0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF6VP11KHR6

MRF6VP11KHR6

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MRF6VP11KHR6 - RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET - Freescal...

  • 数据手册
  • 价格&库存
MRF6VP11KHR6 数据手册
Freescale Semiconductor Technical Data Document Number: MRF6VP11KH Rev. 0, 1/2008 RF Power Field Effect Transistor N - Channel Enhancement - Mode Lateral MOSFET Designed primarily for pulsed wideband applications with frequencies up to 150 MHz. Device is unmatched and is suitable for use in industrial, medical and scientific applications. • Typical Pulsed Performance at 130 MHz: VDD = 50 Volts, IDQ = 150 mA, Pout = 1000 Watts Peak, Pulse Width = 100 μsec, Duty Cycle = 20% Power Gain — 26 dB Drain Efficiency — 71% • Capable of Handling 10:1 VSWR, @ 50 Vdc, 130 MHz, 1000 Watts Peak Power Features • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Excellent Thermal Stability • Designed for Push - Pull Operation • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel. MRF6VP11KHR6 10 - 150 MHz, 1000 W, 50 V LATERAL N - CHANNEL BROADBAND RF POWER MOSFET CASE 375D - 05, STYLE 1 NI - 1230 PART IS PUSH - PULL RFinA/VGSA 3 1 RFoutA/VDSA RFinB/VGSB 4 2 RFoutB/VDSB (Top View) Figure 1. Pin Connections Table 1. Maximum Ratings Rating Drain - Source Voltage Gate - Source Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature Symbol VDSS VGS Tstg TC TJ Value - 0.5, +110 - 6.0, +10 - 65 to +150 150 200 Unit Vdc Vdc °C °C °C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 1000 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle Symbol RθJC Value (1,2) 0.03 Unit °C/W 1. MTTF calculator available at http://www.freescale.com/rf . Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2008. All rights reserved. MRF6VP11KHR6 1 RF Device Data Freescale Semiconductor Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 2 (Minimum) A (Minimum) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Off Characteristics (1) Symbol IGSS V(BR)DSS IDSS IDSS Min — 110 — — Typ — — — — Max 10 — 100 5 Unit μAdc Vdc μAdc mA Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain - Source Breakdown Voltage (ID = 300 mA, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) On Characteristics Gate Threshold Voltage (1) (VDS = 10 Vdc, ID = 1600 μAdc) Gate Quiescent Voltage (2) (VDD = 50 Vdc, ID = 150 mAdc, Measured in Functional Test) Drain - Source On - Voltage (1) (VGS = 10 Vdc, ID = 4 Adc) Dynamic Characteristics (1) Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) VGS(th) VGS(Q) VDS(on) 1 1.5 — 1.63 2.2 0.28 3 3.5 — Vdc Vdc Vdc Crss Coss Ciss — — — 3.3 147 506 — — — pF pF pF Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 1000 W Peak (200 W Avg.), f = 130 MHz, 100 μsec Pulse Width, 20% Duty Cycle Power Gain Drain Efficiency Input Return Loss 1. Each side of device measured separately. 2. Measurement made with device in push - pull configuration. Gps ηD IRL 24 69 — 26 71 - 16 28 — -9 dB % dB MRF6VP11KHR6 2 RF Device Data Freescale Semiconductor VBIAS + C1 + C2 + B1 R2 L1 R1 L3 C4 C5 C6 C7 C8 C9 C10 C11 C21 Z10 C13 C14 C15 + + VSUPPLY + C3 C16 C17 C18 C19 C20 Z8 Z4 RF INPUT Z6 Z12 Z14 Z16 RF OUTPUT Z1 Z2 L2 Z3 J1 Z5 C12 T1 C22 Z7 Z9 Z11 Z13 Z15 Z17 T2 DUT C23 C24 C25 J2 Z18 Z19 C26 Z1 Z2* Z3* Z4, Z5 Z6, Z7, Z8, Z9 Z10, Z11 Z12, Z13 0.175″ 1.461″ 0.080″ 0.133″ 0.500″ 0.102″ 0.206″ x 0.082″ x 0.082″ x 0.082″ x 0.193″ x 0.518″ x 0.253″ x 0.253″ Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z14, Z15 Z16*, Z17* Z18 Z19 PCB 0.116″ x 0.253″ Microstrip 0.035″ x 0.253″ Microstrip 0.275″ x 0.082″ Microstrip 0.845″ x 0.082″ Microstrip Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55 *Line length includes microstrip bends. Figure 2. MRF6VP11KHR6 Test Circuit Schematic Table 5. MRF6VP11KHR6 Test Circuit Component Designations and Values Part B1 C1 C2 C3 C4, C9, C17 C5, C16 C6, C15 C7 C8 C10, C11, C13, C14 C12 C18, C19, C20 C21, C22 C23 C24, C25 C26 J1, J2 L1 L2 L3* R1 R2 T1 T2 *L3 is wrapped around R2. Description 95 Ω, 100 MHz Long Ferrite Bead 47 μF, 50 V Electrolytic Capacitor 22 μF, 35 V Tantalum Capacitor 10 μF, 35 V Tantalum Capacitor 10K pF Chip Capacitors 20K pF Chip Capacitors 0.1 μF, 50 V Chip Capacitors 2.2 μF, 50 V Chip Capacitor 0.22 μF, 100 V Chip Capacitor 1000 pF Chip Capacitors 18 pF Chip Capacitor 470 μF, 63 V Electrolytic Capacitors 47 pF Chip Capacitors 75 pF Chip Capacitor 100 pF Chip Capacitors 33 pF Chip Capacitor