0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC5733MF0MLQA4

SPC5733MF0MLQA4

  • 厂商:

    FREESCALE(飞思卡尔)

  • 封装:

  • 描述:

    SPC5733MF0MLQA4 - microcontroller units (MCUs) - Freescale Semiconductor, Inc

  • 数据手册
  • 价格&库存
SPC5733MF0MLQA4 数据手册
MPC5634M 144 LQFP 20 mm x 20 mm 208 MAPBGA 17 mm x 17 mm MPC5634M Microcontroller Data Sheet • Operating Parameters – Fully static operation, 0 MHz - 80 MHz (plus 2% frequency modulation - 82 MHz) – -40 °C to 150 °C junction temperature operating range – Low power design – Less than 400 mW power dissipation (nominal) – Designed for dynamic power management of core and peripherals – Software controlled clock gating of peripherals – Low power stop mode, with all clocks stopped – Fabricated in 90 nm process – 1.2 V internal logic • High performance e200z335 core processor • Advanced microcontroller bus architecture (AMBA) crossbar switch (XBAR) • Enhanced direct memory access (eDMA) controller • Interrupt controller (INTC) – 191 peripheral interrupt request sources, plus 165 reserved positions – Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor • Frequency Modulating Phase-locked loop (FMPLL) • Calibration bus interface (EBI) (available only in the calibration package) • System integration unit (SIU) centralizes control of pads, GPIO pins and external interrupts. • Error correction status module (ECSM) provides configurable error-correcting codes (ECC) reporting • Up to 1.5 MB on-chip flash memory • Up to 94 KB on-chip static RAM • Boot assist module (BAM) enables and manages the transition of MCU from reset to user code execution from internal flash memory, external memory on the calibration bus or download and execution of code via FlexCAN or eSCI. • Periodic interrupt timer (PIT) 176 LQFP 24 mm x 24 mm • • • • • • • • • • – 32-bit wide down counter with automatic reload – 4 channels clocked by system clock – 1 channel clocked by crystal clock System timer module (STM) – 32-bit up counter with 8-bit prescaler – Clocked from system clock – 4 channel timer compare hardware Software watchdog timer (SWT) 32-bit timer Enhanced modular I/O system (eMIOS) – 16 standard timer channels (up to 14 channels connected to pins in LQFP144) – 24-bit timer resolution Second-generation enhanced time processor unit (eTPU2) – High level assembler/compiler – Enhancements to make ‘C’ compiler more efficient – New ‘engine relative’ addressing mode Enhanced queued A/D converter (eQADC) – 2 independent on-chip RSD Cyclic ADCs – Up to 34 input channels available to the two on-chip ADCs – 4 pairs of differential analog input channels 2 deserial serial peripheral interface modules (DSPI) – SPI provides full duplex communication ports with interrupt and DMA request support – Deserial serial interface (DSI) achieves pin reduction by hardware serialization and deserialization of eTPU, eMIOS channels and GPIO 2 enhanced serial communication interface (eSCI) modules 2 FlexCAN modules Nexus port controller (NPC) per IEEE-ISTO 5001-2003 standard IEEE 1149.1 JTAG controller (JTAGC) This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2008, 2009. All rights reserved. Preliminary—Subject to Change Without Notice Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Freescale Semiconductor Data Sheet: Advance Information Document Number: MPC5634M Rev. 4, 12/2009 Table of Contents 1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 MPC5634M features . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.3 MPC5634M feature details . . . . . . . . . . . . . . . . . . . . . .11 1.3.1 e200z335 core . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.3.2 Crossbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 1.3.3 eDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 1.3.4 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . .13 1.3.5 FMPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 1.3.6 Calibration EBI. . . . . . . . . . . . . . . . . . . . . . . . . .15 1.3.7 SIU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 1.3.8 ECSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 1.3.9 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 1.3.10 SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 1.3.11 BAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 1.3.12 eMIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 1.3.13 eTPU2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 1.3.14 eQADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 1.3.15 DSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 1.3.16 eSCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 1.3.17 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 1.3.18 System timers . . . . . . . . . . . . . . . . . . . . . . . . . .24 1.3.19 Software Watchdog Timer (SWT) . . . . . . . . . . .25 1.3.20 Nexus Port Controller . . . . . . . . . . . . . . . . . . . .25 1.3.21 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 1.4 MPC5634M series architecture. . . . . . . . . . . . . . . . . . .28 1.4.