Freescale Semiconductor Technical Data
Document Number: MW5IC2030N Rev. 8, 5/2006
RF LDMOS Wideband Integrated Power Amplifiers
The MW5IC2030N wideband integrated circuit is designed with on - chip matching that makes it usable from 1930 to 1990 MHz. This multi - stage structure is rated for 26 to 28 Volt operation and covers all typical cellular base station modulation formats. Final Application • Typical CDMA Performance: VDD = 27 Volts, IDQ1 = 160 mA, IDQ2 = 230 mA, Pout = 5 Watts Avg., Full Frequency Band, IS - 95 CDMA (Pilot, Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF. Power Gain — 23 dB Drain Efficiency — 20% ACPR @ 885 kHz Offset — - 49 dBc in 30 kHz Channel Bandwidth Driver Application • Typical CDMA Performance: VDD = 27 Volts, IDQ1 = 220 mA, IDQ2 = 240 mA, Pout = 1 Watt Avg., Full Frequency Band, IS - 95 CDMA (Pilot, Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF. Power Gain — 24 dB ACPR @ 885 kHz Offset — - 63 dBc in 30 kHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 27 Vdc, 1990 MHz, 30 Watts CW Output Power • Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 0 to 43 dBm CW Pout. • On - Chip Matching (50 Ohm Input, >4 Ohm Output) • Integrated Temperature Compensation Capability with Enable/Disable Function • On - Chip Current Mirror gm Reference FET for Self Biasing Application (1) • Integrated ESD Protection • 200°C Capable Plastic Package • N Suffix Indicates Lead - Free Terminations. RoHS Compliant. • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel
VDS1 VRD2 VRG2 RFin VRD1 VDS2/RFout
MW5IC2030NBR1 MW5IC2030GNBR1
1930 - 1990 MHz, 30 W, 26 V GSM/GSM EDGE, W - CDMA, PHS RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS
CASE 1329 - 09 TO - 272 WB - 16 PLASTIC MW5IC2030NBR1
CASE 1329A - 03 TO - 272 WB - 16 GULL PLASTIC MW5IC2030GNBR1
GND VDS1 VRD2 VRG2 GND RFin VRD1 VRG1/VGS1 VGS2 NC GND
1 2 3 4 5 6 7 8 9 10 11
16 15
GND NC
14
VDS2/ RFout
13 12
NC GND
VRG1/VGS1 VGS2
Quiescent Current Temperature Compensation
(Top View) Note: Exposed backside flag is source terminal for transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1987.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
MW5IC2030NBR1 MW5IC2030GNBR1 1
RF Device Data Freescale Semiconductor
Table 1. Maximum Ratings
Rating Drain - Source Voltage Gate - Source Voltage Storage Temperature Range Operating Junction Temperature Input Power Symbol VDSS VGS Tstg TJ Pin Value - 0.5, +65 - 0.5, +15 - 65 to +175 200 20 Unit Vdc Vdc °C °C dBm
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case CDMA Application (Pout = 5 W CW) PHS Application (Pout = 12.6 W CW) Stage 1, 27 Vdc, IDQ = 160 mA Stage 2, 27 Vdc, IDQ = 230 mA Stage 1, 26 Vdc, IDQ = 300 mA Stage 2, 26 Vdc, IDQ = 1300 mA Symbol RθJC 4.89 1.75 4.85 1.61 Value (1,2) Unit °C/W
Table 3. ESD Protection Characteristics
Test Conditions Human Body Model Machine Model Charge Device Model Class 1B (Minimum) A (Minimum) 3 (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating 3 Package Peak Temperature 260 Unit °C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit CDMA Functional Tests (In Freescale 1900 MHz Test Fixture, 50 οhm system) VDD = 27 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, Pout = 5 W Avg., 1960 MHz, Single - Carrier N - CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Channel Bandwidth @ ± 885 kHz Offset. PAR = 9.8 dB @ 0.01 Probability on CCDF. Power Gain Drain Efficiency Input Return Loss Adjacent Channel Power Ratio Gain Flatness in 30 MHz BW, 1930 - 1990 MHz Gps ηD IRL ACPR GF 21.5 18 — — — 23 20 - 18 - 49 0.2 — — - 10 - 47 0.3 dB % dB dBc dB
