC859 Hardware Specifications, Rev. 2 58 Freescale Semiconductor CPM Electrical Characteristics L1RCLK (FE=0, CE=0) (Input) 72 82 L1RCLK (FE=1, CE=1) (Input) TFSD=0 75 L1RSYNC (Input) 73 74 L1TXD (Output) BIT0 80 78a L1ST(4-1) (Output) 78 84 L1CLKO (Output) 79 81 83a Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1) MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 59 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L1RCLK (Input) 73 71 CPM Electrical Characteristics L1RSYNC (Input) 71 74 B17 B16 72 77 B17 B16 B15 B14 B13 76 78 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M 81 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M 80 L1TXD (Output) Figure 57. IDL Timing 85 L1RXD (Input) MPC866/MPC859 Hardware Specifications, Rev. 2 86 87 L1ST(4-1) (Output) L1RQ (Output) Freescale Semiconductor L1GR (Input) CPM Electrical Characteristics 12.7 SCC in NMSI Mode Electrical Specifications Table 22 shows the NMSI external clock timings. Table 22. NMSI External Clock Timings All Frequencies Num Characteristic Min 100 101 102 103 104 105 106 107 108 1 2 Unit Max — — 15.00 50.00 50.00 — — — — ns ns ns ns ns ns ns ns ns RCLK1 and TCLK1 width high 1 RCLK1 and TCLK1 width low RCLK1 and TCLK1 rise/fall time TXD1 active delay (from TCLK1 falling edge) RTS1 active/inactive delay (from TCLK1 falling edge) CTS1 setup time to TCLK1 rising edge RXD1 setup time to RCLK1 rising edge RXD1 hold time from RCLK1 rising edge 2 1/SYNCCLK 1/SYNCCLK +5 — 0.00 0.00 5.00 5.00 5.00 5.00 CD1 setup time to RCLK1 rising edge The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1. Also applies to CD and CTS hold time when they are used as an external sync signal. Table 23 shows the NMSI internal clock timings. Table 23. NMSI Internal Clock Timings All Frequencies Num Characteristic Min 100 102 103 104 105 106 107 108 1 2 Unit Max SYNCCLK/3 — 30.00 30.00 — — — — MHz ns ns ns ns ns ns ns RCLK1 and TCLK1 frequency 1 RCLK1 and TCLK1 rise/fall time TXD1 active delay (from TCLK1 falling edge) RTS1 active/inactive delay (from TCLK1 falling edge) CTS1 setup time to TCLK1 rising edge RXD1 setup time to RCLK1 rising edge RXD1 hold time from RCLK1 rising edge 2 CD1 setup time to RCLK1 rising edge 0.00 — 0.00 0.00 40.00 40.00 0.00 40.00 The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1. Also applies to CD and CTS hold time when they are used as an external sync signals. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 61 CPM Electrical Characteristics Figure 58 through Figure 60 show the NMSI timings. RCLK1 102 106 RxD1 (Input) 107 108 CD1 (Input) 102 101 100 107 CD1 (SYNC Input) Figure 58. SCC NMSI Receive Timing Diagram TCLK1 102 102 101 100 TxD1 (Output) 103 105 RTS1 (Output) 104 104 CTS1 (Input) 107 CTS1 (SYNC Input) Figure 59. SCC NMSI Transmit Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 62 Freescale Semiconductor CPM Electrical Characteristics TCLK1 102 102 101 100 TxD1 (Output) 103 RTS1 (Output) 104 105 CTS1 (Echo Input) 107 104 Figure 60. HDLC Bus Timing Diagram 12.8 Ethernet Electrical Specifications Table 24 shows the Ethernet timings as shown in Figure 61 through Figure 65. Table 24. Ethernet Timing All Frequencies Num Characteristic Min 120 121 122 123 124 125 126 127 128 129 130 131 132 133 CLSN width high RCLK1 rise/fall time RCLK1 width low RCLK1 clock period 1 RXD1 setup time RXD1 hold time RENA active delay (from RCLK1 rising edge of the last data bit) RENA width low TCLK1 rise/fall time TCLK1 width low TCLK1 clock