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . .28 1.4.2 Block summary . . . . . . . . . . . . . . . . . . . . . . . . .29 Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . .29 2.1 144 LQFP pinout (all 144-pin devices) . . . . . . . . . . . . .30 2.2 176 LQFP pinout (MPC5634M) . . . . . . . . . . . . . . . . . .31 2.3 176 LQFP pinout (MPC5633M) . . . . . . . . . . . . . . . . . .32 2.4 MAPBGA208 ballmap (MPC5634M). . . . . . . . . . . . . . .33 2.5 MAPBGA208 ballmap (MPC5633M only) . . . . . . . . . . .34 2.6 Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 2.7 Signal Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 3.1 3.2 3.3 Parameter classification. . . . . . . . . . . . . . . . . . . . . . . . 57 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 General notes for specifications at maximum junction temperature. . . . . . . . . . . . . . . . . . . . . 61 3.4 EMI (Electromagnetic Interference) characteristics . . . 64 3.5 Electromagnetic static discharge (ESD) characteristics64 3.6 Power Management Control (PMC) and Power On Reset (POR) electrical specifications. . . . . . . . . . . . . . . . . . . 65 3.6.1 Regulator example . . . . . . . . . . . . . . . . . . . . . . 69 3.6.2 Recommended power transistors. . . . . . . . . . . 69 3.7 Power up/down sequencing. . . . . . . . . . . . . . . . . . . . . 70 3.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . 70 3.9 I/O Pad current specifications . . . . . . . . . . . . . . . . . . . 77 3.9.1 I/O pad VRC33 current specifications . . . . . . . 78 3.9.2 LVDS pad specifications. . . . . . . . . . . . . . . . . . 80 3.10 Oscillator and PLLMRFM electrical characteristics . . . 81 3.11 Temperature sensor electrical characteristics . . . . . . . 83 3.12 eQADC electrical characteristics . . . . . . . . . . . . . . . . . 83 3.13 Platform flash controller electrical characteristics . . . . 84 3.14 Flash memory electrical characteristics . . . . . . . . . . . 85 3.15 AC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.15.1 Pad AC specifications. . . . . . . . . . . . . . . . . . . . 86 3.16 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.16.1 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 90 3.16.2 Nexus timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.16.3 Calibration bus interface timing . . . . . . . . . . . . 96 3.16.4 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.16.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.16.6 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . 105 Mechanical outline drawings . . . . . . . . . . . . . . . . . . . . . . . . 105 4.1 144 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2 176 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3 208 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2 4 5 6 3 MPC5634M Microcontroller Data Sheet, Rev. 4 2 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview 1 Overview This document provides electrical specifications, pin assignments, and package diagrams for the MPC5634M series of microcontroller units (MCUs). For functional characteristics, refer to the MPC5634M Microcontroller Reference Manual. The MPC5634M series microcontrollers are system-on-chip devices that are built on Power ArchitectureTM technology and: • • • • Are 100% user-mode compatible with the Power Architecture instruction set Contain enhancements that improve the architecture’s fit in embedded applications Include additional instruction support for digital signal processing (DSP) Integrate technologies such as an enhanced time processor unit, enhanced queued analog-to-digital converter, Controller Area Network, and an enhanced modular input-output system 1.1 Device comparison Table 1. MPC5634M family device summary Feature Flash memory size (KB) Total RAM size (KB) Standby RAM size (KB) Processor core Core frequency (MHz) Calibration bus width1 DMA (direct memory access) channels eMIOS (enhanced modular input-output system) channels eQADC (enhanced queued analog-to-digital converter) channels (on-chip) eSCI (serial communication interface) DSPI (deserial serial peripheral interface) Microsecond Bus compatible interface eTPU (enhanced time processor unit) Channels Code memory (KB) Parameter RAM (KB) FlexCAN (controller area network) 3 MPC5634M 1536 94 32 32-bit e200z335 with SPE support 60/80 16 bits 32 16 Up to 342 2 2 2 Yes 32 14 3 2 Yes 3644 Yes Class 2+ Yes MPC5633M 1024 64 24 32-bit e200z335 with SPE support 40/60/80 16 bits 32 16 Up to 342 2 2 2 Yes 32 14 3 2 Yes 3644 Yes Class 2+ Yes MPC5632M 768 48 24 32-bit e200z335 with SPE support 40/60 — 32 8 Up to 322 2 2 2 Yes 