Freescale Semiconductor Technical Data
Document Number: MRF6V12250H Rev. 2, 4/2010
RF Power Field Effect Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
RF Power transistors designed for applications operating at frequencies between 960 and 1215 MHz. These devices are suitable for use in pulsed applications. • Typical Pulsed Performance: VDD = 50 Volts, IDQ = 100 mA, Pout = 275 Watts Peak (27.5 Watts Avg.), f = 1030 MHz, Pulse Width = 128 μsec, Duty Cycle = 10% Power Gain — 20.3 dB Drain Efficiency — 65.5% • Capable of Handling 10:1 VSWR, @ 50 Vdc, 1030 MHz, 275 Watts Peak Power • Typical Broadband Performance: VDD = 50 Volts, IDQ = 100 mA, Pout = 250 Watts Peak (25 Watts Avg.), f = 960--1215 MHz, Pulse Width = 128 μsec, Duty Cycle = 10% Power Gain — 19.8 dB Drain Efficiency — 58% Features • Characterized with Series Equivalent Large--Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
MRF6V12250HR3 MRF6V12250HSR3
960-1215 MHz, 275 W, 50 V PULSED LATERAL N-CHANNEL RF POWER MOSFETs
CASE 465-06, STYLE 1 NI-780 MRF6V12250HR3
CASE 465A-06, STYLE 1 NI-780S MRF6V12250HSR3
Table 1. Maximum Ratings
Rating Drain--Source Voltage Gate--Source Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Symbol VDSS VGS Tstg TC TJ Value --0.5, +100 --6.0, +10 -- 65 to +150 150 225 Unit Vdc Vdc °C °C °C
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 275 W Pulsed, 128 μsec Pulse Width, 10% Duty Cycle Symbol ZθJC Value (2,3) 0.08 Unit °C/W
1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955.
© Freescale Semiconductor, Inc., 2009--2010. All rights reserved.
MRF6V12250HR3 MRF6V12250HSR3 1
RF Device Data Freescale Semiconductor
Table 3. ESD Protection Characteristics
Test Methodology Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115) Charge Device Model (per JESD22--C101) Class 2 (Minimum) B (Minimum) IV (Minimum)
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 100 mA) Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 90 Vdc, VGS = 0 Vdc) On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 662 μAdc) Gate Quiescent Voltage (VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test) Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.6 Adc) Dynamic Characteristics (1) Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Crss Coss Ciss — — — 0.46 352 695 — — — pF pF pF VGS(th) VGS(Q) VDS(on) 0.9 1.7 — 1.7 2.4 0.25 2.4 3.2 — Vdc Vdc Vdc IGSS V(BR)DSS IDSS IDSS — 110 — — — — — — 10 — 10 100 μAdc Vdc μAdc μAdc Symbol Min Typ Max Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 100 mA, Pout = 275 W Peak (27.5 W Avg.), f = 1030 MHz, Pulsed, 128 μsec Pulse Width, 10% Duty Cycle Power Gain Drain Efficiency Input Return Loss Gps ηD IRL 19 63 — 20.3 65.5 --14 22 — --9 dB % dB
Typical Broadband Performance — 960-1215 MHz (In Freescale 960--1215 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak (25 W Avg.), f = 960--1215 MHz, Pulsed, 128 μsec Pulse Width, 10% Duty Cycle Power Gain Drain Efficiency 1. Part internally matched both on input and output. Gps ηD — — 19.8 58 — — dB %
MRF6V12250HR3 MRF6V12250HSR3 2 RF Device Data Freescale Semiconductor
VBIAS
R4
R3 C12 C8 C7 C6 Z14 Z11 Z13 C5 Z16 Z17 Z18 C13
+ C14
+ C15
VSUPPLY
RF INPUT
Z19 Z20
Z21 Z22 C9
Z23
RF OUTPUT
Z1 C1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10 DUT Z12 Z15
C4 R1 R2
C10 C2 C3
C11
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11, Z12
1.055″ x 0.082″ Microstrip 0.100″ x 0.082″ Microstrip 0.084″ x 0.395″ Microstrip 0.419″ x 0.040″ Microstrip 0.498″ x 0.466″ Microstrip 0.110″ x 1.060″ Microstrip 0.050″ x 1.300″ Microstrip 0.092″ x 1.300″ Microstrip 0.219″ x 1.420″ Microstrip 0.087″ x 1.420″ Microstrip 0.187″ x 0.050″ Microstrip