period 1 Unit Max — 15 — 120 — — — — 15 — 101 50 50 50 ns ns ns ns ns ns ns ns ns ns ns ns ns ns 40 — 40 80 20 5 10 100 — 40 99 — 6.5 10 TXD1 active delay (from TCLK1 rising edge) TXD1 inactive delay (from TCLK1 rising edge) TENA active delay (from TCLK1 rising edge) MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 63 CPM Electrical Characteristics Table 24. Ethernet Timing (continued) All Frequencies Num Characteristic Min 134 135 136 137 138 139 1 2 Unit Max 50 50 50 — 20 20 ns ns ns CLK ns ns TENA inactive delay (from TCLK1 rising edge) RSTRT active delay (from TCLK1 falling edge) RSTRT inactive delay (from TCLK1 falling edge) REJECT w idth low CLKO1 low to SDACK asserted 2 CLKO1 low to SDACK negated 2 10 10 10 1 — — The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1. SDACK is asserted whenever the SDMA writes the incoming frame DA into memory. CLSN(CTS1) (Input) 120 Figure 61. Ethernet Collision Timing Diagram RCLK1 121 124 RxD1 (Input) 125 126 127 RENA(CD1) (Input) 121 123 Last Bit Figure 62. Ethernet Receive Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 64 Freescale Semiconductor CPM Electrical Characteristics TCLK1 128 131 TxD1 (Output) 132 133 TENA(RTS1) (Input) 134 128 121 129 RENA(CD1) (Input) Notes: 1. Transmit clock invert (TCI) bit in GSMR is set. 2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in the buffer descriptor at the end of the frame transmission. Figure 63. Ethernet Transmit Timing Diagram RCLK1 RxD1 (Input) 0 1 Start Frame Delimiter 1 BIT1 BIT2 136 125 RSTRT (Output) Figure 64. CAM Interface Receive Start Timing Diagram REJECT 137 Figure 65. CAM Interface REJECT Timing Diagram 12.9 SMC Transparent AC Electrical Specifications Table 25 shows the SMC transparent timings as shown in Figure 66. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 65 CPM Electrical Characteristics Table 25. SMC Transparent Timing All Frequencies Num SMCLK clock period 1 SMCLK width low SMCLK width high SMCLK rise/fall time SMTXD active delay (from SMCLK falling edge) SMRXD/SMSYNC setup time RXD1/SMSYNC hold time Characteristic Min 150 151 151A 152 153 154 155 1 Unit Max — — — 15 50 — — ns ns ns ns ns ns ns 100 50 50 — 10 20 5 Sync CLK must be at least twice as fast as SMCLK. SMCLK 152 152 151 151A 150 SMTXD (Output) 154 155 SMSYNC 154 155 SMRXD (Input) NOTE: 1. This delay is equal to an integer number of character-length clocks. NOTE 1 153 Figure 66. SMC Transparent Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 66 Freescale Semiconductor CPM Electrical Characteristics 12.10SPI Master AC Electrical Specifications Table 26 shows the SPI master timings as shown in Figure 67 and Figure 68. Table 26. SPI Master Timing All Frequencies Num Characteristic Min 160 161 162 163 164 165 166 167 MASTER cycle time MASTER clock (SCK) high or low time MASTER data setup time (inputs) Master data hold time (inputs) Master data valid (after SCK edge) Master data hold time (outputs) Rise time output Fall time output 4 2 15 0 — 0 — — Max 1024 512 — — 10 — 15 15 tcyc tcyc ns ns ns ns ns ns Unit SPICLK (CI=0) (Output) 161 161 SPICLK (CI=1) (Output) 163 162 SPIMISO (Input) msb Data 165 167 SPIMOSI (Output) msb Data lsb 166 lsb 164 166 msb msb 167 167 160 166 Figure 67. SPI Master (CP = 0) Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 67 CPM Electrical Characteristics SPICLK (CI=0) (Output) 161 161 SPICLK (CI=1) (Output) 163 162 SPIMISO (Input) msb 166 Data 165 167 SPIMOSI (Output) msb Data lsb lsb 164 166 msb