32 14 3 2 Yes 3644 Yes Class 2+ Yes FMPLL (frequency-modulated phase-locked loop) INTC (interrupt controller) channels JTAG controller NDI (Nexus development interface) level Non-maskable interrupt and critical interrupt MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 3 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview Table 1. MPC5634M family device summary (continued) Feature PIT (peripheral interrupt timers) Task monitor timer Temperature sensor Windowing software watchdog Packages MPC5634M 5 4 channels Yes Yes 144 LQFP 176 LQFP 208 MAPBGA MPC5633M 5 4 channels Yes Yes 144 LQFP 176 LQFP 208 MAPBGA MPC5632M 5 4 channels Yes Yes 144 LQFP 1 2 Calibration package only The 176-pin and 208-pin packages have 34 input channels; 144-pin package has 32. 3 One FlexCAN module has 64 message buffers; the other has 32 message buffers. 4 165 interrupt channels are reserved for compatibility with future devices. This device has 191 peripheral interrupt sources plus 8 software interrupts available to the user. 1.2 • MPC5634M features Operating Parameters — Fully static operation, 0 MHz – 80 MHz (plus 2% frequency modulation - 82 MHz) — -40 °C to 150 °C junction temperature operating range — Low power design – Less than 400 mW power dissipation (nominal) – Designed for dynamic power management of core and peripherals – Software controlled clock gating of peripherals – Low power stop mode, with all clocks stopped — Fabricated in 90 nm process — 1.2 V internal logic — Single power supply with 5.0 V −10%/+5% (4.5 V to 5.25 V) with internal regulator to provide 3.3 V and 1.2 V for the core — Input and output pins with 5.0 V −10% / +5% (4.5 V to 5.25 V) range – 35%/65% VDDE CMOS switch levels (with hysteresis) – Selectable hysteresis – Selectable slew rate control — Nexus pins powered by 3.3 V supply — Designed with EMI reduction techniques – Phase-locked loop – Frequency modulation of system clock frequency – On-chip bypass capacitance – Selectable slew rate and drive strength High performance e200z335 core processor — 32-bit Power Architecture Book E programmer’s model — Variable Length Encoding Enhancements – Allows Power Architecture instruction set to be optionally encoded in a mixed 16 and 32-bit instructions – Results in smaller code size — Single issue, 32-bit Power Architecture Book E compliant CPU MPC5634M Microcontroller Data Sheet, Rev. 4 • 4 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • — In-order execution and retirement — Precise exception handling — Branch processing unit – Dedicated branch address calculation adder – Branch acceleration using Branch Lookahead Instruction Buffer — Load/store unit – One-cycle load latency – Fully pipelined – Big and Little Endian support – Misaligned access support – Zero load-to-use pipeline bubbles — Thirty-two 64-bit general purpose registers (GPRs) — Memory management unit (MMU) with 8-entry fully-associative translation look-aside buffer (TLB) — Separate instruction bus and load/store bus — Vectored interrupt support — Interrupt latency < 120 ns @ 80 MHz (measured from interrupt request to execution of first instruction of interrupt exception handler) — Non-maskable interrupt (NMI) input for handling external events that must produce an immediate response, e.g., power down detection. On this device, the NMI input is connected to the Critical Interrupt Input. (May not be recoverable) — Critical Interrupt input. For external interrupt sources that are higher priority than provided by the Interrupt Controller. (Always recoverable) — New ‘Wait for Interrupt’ instruction, to be used with new low power modes — Reservation instructions for implementing read-modify-write accesses — Signal processing extension (SPE) APU – Operating on all 32 GPRs that are all extended to 64 bits wide – Provides a full compliment of vector and scalar integer and floating point arithmetic operations (including integer vector MAC and MUL operations) (SIMD) – Provides rich array of extended 64-bit loads and stores to/from extended GPRs – Fully code compatible with e200z6 core — Floating point – IEEE 754 compatible with software wrapper – Scalar single precision in hardware, double precision with software library – Conversion instructions between single precision floating point and fixed point – Fully code compatible with e200z6 core — Long cycle time instructions, except for guarded loads, do not increase interrupt latency — Extensive system development support through Nexus debug port Advanced microcontroller bus architecture (AMBA) crossbar switch (XBAR) — Three master ports, four slave ports – Masters: CPU Instruction bus; CPU Load/store bus (Nexus); eDMA – Slave: Flash; SRAM; Peripheral Bridge; calibration EBI — 32-bit internal address bus, 64-bit internal data bus Enhanced direct memory