Freescale Semiconductor Technical Data
Document Number: MW7IC2750N Rev. 0, 5/2008
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for WiMAX base station applications with frequencies up to 2700 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class AB and Class C amplifier applications. • Typical WiMAX Performance: VDD = 28 Volts, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 8 Watts Avg., f = 2700 MHz, 802.16d, 64 QAM 3/4, 4 bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 26 dB Power Added Efficiency — 17% Device Output Signal PAR — 8.6 dB @ 0.01% Probability on CCDF ACPR @ 8.5 MHz Offset — - 49 dBc in 1 MHz Channel Bandwidth Driver Applications • Typical WiMAX Performance: VDD = 28 Volts, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 4 Watts Avg., f = 2700 MHz, 802.16d, 64 QAM 3/4, 4 bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 26 dB Power Added Efficiency — 11% Device Output Signal PAR — 9.2 dB @ 0.01% Probability on CCDF ACPR @ 8.5 MHz Offset — - 57 dBc in 1 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 2600 MHz, 50 Watts CW Output Power • Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 1 mW to 80 W CW Pout • Pout @ 1 dB Compression Point w 50 Watts CW Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source Parameters • On - Chip Matching (50 Ohm Input, DC Blocked) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
2700 MHz, 8 W AVG., 28 V WiMAX LATERAL N - CHANNEL RF POWER MOSFETs
CASE 1618 - 02 TO - 270 WB - 14 PLASTIC MW7IC2750NR1
CASE 1621 - 02 TO - 270 WB - 14 GULL PLASTIC MW7IC2750GNR1
CASE 1617 - 02 TO - 272 WB - 14 PLASTIC MW7IC2750NBR1
VDS1 RFin RFout/VDS2
VGS1 VGS2
Quiescent Current Temperature Compensation (1)
VDS1 VGS2 VGS1 NC NC RFin RFin NC NC VGS1 VGS2 VDS1
1 2 3 4 5 6 7 8 9 10 11 12
14
RFout /VDS2
13
RFout /VDS2
(Top View) Note: Exposed backside of the package is the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2008. All rights reserved.
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 1
RF Device Data Freescale Semiconductor
Table 1. Maximum Ratings
Rating Drain - Source Voltage Gate - Source Voltage Operating Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature Input Power
(1,2)
Symbol VDS VGS VDD Tstg TC TJ Pin
Value - 0.5, +65 - 6.0, +10 32, +0 - 65 to +150 150 225 13
Unit Vdc Vdc Vdc °C °C °C dBm
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case CW Application (Case Temperature 80°C, Pout = 50 W CW) Final Application (Case Temperature 70°C, Pout = 8 W CW) Driver Application (Case Temperature 65°C, Pout = 4 W CW) Stage 1, 28 Vdc, IDQ1 = 160 mA Stage 2, 28 Vdc, IDQ2 = 550 mA Stage 1, 28 Vdc, IDQ1 = 160 mA Stage 2, 28 Vdc, IDQ2 = 550 mA Stage 1, 28 Vdc, IDQ1 = 160 mA Stage 2, 28 Vdc, IDQ2 = 550 mA Symbol RθJC Value (2,3) 3.0 0.7 2.9 0.7 2.8 0.7 Unit °C/W
Table 3. ESD Protection Characteristics
Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 1C (Minimum) A (Minimum) III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating 3 Package Peak Temperature 260 Unit °C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic Stage 1 — Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Stage 1 — On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 46 μAdc) Gate Quiescent Voltage (VDD = 28 Vdc, IDQ1 = 160 mA, Measured in Functional Test) Stage 1 — Dynamic Characteristics (4) Input Capacitance (VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 550 — pF VGS(th) VGS(Q) 1 3 2 3.8 3 4.5 Vdc Vdc IDSS IDSS IGSS — — — — — — 10 1 1 μAdc μAdc μAdc Symbol Min Typ Max Unit
1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1955. 4. Part internally matched both on input and output. (continued)