msb 167 167 160 166 Figure 68. SPI Master (CP = 1) Timing Diagram 12.11SPI Slave AC Electrical Specifications Table 27 shows the SPI slave timings as shown in Figure 69 and Figure 70. Table 27. SPI Slave Timing All Frequencies Num Characteristic Min 170 171 172 173 174 175 176 177 Slave cycle time Slave enable lead time Slave enable lag time Slave clock (SPICLK) high or low time Slave sequential transfer delay (does not require deselect) Slave data setup time (inputs) Slave data hold time (inputs) Slave access time 2 15 15 1 1 20 20 — Max — — — — — — — 50 tcyc ns ns tcyc tcyc ns ns ns Unit MPC866/MPC859 Hardware Specifications, Rev. 2 68 Freescale Semiconductor CPM Electrical Characteristics SPISEL (Input) 172 174 SPICLK (CI=0) (Input) 173 173 SPICLK (CI=1) (Input) 177 180 SPIMISO (Output) msb 175 176 SPIMOSI (Input) msb Data Data 179 181 182 lsb msb lsb 181 182 178 Undef msb 182 170 181 171 Figure 69. SPI Slave (CP = 0) Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 69 CPM Electrical Characteristics SPISEL (Input) 172 171 SPICLK (CI=0) (Input) 173 173 SPICLK (CI=1) (Input) 177 180 SPIMISO (Output) Undef 175 176 SPIMOSI (Input) msb msb 179 181 182 Data lsb msb Data lsb 182 178 msb 182 181 181 170 174 Figure 70. SPI Slave (CP = 1) Timing Diagram 12.12I2C AC Electrical Specifications MPC866/MPC859 Hardware Specifications, Rev. 2 70 Freescale Semiconductor CPM Electrical Characteristics Table 28 shows the I2C (SCL < 100 kHz) timings. Table 28. I2C Timing (SCL < 100 kHz) All Frequencies Num 200 200 202 203 204 205 206 207 208 209 210 211 1 Characteristic Min SCL clock frequency (slave) SCL clock frequency (master) 1 0 1.5 4.7 4.7 4.0 4.7 4.0 0 250 — — 4.7 Max 100 100 — — — — — — — 1 300 — Unit kHz kHz μs μs μs μs μs μs ns μs ns μs Bus free time between transmissions Low period of SCL High period of SCL Start condition setup time Start condition hold time Data hold time Data setup time SDL/SCL rise time SDL/SCL fall time Stop condition setup time SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1. Table 29 shows the I2C (SCL > 100 kHz) timings. Table 29. I2C Timing (SCL > 100 kHz) All Frequencies Num Characteristic Expression Min 200 200 202 203 204 205 206 207 208 209 210 211 1 Unit Max BRGCLK/48 BRGCLK/48 — — — — — — — 1/(10 * fSCL) 1/(33 * fSCL) — Hz Hz s s s s s s s s s s SCL clock frequency (slave) SCL clock frequency (master) 1 Bus free time between transmissions Low period of SCL High period of SCL Start condition setup time Start condition hold time Data hold time Data setup time SDL/SCL rise time SDL/SCL fall time Stop condition setup time fSCL fSCL — — — — — — — — — — 0 BRGCLK/16512 1/(2.2 * fSCL) 1/(2.2 * fSCL) 1/(2.2 * fSCL) 1/(2.2 * fSCL) 1/(2.2 * fSCL) 0 1/(40 * fSCL) — — 1/2(2.2 * fSCL) SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1. MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 71 UTOPIA AC Electrical Specifications Figure 71 shows the I2C bus timing. SDA 202 205 SCL 206 209 210 211 203 207 204 208 Figure 71. I2C Bus Timing Diagram 13 UTOPIA AC Electrical Specifications Table 30 through Table 32 show the AC electrical specifications for the UTOPIA interface. Table 30. UTOPIA Master (Muxed Mode) Electrical Specifications Num U1 Signal Characteristic UtpClk rise/fall time (Internal clock option) Duty cycle Frequency U2 U3 U4 UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr-active delay (and PHREQ and PHSEL active delay in MPHY mode) UTPB, SOC, Rxclav and Txclav setup time UTPB, SOC, Rxclav