Freescale Semiconductor Technical Data
Document Number: MW7IC2040N Rev. 1, 11/2009
RF LDMOS Wideband Integrated Power Amplifiers
The MW7IC2040N wideband integrated circuit is designed with on - chip matching that makes it usable from 1805 to 1990 MHz. This multi - stage structure is rated for 24 to 32 Volt operation and covers all typical cellular base station modulation formats. • Typical Single - Carrier W - CDMA Performance: VDD = 28 Volts, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 Watts Avg., f = 1932.5, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. Power Gain — 32 dB Power Added Efficiency — 17.5% ACPR @ 5 MHz Offset — - 50 dBc in 3.84 MHz Bandwidth • Capable of Handling 5:1 VSWR, @ 32 Vdc, 1960 MHz, 50 Watts CW Output Power (3 dB Input Overdrive from Rated Pout) • Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 100 mW to 40 Watts CW Pout. • Typical Pout @ 1 dB Compression Point ' 30 Watts CW GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 90 mA, IDQ2 = 430 mA, Pout = 16 Watts Avg., 1805 - 1880 MHz Power Gain — 33 dB Power Added Efficiency — 35% Spectral Regrowth @ 400 kHz Offset = - 62 dBc Spectral Regrowth @ 600 kHz Offset = - 77 dBc EVM — 1.5% rms GSM Application • Typical GSM Performance: VDD = 28 Volts, IDQ1 = 90 mA, IDQ2 = 430 mA, Pout = 40 Watts CW, 1805 - 1880 MHz and 1930 - 1990 MHz Power Gain — 31 dB Power Added Efficiency — 50% Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source S - Parameters • On - Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output) • Integrated Quiescent Current Temperature Compensation with Enable/ Disable Function (1) • Integrated ESD Protection • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
1930 - 1990 MHz, 1805 - 1880 MHz, 4 W AVG., 28 V SINGLE W - CDMA, GSM EDGE, GSM RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS
CASE 1886 - 01 TO - 270 WB - 16 PLASTIC MW7IC2040NR1
CASE 1887 - 01 TO - 270 WB - 16 GULL PLASTIC MW7IC2040GNR1
CASE 1329 - 09 TO - 272 WB - 16 PLASTIC MW7IC2040NBR1
GND VDS1 VGS2 VGS1 NC RFin
1 2 3 4 5 6 7 8 9 10 11
16 15
GND NC
VDS1 RFin RFout/VDS2
14
RFout/VDS2
VGS1 VGS2 VDS1
Quiescent Current Temperature Compensation (1)
NC VGS1 VGS2 VDS1 GND
13 12
NC GND
(Top View) Note: Exposed backside of the package is the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2009. All rights reserved.
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 1
RF Device Data Freescale Semiconductor
Table 1. Maximum Ratings
Rating Drain - Source Voltage Gate - Source Voltage Operating Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Input Power Symbol VDSS VGS VDD Tstg TC TJ Pin Value - 0.5, +65 - 0.5, +10 32, +0 - 65 to +150 150 225 25 Unit Vdc Vdc Vdc °C °C °C dBm
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case W - CDMA (Pout = 4 W Avg., Case Temperature = 73°C) GSM EDGE (Pout = 16 W Avg., Case Temperature = 76°C) GSM (Pout = 40 W Avg., Case Temperature = 79°C) Symbol RθJC Stage 1, 28 Vdc, IDQ1 = 130 mA Stage 2, 28 Vdc, IDQ2 = 330 mA Stage 1, 28 Vdc, IDQ1 = 130 mA Stage 2, 28 Vdc, IDQ2 = 330 mA Stage 1, 28 Vdc, IDQ1 = 130 mA Stage 2, 28 Vdc, IDQ2 = 330 mA 4.0 1.5 Value (2,3) Unit °C/W
4.1 1.4 3.9 1.3
Table 3. ESD Protection Characteristics
Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 1B (Minimum) A (Minimum) III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology Per JESD22 - A113, IPC/JEDEC J - STD - 020 Rating 3 Package Peak Temperature 260 Unit °C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic Stage 1 — Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) Stage 1 — On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 25 μAdc) Gate Quiescent Voltage (VDS = 28 Vdc, IDQ1 = 130 mAdc) Fixture Gate Quiescent Voltage (VDD = 28 Vdc, IDQ1 = 130 mAdc, Measured in Functional Test) VGS(th) VGS(Q) VGG(Q) 1.2 — 13 2 2.7 14.5 2.7 — 16 Vdc Vdc Vdc IDSS IDSS IGSS — — — — — — 10 1 1 μAdc μAdc μAdc Symbol Min Typ Max Unit
1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf . Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1955. (continued)
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 2 RF Device Data Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic Stage 2 — Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) Stage 2 — On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 140 μAdc) Gate Quiescent Voltage (VDS = 28 Vdc, IDQ2 = 330 mAdc) Fixture Gate Quiescent Voltage (VDD = 28 Vdc, IDQ2 = 330 mAdc, Measured in Functional Test) Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1 Adc) Stage 2 — Dynamic Characteristics (1) Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 246 — pF VGS(th) VGS(Q) VGG(Q) VDS(on) 1.2 — 7 0.2 2 2.8 8 0.39 2.7 — 9 1.2 Vdc Vdc Vdc Vdc IDSS IDSS IGSS — — — — — — 10 1 1 μAdc μAdc μAdc Symbol Min Typ Max Unit
Functional Tests (3) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg., f = 1932.5 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 45.2% Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Power Added Efficiency Adjacent Channel Power Ratio Input Return Loss Pout @ 1 dB Compression Point, CW IMD Symmetry @ 22 W PEP, Pout where IMD Third Order Intermodulation ` 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Quiescent Current Accuracy over Temperature (2) with 5.6 kΩ Gate Feed Resistors ( - 30 to 85°C) Gain Flatness in 60 MHz Bandwidth @ Pout = 4 W Avg. Average Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 30 W CW Average Group Delay @ Pout = 30 W CW, f = 1960 MHz Part - to - Part Insertion Phase Variation @ Pout = 30 W CW, f = 1960 MHz, Six Sigma Window Gain Variation over Temperature ( - 30°C to +85°C) Output Power Variation over Temperature ( - 30°C to +85°C) Gps PAE ACPR IRL P1dB IMDsym 29.5 16 — — — — — — — — — — — — 32 17.5 - 50 - 15 30 60 65 ±3 1.2 0.5 2.5 33 0.029 0.003 34.5 — - 46 -8 — — — — — — — — — — MHz % dB ° ns ° dB/°C dBm/°C dB % dBc dB W MHz
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, 1930 - 1990 MHz
VBWres ΔIQT GF Φ Delay ΔΦ ΔG ΔP1dB
1. Part internally matched both on input and output. 2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. 3. Measurement made with device in straight lead configuration before any lead forming operation is applied. (continued)
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 3
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic Symbol Min Typ Max Unit Typical W - CDMA Performance — 1800 MHz (In Freescale W - CDMA 1805 - 1880 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg., 1805 - 1880 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 45.2% Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Power Added Efficiency Adjacent Channel Power Ratio Input Return Loss Gps PAE ACPR IRL — — — — 33.5 16.5 - 50 -6 — — — — dB % dBc dB