Z13 Z14, Z15 Z16 Z17 Z18 Z19 Z20 Z21 Z22 Z23 PCB
0.190″ x 1.250″ Microstrip 0.517″ x 0.080″ Microstrip 0.225″ x 1.250″ Microstrip 0.860″ x 0.975″ Microstrip 0.140″ x 0.950″ Microstrip 0.028″ x 0.110″ Microstrip 0.397″ x 0.040″ Microstrip 0.264″ x 0.480″ Microstrip 0.100″ x 0.082″ Microstrip 0.521″ x 0.082″ Microstrip Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55
Figure 1. MRF6V12250HR3(HSR3) Test Circuit Schematic
Table 5. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values
Part C1, C4, C5 C2, C7, C11, C13 C3, C6, C10, C12 C8 C9 C14, C15 R1, R2, R3, R4 Description 1.5 pF Chip Capacitors 2.2 μF, 100 V Chip Capacitors 33 pF Chip Capacitors 22 μF, 25 V Chip Capacitor 9.1 pF Chip Capacitor 470 μF, 63 V Electrolytic Capacitors 0 Ω, 3.5 A Chip Resistors Part Number ATC100B1R5BT500XT G2225X7R225KT3AB ATC100B330JT500XT TPSD226M025R0200 ATC100B9R1CT500XT MCGPA63V477M13X26--RH CRCW12060000Z0EA Manufacturer ATC ATC ATC AVX ATC Multicomp Vishay
MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 3
R4
C8
C7
MRF6V12250H Rev. 0 C13 C6 C5 C14 C15
R3
C12 C9
C1
CUT OUT AREA
C4
C3
C10
R2 C11
R1
C2
Figure 2. MRF6V12250HR3(HSR3) Test Circuit Component Layout
MRF6V12250HR3 MRF6V12250HSR3 4 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
1000 MAXIMUM OPERATING Tcase (°C) Ciss Coss 160 140 120 100 80 60 40 20 0 40 50 0 5 10 15 20 25 30 35 40 DUTY CYCLE (%) VDD = 50 Vdc, IDQ = 100 mA f = 1030 MHz, Pulse Width = 128 μsec Pout = 275 W Pout = 200 W Pout = 250 W
C, CAPACITANCE (pF)
100
10
1 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 0 10 20 30 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Crss
0.1
Figure 3. Capacitance versus Drain-Source Voltage
24 70 60 59 58 Pout, OUTPUT POWER (dBm) Gps, POWER GAIN (dB) 22 Gps 20 ηD 18 VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 16 50 30 100 Pout, OUTPUT POWER (WATTS) PULSED 400 40 50 ηD, DRAIN EFFICIENCY (%) 60 57 56 55 54 53 52 51 50 49 48 28 30
Figure 4. Safe Operating Area
P3dB = 55.29 dBm (338 W) P1dB = 54.76 dBm (299 W)
Ideal
Actual
VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 32 34 36 38 40
Pin, INPUT POWER (dBm) PULSED
Figure 5. Pulsed Power Gain and Drain Efficiency versus Output Power
22 21 Gps, POWER GAIN (dB) 20 100 mA 19 18 17 50 200 mA IDQ = 400 mA Gps, POWER GAIN (dB) 22 21 20 19 18 17 16 400 15 50
Figure 6. Pulsed Output Power versus Input Power
IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec Duty Cycle = 10%
300 mA
VDD = 50 Vdc, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 100 Pout, OUTPUT POWER (WATTS) PULSED
VDD = 30 V 100
35 V
40 V
45 V
50 V
400
Pout, OUTPUT POWER (WATTS) PULSED
Figure 7. Pulsed Power Gain versus Output Power
Figure 8. Pulsed Power Gain versus Output Power
MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 5
TYPICAL CHARACTERISTICS
400 Pout, OUTPUT POWER (WATTS) PULSED TC = --30_C 25_C 55_C 85_C 24 --30_C Gps TC = --30_C 20 25_C 85_C 25_C 55_C 72
200
Gps, POWER GAIN (dB)
300
22
60
48
85_C 55_C 18 ηD VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 100 Pout, OUTPUT POWER (WATTS) PULSED
100 VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 0 0 1 2 3 4 5 6 Pin, INPUT POWER (WATTS) PULSED
36
16 50
24 400
Figure 9. Pulsed Output Power versus Input Power
109
Figure 10. Pulsed Power Gain and Drain Efficiency versus Output Power
108 MTTF (HOURS)
107
106
105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 275 W Peak, Pulse Width = 128 μsec, Duty Cycle = 10%, and ηD = 65.5%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