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 2 RF Device Data Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic Stage 2 — Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Stage 2 — On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 185 μAdc) Gate Quiescent Voltage (VDD = 28 Vdc, IDQ2 = 550 mA, Measured in Functional Test) Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1 Adc) Stage 2 — Dynamic Characteristics (1) Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss Coss — — 0.68 220 — — pF pF VGS(th) VGS(Q) VDS(on) 1 2.8 0.1 2 3.6 0.12 3 4.3 0.8 Vdc Vdc Vdc IDSS IDSS IGSS — — — — — — 10 1 1 μAdc μAdc μAdc Symbol Min Typ Max Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 8 W Avg., f = 2700 MHz, WiMAX Signal, 802.16d, 10 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset. Power Gain Power Added Efficiency Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss Gps PAE PAR ACPR IRL 24 15 7.8 — — 26 17 8.6 - 49 - 12 31 — — - 45 - 10 dB % dB dBc dB
Typical Performances OFDM Signal — 7 MHz Channel Bandwidth (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 8 W Avg., f = 2700 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Mask System Type G @ Pout = 8 W Avg. Mask Point B at 3.5 MHz Offset Point C at 5 MHz Offset Point D at 7.4 MHz Offset Point E at 14 MHz Offset Point F at 17.5 MHz Offset RCE EVM — — — — — — — - 27 - 40 - 43 - 58 - 63 - 33 2.3 — — — — — — — dB % rms dBc
Relative Constellation Error @ Pout = 8 W Avg. (2) Error Vector Magnitude (2) (Typical EVM Performance @ Pout = 8 W Avg. with OFDM 802.16d Signal Call)
Typical Performances OFDM Signal — 10 MHz Channel Bandwidth (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 8 W Avg., f = 2700 MHz, WiMAX Signal, OFDM Single - Carrier, 10 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Relative Constellation Error @ Pout = 8 W Avg. (1) Error Vector Magnitude (Typical EVM Performance @ Pout = 8 W Avg. with OFDM 802.16d Signal Call) 1. Part internally matched both on input and output. 2. RCE = 20Log(EVM/100) (continued)
(1)
RCE EVM
— —
- 33 2.3
— —
dB % rms
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 3
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic Pout @ 1 dB Compression Point, CW IMD Symmetry @ 50 W PEP, Pout where IMD Third Order Intermodulation ` 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Gain Flatness in 200 MHz Bandwidth @ Pout = 8 W Avg. Average Deviation from Linear Phase in 200 MHz Bandwidth @ Pout = 50 W CW Average Group Delay @ Pout = 50 W CW, f = 2600 MHz Part - to - Part Insertion Phase Variation @ Pout = 50 W CW, f = 2600 MHz, Six Sigma Window Gain Variation over Temperature ( - 30°C to +85°C) Output Power Variation over Temperature ( - 30°C to +85°C) Symbol P1dB IMDsym Min — — Typ 55 60 Max — — Unit W MHz Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, 2700 MHz Bandwidth
VBWres GF Φ Delay ΔΦ ΔG ΔP1dB
— — — — — — —
50 0.5 1.1 2.3 38.7 0.037 0.005
— — — — — — —
MHz dB ° ns ° dB/°C dBm/°C
Typical Driver Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 4 W Avg., f = 2700 MHz, WiMAX Signal, 802.16d, 10 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset. Power Gain Power Added Efficiency Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss Relative Constellation Error @ Pout = 2.5 W Avg. 1. RCE = 20Log(EVM/100)
(1)
Gps PAE PAR ACPR IRL RCE
— — — — — —
26 11 9.2 - 57 - 13 - 39
— — — — — —
dB % dB dBc dB dB
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 4 RF Device Data Freescale Semiconductor
VDD2 VDD1 C2 C4 Z5 1 C6 2 NC 3 NC RF INPUT 4 NC 5 NC Z1 C1 VGG1 VGG2 R1 R2 Z4 Z2 Z3 6 7 8 NC 9 NC 10 11 12 C9 C3 C5 C7 C14 Quiescent Current Temperature Compensation 13 Z11 C11 14 Z6 Z7 C10 Z8 C12 Z9 C15 Z10 Z12 RF OUTPUT DUT C8 C13
