0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF6V12250HR3

MRF6V12250HR3

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MRF6V12250HR3 - RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs - Fre...

  • 数据手册
  • 价格&库存
MRF6V12250HR3 数据手册
Freescale Semiconductor Technical Data Document Number: MRF6V12250H Rev. 2, 4/2010 RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at frequencies between 960 and 1215 MHz. These devices are suitable for use in pulsed applications. • Typical Pulsed Performance: VDD = 50 Volts, IDQ = 100 mA, Pout = 275 Watts Peak (27.5 Watts Avg.), f = 1030 MHz, Pulse Width = 128 μsec, Duty Cycle = 10% Power Gain — 20.3 dB Drain Efficiency — 65.5% • Capable of Handling 10:1 VSWR, @ 50 Vdc, 1030 MHz, 275 Watts Peak Power • Typical Broadband Performance: VDD = 50 Volts, IDQ = 100 mA, Pout = 250 Watts Peak (25 Watts Avg.), f = 960--1215 MHz, Pulse Width = 128 μsec, Duty Cycle = 10% Power Gain — 19.8 dB Drain Efficiency — 58% Features • Characterized with Series Equivalent Large--Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. MRF6V12250HR3 MRF6V12250HSR3 960-1215 MHz, 275 W, 50 V PULSED LATERAL N-CHANNEL RF POWER MOSFETs CASE 465-06, STYLE 1 NI-780 MRF6V12250HR3 CASE 465A-06, STYLE 1 NI-780S MRF6V12250HSR3 Table 1. Maximum Ratings Rating Drain--Source Voltage Gate--Source Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Symbol VDSS VGS Tstg TC TJ Value --0.5, +100 --6.0, +10 -- 65 to +150 150 225 Unit Vdc Vdc °C °C °C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 275 W Pulsed, 128 μsec Pulse Width, 10% Duty Cycle Symbol ZθJC Value (2,3) 0.08 Unit °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. © Freescale Semiconductor, Inc., 2009--2010. All rights reserved. MRF6V12250HR3 MRF6V12250HSR3 1 RF Device Data Freescale Semiconductor Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115) Charge Device Model (per JESD22--C101) Class 2 (Minimum) B (Minimum) IV (Minimum) Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 100 mA) Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 90 Vdc, VGS = 0 Vdc) On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 662 μAdc) Gate Quiescent Voltage (VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test) Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.6 Adc) Dynamic Characteristics (1) Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Crss Coss Ciss — — — 0.46 352 695 — — — pF pF pF VGS(th) VGS(Q) VDS(on) 0.9 1.7 — 1.7 2.4 0.25 2.4 3.2 — Vdc Vdc Vdc IGSS V(BR)DSS IDSS IDSS — 110 — — — — — — 10 — 10 100 μAdc Vdc μAdc μAdc Symbol Min Typ Max Unit Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 100 mA, Pout = 275 W Peak (27.5 W Avg.), f = 1030 MHz, Pulsed, 128 μsec Pulse Width, 10% Duty Cycle Power Gain Drain Efficiency Input Return Loss Gps ηD IRL 19 63 — 20.3 65.5 --14 22 — --9 dB % dB Typical Broadband Performance — 960-1215 MHz (In Freescale 960--1215 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak (25 W Avg.), f = 960--1215 MHz, Pulsed, 128 μsec Pulse Width, 10% Duty Cycle Power Gain Drain Efficiency 1. Part internally matched both on input and output. Gps ηD — — 19.8 58 — — dB % MRF6V12250HR3 MRF6V12250HSR3 2 RF Device Data Freescale Semiconductor VBIAS R4 R3 C12 C8 C7 C6 Z14 Z11 Z13 C5 Z16 Z17 Z18 C13 + C14 + C15 VSUPPLY RF INPUT Z19 Z20 Z21 Z22 C9 Z23 RF OUTPUT Z1 C1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 DUT Z12 Z15 C4 R1 R2 C10 C2 C3 C11 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11, Z12 