and Txclav hold time Output Input Input Direction Output Min — 50 — 2 4 1 Max 4 50 33 16 — — Unit ns % MHz ns ns ns Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications Num U1 Signal Characteristic UtpClk rise/fall time (Internal clock option) Duty cycle Frequency U2 U3 U4 UTPB, SOC, RxEnb, TxEnb, RxAddr and TxAddr active delay (PHREQ and PHSEL active delay in MPHY mode) UTPB_Aux, SOC_Aux, Rxclav, and Txclav setup time UTPB_Aux, SOC_Aux, Rxclav, and Txclav hold time Output Input Input Direction Output Min — 50 — 2 4 1 Max 4 50 33 16 — — Unit ns % MHz ns ns ns MPC866/MPC859 Hardware Specifications, Rev. 2 72 Freescale Semiconductor UTOPIA AC Electrical Specifications Table 32. UTOPIA Slave (Split Bus Mode) Electrical Specifications Num U1 Signal Characteristic UtpClk rise/fall time (external clock option) Duty cycle Frequency U2 U3 U4 UTPB, SOC, Rxclav and Txclav active delay UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr setup time UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr hold time Output Input Input Direction Input Min — 40 — 2 4 1 Max 4 60 33 16 — — Unit ns % MHz ns ns ns Figure 72 shows signal timings during UTOPIA receive operations. U1 UtpClk U2 PHREQn U3 3 RxClav HighZ at MPHY U2 2 U4 4 HighZ at MPHY U1 RxEnb UTPB SOC U3 3 U4 4 Figure 72. UTOPIA Receive Timing MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 73 FEC Electrical Characteristics Figure 73 shows signal timings during UTOPIA transmit operations. U1 1 UtpClk U2 5 PHSELn U3 3 TxClav HighZ at MPHY TxEnb UTPB SOC U2 2 High-Z at MPHY U4 4 U1 U2 5 Figure 73. UTOPIA Transmit Timing 14 FEC Electrical Characteristics This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V. 14.1 MII Receive Signal Timing (MII_RXD [3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK) The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency – 1%. Table 33 shows the timings for MII receive signal. Table 33. MII Receive Signal Timing Num M1 M2 M3 M4 Characteristic MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold MII_RX_CLK pulse width high MII_RX_CLK pulse width low Min 5 5 35% 35% Max — — 65% 65% Unit ns ns MII_RX_CLK period MII_RX_CLK period Figure 74 shows the timings for MII receive signal. MPC866/MPC859 Hardware Specifications, Rev. 2 74 Freescale Semiconductor FEC Electrical Characteristics M3 MII_RX_CLK (input) M4 MII_RXD[3:0] (inputs) MII_RX_DV MII_RX_ER M1 M2 Figure 74. MII Receive Signal Timing Diagram 14.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, MII_TX_ER, MII_TX_CLK) The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency - 1%. Table 34 shows information on the MII transmit signal timing. Table 34. MII Transmit Signal Timing Num M5 M6 M7 M8 Characteristic MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid MII_TX_CLK pulse width high MII_TX_CLK pulse width low Min 5 — 35% 35% Max — 25 65% 65% Unit ns — MII_TX_CLK period MII_TX_CLK period MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 75 FEC Electrical Characteristics Figure 75 shows the MII transmit signal timing diagram. M7 MII_TX_CLK (input) M5 M8 MII_TXD[3:0] (outputs) MII_TX_EN MII_TX_ER M6 Figure 75. MII Transmit Signal Timing Diagram 14.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL) Table 35 shows the timing for on the MII async inputs signal. Table 35. MII Async Inputs Signal Timing Num M9 Characteristic MII_CRS, MII_COL minimum pulse width Min 1.5 Max — Unit MII_TX_CLK period Figure 76 shows the MII asynchronous inputs signal timing diagram. MII_CRS, MII_COL M9 Figure 76. MII Async Inputs Timing Diagram 14.