Typical GSM EDGE Performance — 1800 MHz (In Freescale GSM EDGE 1805 - 1880 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 16 W Avg., IDQ1 = 90 mA, IDQ2 = 430 mA, 1805 - 1880 MHz EDGE Modulation Power Gain Power Added Efficiency Error Vector Magnitude Spectral Regrowth at 400 kHz Offset Spectral Regrowth at 600 kHz Offset Gps PAE EVM SR1 SR2 — — — — — 33 35 1.5 - 62 - 77 — — — — — dB % % rms dBc dBc
Typical GSM EDGE Performance — 1900 MHz (In Freescale GSM EDGE 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 16 W Avg., IDQ1 = 90 mA, IDQ2 = 430 mA, 1930 - 1990 MHz EDGE Modulation Power Gain Power Added Efficiency Error Vector Magnitude Spectral Regrowth at 400 kHz Offset Spectral Regrowth at 600 kHz Offset Gps PAE EVM SR1 SR2 — — — — — 30 33 1.5 - 62 - 80 — — — — — dB % % rms dBc dBc
Typical CW Performance (In Freescale GSM EDGE 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 90 mA, IDQ2 = 430 mA, Pout = 40 W CW, 1805 - 1880 MHz and 1930 - 1990 MHz Power Gain Power Added Efficiency Input Return Loss Pout @ 1 dB Compression Point Gps PAE IRL P1dB — — — — 31 50 - 15 45 — — — — dB % dB W
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 4 RF Device Data Freescale Semiconductor
+ C13 Z13 1 2 G1 3 G2 4 5 NC 6 C14 VGG1 R1 VGG2 R2 C12 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8, Z9 C10 C2 Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z10 Z11 Z12 Z13, Z14 Z15 Z16 PCB 0.3419″ x 0.1725″ Microstrip 0.3419″ x 0.4671″ Microstrip 0.0830″ x 0.4220″ Microstrip 0.0830″ x 0.2855″ Microstrip 0.0830″ x 0.9030″ Microstrip 0.0830″ x 0.2499″ Microstrip Rogers RO4350, 0.030″, εr = 3.5 7 NC 8 G2 9 G1 10 11 C16 Quiescent Current Temperature Compensation Z9 NC 13 12 C4 Z14 C18 C8 C9 C5 DUT 16 NC 15 Z8 C15 14 Z10 Z11 Z12 Z15 Z16 RF OUTPUT C3 C17 C6 C7 VDD2
VDD1 Z3 RF INPUT Z1 Z2 Z4 Z5 C11 C1
Z6
Z7
0.0826″ x 0.5043″ 0.0826″ x 0.3639″ 0.0826″ x 0.4258″ 0.0826″ x 0.3639″ 0.0826″ x 0.3060″ 0.0826″ x 0.9290″ 0.0600″ x 0.1273″ 0.0800″ x 1.3684″
Figure 3. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1930 - 1990 MHz
Table 6. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz
Part C1, C2, C3, C4, C5 C6, C7, C8, C9, C10, C11 C12 C13 C14, C16 C15 C17, C18 R1, R2 Description 6.8 pF Chip Capacitors 10 μF, 50 V Chip Capacitors 2.2 μF, 16 V Chip Capacitor 470 μF, 63 V Electrolytic Capacitor, Radial 0.8 pF Chip Capacitors 1 pF Chip Capacitor 1 μF, 50 V Chip Capacitors 5.6 KΩ, 1/4 W Chip Resistors Part Number ATC100B6R8CT500XT GRM55DR61H106KA88L C1206C225K4RAC MCGPR63V477M13X26 - RH ATC100B0R8BT500XT ATC100B1R0BT500XT GRM21BR71H105KA12L CRCW12065601FKEA Manufacturer ATC Murata Kemet Multicomp ATC ATC Murata Vishay
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 5
C13
C3 C11 C1 CUT OUT AREA
C17 C6 C7
C15
TO272WB−16 MW7IC2040N Rev. 2 R1 R2
C14 C2 C10 C12
C16 C8 C4 C18 C9
C5
Figure 4. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 6 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
37 36 35 Gps, POWER GAIN (dB) 34 33 32 31 30 29 28 27 1880 ACPR IRL Gps PAE 18 17 VDD = 28 Vdc, Pout = 4 W (Avg.), IDQ1 = 130 mA IDQ2 = 330 mA, Single−Carrier W−CDMA, 3.84 MHz 16 Channel Bandwidth, Input Signal PAR = 7.5 dB 15 @ 0.01% Probability on CCDF 14 −47 −48 −49 −50 −51 1920 1940 1960 1980 2000 2020 −52 2040 ACPR (dBc) PAE, POWER ADDED EFFICIENCY (%)
−10 −12 −14 −16 −18 −20
1900
f, FREQUENCY (MHz)
Figure 5. Single Carrier W - CDMA Broadband Performance @ Pout = 4 Watts Avg.