1.055″ x 0.082″ Microstrip 0.100″ x 0.082″ Microstrip 0.084″ x 0.395″ Microstrip 0.419″ x 0.040″ Microstrip 0.498″ x 0.466″ Microstrip 0.110″ x 1.060″ Microstrip 0.050″ x 1.300″ Microstrip 0.092″ x 1.300″ Microstrip 0.219″ x 1.420″ Microstrip 0.087″ x 1.420″ Microstrip 0.187″ x 0.050″ Microstrip Z13 Z14, Z15 Z16 Z17 Z18 Z19 Z20 Z21 Z22 Z23 PCB 0.190″ x 1.250″ Microstrip 0.517″ x 0.080″ Microstrip 0.225″ x 1.250″ Microstrip 0.860″ x 0.975″ Microstrip 0.140″ x 0.950″ Microstrip 0.028″ x 0.110″ Microstrip 0.397″ x 0.040″ Microstrip 0.264″ x 0.480″ Microstrip 0.100″ x 0.082″ Microstrip 0.521″ x 0.082″ Microstrip Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55 Figure 1. MRF6V12250HR3(HSR3) Test Circuit Schematic Table 5. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values Part C1, C4, C5 C2, C7, C11, C13 C3, C6, C10, C12 C8 C9 C14, C15 R1, R2, R3, R4 Description 1.5 pF Chip Capacitors 2.2 μF, 100 V Chip Capacitors 33 pF Chip Capacitors 22 μF, 25 V Chip Capacitor 9.1 pF Chip Capacitor 470 μF, 63 V Electrolytic Capacitors 0 Ω, 3.5 A Chip Resistors Part Number ATC100B1R5BT500XT G2225X7R225KT3AB ATC100B330JT500XT TPSD226M025R0200 ATC100B9R1CT500XT MCGPA63V477M13X26--RH CRCW12060000Z0EA Manufacturer ATC ATC ATC AVX ATC Multicomp Vishay MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 3 R4 C8 C7 MRF6V12250H Rev. 0 C13 C6 C5 C14 C15 R3 C12 C9 C1 CUT OUT AREA C4 C3 C10 R2 C11 R1 C2 Figure 2. MRF6V12250HR3(HSR3) Test Circuit Component Layout MRF6V12250HR3 MRF6V12250HSR3 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 1000 MAXIMUM OPERATING Tcase (°C) Ciss Coss 160 140 120 100 80 60 40 20 0 40 50 0 5 10 15 20 25 30 35 40 DUTY CYCLE (%) VDD = 50 Vdc, IDQ = 100 mA f = 1030 MHz, Pulse Width = 128 μsec Pout = 275 W Pout = 200 W Pout = 250 W C, CAPACITANCE (pF) 100 10 1 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 0 10 20 30 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Crss 0.1 Figure 3. Capacitance versus Drain-Source Voltage 24 70 60 59 58 Pout, OUTPUT POWER (dBm) Gps, POWER GAIN (dB) 22 Gps 20 ηD 18 VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 16 50 30 100 Pout, OUTPUT POWER (WATTS) PULSED 400 40 50 ηD, DRAIN EFFICIENCY (%) 60 57 56 55 54 53 52 51 50 49 48 28 30 Figure 4. Safe Operating Area P3dB = 55.29 dBm (338 W) P1dB = 54.76 dBm (299 W) Ideal Actual VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 32 34 36 38 40 Pin, INPUT POWER (dBm) PULSED Figure 5. Pulsed Power Gain and Drain Efficiency versus Output Power 22 21 Gps, POWER GAIN (dB) 20 100 mA 19 18 17 50 200 mA IDQ = 400 mA Gps, POWER GAIN (dB) 22 21 20 19 18 17 16 400 15 50 Figure 6. Pulsed Output Power versus Input Power IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec Duty Cycle = 10% 300 mA VDD = 50 Vdc, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 100 Pout, OUTPUT POWER (WATTS) PULSED VDD = 30 V 100 35 V 40 V 45 V 50 V 400 Pout, OUTPUT POWER (WATTS) PULSED Figure 7. Pulsed Power Gain versus Output Power Figure 8. Pulsed Power Gain versus Output Power MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 400 Pout, OUTPUT POWER (WATTS) PULSED TC = --30_C 25_C 55_C 85_C 24 --30_C Gps TC = --30_C 20 25_C 85_C 25_C 55_C 72 200 Gps, POWER GAIN (dB) 300 22 60 48 85_C 55_C 18 ηD VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 100 Pout, OUTPUT POWER (WATTS) PULSED 100 VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 0 0 1 2 3 4 5 6 Pin, INPUT POWER (WATTS) PULSED 36 16 50 24 