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC) Table 36 shows the timing for the MII serial management channel signal. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation. Table 36. MII Serial Management Channel Timing Num M10 M11 M12 Characteristic MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay) MII_MDC falling edge to MII_MDIO output valid (maximum propagation delay) MII_MDIO (input) to MII_MDC rising edge setup Min 0 — 10 Max — 25 — Unit ns ns ns MPC866/MPC859 Hardware Specifications, Rev. 2 76 Freescale Semiconductor FEC Electrical Characteristics Table 36. MII Serial Management Channel Timing Num M13 M14 M15 Characteristic MII_MDIO (input) to MII_MDC rising edge hold MII_MDC pulse width high MII_MDC pulse width low Min 0 40% 40% Max — 60% 60% Unit ns MII_MDC period MII_MDC period Figure 77 shows the MII serial management channel timing diagram. M14 MM15 MII_MDC (output) M10 MII_MDIO (output) M11 MII_MDIO (input) M12 M13 Figure 77. MII Serial Management Channel Timing Diagram MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 77 Mechanical Data and Ordering Information 15 Mechanical Data and Ordering Information Table 37 shows information on the MPC866/859 derivative devices. Table 37. MPC866/859 Derivatives Number of SCCs 1 4 4 1 (SCC1) 1 (SCC1) Ethernet Support 10/100 Mbps 10/100 Mbps 10/100 Mbps 10/100 Mbps Multi-Channel HDLC Support Yes Yes Yes No Cache Size ATM Support Instruction Yes Yes Yes Up to 4 addresses 4 Kbyte 16 Kbyte 4 Kbyte 4 Kbyte Data 4 Kbytes 8 Kbytes 4 Kbytes 4 Kbytes Device MPC866T MPC866P MPC859T MPC859DSL 1 Serial communications controller (SCC). Table 38 identifies the packages and operating frequencies orderable for the MPC866/859 derivative devices. Table 38. MPC866/859 Package/Frequency Orderable Package Type Plastic ball grid array (ZP suffix) Non lead free Temperature (Tj) 0° to 95°C Frequency (MHz) 50 66 100 Order Number MPC859DSLZP50A MPC859DSLZP66A MPC859PZP100A MPC859TZP100A MPC866PZP100A MPC866TZP100A MPC859PZP133A MPC859TZP133A MPC866PZP133A MPC866TZP133A MPC859DSLCZP50A MPC859DSLCZP66A MPC859PCZP100A MPC859TCZP100A MPC866PCZP100A MPC866TCZP100A 133 Plastic ball grid array (CZP suffix) Non lead free –40° to 100°C 50 66 100 MPC866/MPC859 Hardware Specifications, Rev. 2 78 Freescale Semiconductor Mechanical Data and Ordering Information Table 38. MPC866/859 Package/Frequency Orderable (continued) Plastic ball grid array (VR suffix) Lead free 0° to 95°C 50 66 100 MPC859DSLVR50A MPC859DSLVR66A MPC859PVR100A MPC859TVR100A MPC866PVR100A MPC866TVR100A MPC859PVR133A MPC859TVR133A MPC866PVR133A MPC866TVR133A MPC859DSLCVR50A MPC859DSLCVR66A MPC859PCVR100A MPC859TCVR100A MPC866PCVR100A MPC866TCVR100A 133 Plastic ball grid array (CVR suffix) Lead free –40° to 100°C 50 66 100 MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 79 Mechanical Data and Ordering Information 15.1 Pin Assignments Figure 78 shows the top view pinout of the PBGA package. For additional information, see the MPC866 PowerQUICC Family User’s Manual. NOTE: This is the top view of the device. W PD10 PD8 PD3 IRQ7 D0 D4 D1 D2 D3 D5 VDDL D6 D7 D29 DP2 CLKOUT IPA3 V PD14 PD13 PD9 PD6 M_Tx_EN IRQ0 D13 D27 D10 D14 D18 D20 D24 D28 DP1 DP3 DP0 N/C VSSSYN1 U PA0 PA1 PB14 PD15 PC5 PC4 PD4 PD11 PD5 PD7 IRQ1 D8 D23 D17 D11 D9 D16 D15 D19 D22 D21 D25 D26 D31 D30 IPA6 IPA5 IPA0 IPA4 IPA1 IPA2 IPA7 N/C VSSSYN T VDDH D12 VDDH N/C VDDSYN