Z1 Z2 Z3 Z4, Z5 Z6 Z7
0.662″ 1.530″ 0.126″ 0.771″ 0.192″ 0.280″
x 0.064″ x 0.064″ x 0.060″ x 0.046″ x 0.860″ x 0.719″
Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip
Z8 Z9 Z10 Z11, Z12 PCB
0.417″ x 0.064″ Microstrip 1.137″ x 0.064″ Microstrip 0.293″ x 0.064″ Microstrip 0.615″ x 0.095″ Microstrip Rogers RO4350B, 0.030″, εr = 3.66
Figure 3. MW7IC2750NR1(GNR1)(NBR1) Test Circuit Schematic
Table 6. MW7IC2750NR1(GNR1)(NBR1) Test Circuit Component Designations and Values
Part C1 C2, C3, C13, C14 C4, C5, C8, C9, C15 C6, C7 C10, C11 C12 R1, R2 Description 0.8 pF Chip Capacitor 10 μF, 50 V Chip Capacitors 5.1 pF Chip Capacitors 1 μF, 100 V Chip Capacitors 0.2 pF Chip Capacitors 0.5 pF Chip Capacitor 1 KΩ, 1/4 W Chip Resistors Part Number ATC100B0R8BT500XT GRM55DR61H106KA88B ATC100B5R1CT500XT GRM32ER72A105KA01L ATC100B0R2BT500XT ATC100B0R5BT500XT CRCW12061001FKEA Manufacturer ATC Murata ATC Murata ATC ATC Vishay
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 5
C2
VG2
VD1 C4 C8 C10 C6 CUT OUT AREA C1 C12
C13
VG1
C15
MW7IC2750N Rev. 6
C7 C11 C14
VG1
R1 R2 VD1
C5
C9
VG2
C3
Figure 4. MW7IC2750NR1(GNR1)(NBR1) Test Circuit Component Layout
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 6 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
Gps ηD, DRAIN EFFICIENCY (%) 27 26.8 26.6 Gps, POWER GAIN (dB) 26.4 V = 28 Vdc, Pout = 8 W (Avg.), IDQ1 = 160 mA 26.2 DD IDQ2 = 550 mA, 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel 26 Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 25.8 PARC 25.6 IRL 25.4 25.2 ACPR 25 2500 2525 2550 2575 2600 2625 2650 2675 ηD 19 18 17 16 15 −50 −51 ACPR (dBc) −52 −53 −54 −55 2700 IRL, INPUT RETURN LOSS (dB) −14 −16 −18 −20 −22 −24 −0.6 −0.8 −1 −1.2 −1.4 −1.6 PARC (dB) PARC (dB)
f, FREQUENCY (MHz)
Figure 5. WiMAX Broadband Performance @ Pout = 8 Watts Avg.
27 26.8 26.6 Gps, POWER GAIN (dB) 26.4 VDD = 28 Vdc, Pout = 4 W (Avg.), IDQ1 = 160 mA 26.2 IDQ2 = 550 mA, 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel 26 Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 25.8 PARC 25.6 IRL 25.4 25.2 ACPR 2525 2550 2575 2600 2625 2650 2675 12.5 11.5 10.5 9.5 8.5 −56 −57 −58 −59 −60 −61 2700 ACPR (dBc) IRL, INPUT RETURN LOSS (dB) 10 −13 −15 −17 −19 −21 −23 0 −0.2 −0.4 −0.6 −0.8 −1
Gps
25 2500
f, FREQUENCY (MHz)
Figure 6. WiMAX Broadband Performance @ Pout = 4 Watts Avg.
29 IDQ2 = 826 mA 28 Gps, POWER GAIN (dB) 27 26 25 24 23 22 0.1 275 mA VDD = 28 Vdc IDQ1 = 160 mA f = 2600 MHz 1 10 100 412 mA Gps, POWER GAIN (dB) 688 mA 550 mA 28 27 26 25 24 23 22 0.1 80 mA VDD = 28 Vdc IDQ2 = 550 mA f = 2600 MHz 1 100 120 mA 200 mA 160 mA 29 IDQ1 = 240 mA
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 7. Power Gain versus Output Power @ IDQ1 = 160 mA
Figure 8. Power Gain versus Output Power @ IDQ2 = 550 mA
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 7
ηD, DRAIN EFFICIENCY (%)
ηD
TYPICAL CHARACTERISTICS
IMD, INTERMODULATION DISTORTION (dBc) 0 −10 −20 IM3−U −30 IM3−L −40 −50 IM7−U −60 1 10 TWO−TONE SPACING (MHz) 100 IM7−L IM5−L IM5−U VDD = 28 Vdc, Pout = 53 W (PEP), IDQ1 = 160 mA IDQ2 = 550 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 2600 MHz
Figure 9. Intermodulation Distortion Products versus Tone Spacing
27.5 OUTPUT COMPRESSION AT THE 0.01% PROBABILITY ON CCDF (dB) 27 Gps, POWER GAIN (dB) 26.5 26 25.5 25 24.5 1 0 −1 −2 −3 −4 −5 5 VDD = 28 Vdc, IDQ1 = 160 mA IDQ2 = 550 mA, f = 2600 MHz, 802.16d 64 QAM 3/4, 4 Bursts, 10 MHz, Channel Bandwidth Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 10 15 20 25 30 PARC −1 dB = 8.41 W −2 dB = 13.08 W −3 dB = 18.16 W 20 15 10 Gps ACPR ηD 30 25 40 35 −30 −35 −40 −45 −50 −55 −60 ACPR (dBc)
