Freescale Semiconductor Technical Data
Document Number: MRF8S9100H Rev. 0, 9/2009
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for GSM and GSM EDGE base station applications with frequencies from 865 to 960 MHz. Can be used in Class AB and Class C for all typical cellular base station modulation formats. • Typical GSM Performance: VDD = 28 Volts, IDQ = 500 mA, Pout = 72 Watts CW
Frequency 920 MHz 940 MHz 960 MHz Gps (dB) 19.3 19.3 19.1 hD (%) 51.6 52.9 54.1
MRF8S9100HR3 MRF8S9100HSR3
920 - 960 MHz, 72 W CW, 28 V GSM, GSM EDGE LATERAL N - CHANNEL RF POWER MOSFETs
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 940 MHz, 133 Watts CW Output Power (3 dB Input Overdrive from Rated Pout) • Typical Pout @ 1 dB Compression Point ] 108 Watts CW • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA, Pout = 45 Watts Avg.
Gps (dB) 19.1 19.1 19.0 hD (%) 43 44 45 SR1 @ 400 kHz (dBc) - 64.1 - 63.6 - 62.8 SR2 @ 600 kHz (dBc) - 74.5 - 74.6 - 75.1 EVM (% rms) 1.8 2.0 2.3
CASE 465- 06, STYLE 1 NI - 780 MRF8S9100HR3
Frequency 920 MHz 940 MHz 960 MHz
CASE 465A - 06, STYLE 1 NI - 780S MRF8S9100HSR3
Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source S - Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. Table 1. Maximum Ratings
Rating Drain - Source Voltage Gate - Source Voltage Operating Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature
(1,2)
Symbol VDSS VGS VDD Tstg TC TJ
Value - 0.5, +70 - 6.0, +10 32, +0 - 65 to +150 150 225
Unit Vdc Vdc Vdc °C °C °C
1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf . Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
© Freescale Semiconductor, Inc., 2009. All rights reserved.
MRF8S9100HR3 MRF8S9100HSR3 1
RF Device Data Freescale Semiconductor
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 100 W CW, 28 Vdc, IDQ = 500 mA Case Temperature 81°C, 72 W CW, 28 Vdc, IDQ = 500 mA Case Temperature 82°C, 45 W CW, 28 Vdc, IDQ = 700 mA Symbol RθJC Value (1,2) 0.60 0.65 0.69 Unit °C/W
Table 3. ESD Protection Characteristics
Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 1C (Minimum) A (Minimum) IV (Minimum)
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 70 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 460 μAdc) Gate Quiescent Voltage (VDD = 28 Vdc, ID = 500 mAdc, Measured in Functional Test) Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1.7 Adc) Power Gain Drain Efficiency Input Return Loss Pout @ 1 dB Compression Point, CW VGS(th) VGS(Q) VDS(on) 1.4 2.1 0.1 2.2 2.9 0.17 2.9 3.6 0.3 Vdc Vdc Vdc IDSS IDSS IGSS — — — — — — 10 1 1 μAdc μAdc μAdc Symbol Min Typ Max Unit
Functional Tests (3) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W CW, f = 920 MHz Gps ηD IRL P1dB Gps (dB) 19.3 19.3 19.1 18 50 — 100 19.3 51.6 - 12.4 — hD (%) 51.6 52.9 54.1 23 — -9 — IRL (dB) - 12.4 - 14.3 - 12.2 dB % dB W
Typical Broadband Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W CW Frequency 920 MHz 940 MHz 960 MHz
1. MTTF calculator available at http://www.freescale.com/rf . Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1955. 3. Part internally input matched. (continued)