35 34 Gps, POWER GAIN (dB) 33 32 165 mA 31 30 29 1 10 Pout, OUTPUT POWER (WATTS) CW 50 VDD = 28 Vdc IDQ1 = 130 mA f = 1960 MHz IDQ2 = 495 mA 413 mA 330 mA Gps, POWER GAIN (dB) 35 IDQ1 = 195 mA 34 163 mA 33 32 31 30 65 mA 29 28 1 10 Pout, OUTPUT POWER (WATTS) CW 50 VDD = 28 Vdc IDQ2 = 330 mA f = 1960 MHz 248 mA 80 mA 98 mA
Figure 6. Power Gain versus Output Power @ IDQ1 = 130 mA
−10 VDD = 28 Vdc, Pout = 22 W (PEP), IDQ1 = 130 mA IDQ2 = 330 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz IM3−U IM3−L −40 IM5−L IM5−U IM7−L IM7−U 1 10 TWO−TONE SPACING (MHz)
Figure 7. Power Gain versus Output Power @ IDQ2 = 330 mA
IMD, INTERMODULATION DISTORTION (dBc)
−20
−30
−50
−60
100
Figure 8. Intermodulation Distortion Products versus Two - Tone Spacing MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 7
IRL, INPUT RETURN LOSS (dB)
TYPICAL CHARACTERISTICS
34 33 Gps, POWER GAIN (dB) 32 PAE 31 30 29 28 1 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, f = 1960 MHz Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 8 16 24 32 40 Gps ACPR 55 45 35 25 15 5 65 PAE, POWER ADDED EFFICIENCY (%) −10 −20 −30 −40 −50 −60 −70 ACPR (dBc) ACPR (dBc)
Pout, OUTPUT POWER (WATTS)
Figure 9. Power Gain, ACPR and Power Added Efficiency versus Output Power
40 38 36 Gps, POWER GAIN (dB) 34 32 30 28 26 24 22 1 Gps 25_C 85_C TC = −30_C 25_C PAE 50 45 40 35 30 25 20 VDD = 28 Vdc, IDQ1 = 130 mA IDQ2 = 330 mA, f = 1960 MHz 15 Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth, Input Signal 10 PAR = 7.5 dB @ 0.01% Probability on CCDF 5 10 60 Pout, OUTPUT POWER (WATTS) AVG. PAE, POWER ADDED EFFICIENCY (%) −10 −16 −22 −28 −34 −40 −46 −52 −58 −64
−30_C
85_C
−30_C ACPR
Figure 10. Single - Carrier W - CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power
40 Gain 35 0
−4
GAIN (dB)
25 IRL 20 VDD = 28 Vdc Pout = 25 dBm IDQ1 = 130 mA IDQ2 = 330 mA
−12
−16
15 −20 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 f, FREQUENCY (MHz)
Figure 11. Broadband Frequency Response
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 8 RF Device Data Freescale Semiconductor
IRL (dB)
30
−8
TYPICAL CHARACTERISTICS
109 108 MTTF (HOURS) 107 1st Stage 2nd Stage
106 105
104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 4 W Avg., and PAE = 17.5%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
Figure 12. MTTF versus Junction Temperature
W - CDMA TEST SIGNAL
100 10 PROBABILITY (%) 1 Input Signal 0.1 (dB) 0.01 0.001 0.0001 0 W−CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 1 2 3 4 5 6 7 8 9 10 10 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −9 −7.2 −5.4 −3.6 −1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) −ACPR in 3.84 MHz Integrated BW +ACPR in 3.84 MHz Integrated BW 3.84 MHz Channel BW
PEAK−TO−AVERAGE (dB)