Pout, OUTPUT POWER (WATTS)
Figure 10. Output Peak - to - Average Ratio Compression (PARC) versus Output Power
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) 45 VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA 40 f = 2600 MHz, 802.16d, 64 QAM 3/4, 4 Bursts 10 MHz Channel Bandwidth, Input Signal 35 PAR = 9.5 dB @ 0.01% Probability on CCDF 30 25 TC = −40_C 20 25_C 15 10 5 0 1 10 Pout, OUTPUT POWER (WATTS) AVG. WiMAX 70 ηD 85_C Gps −40_C ACPR 25_C 25_C −15 −20
−40_C
85_C −25 −30 −35 −40 −45 −50 −55 −60 ACPR (dBc)
Figure 11. WiMAX, ACPR, Power Gain and Drain Efficiency versus Output Power
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 8 RF Device Data Freescale Semiconductor
ηD, DRAIN EFFICIENCY (%)
TYPICAL CHARACTERISTICS
30 S21 20 0 10
S21 (dB)
0 S11 −10 VDD = 28 Vdc IDQ1 = 160 mA, IDQ2 = 550 mA 2000 2200 2400 2600 2800 3000 3200
−20
−30
−20 1800
−40 3400
f, FREQUENCY (MHz)
Figure 12. Broadband Frequency Response
1010
109 MTTF (HOURS) 1st Stage 108 2nd Stage 107
106 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 8 W Avg., and PAE = 17%. MTTF calculator available at http:/www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
Figure 13. MTTF versus Junction Temperature
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 9
S11 (dB)
10
−10
WIMAX TEST SIGNAL
100 10 Input Signal PROBABILITY (%) 1 0.1 (dB) −50 −60 −70 6 8 10 −80 −90 −20 ACPR in 1 MHz Integrated BW −15 −10 −5 0 ACPR in 1 MHz Integrated BW 5 10 15 20 0.01 0.001 0.0001 0 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 2 4 −10 −20 −30 −40 10 MHz Channel BW
PEAK−TO−AVERAGE (dB)
Figure 14. OFDM 802.16d Test Signal
f, FREQUENCY (MHz)
Figure 15. WiMAX Spectrum Mask Specifications
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 10 RF Device Data Freescale Semiconductor
Z o = 50 Ω f = 2500 MHz
f = 2700 MHz Zin
f = 2700 MHz Zload
f = 2500 MHz
VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 8 W Avg. f MHz 2500 2525 2550 2575 2600 2625 2650 2675 2700 Zin = Zin W 49.58 + j35.82 50.78 + j36.71 52.04 + j37.58 53.39 + j38.45 54.82 + j39.30 56.35 + j40.14 57.96 + j40.95 59.68 + j41.74 61.50 + j42.49 Zload W 3.52 - j1.79 3.46 - j1.82 3.37 - j1.86 3.24 - j1.88 3.09 - j1.87 2.94 - j1.84 2.77 - j1.77 2.60 - j1.66 2.44 - j1.56
Device input impedance as measured from gate to ground. Test circuit impedance as measured from drain to ground.
Zload =
Device Under Test
Output Matching Network
Z
in
Z
load
Figure 16. Series Equivalent Source and Load Impedance MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 11
Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 160 mA, IDQ2 = 550 mA, TC = 25°C, 50 Ohm System)
f MHz 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 S11 |S11| 0.754 0.734 0.716 0.697 0.677 0.651 0.619 0.578 0.527 0.462 0.392 0.312 0.218 0.139 0.426 0.490 0.416 0.352 0.321 0.274 0.233 0.178 0.123 0.108 0.121 0.146 0.184 0.214 0.261 0.316 0.372 0.430 0.485 0.534 0.585 0.625 0.657 0.686 ∠φ 78.5 70.1 61.7 53.4 45.1 36.6 27.6 17.7 5.6 - 9.3 - 27.8 - 51.0 - 74.1 - 77.4 - 69.8 - 123.5 - 146.4 - 160.1 - 166.6 - 173.2 - 177.6 179.0 - 167.7 - 148.8 - 132.6 - 119.9 - 119.9 - 121.0 - 127.6 - 134.0 - 141.4 - 150.2 - 158.9 - 166.3 - 172.7 - 178.0 177.3 173.2 |S21| 0.001 0.001 0.003 0.009 0.024 0.064 0.141 0.255 0.425 0.701 1.237 2.342 4.772 11.680 27.658 21.740 16.087 13.279 11.654 10.543 9.748 8.983 8.199 7.452 6.730 6.008 5.323 4.700 4.109 3.591 3.130 2.733 2.388 2.091 1.846 1.635 1.472 1.342 S21 ∠φ - 17.9 - 118.8 - 116.5 - 135.3 - 152.3 - 179.9 146.0 113.0 84.8 61.4 39.8 15.9 - 11.8 - 51.5 - 129.7 150.4 106.5 71.6 41.9 13.4 - 13.4 - 40.5 - 65.8 - 89.9 - 113.1 - 135.3 - 156.1 - 175.6 166.0 149.0 133.3 