1. MTTF calculator available at http://www.freescale.com/rf . Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1955. (continued)
MW5IC2030NBR1 MW5IC2030GNBR1 2 RF Device Data Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic Pout @ 1 dB Compression Point, CW Deviation from Linear Phase in 30 MHz BW (Characterized from 1930 - 1990 MHz) Delay Part - to - Part Phase Variation Part - to - Part Gain Variation (Per Lot or Reel) Reference FET to RF FET Scaling Ratio Delta (Stages 1 and 2) Symbol P1dB Φ Delay ΔΦ ΔG Min — — — — — — Typ 30 ±1 2.25 ±10 ±1.5 10 Max — — — — — — Unit W ° ns ° dB % Typical Performances (In Freescale Test Fixture) VDD = 26 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, Pout = 5 W, f = 1960 MHz
Typical PHS Performances (In Freescale Test Fixture, 50 οhm system) VDD = 26 Vdc, IDQ1 = 260 mA, IDQ2 = 1100 mA, Pout = 12.6 W, 1900 MHz, PHS Signal Mask Power Gain Drain Efficiency Input Return Loss Adjacent Channel Power Ratio (600 kHz Offset in 192 kHz BW) Gps ηD IRL ACPR — — — — 24 25 - 15 - 72 — — — — dB % dB dBc
MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 3
VD1
Z10 + C19 C9 C6 1 16 NC 15 C5 Z8 Z3 6 7 C14 VRG1/VGS1 8 9 C18 Z11 NC 10 NC 11 Quiescent Current Temperature Compensation NC 13 12 Z7 14 C1 C2 C3 Z6 Z4 Z5 Z9 C8 + VD2 C20 RF OUTPUT 2 3
VRD2 C12 VBIAS R2 R3 RF INPUT Z1 C7 VRD1 R6 C13 Z2
4 5
VBIAS1 R1 C11 R4 C15
C4
+
VBIAS2 R2 C10 R5 C16
+
C17
Z1 Z2 Z3 Z4 Z5 Z6
0.465″ 0.518″ 0.282″ 0.221″ 0.489″ 0.471″
x 0.041″ Microstrip x 0.041″ Microstrip x 0.235″ Microstrip x 0.081″ Microstrip x 0.041″ Microstrip x 0.025″ Microstrip
Z7 Z8 Z9 Z10 Z11 PCB
0.200″ x 0.025″ Microstrip 0.274″ x 0.050″ Microstrip 0.615″ x 0.050″ Microstrip 0.450″ x 0.025″ Microstrip 0.340″ x 0.014″ Microstrip Rogers 4350, 0.020″, εr = 3.5
Figure 3. MW5IC2030NBR1(GNBR1) Test Circuit Schematic
Table 6. MW5IC2030NBR1(GNBR1) Test Circuit Component Designations and Values
Part C1 C2 C3 C4 C5, C6 C7 C8, C9, C10, C11 C12, C13, C14, C15, C16 C17, C18 C19, C20 R1, R3 R2 R4, R5, R6 Description 1.8 pF High Q Chip Capacitor (0603) 1.5 pF High Q Chip Capacitor (0603) 3.9 pF High Q Chip Capacitor (0603) 6.8 pF High Q Chip Capacitor (0805) 100 pF Class 1 NPO Chip Capacitors (0805) 4.7 pF Class 1 NPO Chip Capacitor (0805) 0.1 μF X7R Chip Capacitors (1206) 0.01 μF Class 2 X7R Chip Capacitors (0805) 22 μF, 35 V Electrolytic Capacitors 330 μF, 50 V Electrolytic Capacitors 1 kW, 5% Chip Resistors (0805) 499 W, 1% Chip Resistor (0805) 100 kW, 5% Chip Resistors (0805) Part Number 600S1R8AT - 250 - T 600S1R5AT - 250 - T 600S3R9AT - 250 - T 600S6R8AT - 250 - T GRM215CB1H101CZ01D GRM215CB1H4R7CZ01D C1206C104K5RACT C0805C103K5RACT ECE - 1AVKS220 ECA - 1HM331 Manufacturer ATC ATC ATC ATC Murata Murata Kemet Kemet Panasonic Panasonic
MW5IC2030NBR1 MW5IC2030GNBR1 4 RF Device Data Freescale Semiconductor
RD2 C19 VD1 MW5IC2030M Rev 3 RG2 VD2 C20
R3
C9 C6 C12 R6 C13 C7 CUTOUT AREA
C8
C5
C3 C2 C1
C17 C18 C15 C16 C14 R4 R5 C10
C4
RD1 C11 R1 VG2 NC VG1RG1 R2
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.
