0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF6VP3450HR6_10

MRF6VP3450HR6_10

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MRF6VP3450HR6_10 - RF Power Field Effect Transistors - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MRF6VP3450HR6_10 数据手册
Freescale Semiconductor Technical Data Document Number: MRF6VP3450H Rev. 4, 4/2010 RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain and broadband performance of these devices make them ideal for large--signal, common--source amplifier applications in 50 volt analog or digital television transmitter equipment. • Typical DVB--T OFDM Performance: VDD = 50 Volts, IDQ = 1400 mA, Pout = 90 Watts Avg., f = 860 MHz, 8K Mode, 64 QAM Power Gain — 22.5 dB Drain Efficiency — 28% ACPR @ 4 MHz Offset — --62 dBc @ 4 kHz Bandwidth • Typical Broadband Two--Tone Performance: VDD = 50 Volts, IDQ = 1400 mA, Pout = 450 Watts PEP, f = 470--860 MHz Power Gain — 22 dB Drain Efficiency — 44% IM3 — --29 dBc • Capable of Handling 10:1 VSWR, All Phase Angles, @ 50 Vdc, 860 MHz: 450 Watts CW 90 Watts Avg. (DVB--T OFDM Signal, 10 dB PAR, 7.61 MHz Channel Bandwidth) Features • Characterized with Series Equivalent Large--Signal Impedance Parameters • Internally Input Matched for Ease of Use • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Designed for Push--Pull Operation • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel. R5 Suffix = 50 Units per 56 mm, 13 inch Reel. MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 860 MHz, 450 W, 50 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs CASE 375D-05, STYLE 1 NI-1230 MRF6VP3450HR6(HR5) CASE 375E-04, STYLE 1 NI-1230S MRF6VP3450HSR6(HSR5) PARTS ARE PUSH-PULL RFinA/VGSA 3 1 RFoutA/VDSA RFinB/VGSB 4 2 RFoutB/VDSB (Top View) Table 1. Maximum Ratings Rating Drain--Source Voltage Gate--Source Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Symbol VDSS VGS Tstg TC TJ Figure 1. Pin Connections Value --0.5, +110 --6.0, +10 -- 65 to +150 150 225 Unit Vdc Vdc °C °C °C 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. © Freescale Semiconductor, Inc., 2008--2010. All rights reserved. MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 1 RF Device Data Freescale Semiconductor Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 90 W CW Case Temperature 44°C, 450 W CW Case Temperature 62°C, 450 W Pulsed, 50 μsec Pulse Width, 2.5% Duty Cycle Symbol RθJC ZθJC Value (1,2) 0.27 0.25 0.04 Unit °C/W Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115) Charge Device Model (per JESD22--C101) Class 1B (Minimum) B (Minimum) IV (Minimum) Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Off Characteristics (3) Symbol IGSS V(BR)DSS IDSS IDSS Min — 110 — — Typ — — — — Max 10 — 10 10 Unit μAdc Vdc μAdc μAdc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (ID = 50 mA, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) On Characteristics Gate Threshold Voltage (3) (VDS = 10 Vdc, ID = 320 μAdc) Gate Quiescent Voltage (4) (VDD = 50 Vdc, ID = 1400 mAdc, Measured in Functional Test) Drain--Source On--Voltage (3) (VGS = 10 Vdc, ID = 1.58 Adc) Dynamic Characteristics (3,5) Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) VGS(th) VGS(Q) VDS(on) 1 2 — 1.6 2.6 0.25 2.5 3.5 — Vdc Vdc Vdc Crss Coss Ciss — — — 0.92 54.5 373 — — — pF pF pF Functional Tests (4) (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1400 mA, Pout = 90 W Avg., f = 860 MHz, DVB--T OFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ ±4 MHz Offset @ 4 kHz Bandwidth. Power Gain Drain Efficiency Adjacent Channel Power Ratio Input Return Loss Gps ηD ACPR IRL 21.5 26 — — 22.5 28 --62 --4 24.5 — --59 --2 dB % dBc dB 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 3. Each side of device measured separately. 