118.1 103.6 90.1 77.3 65.2 52.9 40.8 |S12| 0.000774 0.000326 0.000392 0.000268 0.000211 0.000309 0.000599 0.000732 0.000734 0.000911 0.00154 0.00286 0.00377 0.00588 0.00919 0.00545 0.00314 0.00239 0.00175 0.00197 0.00181 0.00204 0.00218 0.00208 0.00198 0.00191 0.00211 0.00159 0.00205 0.00171 0.00103 0.00095 0.00103 0.00108 0.00127 0.00119 0.00132 0.00200 S12 ∠φ 17.4 85.4 58.7 27.8 - 33.8 148.0 148.7 142.6 149.1 144.7 174.4 159.0 142.2 128.7 73.9 38.1 33.9 24.9 33.1 27.7 34.5 31.5 35.6 33.2 23.8 31.0 23.7 15.5 14.6 19.2 16.7 26.4 36.9 24.1 47.6 57.1 53.2 53.8 |S22| 0.994 0.993 0.998 0.997 0.996 0.991 0.981 0.970 0.957 0.941 0.924 0.895 0.843 0.691 0.342 0.800 0.864 0.879 0.891 0.908 0.924 0.943 0.957 0.970 0.978 0.985 0.987 0.987 0.985 0.984 0.984 0.984 0.984 0.985 0.984 0.986 0.985 0.985 S22 ∠φ 174.5 175.3 174.6 173.9 172.9 171.7 170.3 169.0 167.3 165.6 163.6 160.9 156.6 149.4 - 169.4 - 166.9 - 174.9 - 177.0 - 177.5 - 177.4 - 177.5 - 177.7 - 178.0 - 178.7 - 179.6 179.4 178.3 177.3 176.3 175.4 174.5 173.8 173.2 172.7 172.4 172.1 171.9 171.7 (continued)
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 12 RF Device Data Freescale Semiconductor
Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 160 mA, IDQ2 = 550 mA, TC = 25°C, 50 Ohm System) (continued)
f MHz 3400 3450 3500 3550 3600 S11 |S11| 0.702 0.718 0.721 0.746 0.758 ∠φ 169.7 166.7 164.7 162.0 158.9 |S21| 1.243 1.193 0.937 0.914 0.857 S21 ∠φ 28.4 10.8 3.1 - 7.9 - 21.4 |S12| 0.00230 0.00211 0.00233 0.00213 0.00236 S12 ∠φ 54.4 62.5 24.3 51.7 55.6 |S22| 0.982 0.947 0.976 0.981 0.978 S22 ∠φ 171.3 170.1 173.0 171.9 171.1
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 13
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 P3dB = 49.27 dBm (85 W) P1dB = 48.21 dBm (66 W) Actual Ideal Pout, OUTPUT POWER (dBm) 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 P3dB = 48.62 dBm (73 W) P1dB = 47.59 dBm (57 W) Actual Ideal
Pout, OUTPUT POWER (dBm)
VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA Pulsed CW, 10 μsec(on), 10% Duty Cycle, f = 2500 MHz 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V Test Impedances per Compression Level Zsource Ω P1dB 28.46 + j5.15 Zload Ω 1.67 - j1.53
VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA Pulsed CW, 10 μsec(on), 10% Duty Cycle, f = 2700 MHz 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V Test Impedances per Compression Level Zsource Ω P1dB 36.24 + j1.75 Zload Ω 1.19 - j1.29
Figure 17. Pulsed CW Output Power versus Input Power @ 28 V @ 2500 MHz
Figure 18. Pulsed CW Output Power versus Input Power @ 28 V @ 2700 MHz
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 14 RF Device Data Freescale Semiconductor
PACKAGE DIMENSIONS
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 15
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 16 RF Device Data Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 17
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 18 RF Device Data Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 19
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 20 RF Device Data Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 21
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 22 RF Device Data Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 RF Device Data Freescale Semiconductor 23
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision 0 Date May 2008 • Initial Release of Data Sheet Description
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1 24 RF Device Data Freescale Semiconductor
How to Reach Us:
Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
Document Number: RF Device Data MW7IC2750N Rev. 0, 5/2008 Freescale Semiconductor
25