Figure 4. MW5IC2030NBR1(GNBR1) Test Circuit Component Layout
MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 5
TYPICAL CHARACTERISTICS
23 Gps 32 31 30 29 21 VDD = 27 Vdc, Pout = 10 W (Avg.) IDQ1 = 160 mA, IDQ2 = 230 mA 100 kHz Tone Spacing ηD IRL 28 −26 −28 −30 19 18 1880 IMD 1900 1920 1940 1960 1980 2000 2020 f, FREQUENCY (MHz) −32 −34 −36 2040
22 G ps , POWER GAIN (dB)
ηD, DRAIN EFFICIENCY (%) IMD, INTERMODULATION DISTORTION (dBc)
−16 −17 −18 −19 −20 −21
20
Figure 5. Two - Tone Broadband Performance @ Pout = 10 Watts Avg.
Gps 23 G ps , POWER GAIN (dB) VDD = 27 Vdc, Pout = 1 W (Avg.) IDQ1 = 160 mA, IDQ2 = 230 mA 100 kHz Tone Spacing IRL ηD
8 7 6
ηD, DRAIN EFFICIENCY (%) IMD, INTERMODULATION DISTORTION (dBc)
24
9
22
5 −46 −47 −48
−16 −17 −18 −19 −20 −21
21
20 19 1880
IMD
−49 −50 −51 2040
1900
1920
1940
1960
1980
2000
2020
f, FREQUENCY (MHz)
Figure 6. Two - Tone Broadband Performance @ Pout = 1 Watt Avg.
25 G ps , POWER GAIN (dB) 24 23 22 21 VDD = 27 Vdc 20 f1 = 1960 MHz, f2 = 1960.1 MHz Two−Tone Measurements 19 0.1 1 IDQ1 = 120 mA IDQ2 = 175 mA IDQ1 = 160 mA IDQ2 = 230 mA
IDQ1 = 200 mA IDQ2 = 300 mA
IMD, INTERMODULATION DISTORTION (dBc)
26
10
100
−10 −15 VDD = 27 Vdc −20 IDQ1 = 160 mA, IDQ2 = 230 mA −25 f1 = 1960 MHz, f2 = 1960.1 MHz −30 Two−Tone Measurements −35 −40 −45 −50 −55 −60 −65 −70 −75 −80 0.1 1
IRL, INPUT RETURN LOSS (dB)
IRL, INPUT RETURN LOSS (dB)
3rd Order 5th Order 7th Order
10
100
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Two - Tone Power Gain versus Output Power
Figure 8. Intermodulation Distortion Products versus Output Power
MW5IC2030NBR1 MW5IC2030GNBR1 6 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
−15 IMD, INTERMODULATION DISTORTION (dBc) −20 −25 −30 −35 −40 −45 −50 −55 −60 0.1 1 10 100 TWO−TONE SPACING (MHz) 7th Order 3rd Order 5th Order VDD = 27 Vdc, Pout = 30 W (PEP), IDQ1 = 160 mA, IDQ2 = 230 mA, Two−Tone Measurements (f1 + f2/2) = Center Frequency of 1960 MHz 50 49 Pout , OUTPUT POWER (dBm) 48 47 46 45 44 43 42 41 40 39 15 16 17 18 19 −30_C 25_C 85_C 20 21 Actual VDD = 27 Vdc IDQ1 = 160 mA, IDQ2 = 230 mA Pulsed CW, 8 μsec(on), 1 msec(off) f = 1960 MHz 22 23 24 25 26 27 Ideal P3dB = 44.91 dBm (31 W) P1dB = 44.69 dBm (29.5 W)
Pin, INPUT POWER (dBm)
Figure 9. Intermodulation Distortion Products versus Tone Spacing
30 ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) VDD = 27 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, f = 1960 MHz 25 20 15 10 5 0 29 30 31 32 33 34 35 36 37 38 39 40 41 Pout, OUTPUT POWER (dBm) Gps 2−Carrier W−CDMA, 10 MHz Carrier Spacing, 3.84 MHz Channel Bandwidth, PAR = 8.5 dB @ 0.01% Probability (CCDF) ηD IM3 ACPR −50 −55 −30 G ps , POWER GAIN (dB) IM3 (dBc), ACPR (dBc) −35 −40 −45 −25 27 26 25 24 23 22 21 20 19 18 17 0
