0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MWE6IC9100NR1_08

MWE6IC9100NR1_08

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    MWE6IC9100NR1_08 - RF LDMOS Wideband Integrated Power Amplifiers - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
MWE6IC9100NR1_08 数据手册
Freescale Semiconductor Technical Data Document Number: MWE6IC9100N Rev. 3, 12/2008 RF LDMOS Wideband Integrated Power Amplifiers The MWE6IC9100N wideband integrated circuit is designed with on - chip matching that makes it usable from 869 to 960 MHz. This multi - stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulations. Final Application • Typical GSM Performance: VDD = 26 Volts, IDQ1 = 120 mA, IDQ2 = 950 mA, Pout = 100 Watts CW, f = 960 MHz Power Gain — 33.5 dB Power Added Efficiency — 54% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 230 mA, IDQ2 = 870 mA, Pout = 50 Watts Avg., Full Frequency Band (869 - 960 MHz) Power Gain — 35.5 dB Power Added Efficiency — 39% Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 81 dBc EVM — 2% rms • Capable of Handling 10:1 VSWR, @ 32 Vdc, 960 MHz, 3 dB Overdrive, Designed for Enhanced Ruggedness • Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 1 mW to 120 W CW Pout. Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source S - Parameters • On - Chip Matching (50 Ohm Input, DC Blocked) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 960 MHz, 100 W, 26 V GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1618 - 02 TO - 270 WB - 14 PLASTIC MWE6IC9100NR1 CASE 1621 - 02 TO - 270 WB - 14 GULL PLASTIC MWE6IC9100GNR1 CASE 1617 - 02 TO - 272 WB - 14 PLASTIC MWE6IC9100NBR1 VDS1 RFin RFout/VDS2 VGS1 VGS2 VDS1 Quiescent Current Temperature Compensation (1) NC VDS1 NC NC NC RFin RFin NC VGS1 VGS2 VDS1 NC 1 2 3 4 5 6 7 8 9 10 11 12 14 RFout /VDS2 13 RFout /VDS2 (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Functional Block Diagram Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. © Freescale Semiconductor, Inc., 2007-2008. All rights reserved. MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 1 RF Device Data Freescale Semiconductor Table 1. Maximum Ratings Rating Drain - Source Voltage Gate - Source Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Symbol VDSS VGS Tstg TC TJ Value - 0.5, +66 - 0.5, +6 - 65 to +150 150 225 Unit Vdc Vdc °C °C °C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case GSM Application (Pout = 100 W CW) GSM EDGE Application (Pout = 50 W Avg.) Stage 1, 26 Vdc, IDQ1 = 120 mA Stage 2, 26 Vdc, IDQ2 = 950 mA Stage 1, 28 Vdc, IDQ1 = 230 mA Stage 2, 28 Vdc, IDQ2 = 870 mA Symbol RθJC 1.82 0.38 1.77 0.44 Value (2,3) Unit °C/W Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 2 (Minimum) B (Minimum) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating 3 Package Peak Temperature 260 Unit °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Stage 1 — Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Stage 1 — On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 35 μAdc) Gate Quiescent Voltage (VDS = 26 Vdc, ID = 120 mAdc) Fixture Gate Quiescent Voltage (VDD = 26 Vdc, ID = 120 mAdc, Measured in Functional Test) VGS(th) VGS(Q) VGG(Q) 1.5 — 6 2 2.7 9.4 3.5 — 12 Vdc Vdc Vdc IDSS IDSS IGSS — — — — — — 10 1 10 μAdc μAdc μAdc Symbol Min Typ Max Unit 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf . Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf . Select Documentation/Application Notes - AN1955. (continued) MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Stage 2 — Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Stage 2 — On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 290 μAdc) Gate Quiescent Voltage (VDS = 26 Vdc, ID = 950 mAdc) Fixture Gate Quiescent Voltage (VDD = 26 Vdc, ID = 950 mAdc, Measured in Functional Test) Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1 Adc) Power Gain Input Return Loss Power Added Efficiency Pout @ 1 dB Compression Point, CW VGS(th) VGS(Q) VGG(Q) VDS(on) 1.5 — 6 0.05 2 2.7 8.6 0.4 3.5 — 12 0.8 Vdc Vdc Vdc Vdc IDSS IDSS IGSS — — — — — — 10 1 10 μAdc μAdc μAdc Symbol Min Typ Max Unit Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, Pout = 100 W CW, IDQ1 = 120 mA, IDQ2 = 950 mA, f = 960 MHz Gps IRL PAE P1dB 31 — 52 100 33.5 - 15 54 112 36 - 10 — — dB dB % W Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 50 W Avg., IDQ1 = 230 mA, IDQ2 = 870 mA, 869-894 MHz and 920-960 MHz EDGE Modulation Power Gain Power Added Efficiency Error Vector Magnitude Spectral Regrowth at 400 kHz Offset Spectral Regrowth at 600 kHz Offset Gps PAE EVM SR1 SR2 — — — — — 35.5 39 2 - 63 - 81 — — — — — dB % % rms dBc dBc MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 3 C8 1 NC + C17 RF INPUT Z2 Z1 VGG1 R1 C15 VGG2 R2 C16 C19 C14 C12 C10 C24 C21 C13 Z3 Z4 C22 C11 2 3 NC 4 NC 5 NC 6 7 8 NC 9 10 11 12 NC Quiescent Current Temperature Compensation 14 C2 Z17 C4 13 Z5 C1 Z6 Z16 Z7 Z8 C3 Z9 C5 Z10 DUT + C7 C20 VDD2 VDD1 C23 Z14 Z15 RF OUTPUT C6 Z11 Z13 C9 Z12 C18 VDD1 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 0.089″ 0.157″ 0.157″ 0.139″ 0.024″ 0.352″ 0.039″ 0.555″ 0.343″ x 0.083″ Microstrip x 0.315″ Microstrip x 0.397″ Microstrip x 0.060″ Microstrip x 0.386″ Microstrip x 0.902″ Microstrip x 0.607″ Microstrip x 1.102″ Microstrip x 0.083″ Microstrip Z10 Z11 Z12 Z13 Z14 Z15 Z16, Z17 PCB 0.117″ x 0.083″ Microstrip 0.067″ x 0.431″ Microstrip 0.067″ x 0.084″ Microstrip 0.381″ x 0.067″ Microstrip 0.418″ x 0.084″ Microstrip 0.421″ x 0.084″ Microstrip 2.550″ x 0.157″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 Figure 3. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Schematic Table 6. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values Part C1, C2 C3, C4, C5 C6 C7, C8, C9, C10, C11, C12, C13, C14 C15, C16, C17, C18, C19, C20, C21 C22, C23 C24 R1, R2 Description 10 pF Chip Capacitors 3.9 pF Chip Capacitors 0.5 pF Chip Capacitor 33 pF Chip Capacitors 6.8 μF Chip Capacitors 470 μF, 63 V Electrolytic Capacitors, Radial 330 pF Chip Capacitor 4.7 kΩ, 1/8 W Chip Resistors Part Number ATC100B100GT500XT ATC100B3R9BT500XT ATC100B0R5BT500XT ATC100B330JT500XT C4532X5R1H685MT 222212018470 ATC100B331JT200XT CRCW08054701FKEA Manufacturer ATC ATC ATC ATC TDK Vishay ATC Vishay MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 4 RF Device Data Freescale Semiconductor MWE6IC9100N Rev. 4 C17 VDD1 C7 C8 C22 C20 C11 C1 C3 C5 CUT OUT AREA C4 C2 C13 VGG1 C15 R1 C19 C16 VGG2 C10 C9 C18 R2 C14 C12 C6 VDD2 C23 C21 C24 Figure 4. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Layout MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 38 34 Gps, POWER GAIN (dB) 30 26 22 18 14 10 840 860 880 900 920 940 960 980 f, FREQUENCY (MHz) VDD = 26 Vdc, Pout = 100 W CW IDQ1 = 120 mA, IDQ2 = 950 mA Gps 70 PAE, POWER ADDED EFFICIENCY (%) 64 58 PAE 52 46 40 34 28 0 IRL, INPUT RETURN LOSS (dB) IRL, INPUT RETURN LOSS (dB) VDD = 26 Vdc f = 945 MHz 100 200 −4 −8 −12 −16 −20 −24 −28 IRL Figure 5. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW 38 34 Gps, POWER GAIN (dB) 30 26 22 IRL 18 14 10 840 860 880 900 920 940 960 980 f, FREQUENCY (MHz) 22 16 10 VDD = 28 Vdc, Pout = 50 W Avg. IDQ1 = 230 mA, IDQ2 = 870 mA PAE Gps 52 PAE, POWER ADDED EFFICIENCY (%) 10 Pout, OUTPUT POWER (WATTS) CW 46 40 34 28 −4 −8 −12 −16 −20 −24 −28 −30 Figure 6. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 50 Watts Avg. 36 IDQ2 = 1420 mA IDQ2 = 1190 mA 36 IDQ1 = 150 mA 35 Gps, POWER GAIN (dB) IDQ2 = 950 mA 34 IDQ1 = 120 mA 33 32 31 IDQ1 = 60 mA 30 1 10 Pout, OUTPUT POWER (WATTS) CW 100 200 1 IDQ1 = 90 mA IDQ1 = 180 mA 35 Gps, POWER GAIN (dB) 34 33 IDQ2 = 590 mA 32 IDQ2 = 470 mA 31 VDD = 26 Vdc f = 945 MHz Figure 7. Power Gain versus Output Power @ IDQ1 = 120 mA Figure 8. Power Gain versus Output Power @ IDQ2 = 950 mA MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) −10 −20 −30 −40 5th Order −50 −60 −70 −80 1 10 Pout, OUTPUT POWER (WATTS) PEP 100 200 7th Order VDD = 26 Vdc IDQ1 = 120 mA, IDQ2 = 950 mA f1 = 945 MHz, f2 = 945.1 MHz 100 kHz Tone Spacing −10 −20 −30 −40 5th Order −50 −60 −70 −80 0.1 1 10 100 TWO−TONE SPACING (MHz) 7th Order VDD = 26 Vdc, Pout = 100 W (PEP), IDQ1 = 150 mA IDQ2 = 1 A, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 945 MHz 3rd Order 3rd Order Figure 9. Intermodulation Distortion Products versus Output Power 58 57 Pout, OUTPUT POWER (dBc) 56 55 54 53 52 51 50 49 48 14 15 16 17 Actual VDD = 26 Vdc, IDQ1 = 120 mA, IDQ2 = 950 mA Pulsed CW, 12 μsec(on), 1% Duty Cycle f = 945 MHz 18 19 20 21 22 23 24 25 P1dB = 50.9 dBm (123 W) P6dB = 51.95 dBm (156 W) P3dB = 51.5 dBm (140 W) Ideal 36 Gps, POWER GAIN (dB) 34 32 30 28 26 1 PAE Gps 38 Figure 10. Intermodulation Distortion Products versus Tone Spacing −30_C 25_C 85_C 25_C 40 30 20 VDD = 26 Vdc IDQ1 = 120 mA IDQ2 = 950 mA f = 945 MHz 10 100 10 0 300 60 50 PAE, POWER ADDED EFFICIENCY (%) TC = −30_C 85_C Pin, INPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) CW Figure 11. Pulsed CW Output Power versus Input Power 40 38 Gps, POWER GAIN (dB) 36 34 32 30 28 26 1 10 Pout, OUTPUT POWER (WATTS) CW 100 85_C 20 PAE 10 0 300 Gps VDD = 26 Vdc, IDQ1 = 120 mA IDQ2 = 950 mA, f = 880 MHz TC = −30_C 25_C 30 −30_C 25_C 50 85_C 40 70 60 PAE, POWER ADDED EFFICIENCY (%) 34 33 Gps, POWER GAIN (dB) 32 31 Figure 12. Power Gain and Power Added Efficiency versus Output Power @ 945 MHz 32 V 30 24 V 29 VDD = 20 V 28 0 50 100 150 200 Pout, OUTPUT POWER (WATTS) CW IDQ1 = 120 mA IDQ2 = 950 mA f = 945 MHz Figure 13. Power Gain and Power Added Efficiency versus Output Power @ 880 MHz Figure 14. Power Gain versus Output Power MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS 6 EVM, ERROR VECTOR MAGNITUDE (% ms) 5 4 3 55 W Avg. 2 1 0 880 25 W Avg. VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA Pout = 63 W Avg. SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) −50 −55 −60 55 W Avg. −65 −70 −75 SR @ 600 kHz −80 −85 860 880 55 W Avg. 900 920 940 f, FREQUENCY (MHz) 63 W Avg. 960 980 25 W Avg. VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 920 MHz, EDGE Modulation SR @ 400 kHz Pout = 63 W Avg. 25 W Avg. 900 920 940 960 980 f, FREQUENCY (MHz) Figure 15. EVM versus Frequency Figure 16. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency −40 SPECTRAL REGROWTH @ 400 kHz (dBc) −45 −50 −55 −60 −65 −70 −75 −80 TC = −30_C VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 880 MHz, EDGE Modulation 40 60 80 100 120 25_C −45 SPECTRAL REGROWTH @ 400 kHz (dBc) −50 −55 85_C −60 TC = −30_C −65 −70 −75 −80 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 945 MHz, EDGE Modulation 25_C 85_C 0 20 Pout, OUTPUT POWER (WATTS) Figure 17. Spectral Regrowth at 400 kHz versus Output Power @ 945 MHz −60 SPECTRAL REGROWTH @ 600 kHz (dBc) −65 −70 −75 −80 −85 −90 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) 85_C 25_C VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 945 MHz, EDGE Modulation SPECTRAL REGROWTH @ 600 kHz (dBc) −50 −55 −60 Figure 18. Spectral Regrowth at 400 kHz versus Output Power @ 880 MHz VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 870 mA f = 880 MHz, EDGE Modulation 25_C −65 −70 −75 −80 −85 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) TC = −30_C 85_C TC = −30_C Figure 19. Spectral Regrowth at 600 kHz versus Output Power @ 945 MHz Figure 20. Spectral Regrowth at 600 kHz versus Output Power @ 880 MHz MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS EVM, ERROR VECTOR MAGNITUDE (% ms) 10 VDD = 28 Vdc IDQ1 = 230 mA IDQ2 = 870 mA f = 945 MHz 85_C 20 −30_C 10 EVM 0 1 10 Pout, OUTPUT POWER (WATTS) AVG. 0 100 50 PAE, POWER ADDED EFFICIENCY (%) PAE, POWER ADDED EFFICIENCY (%) 25_C 85_C VDD = 26 Vdc, Pout = 60 W CW IDQ1 = 120 mA, IDQ2 = 950 mA 840 860 880 900 920 940 960 980 8 40 6 PAE 4 30 2 TC = 25_C Figure 21. EVM and Power Added Efficiency versus Output Power @ 945 MHz EVM, ERROR VECTOR MAGNITUDE (% ms) 10 VDD = 28 Vdc IDQ1 = 230 mA IDQ2 = 870 mA f = 880 MHz 50 8 40 6 PAE 4 85_C 30 20 2 0 1 10 25_C TC = −30_C 10 EVM 0 100 Pout, OUTPUT POWER (WATTS) AVG. Figure 22. EVM and Power Added Efficiency versus Output Power @ 880 MHz 40 S21 30 −5 Gps, POWER GAIN (dB) 36 34 32 30 28 26 820 0 38 TC = −30_C S21 (dB) 10 S11 −15 0 VDD = 26 Vdc IDQ1 = 120 mA, IDQ2 = 950 mA 600 800 1000 1200 1400 −20 −10 400 −25 1600 f, FREQUENCY (MHz) S11 (dB) 20 −10 f, FREQUENCY (MHz) Figure 23. Broadband Frequency Response Figure 24. Power Gain versus Frequency MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 9 TYPICAL CHARACTERISTICS 108 107 MTTF (HOURS) 106 1st Stage 105 2nd Stage 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 26 Vdc, Pout = 100 W CW, and PAE = 54%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 25. MTTF versus Junction Temperature GSM TEST SIGNAL −10 −20 −30 −40 −50 (dB) −60 −70 −80 −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz 400 kHz 600 kHz 400 kHz 600 kHz Reference Power VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz Figure 26. EDGE Spectrum MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 10 RF Device Data Freescale Semiconductor Zo = 50 Ω f = 820 MHz Zsource f = 980 MHz f = 980 MHz f = 820 MHz Zload VDD = 26 Vdc, IDQ1 = 120 mA, IDQ2 = 950 mA, Pout = 100 W CW f MHz 820 840 860 880 900 920 940 960 980 Zsource W 35.40 + j21.50 35.00 + j18.00 35.00 + j15.50 34.50 + j12.20 34.00 + j9.00 34.30 + j7.20 38.50 + j6.00 42.00 + j7.40 45.55 + j12.75 Zload W 0.516 - j0.365 0.638 - j0.172 0.768 - j0.010 0.874 + j0.071 1.030 + j0.133 1.101 + j0.082 1.088 + j0.037 1.011 + j0.018 0.872 + j0.051 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Input Matching Network Device Under Test Z source Z load Figure 27. Series Equivalent Source and Load Impedance MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 11 Table 7. Common Source Scattering Parameters (VDD = 26 V, 50 ohm system, IDQ1 = 120 mA, IDQ2 = 950 mA) f MHz 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 S11 |S11| 0.230 0.188 0.149 0.114 0.085 0.063 0.047 0.037 0.031 0.029 0.033 0.041 0.052 0.063 0.074 0.084 0.094 0.104 0.113 0.125 0.141 0.160 0.183 0.209 0.238 0.268 ∠φ 95 93 92 92 96 104 117 134 156 - 177 - 152 - 134 - 123 - 116 - 112 - 109 - 106 - 103 - 99 - 95 - 91 - 88 - 86 - 85 - 85 - 86 |S21| 5.81 6.48 7.18 7.88 8.56 9.22 9.82 10.37 10.85 11.27 11.60 11.87 12.07 12.20 12.25 12.23 12.15 12.01 11.82 11.57 11.28 10.97 10.62 10.23 9.83 9.41 S21 ∠φ - 87 - 97 - 107 - 117 - 128 - 139 - 150 - 161 - 172 178 167 156 146 135 125 115 106 96 86 77 68 59 50 42 34 26 |S12| 0.0007 0.0007 0.0007 0.0007 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0009 0.0009 0.0008 0.0008 0.0007 0.0006 0.0006 0.0006 S12 ∠φ - 119 - 116 - 111 - 110 - 109 - 108 - 109 - 110 - 111 - 113 - 114 - 117 - 119 - 122 - 123 - 126 - 129 - 131 - 133 - 135 - 138 - 136 - 135 - 133 - 130 - 125 |S22| 0.989 0.987 0.985 0.983 0.981 0.979 0.978 0.978 0.977 0.977 0.978 0.978 0.979 0.979 0.979 0.980 0.979 0.978 0.978 0.977 0.976 0.976 0.976 0.976 0.975 0.975 S22 ∠φ - 180 180 180 180 180 180 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 180 180 180 180 180 180 180 180 180 180 180 180 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 12 