R PC6 PA2 PB15 PD12 VDDH WAIT_B WAIT_A PORESET VDDL P PA4 PB17 PA3 VDDL GND GND VDDL RSTCONF SRESET XTAL N PB19 PA5 PB18 PB16 HRESET TEXP EXTCLK EXTAL M PA7 PC8 PA6 PC7 MODCK2 BADDR28 BADDR29 VDDL L PB22 PC9 PA8 PB20 OP0 AS OP1 MODCK1 K PC10 PA9 PB23 PB21 GND BADDR30 IPB6 ALEA IRQ4 J PC11 PB24 PA10 PB25 IPB5 IPB1 IPB2 ALEB H VDDL M_MDIO TDI TCK M_COL IRQ2 IPB0 IPB7 G TRST TMS TDO PA11 GND VDDH GND VDDH BR IRQ6 IPB4 IPB3 F PB26 PC12 PA12 VDDL VDDL TS IRQ3 BURST E PB27 PC13 PA13 PB29 CS3 BI BG BB D PB28 PC14 PA14 PC15 A8 N/C N/C A15 A19 A25 A18 BSA0 GPLA0 N/C CS6 CS2 GPLA5 BDIP TEA C PB30 PA15 PB31 A3 A9 A12 A16 A20 A24 A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS7 CS0 TA GPLA4 B A0 A1 A4 A6 A10 A13 A17 A21 A23 A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CS5 CE1A WR GPLB4 A A2 19 18 A5 17 A7 16 A11 15 A14 14 A27 13 A29 12 A30 11 A28 10 A31 9 VDDL BSA2 8 7 WE1 6 WE3 5 CS4 4 CE2A 3 CS1 2 1 Figure 78. Pinout of the PBGA Package MPC866/MPC859 Hardware Specifications, Rev. 2 80 Freescale Semiconductor Mechanical Data and Ordering Information Table 39 contains a list of the MPC866 input and output signals and shows multiplexing and pin assignments. Table 39. Pin Assignments Name A[0:31] Pin Number B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15, C14, B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10, C10, A13, A10, A12, A11, A9 B9 Type Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state Output TSIZ0 REG TSIZ1 RD/WR BURST BDIP GPL_B5 TS TA TEA BI IRQ2 RSV IRQ4 KR RETRY SPKROUT CR IRQ3 D[0:31] C9 B2 F1 D2 F3 C2 D1 E3 H3 Bidirectional Active Pull-up Bidirectional Active Pull-up Open-drain Bidirectional Active Pull-up Bidirectional Three-state Bidirectional Three-state K1 F2 Input W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11, T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, V12, V6, W5, U6, T7 V3 Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state Bidirectional Three-state DP0 IRQ3 DP1 IRQ4 DP2 IRQ5 DP3 IRQ6 V5 W4 V4 MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 81 Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name BR BG BB FRZ IRQ6 IRQ0 IRQ1 M_TX_CLK IRQ7 CS[0:5] CS6 CE1_B CS7 CE2_B WE0 BS_B0 IORD WE1 BS_B1 IOWR WE2 BS_B2 PCOE WE3 BS_B3 PCWE BS_A[0:3] GPL_A0 GPL_B0 OE GPL_A1 GPL_B1 GPL_A[2:3] GPL_B[2:3] CS[2–3] UPWAITA GPL_A4 G4 E2 E1 G3 Pin Number Type Bidirectional Bidirectional Bidirectional Active Pull-up Bidirectional V14 U14 W15 Input Input Input C3, A2, D4, E4, A4, B4 D5 Output Output C4 Output C7 Output A6 Output B6 Output A5 Output D8, C8, A7, B8 D7 Output Output C6 Output B5, C5 Output C1 Bidirectional MPC866/MPC859 Hardware Specifications, Rev. 2 82 Freescale Semiconductor Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name UPWAITB GPL_B4 GPL_A5 PORESET RSTCONF HRESET SRESET XTAL EXTAL CLKOUT EXTCLK TEXP ALE_A MII-TXD1 CE1_A MII-TXD2 CE2_A MII-TXD3 WAIT_A SOC_Split2 WAIT_B IP_A0 UTPB_Split02 MII-RXD3 IP_A1 UTPB_Split12 MII-RXD2 IP_A2 IOIS16_A UTPB_Split22 MII-RXD1 IP_A3 UTPB_Split32 MII-RXD0 IP_A4 UTPB_Split42 MII-RXCLK B1 Pin Number Type Bidirectional D3 R2 P3 N4 P2 P1 N1 W3 N2 N3 K2 Output Input Input Open-drain Open-drain Analog Output Analog Input (3.3V only) Output Input (3.3V only) Output Output B3 Output A3 Output R3 Input R4 T5 Input Input T4 Input U3 Input W2 Input U4 Input MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 83 Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name IP_A5 UTPB_Split52 MII-RXERR IP_A6 UTPB_Split62 