0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MW7IC18100GNR1

MW7IC18100GNR1

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MW7IC18100GNR1 - RF LDMOS Wideband Integrated Power Amplifiers - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MW7IC18100GNR1 数据手册
Freescale Semiconductor Technical Data Document Number: MW7IC18100N Rev. 2, 4/2008 RF LDMOS Wideband Integrated Power Amplifiers The MW7IC18100N wideband integrated circuit is designed with on - chip matching that makes it usable from 1805 to 2050 MHz. This multi - stage structure is rated for 24 to 32 Volt operation and covers all typical cellular base station modulations including GSM EDGE and CDMA. Final Application • Typical GSM Performance: VDD = 28 Volts, IDQ1 = 180 mA, IDQ2 = 1000 mA, Pout = 100 Watts CW, 1805 - 1880 MHz or 1930 - 1990 MHz Power Gain — 30 dB Power Added Efficiency — 48% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 215 mA, IDQ2 = 800 mA, Pout = 40 Watts Avg., 1805 - 1880 MHz or 1930 - 1990 MHz Power Gain — 31 dB Power Added Efficiency — 35% Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 80 dBc EVM — 1.5% rms • Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW Output Power • Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 1 mW to 120 W CW Pout. Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source Scattering Parameters • On - Chip Matching (50 Ohm Input, DC Blocked) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 1990 MHz, 100 W, 28 V GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1618 - 02 TO - 270 WB - 14 PLASTIC MW7IC18100NR1 CASE 1621 - 02 TO - 270 WB - 14 GULL PLASTIC MW7IC18100GNR1 CASE 1617 - 02 TO - 272 WB - 14 PLASTIC MW7IC18100NBR1 VDS1 RFin RFout/VDS2 VGS1 VGS2 Quiescent Current Temperature Compensation (1) NC VDS1 NC NC NC RFin RFin NC VGS1 VGS2 VDS1 NC 1 2 3 4 5 6 7 8 9 10 11 12 14 RFout /VDS2 13 RFout /VDS2 (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Functional Block Diagram Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. © Freescale Semiconductor, Inc., 2007, 2008. All rights reserved. MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 1 RF Device Data Freescale Semiconductor Table 1. Maximum Ratings Rating Drain- Source Voltage Gate- Source Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Symbol VDSS VGS Tstg TC TJ Value - 0.5, +65 - 0.5, +6 - 65 to +200 150 225 Unit Vdc Vdc °C °C °C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case GSM Application (Pout = 100 W CW) Stage 1, 28 Vdc, IDQ1 = 180 mA Stage 2, 28 Vdc, IDQ2 = 1000 mA Symbol RθJC Value (2,3) 2.0 0.51 Unit °C/W Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class O (Minimum) A (Minimum) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating 3 Package Peak Temperature 260 Unit °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Power Gain Input Return Loss Power Added Efficiency Pout @ 1 dB Compression Point, CW Symbol Gps IRL PAE P1dB Min 27 — 45 100 Typ 30 - 15 48 112 Max 31 - 10 — — Unit dB dB % W Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W CW, IDQ1 = 180 mA, IDQ2 = 1000 mA, f = 1990 MHz. Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 215 mA, IDQ2 = 800 mA, Pout = 40 W Avg., 1805 - 1880 MHz or 1930 - 1990 MHz EDGE Modulation. Power Gain Power Added Efficiency Error Vector Magnitude Spectral Regrowth at 400 kHz Offset Spectral Regrowth at 600 kHz Offset Gps PAE EVM SR1 SR2 — — — — — 31 35 1.5 - 63 - 80 — — — — — dB % % rms dBc dBc 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. (continued) MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Gain Flatness in 60 MHz Bandwidth @ Pout = 100 W CW Average Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 100 W CW Average Group Delay @ Pout = 100 W CW, f = 1960 MHz Part - to - Part Insertion Phase Variation @ Pout = 100 W CW, f = 1960 MHz, Six Sigma Window Gain Variation over Temperature ( - 30°C to +85°C) Output Power Variation over Temperature ( - 30°C to +85°C) Symbol GF Φ Delay ΔΦ ΔG ΔP1dB Min — — — — — — Typ 0.37 0.502 2.57 63.65 0.048 0.004 Max — — — — — — Unit dB ° ns ° dB/°C dBm/°C Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, 1930-1990 MHz Bandwidth MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 3 + VDD1 C1 C10 Z3 RF INPUT Z2 Z1 C11 Z4 Z5 Z6 1 NC 2 3 NC 4 NC 5 NC Z7 6 7 VGG1 VGG2 R1 R2 8 NC 9 10 11 12 NC C4 C16 Z1 Z2, Z5 Z3 Z4 Z6 Z7 Z8, Z9 Z10 C2 Z11 Z12 Z13 Z14 Z15 Z16 PCB 0.880″ x 0.256″ Microstrip 0.215″ x 0.138″ Microstrip 0.215″ x 0.252″ Microstrip 0.083″ x 0.298″ Microstrip 0.083″ x 0.810″ Microstrip 0.083″ x 0.250″ Microstrip Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55 C8 C9 Quiescent Current Temperature Compensation 13 Z9 C13 C15 14 Z10 C12 Z11 Z12 C14 Z13 Z14 Z15 C5 Z16 Z8 RF OUTPUT DUT C3 C6 C7 C17 VDD2 0.083″ x 0.505″ Microstrip 0.083″ x 0.552″ Microstrip 0.083″ x 0.252″ Microstrip 0.083″ x 0.174″ Microstrip 0.083″ x 1.261″ Microstrip 0.060″ x 0.126″ Microstrip 0.080″ x 1.569″ Microstrip 0.880″ x 0.224″ Microstrip Figure 3. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1900 MHz Table 6. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1900 MHz Part C1, C2, C3, C4, C5 C6, C7, C8, C9 C10, C11 C12, C13 C14 C15 C16 C17 R1, R2 Description 6.8 pF Chip Capacitors 10 μF, 50 V Chip Capacitors 0.2 pF Chip Capacitors 0.5 pF Chip Capacitors 0.8 pF Chip Capacitor 1.5 pF Chip Capacitor 2.2 μF, 16 V Chip Capacitor 470 μF, 63 V Electrolytic Capacitor, Radial 10 KΩ, 1/4 W Chip Resistors Part Number ATC100B6R8BT500XT GRM55DR61H106KA88L ATC100B0R2BT500XT ATC100B0R5BT500XT ATC100B0R8BT500XT ATC100B1R5BT500XT C1206C225K4RAC 477KXM063M CRCW12061001FKEA Manufacturer ATC Murata ATC ATC ATC ATC Kemet Illinois Capacitor Vishay MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 4 RF Device Data Freescale Semiconductor C17 C10 C1 C11 CUT OUT AREA C12 C3 C6 C7 C15 C14 C5 MW7IC18100N Rev. 2 C2 R1 C13 C8 C4 C9 C16 R2 Figure 4. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1900 MHz MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS — 1900 MHz 33 32 Gps, POWER GAIN (dB) 31 Gps 30 29 28 27 1880 IRL VDD = 28 Vdc, Pout = 100 W CW IDQ1 = 180 mA, IDQ2 = 1000 mA 40 35 30 25 2040 PAE 55 50 45 PAE, POWER ADDED EFFICIENCY (%) −5 −10 −15 −20 IRL, INPUT RETURN LOSS (dB) −5 −10 −15 −20 IRL, INPUT RETURN LOSS (dB) 1900 1920 1940 1960 1980 2000 2020 f, FREQUENCY (MHz) Figure 5. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW 32 31 Gps, POWER GAIN (dB) 30 PAE 29 28 27 IRL VDD = 28 Vdc, Pout = 40 W Avg. IDQ1 = 215 mA, IDQ2 = 800 mA EDGE Modulation 30 20 10 0 2040 Gps 60 50 40 PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% rms) 10 Pout, OUTPUT POWER (WATTS) CW VDD = 28 Vdc, IDQ2 = 1000 mA f = 1960 MHz 100 200 EVM 26 1880 1900 1920 1940 1960 1980 2000 2020 f, FREQUENCY (MHz) Figure 6. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ Pout = 40 Watts Avg. 32 IDQ2 = 1500 mA 31 1000 mA Gps, POWER GAIN (dB) 30 750 mA 29 500 mA 28 27 26 25 1 10 Pout, OUTPUT POWER (WATTS) CW 100 200 VDD = 28 Vdc, IDQ1 = 180 mA f = 1960 MHz Gps, POWER GAIN (dB) 1250 mA 34 33 32 31 30 29 28 27 26 25 1 90 mA 180 mA IDQ1 = 270 mA 225 mA 135 mA Figure 7. Two - Tone Power Gain versus Output Power @ IDQ1 = 180 mA Figure 8. Two - Tone Power Gain versus Output Power @ IDQ2 = 1000 mA MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1900 MHz −10 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) VDD = 28 Vdc, IDQ1 = 180 mA f1 = 1960 MHz, f2 = 1960.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −10 VDD = 28 Vdc, IDQ2 = 1000 mA f1 = 1960 MHz, f2 = 1960.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −20 −20 −30 IDQ2 = 500 mA 750 mA 1500 mA −30 IDQ1 = 90 mA 135 mA 180 mA −40 −40 −50 1250 mA −50 270 mA −60 225 mA 1000 mA −60 1 10 Pout, OUTPUT POWER (WATTS) PEP 100 200 1 10 Pout, OUTPUT POWER (WATTS) PEP 100 200 Figure 9. Third Order Intermodulation Distortion versus Output Power @ IDQ1 = 180 mA 0 IMD, INTERMODULATION DISTORTION (dBc) −10 −20 −30 −40 3rd Order −50 −60 −70 −80 1 10 Pout, OUTPUT POWER (WATTS) PEP 100 400 5th Order 7th Order VDD = 28 Vdc, IDQ1 = 180 mA IDQ2 = 1000 mA, f1 = 1960 MHz, f2 = 1960.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing IMD, INTERMODULATION DISTORTION (dBc) Figure 10. Third Order Intermodulation Distortion versus Output Power @ IDQ2 = 1000 mA 0 −10 −20 −30 −40 −50 −60 −70 −80 0.1 1 TWO−TONE SPACING (MHz) 10 IM5−U IM5−L IM7−U IM7−L IM3−L IM3−U VDD = 28 Vdc, Pout = 80 W (PEP), IDQ1 = 215 mA IDQ2 = 800 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz Figure 11. Intermodulation Distortion Products versus Output Power 58 57 Pout, OUTPUT POWER (dBc) 56 Gps, POWER GAIN (dB) 55 54 53 P1dB = 50.6 dBm (114.8 W) 52 51 50 49 48 16 17 18 Actual VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA Pulsed CW, 12 μsec(on), 1% Duty Cycle f = 1960 MHz 19 20 21 22 23 24 25 26 P3dB = 51.32 dBm (135.51 W) P6dB = 51.74 dBm (149.27 W) Ideal 35 30 25 20 15 10 1 40 Gps Figure 12. Intermodulation Distortion Products versus Tone Spacing 60 25_C 25_C 85_C 85_C 30 20 VDD = 28 Vdc IDQ1 = 180 mA IDQ2 = 1000 mA f = 1960 MHz 10 Pout, OUTPUT POWER (WATTS) CW 100 10 0 200 50 40 PAE, POWER ADDED EFFICIENCY (%) TC = −30_C −30_C PAE Pin, INPUT POWER (dBm) Figure 13. Pulsed CW Output Power versus Input Power Figure 14. Power Gain and Power Added Efficiency versus Output Power MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS — 1900 MHz 31 5 EVM, ERROR VECTOR MAGNITUDE (% ms) IDQ1 = 180 mA IDQ2 = 1000 mA f = 1960 MHz VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA EDGE Modulation Gps, POWER GAIN (dB) 30 4 3 29 2 Pout = 50 W Avg. 28 VDD = 24 V 27 0 50 100 150 200 Pout, OUTPUT POWER (WATTS) CW 28 V 32 V 1 30 W Avg. 0 1880 40 W Avg. 1900 1920 1940 1960 1980 2000 2020 2040 f, FREQUENCY (MHz) Figure 15. Power Gain versus Output Power SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) −55 SR @ 400 kHz −60 −65 −70 −75 −80 −85 1880 SR @ 600 kHz 50 W Avg. 40 W Avg. 1900 1920 1940 1960 1980 2000 2020 2040 30 W Avg. VDD1 = 28 Vdc, VDD2 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 815 mA f = 1960 MHz, EDGE Modulation Pout = 50 W Avg. 40 W Avg. 30 W Avg. SPECTRAL REGROWTH @ 400 kHz (dBc) −40 Figure 16. EVM versus Frequency −50 VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA f = 1960 MHz, EDGE Modulation 25_C TC = −30_C 85_C −60 −70 −80 1 10 Pout, OUTPUT POWER (WATTS) AVG. 100 200 f, FREQUENCY (MHz) Figure 17. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency −50 SPECTRAL REGROWTH @ 600 kHz (dBc) VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA f = 1960 MHz, EDGE Modulation TC = 85_C 25_C 16 14 12 10 8 6 4 2 0 1 10 Pout, OUTPUT POWER (WATTS) AVG. 100 200 1 Figure 18. Spectral Regrowth at 400 kHz versus Output Power 80 25_C PAE, POWER ADDED EFFICIENCY (%) VDD1 = 28 Vdc IDQ1 = 215 mA IDQ2 = 800 mA f = 1960 MHz EDGE Modulation TC = 85_C −30_C 85_C 25_C PAE 70 60 50 40 30 20 EVM 10 Pout, OUTPUT POWER (WATTS) AVG. 100 10 0 200 −60 −30_C −70 −80 −90 EVM, ERROR VECTOR MAGNITUDE (% ms) Figure 19. Spectral Regrowth at 600 kHz versus Output Power Figure 20. EVM and Power Added Efficiency versus Output Power MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1900 MHz 32 S21 28 S11 S21 (dB) 24 −10 S11 (dB) −5 Gps, POWER GAIN (dB) 34 33 32 31 30 −25 2600 29 1880 85_C 1900 1920 1940 1960 1980 2000 2020 2040 VDD = 28 Vdc, Pout = 40 W Avg. IDQ1 = 180 mA, IDQ2 = 1000 mA 25_C 0 36 35 TC = −30_C 20 −15 16 VDD = 28 Vdc IDQ1 = 180 mA, IDQ2 = 1000 mA 1600 1800 2000 2200 2400 −20 12 1400 f, FREQUENCY (MHz) f, FREQUENCY (MHz) Figure 21. Broadband Frequency Response 109 Figure 22. Power Gain versus Frequency 108 MTTF (HOURS) 107 1st Stage 106 2nd Stage 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 100 W CW, and PAE = 48%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 23. MTTF versus Junction Temperature MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 9 GSM TEST SIGNAL −10 −20 −30 −40 −50 (dB) −60 −70 −80 −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz 400 kHz 600 kHz 400 kHz 600 kHz Reference Power VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz Figure 24. EDGE Spectrum MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 10 RF Device Data Freescale Semiconductor Zo = 50 Ω f = 2040 MHz Zload f = 1880 MHz f = 2040 MHz Zin f = 1880 MHz VDD1 = VDD2 = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, Pout = 100 W CW f MHz 1880 1900 1920 1940 1960 1980 2000 2020 2040 Zin = Zin W 67.48 - j17.89 60.03 - j20.86 53.65 - j21.94 48.13 - j21.94 43.52 - j21.22 39.60 - j20.00 36.14 - j18.52 33.19 - j16.57 30.96 - j14.58 Zload W 2.324 - j3.239 2.234 - j3.105 2.135 - j2.965 2.037 - j2.818 1.936 - j2.666 1.851 - j2.509 1.765 - j2.355 1.669 - j2.193 1.559 - j2.012 Device input impedance as measured from gate to ground. Test circuit impedance as measured from drain to ground. Zload = Device Under Test Output Matching Network Z in Z load Figure 25. Series Equivalent Input and Load Impedance — 1900 MHz MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 11 Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 180 mA, IDQ2 = 1000 