Jumpers from PCB to T1 and T2 82 nH Inductor 47 nH Inductor 10 Turn, #18AWG Inductor, Handwound 1 KΩ, 1/4 W Chip Resistor 20 Ω, 3 W Chip Resistor Balun Balun Part Number 2743021447 476KXM050M T491X226K035AT T491D106K035AT ATC200B103KT50XT ATC200B203KT50XT CDR33BX104AKYS C1825C225J5RAC C1825C223K1GAC ATC100B102JT50XT ATC100B180JT500XT EKME630ELL471MK25S ATC100B470JT500XT ATC100B750JT500XT ATC100B101JT500XT ATC100B330JT500XT Copper Foil 1812SMS - 82NJLC 1812SMS - 47NJLC Copper Wire PTF561K0000BYEK 5093NW20R00J TUI - 9 TUO - 4 Vishay Vishay Comm Concepts Comm Concepts CoilCraft CoilCraft Manufacturer Fair - Rite Illinois Cap Kemet Kemet ATC ATC Kemet Kemet Kemet ATC ATC Multicomp ATC ATC ATC ATC MRF6VP11KHR6 RF Device Data Freescale Semiconductor 3 C1 C19 C17 C16 C15 B1 L1 C4 C5 C6 C18 C2 C3 C7 C8 C9 C11 C20 C14 L3, R2* R1 C10 J1 C21 T1 C24 C13 T2 C25 J2 L2 C12 CUT OUT AREA C23 C22 C26 MRF6VP11KH Rev. 3 * L3 is wrapped around R2. Figure 3. MRF6VP11KHR6 Test Circuit Component Layout MRF6VP11KHR6 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 1000 Ciss TJ = 200°C ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) Coss 100 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc TJ = 175°C TJ = 150°C 10 100 10 Crss TC = 25°C 1 0 10 20 30 40 50 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) 1 1 10 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) 100 200 Figure 4. Capacitance versus Drain - Source Voltage 27 26 Gps, POWER GAIN (dB) 25 24 23 22 21 20 10 VDD = 50 Vdc, IDQ = 150 mA, f = 130 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 100 Pout, OUTPUT POWER (WATTS) PULSED 1000 Gps 80 70 ηD, DRAIN EFFICIENCY (%) Pout, OUTPUT POWER (dBm) 60 50 40 30 20 65 64 63 Figure 5. DC Safe Operating Area P3dB = 61.23 dBm (1327.39 W) P1dB = 60.57 dBm (1140.24 W) Ideal 62 61 60 59 58 57 56 30 31 32 33 VDD = 50 Vdc, IDQ = 150 mA, f = 130 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 34 35 36 37 38 39 Actual ηD 10 2000 Pin, INPUT POWER (dBm) PULSED Figure 6. Pulsed Power Gain and Drain Efficiency versus Output Power 32 IDQ = 6000 mA Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 28 3600 mA 1500 mA 750 mA 24 150 mA 20 VDD = 50 Vdc, f = 130 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 16 10 100 Pout, OUTPUT POWER (WATTS) PULSED 1000 2000 12 0 375 mA 24 28 Figure 7. Pulsed Output Power versus Input Power 20 VDD = 30 V 16 IDQ = 150 mA, f = 130 MHz Pulse Width = 100 μsec Duty Cycle = 20% 200 400 600 800 1000 1200 1400 1600 35 V 40 V 45 V 50 V Pout, OUTPUT POWER (WATTS) PULSED Figure 8. Pulsed Power Gain versus Output Power Figure 9. Pulsed Power Gain versus Output Power MRF6VP11KHR6 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 65 TC = −30_C Gps, POWER GAIN (dB) 25_C 55 VDD = 50 Vdc IDQ = 150 mA f = 130 MHz Pulse Width = 100 μsec Duty Cycle = 20% 25 30 35 40 45 85_C 27 TC = −30_C 26 25 24 Gps 23 22 21 20 10 ηD 40 VDD = 50 Vdc IDQ = 150 mA f = 130 MHz Pulse Width = 100 μsec Duty Cycle = 20% 1000 30 20 25_C 85_C 70 60 50 ηD, DRAIN EFFICIENCY (%) Pout, OUTPUT POWER (dBm) 60 80 50 45 20 100 Pout, OUTPUT POWER (WATTS) PULSED 10 2000 Pin, INPUT POWER (dBm) PULSED Figure 10. Pulsed Output Power versus Input Power 107 Figure 11. Pulsed Power Gain and Drain Efficiency versus Output Power MTTF (HOURS) 106 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 1000 W Peak, Pulse Width = 100 μsec, Duty Cycle = 20%, and ηD = 71%. MTTF calculator available at http:/www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 12. MTTF versus Junction Temperature MRF6VP11KHR6 6 RF Device Data Freescale Semiconductor f = 130 MHz Zsource Zo = 10 Ω f = 130 MHz Zload VDD = 50 Vdc, IDQ = 150 mA, Pout = 1000 W Peak f MHz 130 Zsource W 1.58 + j6.47 Zload W 4.6 + j1.85 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Input Matching Network Device Under Test Z source Z load Figure 13. Series Equivalent Source and Load Impedance MRF6VP11KHR6 RF Device Data Freescale Semiconductor 7 PACKAGE DIMENSIONS MRF6VP11KHR6 8 RF Device Data Freescale Semiconductor MRF6VP11KHR6 RF Device Data Freescale Semiconductor 9 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision 0 Date Jan. 2008 • Initial Release of Data Sheet Description MRF6VP11KHR6 10 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved. MRF6VP11KHR6 Document Number: RF Device Data MRF6VP11KH Rev. 0, 1/2008 Freescale Semiconductor 11
MRF6VP11KHR6 价格&库存

很抱歉,暂时无法提供与“MRF6VP11KHR6”相匹配的价格&库存,您可以联系我们找货

免费人工找货