access (eDMA) controller — 32 channels support independent 8-bit, 16-bit, or 32-bit single value or block transfers — Supports variable sized queues and circular queues — Source and destination address registers are independently configured to post-increment or remain constant MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 5 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • — Each transfer is initiated by a peripheral, CPU, or eDMA channel request — Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer Interrupt controller (INTC) — 191 peripheral interrupt request sources — 8 software setable interrupt request sources — 9-bit vector – Unique vector for each interrupt request source – Provided by hardware connection to processor or read from register — Each interrupt source can be programmed to one of 16 priorities — Preemption – Preemptive prioritized interrupt requests to processor – ISR at a higher priority preempts ISRs or tasks at lower priorities – Automatic pushing or popping of preempted priority to or from a LIFO – Ability to modify the ISR or task priority. Modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources. — Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor Frequency Modulating Phase-locked loop (FMPLL) — Reference clock pre-divider (PREDIV) for finer frequency synthesis resolution — Reduced frequency divider (RFD) for reducing the FMPLL output clock frequency without forcing the FMPLL to re-lock — System clock divider (SYSDIV) for reducing the system clock frequency in normal or bypass mode — Input clock frequency range from 4 MHz to 20 MHz before the pre-divider, and from 4 MHz to 16 MHz at the FMPLL input — Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz — VCO free-running frequency range from 25 MHz to 125 MHz — Four bypass modes: crystal or external reference with PLL on or off — Two normal modes: crystal or external reference — Programmable frequency modulation – Triangle wave modulation – Register programmable modulation frequency and depth — Lock detect circuitry reports when the FMPLL has achieved frequency lock and continuously monitors lock status to report loss of lock conditions – User-selectable ability to generate an interrupt request upon loss of lock – User-selectable ability to generate a system reset upon loss of lock — Clock quality monitor (CQM) module provides loss-of-clock detection for the FMPLL reference and output clocks – User-selectable ability to generate an interrupt request upon loss of clock – User-selectable ability to generate a system reset upon loss of clock – Backup clock (reference clock or FMPLL free-running) can be applied to the system in case of loss of clock Calibration bus interface (EBI) — Available only in the calibration package — 1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V) — Memory controller with support for various memory types — 16-bit data bus, up to 22-bit address bus — Selectable drive strength MPC5634M Microcontroller Data Sheet, Rev. 4 6 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • • • — Configurable bus speed modes — Bus monitor — Configurable wait states System integration unit (SIU) — Centralized GPIO control of 80 I/O pins — Centralized pad control on a per-pin basis – Pin function selection – Configurable weak pull-up or pull-down – Drive strength – Slew rate – Hysteresis — System reset monitoring and generation — External interrupt inputs, filtering and control — Critical Interrupt control — Non-Maskable Interrupt control — Internal multiplexer subblock (IMUX) – Allows flexible selection of eQADC trigger inputs (eTPU, eMIOS and external signals) – Allows selection of interrupt requests between external pins and DSPI Error correction status module (ECSM) — Configurable error-correcting codes (ECC) reporting On-chip flash memory — Up to 1.5 MB flash memory, accessed via a 64-bit wide bus interface — 16 KB shadow block — Fetch Accelerator – Provide single cycle flash access @ 80 MHz – Quadruple 128-bit wide prefetch/burst buffers – Prefetch buffers can be configured to prefetch code or data or both — Censorship protection scheme to prevent flash content visibility — Flash divided into two independent arrays, allowing reading from one array while erasing/programming the other array (used for EEPROM emulation) — Memory block: – For MPC5634M: 18 blocks (4 × 16 KB, 2 × 32 KB, 2 × 64 KB, 10 × 128 KB) – For MPC5633M: 14 blocks (4 × 16 KB, 2 × 32 KB, 2 × 64 KB, 6 × 128 KB)1 – For MPC5632M: 12 blocks (4 × 16 KB, 2 × 32 KB, 2 × 64 KB, 4 × 128 KB) — Hardware programming state machine On-chip static RAM — For MPC5634M: 94 KB general purpose RAM of which 32 KB are on standby power supply — For MPC5633M: 64 KB general purpose RAM of which 24 KB are on standby power supply2 — For MPC5632M: 48 KB general purpose RAM of which 24 KB are on standby power supply Boot assist module (BAM) — Enables and manages the transition of MCU from reset to user code execution in the following configurations: – Execution from internal flash memory 1. Revision 1 of the MPC5633M has a different flash memory organization: 10 blocks (2 × 16 KB, 2 × 48 KB, 2 × 64 KB, 2 × 128 KB, 2 × 256 KB). 