4. Measurement made with device in push--pull configuration. 5. Part internally input matched. (continued) MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Pulsed Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1200 mA, Pout = 520 W, f = 470--860 MHz, 50 μsec Pulse Width, 2.5% Duty Cycle Power Gain Drain Efficiency Input Return Loss Pout @ 1 dB Compression Point, Pulsed CW (f = 470--860 MHz) Gps ηD IRL P1dB — — — — 20.5 50 --3 520 — — — — dB % dB W Typical Two-Tone Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1400 mA, Pout = 450 W PEP, f = 470--860 MHz, 100 kHz Tone Spacing Power Gain Drain Efficiency Intermodulation Distortion Input Return Loss Gps ηD IM3 IRL — — — — 22 44 --29 --2 — — — — dB % dBc dB MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 3 B1 VBIAS + C24 R1 C34 C44 C36 C38 Z19 R3 Z4 Z2 RF INPUT Z1 Printed Balun Input Z6 C1 C3 Z3 Z7 Z5 B2 VBIAS C2 Z9 Z11 Z13 C4 Z15 Z8 Z10 Z12 Z14 Z18 Z16 Printed Balun Input TOP BOTTOM Z17 Z20 R4 Z21 Z1 + C25 R2 C35 C45 C37 C39 Z25 + C22 Z24 C40 C28 C26 VSUPPLY Z3 Z2 Z5 Z7 Z6 Z4 Printed Balun Output TOP BOTTOM Z22 Z28 Z30 C13 Z32 Z40 Z34 Z36 C8 C7 Z38 Z42 Z41 Z39 Z38Z40 Z43 Z42 Z44 DUT C5 C6 C11 C12 Printed Balun Output Z44 RF OUTPUT Z23 Z29 Z31 Z33 C14 Z35 Z37 C9 C10 Z39 Z43 Z26 Z27 Z41 + C23 C41 C29 C27 VSUPPLY Z1 Z2, Z3 Z4, Z5 Z6, Z7 Z8, Z9 Z10, Z11 Z12, Z13 Z14, Z15 0.343″ x 0.065″ Microstrip 0.039″ x 0.200″ Microstrip 1.400″ x 0.059″ Microstrip 0.059″ x 0.118″ Microstrip 0.059″ x 0.118″ Microstrip 0.150″ x 0.394″ Microstrip 0.359″ x 0.394″ Microstrip 0.308″ x 0.394″ Microstrip Z16, Z17 Z18, Z20 Z19, Z21 Z22, Z23 Z24, Z26 Z25, Z27 Z28, Z29 Z30, Z31 0.172″ x 0.465″ Microstrip 0.397″ x 0.059″ Microstrip 0.800″ x 0.059″ Microstrip 0.276″ x 0.465″ Microstrip 0.070″ x 0.157″ Microstrip 1.000″ x 0.157″ Microstrip 0.103″ x 0.392″ Microstrip 0.084″ x 0.392″ Microstrip Z32, Z33 Z34, Z35 Z36, Z37 Z38, Z39 Z40, Z41 Z42, Z43 Z44 PCB 0.108″ x 0.392″ Microstrip 0.212″ x 0.388″ Microstrip 0.103″ x 0.388″ Microstrip 0.075″ x 0.157″ Microstrip 1.412″ x 0.071″ Microstrip 0.024″ x 0.087″ Microstrip 0.550″ x 0.065″ Microstrip Taconic RF35, 0.031”, εr = 3.5 Figure 2. MRF6VP3450HR6(HSR6) Test Circuit Schematic MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 4 RF Device Data Freescale Semiconductor Table 5. MRF6VP3450HR6(HSR6) Test Circuit Component Designations and Values Part B1, B2 C1, C2 C3 C4 C5, C6, C8, C9 C7, C10, C13, C14 C11 C12 C22, C23 C24, C25 C26, C27 C28, C29 C34, C35 C36, C37 C38, C39 C40, C41 C44, C45 R1, R2 R3, R4 Description Short Ferrite Beads 12 pF Chip Capacitors 6.8 pF Chip Capacitor 10 pF Chip Capacitor 6.8 pF Chip Capacitors 10 pF Chip Capacitors 4.7 pF Chip Capacitor 3.9 pF Chip Capacitor 330 pF Chip Capacitors 22 μF Electrolytic Capacitors 220 μF, 100 V Electrolytic Capacitors 10 μF, 50 V Chip Capacitors 39 nF Chip Capacitors 1000 pF Chip Capacitors 470 pF Chip Capacitors 2.2 μF, 100 V Chip Capacitors 2.2 μF, 50 V Chip Capacitors 10 Ω, 1/8 W Chip Resistors 1.5 Ω, 1/8 W Chip Resistors Part Number 2743019447 ATC100B120GT500XT ATC100B6R8BT500XT ATC100B100GT500XT ATC800B6R8BT500XT ATC800B100J500XT ATC800B4R7J500XT ATC800B3R9J500XT ATC100B331GT500XT UUD1V220MCL1GS