400 Figure 9. Pulsed Output Power versus Input Power 109 Figure 10. Pulsed Power Gain and Drain Efficiency versus Output Power 108 MTTF (HOURS) 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 275 W Peak, Pulse Width = 128 μsec, Duty Cycle = 10%, and ηD = 65.5%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 11. MTTF versus Junction Temperature MRF6V12250HR3 MRF6V12250HSR3 6 RF Device Data Freescale Semiconductor ηD, DRAIN EFFICIENCY (%) Zo = 5 Ω Zload f = 1030 MHz Zsource f = 1030 MHz VDD = 50 Vdc, IDQ = 100 mA, Pout = 275 W Peak f MHz 1030 Zsource Ω 2.30 -- j3.51 Zload Ω 4.0 -- j2.14 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Device Under Test Output Matching Network Input Matching Network Z source Z load Figure 12. Series Equivalent Source and Load Impedance MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 7 C6 C12 C10 R1 C2 C4 C8 C13 C14 C1 CUT OUT AREA C11 MRF6V12250H 960--1215 MHz Rev. 0 C3 C5 C7 R2 C9 Figure 13. MRF6V12250HR3(HSR3) Test Circuit Component Layout — 960-1215 MHz Table 6. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values — 960-1215 MHz Part C1 C2, C3, C4, C5 C6, C7 C8, C9, C10 C11 C12 C13, C14 R1, R2 PCB Description 2.7 pF Chip Capacitor 33 pF Chip Capacitors 1000 pF Chip Capacitors 2.2 μF, 100 V Chip Capacitors 9.1 pF Chip Capacitor 22 μF, 25 V Tantalum Capacitor 470 μF, 63 V Electrolytic Capacitors 47 Ω, 1/4 W Chip Resistors 0.030″, εr = 2.55 Part Number ATC100B2R7BT500XT ATC100B330JT500XT ATC100B102JT50XT G2225X7R225KT3AB ATC100B9R1CT500XT TPSD226M025R0200 MCGPR63V477M13X26--RH CRCW120647R0FKEA AD255A Manufacturer ATC ATC ATC ATC ATC AVX Multicomp Vishay Arlon MRF6V12250HR3 MRF6V12250HSR3 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 960-1215 MHz 26 24 Gps, POWER GAIN (dB) 22 20 Gps 18 16 0 50 100 150 200 250 Pout, OUTPUT POWER (WATTS) PULSED VDD = 50 Vdc IDQ = 100 mA Pulse Width = 128 μsec Duty Cycle = 10% ηD 1215 MHz 1150 MHz 960 MHz 1030 MHz 300 f = 1215 MHz 1150 MHz 1030 MHz 50 40 30 20 350 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) ηD, DRAIN EFFICIENCY (%) 60 960 MHz 70 Figure 14. Pulsed Power Gain and Drain Efficiency versus Output Power 21 20 19 Gps, POWER GAIN (dB) 18 17 16 15 14 13 12 11 950 IRL VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak (25 W Avg.) Pulse Width = 128 μsec, Duty Cycle = 10% Gps ηD 68 66 64 62 60 58 0 --5 --10 --15 --20 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 f, FREQUENCY (MHz) Figure 15. Broadband Performance @ Pout = 250 Watts Peak MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 9 Zo = 10 Ω Zload f = 1215 MHz f = 960 MHz f = 1215 MHz f = 960 MHz Zsource VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak f MHz 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 Zsource Ω 4.00 -- j4.14 4.05 -- j3.99 4.16 -- j3.86 4.33 -- j3.71 4.49 -- j3.57 4.61 -- j3.43 4.66 -- j3.33 4.68 -- j3.26 4.72 -- j3.20 4.83 -- j3.13 5.02 -- j3.06 5.24 -- j2.99 5.42 -- j2.96 5.51 -- j2.99 Zload Zload Ω 3.96 -- j1.70 3.90 -- j1.67 3.83 -- j1.66 3.75 -- j1.66 3.70 -- j1.65 3.68 -- j1.62 3.69 -- j1.59 3.69 -- j1.54 3.67 -- j1.52 3.59 -- j1.53 3.48 -- j1.53 3.38 -- j1.53 3.32 -- j1.51 3.30 -- j1.47 VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak f MHz 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1215 Zsource Ω 5.49 -- j3.04 5.47 -- j3.07 5.52 -- j3.09 5.68 -- j3.13 5.89 -- j3.20 6.06 -- j3.32 6.09 -- j3.47 5.98 -- j3.60 5.85 -- j3.69 5.78 -- j3.76 5.81 -- j3.87 5.89 -- j4.02 5.91 -- j4.11 