Figure 10. Pulse CW Output Power versus Input Power
Gps −30_C 25_C 85_C 50 45 40 35 30 25 20 ηD VDD = 27 Vdc IDQ1 = 160 mA IDQ2 = 230 mA f = 1960 MHz 10 100 15 10 5 0 ηD, DRAIN EFFICIENCY (%)
TC = −30_C 25_C 85_C
1
Pout, OUTPUT POWER (WATTS) CW
Figure 11. 2 - Carrier W - CDMA ACPR, IM3, Power Gain, and Drain Efficiency versus Output Power
25 24 23 G ps , POWER GAIN (dB) 22 S21 (dB) 21 20 19 18 17 16 15 0 20 40 60 Pout, OUTPUT POWER (WATTS) CW IDQ1 = 160 mA, IDQ2 = 230 mA f = 1960 MHz VDD = 12 V 24 V 28 V 32 V 20 10 0 40 30
Figure 12. Power Gain and Drain Efficiency versus Output Power
0 S21 −5 −10 −15 −20 S11 −10 −20 −30 1000 VDD = 27 Vdc, Pout = 30 W IDQ1 = 160 mA, IDQ2 = 230 mA 1500 2000 f, FREQUENCY (MHz) 2500 −25 −30 S11 (dB)
−35 3000
Figure 13. Power Gain versus Output Power
Figure 14. Broadband Frequency Response
MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 7
TYPICAL CHARACTERISTICS
EVM, ERROR VECTOR MAGNITUDE (% rms) 27 26 G ps , POWER GAIN (dB) 25 24 23 22 21 20 1920 VDD = 27 Vdc, Pout = 5 W (CW), IDQ1 = 160 mA, IDQ2 = 230 mA f1 = 1960 MHz, f2 = 1960.1 MHz, Two−Tone Measurements 1930 1940 1950 1960 1970 1980 1990 2000 25_C TC = −30_C 8 VDD = 27 Vdc IDQ1 = 160 mA IDQ2 = 230 mA f = 1960 MHz ηD 85_C 30 25_C 4 TC = −30_C 20 40 ηD, DRAIN EFFICIENCY (%)
6
85_C
2 Source EVM = 0.60% 1 10 Pout, OUTPUT POWER (WATTS) AVG. 100
10
0
0
f, FREQUENCY (MHz)
Figure 15. Power Gain versus Frequency
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) −45 −50 −55 −60 −65 SR @ 400 kHz −70 −75 −80 −85 0 10 Pout, OUTPUT POWER (WATTS) AVG. 100 SR @ 600 kHz 25_C −30_C 85_C VDD = 27 Vdc IDQ1 = 160 mA IDQ2 = 230 mA f = 1960 MHz EDGE Modulation TC = −30_C ACPR, ADJACENT CHANNEL POWER RATIO (dBc) ALT 1 & 2, ALTERNATE 1 & 2 CHANNEL POWER RATIO (dBc)
Figure 16. EVM and Drain Efficiency versus Output Power
−40 −45 −50 −55 −60 ACPR −65 −70 −75 ALT2 VDD = 27 Vdc IDQ1 = 160 mA, IDQ2 = 230 mA f = 1960 MHz N−CDMA IS−95 (Pilot, Sync, Paging, Traffic Codes 8 Through 13)
85_C 25_C
ALT1 −80 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Pout, IS−95 OUTPUT POWER (dBm)
Figure 17. Spectral Regrowth at 400 kHz and 600 kHz versus Output Power
−10 MTTF FACTOR (HOURS X AMPS2)
Figure 18. Single - Carrier N - CDMA ACPR, ALT1 and ALT2 versus Output Power
1.E+09
−20 INSERTION PHASE ( ) _
1.E+08
2nd Stage
−30 TC = −30_C −40 25_C 85_C −50
1.E+07 1st Stage
−60 0 1 10 100 Pout, OUTPUT POWER (WATTS) CW
1.E+06 90
100
110
120
130
140
150
160
170
180 190
TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application.