mA, TC = 255C, 50 Ohm System) f MHz 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 S11 |S11| 0.612 0.557 0.491 0.410 0.313 0.216 0.131 0.117 0.185 0.253 0.303 0.328 0.331 0.273 0.141 0.050 0.194 0.270 0.288 0.274 0.236 ∠φ 118.5 104.3 88.33 70.24 48.99 21.99 - 22.83 - 95.13 - 146.3 - 177.3 160.4 139.5 117.9 91.65 64.27 172.7 163.4 139.7 118.9 100.6 83.35 |S21| 6.369 11.42 16.92 23.21 30.49 32.64 32.93 32.62 32.58 32.45 32.41 32.33 32.50 32.84 32.52 28.92 21.30 14.62 9.878 6.771 4.579 S21 ∠φ 69.06 18.29 - 34.34 - 84.03 - 135.7 168.8 114.0 65.01 20.45 - 22.53 - 65.29 - 108.6 - 152.7 160.2 109.2 56.72 8.112 - 34.53 - 72.70 - 107.5 - 141.3 |S12| 0.002 0.003 0.005 0.005 0.006 0.007 0.006 0.006 0.006 0.007 0.007 0.006 0.008 0.008 0.008 0.009 0.007 0.007 0.007 0.007 0.007 S12 ∠φ 102.9 85.09 59.06 28.40 7.983 - 15.63 - 35.27 - 53.22 - 77.03 - 98.93 - 108.4 - 127.3 - 145.8 - 169.1 162.7 138.3 112.6 97.74 84.37 70.79 55.31 |S22| 0.615 0.666 0.844 0.931 0.887 0.700 0.475 0.332 0.252 0.165 0.052 0.070 0.161 0.257 0.424 0.641 0.804 0.879 0.910 0.911 0.903 S22 ∠φ 47.74 - 41.54 - 113.4 - 163.4 155.6 120.3 95.71 82.10 68.30 47.02 8.742 - 154.8 179.9 165.7 150.3 123.4 91.99 62.03 34.57 8.878 - 16.73 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 12 RF Device Data Freescale Semiconductor ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — 1900 MHz 56 55 Pout, OUTPUT POWER (dBm) 54 53 52 51 50 49 17 18 19 20 21 22 23 P3dB = 52.72 dBm (187.06 W) P2dB = 52.43 dBm (175 W) P1dB = 51.93 dBm (155.89 W) Ideal Actual VDD = 28 Vdc, IDQ1 = 180 mA IDQ2 = 1000 mA, Pulsed CW 12 μsec(on) 1% Duty Cycle f = 1990 MHz 24 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V Test Impedances per Compression Level Zsource Ω P3dB 40.2 - j30.91 Zload Ω 0.96 - j3.14 Figure 26. Pulsed CW Output Power versus Input Power @ 28 V MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 13 + VDD1 C1 C10 Z3 RF INPUT Z2 Z1 C11 Z4 Z5 Z6 1 NC 2 3 NC 4 NC 5 NC Z7 6 7 VGG1 VGG2 R1 R2 8 NC 9 10 11 12 NC C4 C16 Z1 Z2, Z5 Z3 Z4 Z6 Z7 Z8, Z9 Z10 C2 Z11 Z12 Z13 Z14 Z15 Z16 PCB 0.880″ x 0.256″ Microstrip 0.215″ x 0.138″ Microstrip 0.215″ x 0.252″ Microstrip 0.083″ x 0.298″ Microstrip 0.083″ x 0.810″ Microstrip 0.083″ x 0.250″ Microstrip Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55 C8 C9 Quiescent Current Temperature Compensation 13 Z9 C13 C15 14 Z10 C12 Z11 Z12 C14 Z13 Z14 Z15 C5 Z16 Z8 RF OUTPUT DUT C3 C6 C7 C17 VDD2 0.083″ x 0.505″ Microstrip 0.083″ x 0.552″ Microstrip 0.083″ x 0.252″ Microstrip 0.083″ x 0.174″ Microstrip 0.083″ x 1.261″ Microstrip 0.060″ x 0.126″ Microstrip 0.080″ x 1.569″ Microstrip 0.880″ x 0.224″ Microstrip Figure 27. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1800 MHz Table 8. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1800 MHz Part C1, C2, C3, C4, C5 C6, C7, C8, C9 C10, C11 C12, C13 C14 C15 C16 C17 R1, R2 Description 6.8 pF Chip Capacitors 10 μF, 50 V Chip Capacitors 0.2 pF Chip Capacitors 0.8 pF Chip Capacitors 1.2 pF Chip Capacitor 1.0 pF Chip Capacitor 2.2 μF, 16 V Chip Capacitor 470 μF, 63 V Electrolytic Capacitor, Radial 10 KΩ, 1/4 W Chip Resistors Part Number ATC100B6R8BT500XT GRM55DR61H106KA88L ATC100B0R2BT500XT ATC100B0R8BT500XT ATC100B1R2BT500XT ATC100B1R0BT500XT C1206C225K4RAC 477KXM063M CRCW12061001FKEA Manufacturer ATC Murata ATC ATC ATC ATC Kemet Illinois Capacitor Vishay MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 14 RF Device Data Freescale Semiconductor C17 C10 C1 C11 CUT OUT AREA C12 C3 C6 C7 C14 C15 C13 C8 C4 C9 C5 MW7IC18100N Rev. 2 C2 R1 C16 R2 Figure 28. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1800 MHz MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 15 TYPICAL CHARACTERISTICS — 1800 MHz 32 PAE 31 Gps, POWER GAIN (dB) 30 Gps 29 28 IRL 27 26 1760 1780 30 25 1920 1940 VDD1 = 28 Vdc, Pout = 100 W CW IDQ1 = 180 mA, IDQ2 = 1000 mA 40 35 50 45 55 PAE, POWER ADDED EFFICIENCY (%) −10 −15 −20 −25 IRL, INPUT RETURN LOSS (dB) IRL, INPUT RETURN LOSS (dB) 1800 1820 1840 1860 1880 1900 f, FREQUENCY (MHz) Figure 29. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW 32 31 Gps, POWER GAIN (dB) 30 29 28 27 IRL 26 EVM 25 1760 1780 1800 1820 1840 1860 1880 1900 1920 0 1940 10 20 PAE EVM, ERROR VECTOR MAGNITUDE (% rms) 10 Pout, OUTPUT POWER (WATTS) CW 30 Gps 60 50 40 PAE, POWER ADDED EFFICIENCY (%) −10 −15 −20 −25 −30 VDD = 28 Vdc, IDQ2 = 1000 mA f = 1840 MHz VDD1 = 28 Vdc, Pout = 40 W Avg. IDQ1 = 215 mA, IDQ2 = 800 mA EDGE Modulation f, FREQUENCY (MHz) Figure 30. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ Pout = 40 Watts Avg. 33 IDQ2 = 1500 mA 32 Gps, POWER GAIN (dB) 1000 mA 31 750 mA 30 500 mA 29 28 27 1 10 Pout, OUTPUT POWER (WATTS) CW 100 200 VDD = 28 Vdc, IDQ1 = 180 mA f = 1840 MHz 1250 mA Gps, POWER GAIN (dB) 36 35 34 33 32 31 30 29 28 27 26 1 100 200 90 mA 135 mA 180 mA IDQ1 = 270 mA 225 mA Figure 31. Two - Tone Power Gain versus Output Power @ IDQ1 =180 mA Figure 32. Two - Tone Power Gain versus Output Power @ IDQ2 = 1000 mA MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 16 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1800 MHz −10 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) VDD = 28 Vdc, IDQ1 = 180 mA f1 = 1840 MHz, f2 = 1840.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing IDQ2 = 500 mA 750 mA −40 1000 mA −50 1500 mA −60 1 10 Pout, OUTPUT POWER (WATTS) PEP 100 200 1250 mA −10 VDD = 28 Vdc, IDQ2 = 1000 mA f1 = 1840 MHz, f2 = 1840.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −20 −20 −30 −30 IDQ1 = 90 mA 135 mA 270 mA −40 180 mA −50 225 mA −60 1 10 Pout, OUTPUT POWER (WATTS) PEP 100 200 Figure 33. Third Order Intermodulation Distortion versus Output Power @ IDQ1 = 180 mA 0 IMD, INTERMODULATION DISTORTION (dBc) −10 −20 −30 −40 −50 −60 −70 −80 1 10 Pout, OUTPUT POWER (WATTS) PEP 100 400 3rd Order VDD = 28 Vdc, IDQ1 = 180 mA IDQ2 = 1000 mA, f1 = 1840 MHz, f2 = 1840.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing IMD, INTERMODULATION DISTORTION (dBc) Figure 34. Third Order Intermodulation Distortion versus Output Power @ IDQ2 = 1000 mA −10 VDD = 28 Vdc, Pout = 80 W (PEP), IDQ1 = 180 mA IDQ2 = 1000 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1840 MHz IM3−L IM3−U −40 IM5−U IM5−L −50 IM7−U IM7−L −20 −30 5th Order 7th Order −60 0.1 1 TWO−TONE SPACING (MHz) 10 50 Figure 35. Intermodulation Distortion Products versus Output Power 58 57 Pout, OUTPUT POWER (dBc) 56 Gps, POWER GAIN (dB) 55 54 53 P1dB = 50.539 dBm (113.21 W) 52 51 50 49 48 15 16 17 18 Actual VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA Pulsed CW, 12 μsec(on), 1% Duty Cycle f = 1840 MHz 19 20 21 22 23 24 25 P3dB = 51.34 dBm (136.144 W) P6dB = 51.876 dBm (154.028 W) 40 Ideal 35 30 25 20 15 10 1 Gps Figure 36. Intermodulation Distortion Products versus Tone Spacing 60 50 40 30 20 VDD = 28 Vdc IDQ1 = 180 mA IDQ2 = 1000 mA f = 1840 MHz 10 Pout, OUTPUT POWER (WATTS) CW 100 10 0 200 PAE, POWER ADDED EFFICIENCY (%) 25_C TC = −30_C 25_C 85_C −30_C 85_C PAE Pin, INPUT POWER (dBm) Figure 37. Pulsed CW Output Power versus Input Power Figure 38. Power Gain and Power Added Efficiency versus Output Power MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 17 TYPICAL CHARACTERISTICS — 1800 MHz 32 31 Gps, POWER GAIN (dB) 4 EVM, ERROR VECTOR MAGNITUDE (% ms) IDQ1 = 180 mA IDQ2 = 1000 mA f = 1840 MHz VDD = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA EDGE Modulation 3 Pout = 50 W Avg. 40 W Avg. 1 30 W Avg. 0 1760 30 2 29 28 V VDD = 24 V 27 0 50 100 150 200 Pout, OUTPUT POWER (WATTS) CW 32 V 28 1780 1800 1820 1840 1860 1880 1900 1920 1940 f, FREQUENCY (MHz) Figure 39. Power Gain versus Output Power SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) −55 −60 −65 −70 −75 SR @ 600 kHz −80 40 W Avg. −85 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 30 W Avg. VDD1 = 28 Vdc, VDD2 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 815 mA f = 1840 MHz, EDGE Modulation 50 W Avg. SR @ 400 kHz Pout = 50 W Avg. 40 W Avg. SPECTRAL REGROWTH @ 400 kHz (dBc) −40 Figure 40. EVM versus Frequency −50 VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA f = 1840 MHz, EDGE Modulation 25_C TC = −30_C 85_C −60 30 W Avg. −70 −80 1 10 Pout, OUTPUT POWER (WATTS) AVG. 100 200 f, FREQUENCY (MHz) Figure 41. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency −50 SPECTRAL REGROWTH @ 600 kHz (dBc) VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA f = 1840 MHz, EDGE Modulation TC = 85_C −30_C 14 12 10 8 6 4 2 0 1 10 Pout, OUTPUT POWER (WATTS) AVG. 100 200 1 Figure 42. Spectral Regrowth at 400 kHz versus Output Power 70 60 50 40 −30_C PAE 30 20 EVM 10 Pout, OUTPUT POWER (WATTS) AVG. 100 10 0 200 PAE, POWER ADDED EFFICIENCY (%) VDD1 = 28 Vdc IDQ1 = 215 mA IDQ2 = 800 mA f = 1840 MHz EDGE Modulation 85_C TC = −30_C 25_C 85_C 25_C −60 25_C −70 −80 −90 Figure 43. Spectral Regrowth at 600 kHz versus Output Power EVM, ERROR VECTOR MAGNITUDE (% ms) Figure 44. EVM and Power Added Efficiency versus Output Power MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 18 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1800 MHz 37 36 Gps, POWER GAIN (dB) 35 34 33 32 31 30 29 1760 1780 85_C VDD = 28 Vdc, Pout = 40 W Avg. IDQ1 = 180 mA, IDQ2 = 1000 mA 25_C TC = −30_C 1800 1820 1840 1860 1880 1900 1920 1940 f, FREQUENCY (MHz) Figure 45. Power Gain versus Frequency MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 19 f = 1760 MHz Zo = 75 Ω Zin f = 1920 MHz Zload f = 1760 MHz f = 1920 MHz VDD1 = VDD2 = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, Pout = 100 W CW f MHz 1760 1780 1800 1820 1840 1860 1880 1900 1920 Zin = Zin W 71.78 + j40.05 79.83 + j31.13 84.35 + j19.44 84.75 + j7.234 81.21 - j4.076 74.76 - j12.32 67.49 - j17.89 60.03 - j20.86 53.65 - j21.94 Zload W 2.983 - j3.974 2.872 - j3.861 2.757 - j3.745 2.636 - j3.639 2.535 - j3.506 2.434 - j3.376 