MRF8S9100HR3 MRF8S9100HSR3 2 RF Device Data Freescale Semiconductor
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic Pout @ 1 dB Compression Point, CW IMD Symmetry @ 100 W PEP, Pout where IMD Third Order Intermodulation ` 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Gain Flatness in 40 MHz Bandwidth @ Pout = 72 W CW Gain Variation over Temperature ( - 30°C to +85°C) Output Power Variation over Temperature ( - 30°C to +85°C) Symbol P1dB IMDsym Min — — Typ 108 4 Max — — Unit W MHz Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, 920 - 960 MHz Bandwidth
VBWres GF ΔG ΔP1dB
— — — —
30 0.13 0.02 0.005
— — — —
MHz dB dB/°C dBm/°C
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 700 mA, Pout = 45 W Avg., 920 - 960 MHz EDGE Modulation Gps (dB) 19.1 19.1 19.0 hD (%) 43 44 45 SR1 @ 400 kHz (dBc) - 64.1 - 63.6 - 62.8 SR2 @ 600 kHz (dBc) - 74.5 - 74.6 - 75.1 EVM (% rms) 1.8 2.0 2.3
Frequency 920 MHz 940 MHz 960 MHz
MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 3
C7
C22 B1 VGS
C21
C20
VDS
R1 C6 C15 L1 C4 CUT OUT AREA C8 L2 C2 C5 C3 C9 C12 C10 C11 C16
C17 C18 C19
C1
C13
C14
MRF8S9100H Rev. 2
Figure 1. MRF8S9100HR3(HSR3) Test Circuit Component Layout
Table 5. MRF8S9100HR3(HSR3) Test Circuit Component Designations and Values
Part B1 C1, C6 C2 C3 C4, C5 C7, C17, C18, C19 C8, C9 C10, C11 C12 C13 C14 C15, C16 C20, C21, C22 L1, L2 R1 PCB Short RF Bead 47 pF Chip Capacitors 5.6 pF Chip Capacitor 7.5 pF Chip Capacitor 9.1 pF Chip Capacitors 10 μF, 35 V Tantalum Capacitors 13 pF Chip Capacitors 2.7 pF Chip Capacitors 6.2 pF Chip Capacitor 1.8 pF Chip Capacitor 20 pF Chip Capacitor 0.56 μF, 50 V Chip Capacitors 470 μF, 63 V Electrolytic Capacitors 12.5 nH, 4 Turn Inductors 0 Ω, 3 A Chip Resistor 0.030″, εr = 2.55 Description Part Number 2743019447 ATC100B470JT500XT ATC100B5R6BT500XT ATC100B7R5BT500XT ATC100B9R1BT500XT T491D106K035AT ATC100B130BT500XT ATC100B2R7BT500XT ATC100B6R2BT500XT ATC100B1R8BT500XT ATC100B200JT500XT C1825C564J5RAC - TU MCGPR63V477M13X26 - RH A04TJLC CRCW12060000Z0EA AD255A - 0300 - 55 - 11 Manufacturer Fair - Rite ATC ATC ATC ATC Kemet ATC ATC ATC ATC ATC Kemet Multicomp Coilcraft Vishay Arlon
MRF8S9100HR3 MRF8S9100HSR3 4 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
21 20 Gps, POWER GAIN (dB) 19 18 17 16 15 800 VDD = 28 Vdc, Pout = 72 W CW, IDQ = 500 mA 820 840 860 880 900 920 940 960 IRL Gps ηD 60 50 40 30 20 10 0 980 1000
ηD, DRAIN EFFICIENCY (%)
−5 −10 −15 −20
f, FREQUENCY (MHz)
Figure 2. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 72 Watts CW
21 ηD 20 Gps, POWER GAIN (dB) 19 Gps 18 17 16 EVM 15 800 820 840 860 880 900 920 940 960 0 980 1000 IRL VDD = 28 Vdc, Pout = 46 W Avg. IDQ = 700 mA, EDGE Modulation 20 4 2 40 30 50 ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB) IRL, INPUT RETURN LOSS (dB)
EVM, ERROR VECTOR MAGNITUDE (% rms)
−5 −10 −15 −20
f, FREQUENCY (MHz)
Figure 3. Power Gain, Input Return Loss, EVM and Drain Efficiency versus Frequency @ Pout = 46 Watts Avg.