EEVFK2A221M C5750X5R1H106MT ATC200B393KT50XT ATC100B102JT500XT ATC100B471JT500XT HMK432BJ225KM--T C3225X7R1H225MT CRCW120610R0FKEA CRCW12061R50FKEA Manufacturer Fair--Rite ATC ATC ATC ATC ATC ATC ATC ATC Nichicon Panasonic TDK ATC ATC ATC Taiyo Yuden TDK Vishay Vishay MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 5 B1 R1 C34 C24 C36 R3 C44 C38 MRF6VP3450H C28 C40 C26 C22 C13 CUT OUT AREA C1 C3 C4 C5 C6 C7 C8 C9 C10 C2 C11 C12 C14 C23 C45 R4 B2 C35 R2 C25 C37 C39 Rev. 4 C41 C27 C29 Figure 3. MRF6VP3450HR6(HSR6) Test Circuit Component Layout — Top Figure 3a. MRF6VP3450HR6(HSR6) Test Circuit Component Layout — Bottom MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 6 RF Device Data Freescale Semiconductor CUT OUT AREA TYPICAL CHARACTERISTICS 1000 Ciss ID, DRAIN CURRENT (AMPS) Coss C, CAPACITANCE (pF) 100 100 TJ = 150_C 10 TJ = 175_C TJ = 200_C 10 Crss Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 1 0 10 20 30 40 50 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 1 1 TC = 25_C 10 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 100 Note: Each side of device measured separately. Figure 4. Capacitance versus Drain-Source Voltage 24 23.5 VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz 23 Pulse Width = 50 μsec, Duty Cycle = 2.5% Gps, POWER GAIN (dB) 22.5 22 21.5 21 20.5 20 19.5 19 18.5 18 10 60 55 ηD, DRAIN EFFICIENCY (%) Pout, OUTPUT POWER (dBm) 50 45 40 35 30 25 20 15 10 5 0 1000 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 30 Note: Each side of device measured separately. Figure 5. DC Safe Operating Area Ideal P3dB = 57.85 dBm (610 W) P2dB = 57.65 dBm (582 W) P1dB = 57.15 dBm (519 W) Actual Gps ηD VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz Pulse Width = 12 μsec, Duty Cycle = 1% 31 32 33 34 35 36 37 38 39 40 41 42 100 Pout, OUTPUT POWER (WATTS) PULSED Pin, INPUT POWER (dBm) Figure 6. Pulsed Power Gain and Drain Efficiency versus Output Power 24 23 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 22 21 20 19 18 17 16 0 100 200 300 400 500 600 700 Pout, OUTPUT POWER (WATTS) PULSED VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz Pulse Width = 50 μsec, Duty Cycle = 2.5% VDD = 40 V 50 V 45 V 25 Figure 7. Pulsed CW Output Power versus Input Power 70 60 50 40 30 85_C 25_C ηD 20 10 0 1000 ηD, DRAIN EFFICIENCY (%) VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz 24 Pulse Width = 50 μsec, Duty Cycle = 2.5% 23 22 21 20 19 18 10 TC = --30_C Gps 25_C --30_C 85_C 100 Pout, OUTPUT POWER (WATTS) PULSED Figure 8. Pulsed Power Gain versus Output Power Figure 9. Pulsed Power Gain and Drain Efficiency versus Output Power MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS — TWO-TONE --20 IMD, INTERMODULATION DISTORTION (dBc) --30 --40 3rd Order --50 5th Order --60 --70 --80 5 10 100 Pout, OUTPUT POWER (WATTS) PEP 1000 7th Order IMD, INTERMODULATION DISTORTION (dBc) VDD = 50 Vdc, IDQ = 1400 mA, f1 = 854 MHz f2 = 860 MHz, Two--Tone Measurements --10 --20 --30 --40 --50 --60 --70 7th Order VDD = 50 Vdc, Pout = 450 W (PEP), IDQ = 1400 mA Two--Tone Measurements 3rd Order 5th Order 0.1 1 10 60 TWO--TONE SPACING (MHz) Figure 10. Intermodulation Distortion Products versus Output Power 23 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) 22.8 22.6 Gps, POWER GAIN (dB) 22.4 22.2 22 21.8 21.6 21.4 21.2 21 50 Pout, OUTPUT POWER (WATTS) PEP 700 mA VDD = 50 Vdc, f1 = 859.9 MHz, f2 = 860 MHz Two--Tone Measurements, 100 kHz Tone Spacing 500 1075 mA 975 