MII-TXERR IP_A7 UTPB_Split72 MII-RXDV ALE_B DSCK/AT1 IP_B[0:1] IWP[0:1] VFLS[0:1] IP_B2 IOIS16_B AT2 IP_B3 IWP2 VF2 IP_B4 LWP0 VF0 IP_B5 LWP1 VF1 IP_B6 DSDI AT0 IP_B7 PTR AT3 OP0 MII-TXD0 UtpClk_Split2 OP1 OP2 MODCK1 STS U5 Pin Number Input Type T6 Input T3 Input J1 Bidirectional Three-state Bidirectional H2, J3 J2 Bidirectional Three-state G1 Bidirectional G2 Bidirectional J4 Bidirectional K3 Bidirectional Three-state H1 Bidirectional Three-state L4 Bidirectional L2 L1 Output Bidirectional MPC866/MPC859 Hardware Specifications, Rev. 2 84 Freescale Semiconductor Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name OP3 MODCK2 DSDO BADDR30 REG BADDR[28:29] AS PA15 RXD1 RXD4 PA14 TXD1 TXD4 PA13 RXD2 PA12 TXD2 PA11 L1TXDB RXD3 PA10 L1RXDB TXD3 PA9 L1TXDA RXD4 PA8 L1RXDA TXD4 PA7 CLK1 L1RCLKA BRGO1 TIN1 PA6 CLK2 TOUT1 L17 Bidirectional (Optional: Open-drain) M4 Pin Number Type Bidirectional K4 Output M3, M2 L3 C18 Output Input Bidirectional D17 Bidirectional (Optional: Open-drain) E17 Bidirectional F17 Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) G16 J17 Bidirectional (Optional: Open-drain) K18 Bidirectional (Optional: Open-drain) M19 Bidirectional M17 Bidirectional MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 85 Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name PA5 CLK3 L1TCLKA BRGO2 TIN2 PA4 CLK4 TOUT2 PA3 CLK5 BRGO3 TIN3 PA2 CLK6 TOUT3 L1RCLKB PA1 CLK7 BRGO4 TIN4 PA0 CLK8 TOUT4 L1TCLKB PB31 SPISEL REJECT1 PB30 SPICLK RSTRT2 PB29 SPIMOSI PB28 SPIMISO BRGO4 PB27 I2CSDA BRGO1 PB26 I2CSCL BRGO2 N18 Pin Number Type Bidirectional P19 Bidirectional P17 Bidirectional R18 Bidirectional T19 Bidirectional U19 Bidirectional C17 Bidirectional (Optional: Open-drain) C19 Bidirectional (Optional: Open-drain) E16 Bidirectional (Optional: Open-drain) Bidirectional (Optional: Open-drain) D19 E19 Bidirectional (Optional: Open-drain) F19 Bidirectional (Optional: Open-drain) MPC866/MPC859 Hardware Specifications, Rev. 2 86 Freescale Semiconductor Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name PB25 RXADDR32 SMTXD1 PB24 TXADDR32 SMRXD1 PB23 TXADDR22 SDACK1 SMSYN1 PB22 TXADDR42 SDACK2 SMSYN2 PB21 SMTXD2 L1CLKOB PHSEL1 1 TXADDR1 2 PB20 SMRXD2 L1CLKOA PHSEL01 TXADDR02 PB19 RTS1 L1ST1 PB18 RXADDR42 RTS2 L1ST2 PB17 L1RQb L1ST3 RTS3 PHREQ11 RXADDR12 J16 Pin Number Type Bidirectional (Optional: Open-drain) J18 Bidirectional (Optional: Open-drain) K17 Bidirectional (Optional: Open-drain) L19 Bidirectional (Optional: Open-drain) K16 Bidirectional (Optional: Open-drain) L16 Bidirectional (Optional: Open-drain) N19 Bidirectional (Optional: Open-drain) N17 Bidirectional (Optional: Open-drain) P18 Bidirectional (Optional: Open-drain) MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 87 Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name PB16 L1RQa L1ST4 RTS4 PHREQ01 RXADDR02 PB15 BRGO3 TxClav RxClav PB14 RXADDR22 RSTRT1 PC15 DREQ0 RTS1 L1ST1 RxClav TxClav PC14 DREQ1 RTS2 L1ST2 PC13 L1RQb L1ST3 RTS3 PC12 L1RQa L1ST4 RTS4 PC11 CTS1 PC10 CD1 TGATE1 PC9 CTS2 PC8 CD2 TGATE2 N16 Pin Number Type Bidirectional (Optional: Open-drain) R17 Bidirectional U18 Bidirectional D16 Bidirectional D18 Bidirectional E18 Bidirectional F18 Bidirectional J19 Bidirectional K19 Bidirectional L18 Bidirectional M18 Bidirectional MPC866/MPC859 Hardware Specifications, Rev. 2 88 Freescale Semiconductor Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name PC7 CTS3 L1TSYNCB SDACK2 PC6 CD3 L1RSYNCB PC5 CTS4 L1TSYNCA SDACK1 PC4 CD4 L1RSYNCA