Figure 11. MTTF versus Junction Temperature
MRF6V12250HR3 MRF6V12250HSR3 6 RF Device Data Freescale Semiconductor
ηD, DRAIN EFFICIENCY (%)
Zo = 5 Ω Zload f = 1030 MHz
Zsource f = 1030 MHz
VDD = 50 Vdc, IDQ = 100 mA, Pout = 275 W Peak f MHz 1030 Zsource Ω 2.30 -- j3.51 Zload Ω 4.0 -- j2.14
Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Device Under Test Output Matching Network
Input Matching Network
Z
source
Z
load
Figure 12. Series Equivalent Source and Load Impedance
MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 7
C6 C12 C10 R1 C2 C4
C8 C13 C14
C1
CUT OUT AREA
C11
MRF6V12250H 960--1215 MHz Rev. 0
C3
C5 C7 R2 C9
Figure 13. MRF6V12250HR3(HSR3) Test Circuit Component Layout — 960-1215 MHz
Table 6. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values — 960-1215 MHz
Part C1 C2, C3, C4, C5 C6, C7 C8, C9, C10 C11 C12 C13, C14 R1, R2 PCB Description 2.7 pF Chip Capacitor 33 pF Chip Capacitors 1000 pF Chip Capacitors 2.2 μF, 100 V Chip Capacitors 9.1 pF Chip Capacitor 22 μF, 25 V Tantalum Capacitor 470 μF, 63 V Electrolytic Capacitors 47 Ω, 1/4 W Chip Resistors 0.030″, εr = 2.55 Part Number ATC100B2R7BT500XT ATC100B330JT500XT ATC100B102JT50XT G2225X7R225KT3AB ATC100B9R1CT500XT TPSD226M025R0200 MCGPR63V477M13X26--RH CRCW120647R0FKEA AD255A Manufacturer ATC ATC ATC ATC ATC AVX Multicomp Vishay Arlon
MRF6V12250HR3 MRF6V12250HSR3 8 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS — 960-1215 MHz
26 24 Gps, POWER GAIN (dB) 22 20 Gps 18 16 0 50 100 150 200 250 Pout, OUTPUT POWER (WATTS) PULSED VDD = 50 Vdc IDQ = 100 mA Pulse Width = 128 μsec Duty Cycle = 10% ηD 1215 MHz 1150 MHz 960 MHz 1030 MHz 300 f = 1215 MHz 1150 MHz 1030 MHz 50 40 30 20 350 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) ηD, DRAIN EFFICIENCY (%) 60 960 MHz 70
Figure 14. Pulsed Power Gain and Drain Efficiency versus Output Power
21 20 19 Gps, POWER GAIN (dB) 18 17 16 15 14 13 12 11 950 IRL VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak (25 W Avg.) Pulse Width = 128 μsec, Duty Cycle = 10% Gps ηD 68 66 64 62 60 58 0 --5 --10 --15 --20 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 f, FREQUENCY (MHz)
Figure 15. Broadband Performance @ Pout = 250 Watts Peak
MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 9
Zo = 10 Ω
Zload f = 1215 MHz
f = 960 MHz
f = 1215 MHz f = 960 MHz Zsource
VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak f MHz 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 Zsource Ω 4.00 -- j4.14 4.05 -- j3.99 4.16 -- j3.86 4.33 -- j3.71 4.49 -- j3.57 4.61 -- j3.43 4.66 -- j3.33 4.68 -- j3.26 4.72 -- j3.20 4.83 -- j3.13 5.02 -- j3.06 5.24 -- j2.99 5.42 -- j2.96 5.51 -- j2.99 Zload Zload Ω 3.96 -- j1.70 3.90 -- j1.67 3.83 -- j1.66 3.75 -- j1.66 3.70 -- j1.65 3.68 -- j1.62 3.69 -- j1.59 3.69 -- j1.54 3.67 -- j1.52 3.59 -- j1.53 3.48 -- j1.53 3.38 -- j1.53 3.32 -- j1.51 3.30 -- j1.47
VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak f MHz 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1215 Zsource Ω 5.49 -- j3.04 5.47 -- j3.07 5.52 -- j3.09 5.68 -- j3.13 5.89 -- j3.20 6.06 -- j3.32 6.09 -- j3.47 5.98 -- j3.60 5.85 -- j3.69 5.78 -- j3.76 5.81 -- j3.87 5.89 -- j4.02 5.91 -- j4.11 Zload Ω 3.32 -- j1.43 3.31 -- j1.42 3.24 -- j1.40 3.12 -- j1.39 2.99 -- j1.36 2.88 -- j1.30 2.83 -- j1.23 2.83 -- j1.19 2.80 -- j1.15 2.75 -- j1.11 2.65 -- j1.07 2.52 -- j1.01 2.47 -- j0.97
Zsource = Test circuit impedance as measured from gate to ground. = Test circuit impedance as measured from drain to ground.