Zload Ω 3.32 -- j1.43 3.31 -- j1.42 3.24 -- j1.40 3.12 -- j1.39 2.99 -- j1.36 2.88 -- j1.30 2.83 -- j1.23 2.83 -- j1.19 2.80 -- j1.15 2.75 -- j1.11 2.65 -- j1.07 2.52 -- j1.01 2.47 -- j0.97 Zsource = Test circuit impedance as measured from gate to ground. = Test circuit impedance as measured from drain to ground. Input Matching Network Device Under Test Output Matching Network Z source Z load Figure 16. Series Equivalent Source and Load Impedance — 960-1215 MHz MRF6V12250HR3 MRF6V12250HSR3 10 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS B G 1 2X Q bbb M TA M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M--1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. DIM A B C D E F G H K M N Q R S aaa bbb ccc INCHES MIN MAX 1.335 1.345 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 .118 .138 0.365 0.375 0.365 0.375 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.32 5.33 19.66 19.96 19.60 20.00 3.00 3.51 9.27 9.53 9.27 9.52 0.127 REF 0.254 REF 0.381 REF 3 (FLANGE) B 2 K D bbb M TA M B M M (INSULATOR) R M (LID) bbb N H (LID) M TA B M ccc aaa M TA TA M B B M S M (INSULATOR) M ccc C TA M B M M M F E A (FLANGE) A T SEATING PLANE CASE 465-06 ISSUE G NI-780 MRF6V12250HR3 STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE 4X U (FLANGE) B 1 4X Z (LID) (FLANGE) B 2 2X K D bbb M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M--1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 -----0.040 -----0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 -----1.02 -----0.76 0.127 REF 0.254 REF 0.381 REF TA M B M N (LID) ccc M H 3 M TA M B R M (LID) ccc aaa M TA TA M B B M (INSULATOR) S M (INSULATOR) M bbb C M TA B M M M F T SEATING PLANE E A (FLANGE) A STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE CASE 465A-06 ISSUE H NI-780S MRF6V12250HSR3 MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 11 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents, tools and software to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision 0 1 Date May 2009 July 2009 • Initial Release of Data Sheet • Updated Typical Broadband Performance bullet to include VDD, IDQ and Pulsed information. Provided specific values for Power Gain and Drain Efficiency, p. 1 • Added Typical Performance table for 960--1215 MHz application, p. 2 • Changed “EKMG630ELL471MK25S” part number to “MCGPA63V477M13X26--RH”, Table 5, Test Circuit Component Designations and Values, p. 3 • Added Fig. 5, Safe Operating Area, p. 5 • Added Fig. 13, Test Circuit Component Layout -- 960--1215 MHz and Table 6, Test Circuit Component Designations and Values -- 960--1215 MHz, p. 8 • Added Fig. 14, Power Gain and Drain Efficiency versus Output Power -- 960--1215 MHz, p. 9 • Added Fig 15, Broadband Performance @ Pout = 250 Watts Peak -- 960--1215 MHz, p. 9 • Added Fig. 16, Series Equivalent Source and Load Impedance -- 960--1215 MHz, p. 10 2 Apr. 2010 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related “Continuous use at maximum temperature will affect MTTF” footnote added, p. 1 • Reporting of pulsed thermal data now shown using the ZθJC symbol, p. 1 • Added RF High Power Model availability to Product Software, p. 12 Description MRF6V12250HR3 MRF6V12250HSR3 12 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009--2010. All rights reserved. MRF6V12250HR3 MRF6V12250HSR3 Document Number: RF Device Data MRF6V12250H Rev. 2, 4/2010 Freescale Semiconductor 13
MRF6V12250HR3 价格&库存

很抱歉,暂时无法提供与“MRF6V12250HR3”相匹配的价格&库存,您可以联系我们找货

免费人工找货