Figure 19. Insertion Phase versus Output Power
Figure 20. MTTF Factor versus Junction Temperature MW5IC2030NBR1 MW5IC2030GNBR1 8 RF Device Data Freescale Semiconductor
Zload*
f = 1800 MHz
f = 1800 MHz f = 2200 MHz f = 2200 MHz Zin Z o = 50 Ω
VDD = 27 V, IDQ1 = 160 mA, IDQ2 = 230 mA f MHz 1800 1850 1930 1960 1990 2050 2100 2150 2200 Zin Zin Ω 49.7 - j9.3 47.7 - j9.8 44.8 - j8.5 44.0 - j7.3 44.6 - j5.6 45.7 - j8.6 42.5 - j8.3 40.6 - j6.8 39.3 - j5.0 Zload Ω 6.9 - j0.3 6.9 - j0.3 6.7 - j0.1 6.6 - j0.0 6.6 + j0.1 6.4 + j0.4 6.2 + j0.8 6.1 + j1.1 6.0 + j1.6
= Device input impedance as measured from gate to ground.
Zload = Test circuit impedance as measured from drain to ground.
Device Under Test
Output Matching Network
Z
in
Z
load
Figure 21. Series Equivalent Input and Load Impedance MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 9
DRIVER APPLICATION PERFORMANCE
VD1 Z10 + C19 C9 C6 1 VRD2 C12 VBIAS R2 R3 RF INPUT Z1 C7 VRD1 C14 VBIAS1 R1 C11 R4 C15 7 VRG1/VGS1 8 9 C18 Z11 VBIAS2 R2 C10 R5 C16 + NC 10 NC 11 Quiescent Current Temperature Compensation NC 13 12 Z7 R6 C13 Z2 2 3 4 5 Z3 6 14 C1 C2 C3 Z6 Z4 Z5 Z8 16 NC 15 C5 Z9 C8 + VD2 C20 RF OUTPUT
C4
+
C17
Z1 Z2 Z3 Z4 Z5 Z6
0.465″ 0.518″ 0.282″ 0.221″ 0.489″ 0.471″
x 0.041″ Microstrip x 0.041″ Microstrip x 0.235″ Microstrip x 0.081″ Microstrip x 0.041″ Microstrip x 0.025″ Microstrip
Z7 Z8 Z9 Z10 Z11 PCB
0.200″ x 0.025″ Microstrip 0.274″ x 0.050″ Microstrip 0.615″ x 0.050″ Microstrip 0.450″ x 0.025″ Microstrip 0.340″ x 0.014″ Microstrip Rogers 4350, 0.020″, εr = 3.5
Figure 22. MW5IC2030NBR1(GNBR1) Test Circuit Schematic for Driver Application Tests
Table 7. MW5IC2030NBR1(GNBR1) Test Circuit Component Designations and Values for Driver Application Tests
Part C1 C2 C3 C4 C5, C6 C7 C8, C9, C10, C11 C12, C13, C14, C15, C16 C17, C18 C19, C20 R1, R3 R2 R4, R5, R6 Description 2.2 pF High Q Chip Capacitor (0603) 1.8 pF High Q Chip Capacitor (0603) 3.9 pF High Q Chip Capacitor (0603) 6.8 pF High Q Chip Capacitor (0805) 100 pF Class 1 NPO Chip Capacitors (0805) 4.7 pF Class 1 NPO Chip Capacitor (0805) 0.1 μF X7R Chip Capacitors (1206) 0.01 μF Class 2 X7R Chip Capacitors (0805) 22 μF, 35 V Electrolytic Capacitors 330 μF, 50 V Electrolytic Capacitors 1 kW, 5% Chip Resistors (0805) 499 W, 1% Chip Resistor (0805) 100 kW, 5% Chip Resistors (0805) Part Number 600S2R2AT - 250 - T 600S1R8AT - 250 - T 600S3R9AT - 250 - T 600S6R8AT - 250 - T GRM215CB1H101CZ01D GRM215CB1H4R7CZ01D C1206C104K5RACT C0805C103K5RACT ECE - 1AVKS220 ECA - 1HM331 Manufacturer ATC ATC ATC ATC Murata Murata Kemet Kemet Panasonic Panasonic