mA 1250 mA IDQ = 1400 mA --20 --25 --30 Figure 11. Intermodulation Distortion Products versus Tone Spacing VDD = 50 Vdc, f1 = 859.9 MHz, f2 = 860 MHz Two--Tone Measurements, 100 kHz Tone Spacing IDQ = 700 mA 975 mA --35 1075 mA --40 1250 mA --45 --50 50 Pout, OUTPUT POWER (WATTS) PEP 500 1400 mA Figure 12. Two-Tone Power Gain versus Output Power Figure 13. Third Order Intermodulation Distortion versus Output Power MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — OFDM 100 10 PROBABILITY (%) 1 (dB) 0.1 0.01 0.001 0.0001 --20 --30 --40 --50 --60 8K Mode DVB--T OFDM 64 QAM Data Carrier Modulation 5 Symbols --70 --80 --90 --100 --110 0 2 4 6 8 10 12 --5 --4 --3 --2 --1 0 1 2 3 4 5 PEAK--TO--AVERAGE (dB) f, FREQUENCY (MHz) ACPR Measured at 4 MHz Offset from Center Frequency 4 kHz BW 4 kHz BW 7.61 MHz 8K Mode DVB--T OFDM 64 QAM Data Carrier Modulation, 5 Symbols Figure 14. Single-Carrier DVB- OFDM -T ACPR, ADJACENT CHANNEL POWER RATIO (dBc) 23 22.5 Gps, POWER GAIN (dB) 22 21.5 21 20.5 20 975 mA 1075 mA 700 mA VDD = 50 Vdc, f = 860 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols 20 100 Pout, OUTPUT POWER (WATTS) AVG. 200 IDQ = 1400 mA --50 Figure 15. 8K Mode DVB- OFDM Spectrum -T VDD = 50 Vdc, f = 860 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols 1250 mA --60 IDQ = 700 mA 975 mA --70 1400 mA 20 1250 mA 1075 mA 100 200 Pout, OUTPUT POWER (WATTS) AVG. Figure 16. Single-Carrier DVB- OFDM Power -T Gain versus Output Power ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Figure 17. Single-Carrier DVB- OFDM ACPR -T versus Output Power --46 --48 --50 --52 --54 --56 --58 --60 --62 --64 --66 --68 --70 --72 300 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) VDD = 50 Vdc, IDQ = 1400 mA f = 860 MHz, 8K Mode OFDM 64 QAM Data Carrier Modulation 5 Symbols 25_C --30_C ACPR 85_C ηD TC = --30_C 25_C 85_C Gps 10 100 Pout, OUTPUT POWER (WATTS) AVG. Figure 18. Single-Carrier DVB- OFDM ACPR Power -T Gain and Drain Efficiency versus Output Power MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 9 TYPICAL CHARACTERISTICS — 470-860 MHz 23 22.5 22 Gps, POWER GAIN (dB) 21.5 21 20.5 20 19.5 19 18.5 18 17.5 17 10 ηD VDD = 50 Vdc, IDQ = 1200 mA Pulse Width = 50 μsec, Duty Cycle = 2.5% 100 Pout, OUTPUT POWER (WATTS) PULSED 1000 10 0 860 MHz 40 665 MHz 470 MHz 860 MHz 665 MHz 470 MHz 30 20 Gps 60 50 ηD, DRAIN EFFICIENCY (%) ηD, DRAIN EFFICIENCY (%) 700 600 550 500 450 P1dB (WATTS) 650 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) Figure 19. Broadband Pulsed Power Gain and Drain Efficiency versus Output Power — 470-860 MHz 27 26 25 Gps, POWER GAIN (dB) 24 23 22 21 20 19 18 P1dB 30 Gps 40 ηD 50 70 60 VDD = 50 Vdc, Pout = P1dB, IDQ = 1200 mA Pulse Width = 50 μsec, Duty Cycle = 2.5% 20 17 470 500 530 560 590 620 650 680 710 740 770 800 830 860 f, FREQUENCY (MHz) Figure 20. Pulsed Power Gain and Drain Efficiency versus Frequency at P1dB — 470-860 MHz ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) 50 45 40 35 665 MHz 30 25 20 15 10 5 0 3 10 100 Pout, OUTPUT POWER (WATTS) AVG. 665 MHz ACPR ηD --75 300 --70 470 MHz 470 MHz 860 MHz Gps --65 --50 860 MHz --55 --60 VDD = 50 Vdc, IDQ = 1400 mA, 8K Mode OFDM 64 QAM Data Carrier Modulation, 5 Symbols Figure 21. Single-Carrier DVB- OFDM ACPR, Power Gain -T and Drain Efficiency versus Output Power — 470-860 MHz MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 10 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 470-860 MHz 24 23 22 Gps, POWER