2. Revision 1 of the MPC5633M has a different RAM organization: 48 KB general-purpose RAM, of which 24 KB are on the standby power supply. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 7 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • • • – Execution from external memory on the calibration bus – Download and execution of code via FlexCAN or eSCI Periodic interrupt timer (PIT) — 32-bit wide down counter with automatic reload — Four channels clocked by system clock — One channel clocked by crystal clock — Each channel can produce periodic software interrupt — Each channel can produce periodic triggers for eQADC queue triggering — One channel out of the five can be used as wake-up timer to wake device from low power stop mode System timer module (STM) — 32-bit up counter with 8-bit prescaler — Clocked from system clock — Four-channel timer compare hardware — Each channel can generate a unique interrupt request — Designed to address AutoSAR task monitor function Software watchdog timer (SWT) — 32-bit timer — Clock by system clock or crystal clock — Can generate either system reset or non-maskable interrupt followed by system reset — Enabled out of reset Enhanced modular I/O system (eMIOS) — 16 timer channels (up to 14 channels in 144 LQFP) — 24-bit timer resolution — Supports a subset of the timer modes found in eMIOS on MPC5554 — 3 selectable time bases plus shared time or angle counter bus from eTPU2 — DMA and interrupt request support — Motor control capability Second-generation enhanced time processor unit (eTPU2) — Compatible with eTPU—no changes are required to hardware or software if only eTPU features are used — Intelligent co-processor designed for timing control — High level tools, assembler and compiler available — 32 channels (each channel has dedicated I/O pin in all packages) — 24-bit timer resolution — 14 KB code memory and 3 KB data memory — Double match and capture on all channels — Angle clock hardware support — Shared time or angle counter bus with eMIOS — DMA and interrupt request support — Nexus Class 1 debug support — eTPU2 enhancements – Counters and channels can run at full system clock speed – Software watchdog – Real-time performance monitor – Instruction set enhancements for smaller more flexible code generation – Programmable channel mode for customization of channel operation MPC5634M Microcontroller Data Sheet, Rev. 4 8 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • Enhanced queued A/D converter (eQADC) — Two independent on-chip RSD Cyclic ADCs – 8-, 10-, and 12-bit resolution – Differential conversions – Targets up to 10-bit accuracy at 500 KSample/s (ADC_CLK=7.5 MHz) and 8-bit accuracy at 1 MSample/s (ADC_CLK=15 MHz) for differential conversions – Differential channels include variable gain amplifier for improved dynamic range (×1; ×2; ×4) – Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics (200 kΩ; 100 kΩ; low value of 5 kΩ) – Single-ended signal range from 0 to 5 V – Sample times of 2 (default), 8, 64 or 128 ADC clock cycles – Provides time stamp information when requested – Parallel interface to eQADC command FIFOs (CFIFOs) and result FIFOs (RFIFOs) – Supports both right-justified unsigned and signed formats for conversion results – Temperature sensor to enable measurement of die temperature – Ability to measure all power supply pins directly — Automatic application of ADC calibration constants – Provision of reference voltages (25% VREF and 75% VREF) for ADC calibration purposes — Up to 341 input channels available to the two on-chip ADCs — Four pairs of differential analog input channels — Full duplex synchronous serial interface to an external device – Has a free-running clock for use by the external device – Supports a 26-bit message length – Transmits a null message when there are no triggered CFIFOs with commands bound for external CBuffers, or when there are triggered CFIFOs with commands bound for external CBuffers but the external CBuffers are full — Parallel Side Interface to communicate with an on-chip companion module — Zero jitter triggering for queue 0. (Queue 0 trigger causes current conversion to be aborted and the queued conversions in the CBUFFER to be bypassed. Delay from Trigger to start of conversion s 13 system clocks + 1 ADC clock.) — eQADC Result Streaming. Generation of a continuous stream of ADC conversion results from a single eQADC command word. Controlled by two different