MW5IC2030NBR1 MW5IC2030GNBR1 10 RF Device Data Freescale Semiconductor
DRIVER APPLICATION PERFORMANCE
RD2 C19 VD1 MW5IC2030M Rev 3 RG2 VD2 C20
R3
C9 C6 C12 R6 C13 C7 CUTOUT AREA
C8
C5
C3 C2 C1
C17 C18 C15 C16 C14 R4 R5 C10
C4
RD1 C11 R1 VG2 NC VG1RG1 R2
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.
Figure 23. MW5IC2030NBR1(GNBR1) Test Circuit Component Layout for Driver Application Tests
MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 11
TYPICAL DRIVER APPLICATION CHARACTERISTICS
−60 −61 −62 −63 ACPR (dBc) −64 −65 −66 −67 −68 −69 −70 20 21 22 23 24 25 26 27 28 29 30
VDD = 27 Vdc, IDQ1 = 220 mA, IDQ2 = 240 mA f1 = 1957.5 MHz, f2 = 1960 MHz, 2−Carrier N−CDMA 2.5 MHz Carrier Spacing, 1.2288 MHz Channel Bandwidth PAR = 9.8 dB @ 0.01% Probability (CCDF)
Pout, OUTPUT POWER (dBm)
Figure 24. 2 - Carrier N - CDMA ACPR versus Output Power
MW5IC2030NBR1 MW5IC2030GNBR1 12 RF Device Data Freescale Semiconductor
Z o = 50 Ω f = 2200 MHz f = 1800 MHz f = 2200 MHz Zload f = 1800 MHz Zin
VDD = 27 V, IDQ1 = 220 mA, IDQ2 = 240 mA f MHz 1800 1850 1930 1960 1990 2050 2100 2150 2200 Zin Zin Ω 49.7 - j9.3 47.7 - j9.8 44.8 - j8.5 44.0 - j7.3 44.6 - j5.6 45.7 - j8.6 42.5 - j8.3 40.6 - j6.8 39.3 - j5.0 Zload Ω 9.8 - j7.0 8.9 - j6.3 7.2 - j4.6 6.8 - j3.9 6.5 - j3.4 5.9 - j2.3 5.6 - j1.5 5.4 - j0.7 5.2 + j0.1
= Device input impedance as measured from gate to ground.
Zload = Test circuit impedance as measured from drain to ground. Device Under Test Output Matching Network
Z
in
Z
load
Figure 25. Series Equivalent Input and Load Impedance for Driver Application MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 13
PACKAGE DIMENSIONS
MW5IC2030NBR1 MW5IC2030GNBR1 14 RF Device Data Freescale Semiconductor
MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 15
MW5IC2030NBR1 MW5IC2030GNBR1 16 RF Device Data Freescale Semiconductor
MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 17
MW5IC2030NBR1 MW5IC2030GNBR1 18 RF Device Data Freescale Semiconductor
MW5IC2030NBR1 MW5IC2030GNBR1 RF Device Data Freescale Semiconductor 19
How to Reach Us:
Home Page: www.freescale.com E - mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.
MW5IC2030NBR1 MW5IC2030GNBR1 2Rev. 8, 5/2006 0
Document Number: MW5IC2030N
RF Device Data Freescale Semiconductor