GAIN (dB) 21 20 19 18 ηD Gps 36 34 32 30 28 26 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) 0 --2 --4 --6 --8 24 IRL VDD = 50 Vdc, IDQ = 1400 mA 17 P = 90 W Avg., 8K Mode OFDM 22 out 64 QAM Data Carrier Modulation, 5 Symbols 20 16 470 500 530 560 590 620 650 680 710 740 770 800 830 860 f, FREQUENCY (MHz) Figure 22. Single-Carrier DVB- OFDM Power Gain, Drain Efficiency -T and IRL versus Frequency — 470-860 MHz TYPICAL CHARACTERISTICS 109 108 MTTF (HOURS) 107 106 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 90 W Avg., and ηD = 28%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 23. MTTF versus Junction Temperature MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 11 Zo = 10 Ω f = 860 MHz Zload f = 470 MHz f = 860 MHz Zsource f = 470 MHz VDD = 50 Vdc, IDQ = 1400 mA, Pout = 90 W Avg. f MHz 470 650 860 Zsource Ω 2.81 -- j1.88 6.46 + j1.21 3.90 + j2.09 Zload Ω 5.52 + j2.34 7.46 + j2.26 2.60 + j3.73 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- Output Matching Network -Z source Z + load Figure 24. Series Equivalent Source and Load Impedance MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 12 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 13 MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 14 RF Device Data Freescale Semiconductor MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 15 MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 16 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision 0 1 Date July 2008 Aug. 2008 • Initial Release of Data Sheet • Corrected component designation part number for C34, 35 in Table 5. Test Circuit Component Designation and Values, p. 5 • Added Note to Fig. 4, Capacitance versus Drain--Source Voltage and Fig. 5, DC Safe Operating Area to denote that each side of device is measured separately, p. 7 • Adjusted imaginary component signs in Fig. 24, Series Equivalent Source and Load Impedance data table and replotted data, p. 12 2 Sept. 2008 • Fig. 24, Series Equivalent Source and Load Impedance, corrected Zsource copy to read ”Test circuit impedance as measured from gate to gate, balanced configuration” and Zload copy to read ”Test circuit impedance as measured from gate to gate, balanced configuration”, p. 12 • Corrected Fig. 24 Revision History Zload copy to read ”Test circuit impedance as measured from drain to drain, balanced configuration”, p. 12 • Added capability of handling 10:1 VSWR @ 50 Vdc, 850 MHz, 450 Watts CW, p. 1 • Added thermal resistance at 450 W CW, Thermal Characteristics table, p. 2 • Corrected Fig. 23, MTTF versus Junction Temperature, to match values given by the MRF6VP3450H/HS MTTF calculator, p. 11 • Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 17 4 Apr. 2010 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related “Continuous use at maximum temperature will affect MTTF” footnote added, p. 1 • Reporting of pulsed thermal data now shown using the ZθJC symbol, p. 2 • Fig. 2, Test Circuit Schematic, Z--list, corrected Z4, Z5 from 1.400″ x 0.590″ Microstrip to 1.400″ x 0.059″ Microstrip, p. 4 Description 2.1 3 Nov. 2008 July 2009 MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 17 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008--2010. All rights reserved. MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 1Rev. 4, 4/2010 8 Document Number: MRF6VP3450H RF Device Data Freescale Semiconductor
MRF6VP3450HR6_10 价格&库存

很抱歉,暂时无法提供与“MRF6VP3450HR6_10”相匹配的价格&库存,您可以联系我们找货

免费人工找货