PD15 L1TSYNCA MII-RXD3 UTPB0 PD14 L1RSYNCA MII-RXD2 UTPB1 PD13 L1TSYNCB MII-RXD1 UTPB2 PD12 L1RSYNCB MII-MDC UTPB3 PD11 RXD3 MII-TXERR RXENB PD10 TXD3 MII-RXD0 TXENB M16 Pin Number Type Bidirectional R19 Bidirectional T18 Bidirectional T17 Bidirectional U17 Bidirectional V19 Bidirectional V18 Bidirectional R16 Bidirectional T16 Bidirectional W18 Bidirectional MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 89 Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name PD9 RXD4 MII-TXD0 UTPCLK PD8 TXD4 MII-MDC MII-RXCLK PD7 RTS3 MII-RXERR UTPB4 PD6 RTS4 MII-RXDV UTPB5 PD5 REJECT2 MII-TXD3 UTPB6 PD4 REJECT3 MII-TXD2 UTPB7 PD3 REJECT4 MII-TXD1 SOC TMS TDI DSDI TCK DSCK TRST TDO DSDO MII_CRS MII_MDIO MII_TXEN V17 Pin Number Type Bidirectional W17 Bidirectional T15 Bidirectional V16 Bidirectional U15 Bidirectional U16 Bidirectional W16 Bidirectional G18 H17 Input Input H16 Input G19 G17 Input Output B7 H18 V15 Input Bidirectional Output MPC866/MPC859 Hardware Specifications, Rev. 2 90 Freescale Semiconductor Mechanical Data and Ordering Information Table 39. Pin Assignments (continued) Name MII_COL VSSSYN1 VSSSYN VDDSYN GND H4 V1 U1 T1 F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14 A8, M1, W8, H19, F4, F16, P4, P16, R1 E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14 D6, D13, D14, U2, V2, T2 Pin Number Input PLL analog VDD and GND Power Power Power Type VDDL VDDH Power Power N/C 1 2 No-connect Classic SAR mode only ESAR mode only MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 91 Mechanical Data and Ordering Information 15.2 Mechanical Dimensions of the PBGA Package For more information on the printed-circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to Plastic Ball Grid Array Application Note (order number: AN1231/D) available from your local Freescale sales office. Figure 79 shows the mechanical dimensions of the PBGA package. Note: Solder sphere composition for MPC866XZP, MPC859PZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag Figure 79. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package MPC866/MPC859 Hardware Specifications, Rev. 2 92 Freescale Semiconductor Document Revision History 16 Document Revision History Table 40 lists significant changes between revisions of this document. Table 40. Document Revision History Revision Number 0 1 1.1 Date 5/2002 11/2002 4/2003 Initial revision Added the 5-V tolerant pins, new package dimensions, and other changes. Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag to Figure 15-79. Added the MPC859P. Changed the SPI Master Timing Specs. 162 and 164. • Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. • Added nontechnical reformatting. • Updated document template. • Updated orderable parts table. Substantive Changes 1.2 1.3 1.4 4/2003 5/2003 7-8/2003 1.5 2 3/14/2005 2/10/2006 MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 93 Document Revision History THIS PAGE INTENTIONALLY LEFT BLANK MPC866/MPC859 Hardware Specifications, Rev. 2 94 Freescale Semiconductor Document Revision History THIS PAGE INTENTIONALLY LEFT BLANK MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 95 How to Reach Us: Home Page: www.freescale.com email: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-0047 Japan 0120 191014 +81 3 3440 3569 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@ hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. MPC866EC Rev. 2 2/2006
MPC859DSLZP66A 价格&库存

很抱歉,暂时无法提供与“MPC859DSLZP66A”相匹配的价格&库存,您可以联系我们找货

免费人工找货