2.324 - j3.239 2.234 - j3.105 2.135 - j2.965 Device input impedance as measured from gate to ground. Test circuit impedance as measured from drain to ground. Zload = Device Under Test Output Matching Network Z in Z load Figure 46. Series Equivalent Input and Load Impedance — 1800 MHz MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 20 RF Device Data Freescale Semiconductor ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — 1800 MHz 56 Ideal 55 Pout, OUTPUT POWER (dBm) 54 53 52 51 50 49 17 18 19 20 P3dB = 52.46 dBm (176.19 W) P2dB = 52.19 dBm (165.57 W) P1dB = 51.72 dBm (148.59 W) Actual VDD = 28 Vdc, IDQ1 = 180 mA IDQ2 = 1000 mA, Pulsed CW 12 μsec(on) 1% Duty Cycle f = 1880 MHz 21 22 23 24 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V Test Impedances per Compression Level Zsource Ω P3dB 83.04 - j2.44 Zload Ω 1.36 - j3.19 Figure 47. Pulsed CW Output Power versus Input Power @ 28 V MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 21 PACKAGE DIMENSIONS MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 22 RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 23 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 24 RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 25 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 26 RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 27 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 28 RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 29 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 30 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision 0 1 Date May 2007 June 2007 • Initial Release of Data Sheet • Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature rating will be added to the Maximum Ratings table when parts’ Operating Junction Temperature is increased to 225°C. • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related “Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C in Capable Plastic Package bullet, p. 1, 2 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 • Updated PCB information to show more specific material details, Figs. 3, 27, Test Circuit Schematic, p. 4, 14 • Updated Part Numbers in Tables 6, 8, Component Designations and Values, to RoHS compliant part numbers, p. 4, 14 • Replaced Case Outline 1617 - 01 with 1617 - 02, Issue A, p. 22 - 24. Revised cross - hatched area for exposed heat spreader. Added pin numbers 1, 12, 13, and 14 to Sheets 1 and 2. Corrected mm Min and Max values for dimension A1 to 0.99 and 1.09, respectively. • Replaced Case Outline 1618 - 01 with 1618 - 02, Issue A, p. 25 - 27. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheet 1. Removed Pin 5 designation from Sheet 2. • Replaced Case Outline 1621 - 01 with 1621 - 02, Issue A, p. 28 - 30. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheets 1 and 3. Removed Pin 5 designation from Sheet 2. Description 2 Apr. 2008 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 31 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007, 2008. All rights reserved. MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 3Rev. 2, 4/2008 2 Document Number: MW7IC18100N RF Device Data Freescale Semiconductor
MW7IC18100GNR1 价格&库存

很抱歉,暂时无法提供与“MW7IC18100GNR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货