−10 VDD = 28 Vdc, Pout = 100 W (PEP) IDQ = 500 mA, Two−Tone Measurements −20 (f1 + f2)/2 = Center Frequency of 940 MHz IM3−U −30 IM5−U −40 IM7−L IM7−U −60 1 10 TWO−TONE SPACING (MHz) 100 15 1 10 Pout, OUTPUT POWER (WATTS) CW 100 200 IM5−L IM3−L Gps, POWER GAIN (dB) 20 75
IMD, INTERMODULATION DISTORTION (dBc)
19 Gps 18 920 MHz 17
f = 940 MHz 960 MHz 960 MHz 940 MHz 920 MHz
45
30
−50
16 ηD VDD = 28 Vdc IDQ = 500 mA
15
0
Figure 4. Intermodulation Distortion Products versus Two - Tone Spacing
Figure 5. Power Gain and Drain Efficiency versus Output Power
MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 5
ηD, DRAIN EFFICIENCY (%)
60
TYPICAL CHARACTERISTICS
6 EVM, ERROR VECTOR MAGNITUDE (% rms) 5 4 Pout = 64 W Avg. 3 2 1 14 W Avg. 0 800 820 840 860 880 900 920 940 960 980 1000 45 W Avg. −40 SPECTRAL REGROWTH @ 400 kHz (dBc) VDD = 28 Vdc, IDQ = 700 mA EDGE Modulation −45 −50 −55 −60 −65 −70 0 10 20 30 40 50 60 70 80 90 100 Pout, OUTPUT POWER (WATTS) VDD = 28 Vdc, IDQ = 700 mA EDGE Modulation f = 960 MHz 920 MHz
940 MHz
f, FREQUENCY (MHz)
Figure 6. EVM versus Frequency
Figure 7. Spectral Regrowth at 400 kHz versus Output Power
10 VDD = 28 Vdc, IDQ = 700 mA EDGE Modulation f = 960 MHz 6 940 MHz ηD, DRAIN EFFICIENCY (%) 8 60 75
−55 −60
VDD = 28 Vdc, IDQ = 700 mA EDGE Modulation 940 MHz
f = 960 MHz
EVM, ERROR VECTOR MAGNITUDE (% rms)
−50 SPECTRAL REGROWTH @ 600 kHz (dBc)
45
−65 920 MHz −70 −75 −80 0 10 20 30 40 50 60 70 80 90 100 Pout, OUTPUT POWER (WATTS)
4
ηD
920 MHz 960 MHz
30
2 EVM 0 1 10 Pout, OUTPUT POWER (WATTS) AVG.
920 MHz 15 940 MHz 0 100
Figure 8. Spectral Regrowth at 600 kHz versus Output Power
25 20 15 GAIN (dB) 10 5 0 −5 −10 −15 500 600 700 800 900 IRL Gain
Figure 9. EVM and Drain Efficiency versus Output Power
15 10 5 IRL (dB) 0 −5 −10 VDD = 28 Vdc Pin = 0 dBm IDQ = 500 mA 1000 1100 −15 −20 −25 1200
f, FREQUENCY (MHz)
Figure 10. Broadband Frequency Response
MRF8S9100HR3 MRF8S9100HSR3 6 RF Device Data Freescale Semiconductor
GSM TEST SIGNAL
−10 −20 −30 −40 −50 (dB) −60 −70 −80 −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz 400 kHz 600 kHz 400 kHz 600 kHz Reference Power VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz
Figure 11. EDGE Spectrum
VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W Avg. f MHz 820 840 860 880 900 920 940 960 980 Zsource W 3.81 - j1.72 3.99 - j1.80 4.13 - j1.97 4.20 - j2.22 4.14 - j2.49 3.96 - j2.74 3.67 - j2.95 3.31 - j3.07 2.91 - j3.09 Zload W 1.61 - j0.48 1.62 - j0.34 1.62 - j0.21 1.63 - j0.09 1.62 + j0.02 1.60 + j0.12 1.57 + j0.22 1.53 + j0.32 1.47 + j0.42
Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network
Input Matching Network
Device Under Test
Z
source
Z
load
Figure 12. Series Equivalent Source and Load Impedance
MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 7
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
VDD = 28 Vdc, IDQ = 500 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle 57 56 Pout, OUTPUT POWER (dBm) 55 54 53 52 51 50 49 48 47 46 27 28 29 30 31 32 33 34 35 36 37 38 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V f (MHz) 920 940 960 P1dB Watts 166 158 166 dBm 52.2 52.0 52.2 199 195 209 P3dB Watts dBm 53.0 52.9 53.2 f = 960 MHz f = 940 MHz f = 940 MHz f = 960 MHz f = 920 MHz Actual f = 920 MHz Ideal
Test Impedances per Compression Level f (MHz) 920 940 960 P1dB P1dB P1dB Zsource Ω 3.96 - j2.74 3.67 - j2.95 3.31 - j3.07 Zload Ω 1.60 + j0.12 1.57 + j0.22 1.53 + j0.32
Figure 13. Pulsed CW Output Power versus Input Power @ 28 V
MRF8S9100HR3 MRF8S9100HSR3 8 RF Device Data Freescale Semiconductor
PACKAGE DIMENSIONS
MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 9
MRF8S9100HR3 MRF8S9100HSR3 10 RF Device Data Freescale Semiconductor
MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 11
MRF8S9100HR3 MRF8S9100HSR3 12 RF Device Data Freescale Semiconductor
PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE
Refer to the following documents, tools and software to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision 0 Date Sept. 2009 • Initial Release of Data Sheet Description
MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 13
How to Reach Us:
Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.
MRF8S9100HR3 MRF8S9100HSR3 1Rev. 0, 9/2009 4
Document Number: MRF8S9100H
RF Device Data Freescale Semiconductor