Input Matching Network
Device Under Test
Output Matching Network
Z
source
Z
load
Figure 16. Series Equivalent Source and Load Impedance — 960-1215 MHz
MRF6V12250HR3 MRF6V12250HSR3 10 RF Device Data Freescale Semiconductor
PACKAGE DIMENSIONS
B G
1 2X
Q bbb
M
TA
M
B
M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M--1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. DIM A B C D E F G H K M N Q R S aaa bbb ccc INCHES MIN MAX 1.335 1.345 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 .118 .138 0.365 0.375 0.365 0.375 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.32 5.33 19.66 19.96 19.60 20.00 3.00 3.51 9.27 9.53 9.27 9.52 0.127 REF 0.254 REF 0.381 REF
3 (FLANGE)
B
2
K
D bbb
M
TA
M
B
M
M
(INSULATOR)
R
M
(LID)
bbb N H
(LID)
M
TA
B
M
ccc aaa
M
TA TA
M
B B
M
S
M
(INSULATOR) M
ccc C
TA
M
B
M
M
M
F E A
(FLANGE)
A
T
SEATING PLANE
CASE 465-06 ISSUE G NI-780 MRF6V12250HR3
STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE
4X U (FLANGE)
B
1
4X Z (LID)
(FLANGE)
B
2
2X
K
D bbb
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M--1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 -----0.040 -----0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 -----1.02 -----0.76 0.127 REF 0.254 REF 0.381 REF
TA
M
B
M
N
(LID)
ccc M H
3
M
TA
M
B
R
M
(LID)
ccc aaa
M
TA TA
M
B B
M
(INSULATOR)
S
M
(INSULATOR) M
bbb C
M
TA
B
M
M
M
F T
SEATING PLANE
E A
(FLANGE)
A
STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE
CASE 465A-06 ISSUE H NI-780S MRF6V12250HSR3
MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 11
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents, tools and software to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision 0 1 Date May 2009 July 2009 • Initial Release of Data Sheet • Updated Typical Broadband Performance bullet to include VDD, IDQ and Pulsed information. Provided specific values for Power Gain and Drain Efficiency, p. 1 • Added Typical Performance table for 960--1215 MHz application, p. 2 • Changed “EKMG630ELL471MK25S” part number to “MCGPA63V477M13X26--RH”, Table 5, Test Circuit Component Designations and Values, p. 3 • Added Fig. 5, Safe Operating Area, p. 5 • Added Fig. 13, Test Circuit Component Layout -- 960--1215 MHz and Table 6, Test Circuit Component Designations and Values -- 960--1215 MHz, p. 8 • Added Fig. 14, Power Gain and Drain Efficiency versus Output Power -- 960--1215 MHz, p. 9 • Added Fig 15, Broadband Performance @ Pout = 250 Watts Peak -- 960--1215 MHz, p. 9 • Added Fig. 16, Series Equivalent Source and Load Impedance -- 960--1215 MHz, p. 10 2 Apr. 2010 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related “Continuous use at maximum temperature will affect MTTF” footnote added, p. 1 • Reporting of pulsed thermal data now shown using the ZθJC symbol, p. 1 • Added RF High Power Model availability to Product Software, p. 12 Description
MRF6V12250HR3 MRF6V12250HSR3 12 RF Device Data Freescale Semiconductor
How to Reach Us:
Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009--2010. All rights reserved.
MRF6V12250HR3 MRF6V12250HSR3
Document Number: RF Device Data MRF6V12250H Rev. 2, 4/2010 Freescale Semiconductor
13