Figure 13. CCDF W - CDMA 3GPP, Test Model 1, 64 DPCH, 45.2% Clipping, Single - Carrier Test Signal
Figure 14. Single - Carrier W - CDMA Spectrum
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 9
Zo = 50 Ω
Zo = 10 Ω
Zin f = 2040 MHz f = 1880 MHz Zload f = 1880 MHz f = 2040 MHz
VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg. f MHz 1880 1900 1920 1940 1960 1980 2000 2020 2040 Zin = Zin W 42.97 - j25.07 44.01 - j25.91 45.14 - j26.72 46.38 - j27.48 47.71 - j28.19 49.16 - j28.83 50.71 - j29.40 52.36 - j29.87 54.12 - j30.23 Zload W 6.10 - j5.01 5.92 - j4.71 5.76 - j4.44 5.62 - j4.21 5.51 - j4.01 5.40 - j3.83 5.27 - j3.71 5.13 - j3.60 4.99 - j3.52
Device input impedance as measured from gate to ground. Test circuit impedance as measured from drain to ground.
Zload =
Device Under Test
Output Matching Network
Z
in
Z
load
Figure 15. Series Equivalent Input and Load Impedance MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 10 RF Device Data Freescale Semiconductor
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
53 52 Pout, OUTPUT POWER (dBm) 51 50 49 48 47 46 45 44 43 11 12 13 14 15 16 17 18 19 20 21 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V Test Impedances per Compression Level Zsource Ω P1dB 49.30 + j8.40 Zload Ω 3.60 - j4.50 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA Pulsed CW, 10 μsec(on), 10% Duty Cycle, f = 1930 MHz Actual P1dB = 47.06 dBm (51 W) P3dB = 47.74 dBm (59 W) Ideal Pout, OUTPUT POWER (dBm)
53 52 51 50 49 48 47 46 45 44 43 13 14 15 16 17 18 19 20 21 22 23 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V Test Impedances per Compression Level Zsource Ω P1dB 50.0 - j4.90 Zload Ω 3.40 - j5.10 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA Pulsed CW, 10 μsec(on), 10% Duty Cycle, f = 1990 MHz Actual P1dB = 47.37 dBm (55 W) P3dB = 47.88 dBm (61 W) Ideal
Figure 16. Pulsed CW Output Power versus Input Power @ 28 V @ 1930 MHz
Figure 17. Pulsed CW Output Power versus Input Power @ 28 V @ 1990 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 11
Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 90 mA, IDQ2 = 430 mA, TC = 25°C, 50 Ohm System)
f MHz 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2700 2750 2800 2850 2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500 S11 |S11| 0.595 0.545 0.482 0.398 0.332 0.542 0.488 0.373 0.294 0.269 0.297 0.342 0.389 0.420 0.424 0.388 0.302 0.188 0.066 0.034 0.104 0.154 0.191 0.250 0.278 0.309 0.343 0.382 0.420 0.459 0.498 0.542 0.577 0.603 0.628 0.654 0.661 0.678 0.692 0.704 ∠φ - 118.5 - 147.4 - 176.5 156.7 146.1 116.5 59.6 8.7 - 46.7 - 107.0 - 161.3 154.0 114.8 78.2 41.2 2.9 - 37.2 - 78.8 - 123.6 55.1 12.1 - 17.7 - 44.6 - 94.4 - 118.4 - 142.0 - 165.3 171.0 147.7 124.6 102.9 79.6 56.4 33.6 11.0 - 11.9 - 35.4 - 57.0 - 80.2 - 103.7 |S21| 2.110 3.851 7.415 15.620 37.544 62.685 50.513 42.562 38.690 36.138 33.838 32.122 30.682 29.594 28.734 27.277 24.568 20.404 16.281 12.661 9.738 7.577 5.905 3.679 2.921 2.330 1.874 1.518 1.226 0.985 0.782 0.641 0.531 0.439 0.363 0.303 0.250 0.208 0.157 0.158 S21 ∠φ - 151.3 178.9 144.7 103.6 45.5 - 48.6 - 124.5 - 178.8 132.3 85.3 39.7 - 4.7 - 48.5 - 92.4 - 137.7 175.2 126.4 78.5 33.8 - 8.6 - 48.2 - 85.7 - 121.7 169.8 136.7 104.5 72.7 41.5 10.6 - 19.8 - 49.0 - 76.9 - 105.1 - 133.3 - 161.1 171.0 143.7 115.4 88.5 71.5 |S12| 0.00174 0.00192 0.00294 0.00445 0.00746 0.00940 0.00642 0.00497 0.00438 0.00416 0.00382 0.00350 0.00342 0.00354 0.00396 0.00425 0.00483 0.00470 0.00415 0.00388 0.00368 0.00328 0.00281 0.00245 0.00271 0.00373 0.00250 0.00286 0.00313 0.00262 0.00101 0.00279 0.00504 0.00526 0.00587 0.00659 0.00909 0.00691 0.00718 0.01000 S12 ∠φ - 71.2 - 86.7 - 114.0 - 149.9 177.5 110.9 67.4 40.5 19.1 - 7.3 - 28.5 - 50.7 - 69.9 - 84.6 - 101.3 - 125.1 - 153.1 174.4 148.7 124.4 106.5 77.5 57.2 37.8 19.5 2.2 - 19.6 - 40.7 - 71.3 - 98.0 - 108.5 - 84.9 - 110.7 - 152.0 - 176.6 160.1 129.6 98.1 80.9 46.8 |S22| 0.888 0.876 0.867 0.872 0.884 0.650 0.454 0.419 0.416 0.443 0.497 0.553 0.602 0.640 0.666 0.689 0.720 0.753 0.778 0.806 0.826 0.842 0.851 0.856 0.854 0.854 0.849 0.851 0.850 0.851 0.847 0.850 0.856 0.857 0.858 0.857 0.853 0.845 0.745 0.760 S22 ∠φ - 160.3 170.4 137.1 94.6 29.4 - 93.8 157.6 105.4 75.9 54.0 31.7 8.0 - 16.3 - 41.0 - 65.4 - 89.2 - 113.5 - 138.7 - 163.6 171.0 145.2 119.7 94.4 45.7 22.1 - 0.5 - 23.5 - 46.0 - 68.4 - 91.1 - 113.4 - 136.3 - 159.8 176.4 152.0 126.8 101.4 74.5 42.1 43.7
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 12 RF Device Data Freescale Semiconductor
W - CDMA — 1805 - 1880 MHz
+ C13 VDD2 1 2 G1 3 G2 4 5 NC 6 C14 VGG1 R1 VGG2 R2 C12 C10 C2 7 NC 8 G2 9 G1 10 11 C16 Quiescent Current Temperature Compensation Z9 NC 13 12 C4 C8 C9 C5 DUT 16 NC 15 Z8 C15 14 Z10 Z11 Z12 Z13 Z14 RF OUTPUT C3 C6 C7
VDD1 Z3 RF INPUT Z1 Z2 Z4 Z5 C11 C1
Z6
Z7
Z1 Z2 Z3 Z4 Z5 Z6 Z7
0.0826″ x 0.5043″ Microstrip 0.0826″ x 0.3639″ Microstrip 0.0826″ x 0.4258″ Microstrip 0.0826″ x 0.3639″ Microstrip 0.0826″ x 0.3459″ Microstrip 0.0826″ x 0.9115″ Microstrip 0.0600″ x 0.1273″ Microstrip
Z8, Z9 Z10 Z11 Z12 Z13 Z14 PCB
0.0800″ x 1.1139″ Microstrip 0.3419″ x 0.1725″ Microstrip 0.3419″ x 0.4671″ Microstrip 0.0830″ x 0.4220″ Microstrip 0.0830″ x 0.9030″ Microstrip 0.0830″ x 0.2499″ Microstrip Rogers RO4350, 0.030″, εr = 3.5
Figure 18. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1805 - 1880 MHz
Table 8. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz
Part C1, C2, C3, C4, C5 C6, C7, C8, C9, C10, C11 C12 C13 C14, C15, C16 R1, R2 Description 6.8 pF Chip Capacitors 10 μF, 50 V Chip Capacitors 2.2 μF, 16 V Chip Capacitor 470 μF, 63 V Electrolytic Capacitor, Radial 1 pF Chip Capacitors 5.6 KΩ, 1/4 W Chip Resistors Part Number ATC100B6R8CT500XT GRM55DR61H106KA88L C1206C225K4RAC MCGPR63V477M13X26 - RH ATC100B1R0BT500XT CRCW12065601FKEA Manufacturer ATC Murata Kemet Multicomp ATC Vishay
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 13
W - CDMA — 1805 - 1880 MHz
C13
C3 C11 C1 CUT OUT AREA C15 C6 C7
TO272WB−16 MW7IC2040N Rev. 2 R1 R2
C14 C2 C10 C12
C16 C8 C4 C9
C5
Figure 19. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 14 RF Device Data Freescale Semiconductor
GSM EDGE — 1805 - 1880 MHz
+ VDD1 C11 Z3 Z2 Z4 Z5 C14 Z1 Z6 Z7 6 7 NC 8 G2 9 G1 10 11 C12 C10 C2 C16 Quiescent Current Temperature Compensation Z9 NC 13 12 C4 C8 C9 C5 C1 1 2 G1 3 G2 4 5 NC DUT 16 NC 15 Z8 C15 14 Z10 Z11 Z12 Z13 Z14 RF OUTPUT C3 C6 C7 C13 VDD2
RF INPUT
VGG1 R1 VGG2 R2
Z1 Z2 Z3 Z4 Z5 Z6 Z7
0.0826″ x 0.5043″ 0.0826″ x 0.3639″ 0.0826″ x 0.4258″ 0.0826″ x 0.2315″ 0.0826″ x 0.1324″ 0.0826″ x 1.2574″ 0.0600″ x 0.1273″
Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip
Z8, Z9 Z10 Z11 Z12 Z13 Z14 PCB
0.0800″ x 1.3354″ Microstrip 0.3419″ x 0.1725″ Microstrip 0.3419″ x 0.4671″ Microstrip 0.0830″ x 0.3575″ Microstrip 0.0830″ x 0.9675″ Microstrip 0.0830″ x 0.2499″ Microstrip Rogers RO4350, 0.030″, εr = 3.5
Figure 20. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1805 - 1880 MHz
Table 9. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz
Part C1, C2, C3, C4, C5 C6, C7, C8, C9, C10, C11 C12 C13 C14 C15 C16 R1, R2 Description 6.8 pF Chip Capacitors 10 μF, 50 V Chip Capacitors 2.2 μF, 16 V Chip Capacitor 470 μF, 63 V Electrolytic Capacitor, Radial 0.8 pF Chip Capacitor 1 pF Chip Capacitor 1.2 pF Chip Capacitor 5.6 KΩ, 1/4 W Chip Resistors Part Number ATC100B6R8CT500XT GRM55DR61H106KA88L C1206C225K4RAC MCGPR63V477M13X26 - RH ATC100B0R8BT500XT ATC100B1R0BT500XT ATC100B1R2BT500XT CRCW12065601FKEA Manufacturer ATC Murata Kemet Multicomp ATC ATC ATC Vishay
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 15
GSM EDGE — 1805 - 1880 MHz
C13
C11 C1 CUT OUT AREA
C3 C6 C7
C15
C14 TO272WB−16 MW7IC2040N Rev. 2 R1 R2 C12
C16 C8 C9
C5
C2 C10
C4
Figure 21. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 16 RF Device Data Freescale Semiconductor
GSM EDGE — 1930 - 1990 MHz
+ C13 VDD2 1 2 G1 3 G2 4 5 NC 6 C14 VGG1 R1 VGG2 R2 C12 C10 C2 7 NC 8 G2 9 G1 10 11 C16 Quiescent Current Temperature Compensation Z9 NC 13 12 C4 C8 C9 C5 DUT 16 NC 15 Z8 C15 14 Z10 Z11 Z12 Z13 Z14 RF OUTPUT C3 C6 C7
VDD1 Z3 RF INPUT Z1 Z2 Z4 Z5 C11 C1
Z6
Z7
Z1 Z2 Z3 Z4 Z5 Z6 Z7
0.0826″ x 0.5043″ 0.0826″ x 0.3639″ 0.0826″ x 0.4258″ 0.0826″ x 0.3639″ 0.0826″ x 0.6544″ 0.0826″ x 0.6030″ 0.0600″ x 0.1273″
Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip
Z8, Z9 Z10 Z11 Z12 Z13 Z14 PCB
0.0800″ x 1.6274″ Microstrip 0.3419″ x 0.1725″ Microstrip 0.3419″ x 0.4671″ Microstrip 0.0830″ x 0.4685″ Microstrip 0.0830″ x 0.8565″ Microstrip 0.0830″ x 0.2499″ Microstrip Rogers RO4350, 0.030″, εr = 3.5
Figure 22. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1930 - 1990 MHz
Table 10. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz
Part C1, C2, C3, C4, C5 C6, C7, C8, C9, C10, C11 C12 C13 C14 C15, C16 R1, R2 Description 6.8 pF Chip Capacitors 10 μF, 50 V Chip Capacitors 2.2 μF, 16 V Chip Capacitor 470 μF, 63 V Electrolytic Capacitor, Radial 0.5 pF Chip Capacitor 0.8 pF Chip Capacitors 5.6 KΩ, 1/4 W Chip Resistors Part Number ATC100B6R8CT500XT GRM55DR61H106KA88L C1206C225K4RAC MCGPR63V477M13X26 - RH ATC100B0R5BT500XT ATC100B0R8BT500XT CRCW12065601FKEA Manufacturer ATC Murata Kemet Multicomp ATC ATC Vishay
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 17
GSM EDGE — 1930 - 1990 MHz
C13
C11 C1 CUT OUT AREA
C3 C6 C7
C15
TO272WB−16 MW7IC2040N Rev. 2 R1 R2
C14 C2 C10 C12
C16 C8 C4 C9
C5
Figure 23. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 18 RF Device Data Freescale Semiconductor
PACKAGE DIMENSIONS
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 19
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 20 RF Device Data Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 21
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 22 RF Device Data Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 23
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 24 RF Device Data Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 25
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 26 RF Device Data Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 27
PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE
Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages • AN3789: Clamping of High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision 0 1 Date Feb. 2009 Nov. 2009 • Initial Release of Data Sheet • Updated Human Body Model ESD from Class 1C to 1B to reflect Human Body Model actual test data, p. 2 • Fig. 13, CCDF W - CDMA 3GPP, Test Model 1, 64 DPCH, 45.2% Clipping, Single - Carrier Test Signal and Fig. 14, Single - Carrier W - CDMA Spectrum updated to show the undistorted input test signal, p. 9 • Added AN3789, Clamping of High Power RF Transistors and RFICs in Over - Molded Plastic Packages to Product Documentation, Application Notes, p. 28 • Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 28 Description
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 28 RF Device Data Freescale Semiconductor
How to Reach Us:
Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
Document Number: RF Device Data MW7IC2040N Rev. 1, 11/2009 Freescale Semiconductor
29