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 13 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 14 RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 15 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 16 RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 17 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 18 RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 19 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 20 RF Device Data Freescale Semiconductor MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 RF Device Data Freescale Semiconductor 21 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision 0 1 Date Feb. 2007 May 2007 • Initial Release of Data Sheet • Changed Device box to 960 MHz to reflect functional test frequency, p. 1 • Added Power Added Efficiency to GSM EDGE Application Typical Performances, p. 1 • Changed “5:1 VSWR, @ 28 Vdc” to “10:1 VSWR, @ 32 Vdc” in the Capable of Handling bullet, p. 1 • Added Footnote (1) to Quiescent Current Thermal Tracking bullet under Features section and to Quiescent Current Temperature Compensation in Fig. 1, Functional Block Diagram, p. 1 • Added top - level, 2 - stage block diagram depiction to Fig. 2, Pin Connections; updated Note, p. 1 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 • Added Stage 1 and Stage 2 DC Electrical Characteristics tables, p. 2, 3 • In Table 6, Component Designations and Values, corrected Part Number ATC100B331JT500XT to ATC100B331JT200XT for C24 capacitor, p. 4 • Updated Figs. 7 and 8, Power Gain versus Output Power, to remove non - variable IDQ value, p. 6 • Updated Fig. 9, Intermodulation Distortion Products versus Output Power, to show PEP and not CW; corrected frequency value to show 100 kHz Tone Spacing, p. 7 • Updated graphical representation of Ideal/Actual in Fig. 11, Pulsed CW Output Power versus Input Power, to show correct 3 and 6 dB compression points, p. 7 2 June 2007 • Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature rating will be added to the Maximum Ratings table when parts’ Operating Junction Temperature is increased to 225°C. • Changed full frequency band in Typical GSM Performance bullet to f = 960 MHz to match actual production test, p. 1 • Changed Storage Temperature Range in Max Ratings table from - 65 to +200 to - 65 to +150 for standardization across products, p. 2 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related “Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C in Capable Plastic Package bullet, p. 1, 2 • Corrected Z10 from 1.17” to 0.117” in the Test Circuit Schematic Z list, p. 4 • Updated Part Numbers in Table 6, Component Designations and Values, to latest RoHS compliant part numbers, p. 4 • Replaced Case Outline 1617 - 01 with 1617 - 02, Issue A, p. 1, 13 - 15. Revised cross - hatched area for exposed heat spreader. Added pin numbers 1, 12, 13, and 14 to Sheets 1 and 2. Corrected mm Min and Max values for dimension A1 to 0.99 and 1.09, respectively. • Replaced Case Outline 1618 - 01 with 1618 - 02, Issue A, p. 1, 16 - 18. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheet 1. Removed Pin 5 designation from Sheet 2. • Replaced Case Outline 1621 - 01 with 1621 - 02, Issue A, p. 1, 19 - 21. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheets 1 and 3. Removed Pin 5 designation from Sheet 2. • Added Product Documentation and Revision History, p. 22 Description 3 Dec. 2008 MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 22 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008. All rights reserved. MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1 Document Number: RF Device Data MWE6IC9100N Rev. 3, 12/2008 Freescale Semiconductor 23
MWE6IC9100NR1_08 价格&库存

很抱歉,暂时无法提供与“MWE6IC9100NR1_08”相匹配的价格&库存,您可以联系我们找货

免费人工找货