trigger signals; one to define the rate at which results are generated and the other to define the beginning and ending of the stream. Used to digitize waveforms during specific time/angle windows, e.g., engine knock sensor sampling. — Angular Decimation. The ability of the eQADC to sample an analog waveform in the time domain, perform FIR/IIR filtering also in the time domain, but to down sample the results in the angle domain. Resulting in a time domain filtered result at a given engine angle. — Priority Based CFIFOs – Supports six CFIFOs with fixed priority. The lower the CFIFO number, the higher its priority. When commands of distinct CFIFOs are bound for the same CBuffer, the higher priority CFIFO is always served first. – Supports software and several hardware trigger modes to arm a particular CFIFO – Generates interrupt when command coherency is not achieved — External Hardware Triggers – Supports rising edge, falling edge, high level and low level triggers – Supports configurable digital filter 1.176-pin and 208-pin packages have 34 input channels; 144-pin package has 32. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 9 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • • — Supports four external 8-to-1 muxes which can expand the input channel number from 31 to 59 Two deserial serial peripheral interface modules (DSPI) — SPI – Full duplex communication ports with interrupt and DMA request support – Supports all functional modes from QSPI subblock of QSMCM (MPC5xx family) – Support for queues in RAM – 6 chip selects, expandable to 64 with external demultiplexers – Programmable frame size, baud rate, clock delay and clock phase on a per frame basis – Modified SPI mode for interfacing to peripherals with longer setup time requirements – LVDS option for output clock and data to allow higher speed communication — Deserial serial interface (DSI) – Pin reduction by hardware serialization and deserialization of eTPU, eMIOS channels and GPIO – 32 bits per DSPI module – Triggered transfer control and change in data transfer control (for reduced EMI) – Compatible with Microsecond Bus Version 1.0 downlink Two enhanced serial communication interface (eSCI) modules — UART mode provides NRZ format and half or full duplex interface — eSCI bit rate up to 1 Mbps — Advanced error detection, and optional parity generation and detection — Word length programmable as 8, 9, 12 or 13 bits — Separately enabled transmitter and receiver — LIN support — DMA support — Interrupt request support — Programmable clock source: system clock or oscillator clock — Support Microsecond Bus (Timed Serial Bus - TSB) uplink Version 1.0 Two FlexCAN — One with 32 message buffers; the second with 64 message buffers — Full implementation of the CAN protocol specification, Version 2.0B — Based on and including all existing features of the Freescale TouCAN module — Programmable acceptance filters — Short latency time for high priority transmit messages — Arbitration scheme according to message ID or message buffer number — Listen only mode capabilities — Programmable clock source: system clock or oscillator clock — Message buffers may be configured as mailboxes or as FIFO Nexus port controller (NPC) — Per IEEE-ISTO 5001-2003 — Real time development support for Power Architecture core and eTPU engine through Nexus class 2/1 — Read and write access (Nexus class 3 feature that is supported on this device) – Run-time access of entire memory map – Calibration — Support for data value breakpoints / watchpoints – Run-time access of entire memory map – Calibration MPC5634M Microcontroller Data Sheet, Rev. 4 10 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • Table constants calibrated using MMU and internal and external RAM Scalar constants calibrated using cache line locking — Configured via the IEEE 1149.1 (JTAG) port IEEE 1149.1 JTAG controller (JTAGC) — IEEE 1149.1-2001 Test Access Port (TAP) interface — 5-bit instruction register that supports IEEE 1149.1-2001 defined instructions — 5-bit instruction register that supports additional public instructions — Three test data registers: a bypass register, a boundary scan register, and a device identification register — Censorship disable register. By writing the 64-bit serial boot password to this register, Censorship may be disabled until the next reset — TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry On-chip Voltage Regulator for single 5 V supply operation — On-chip regulator 5 V to 3.3 V for internal supplies — On-chip regulator controller 5 V to 1.2 V (with external bypass transistor) for core logic Low-power modes — SLOW Mode. Allows device to be run at very low speed (approximately 1 MHz), with modules (including the PLL) selectively disabled in software — STOP Mode. System clock stopped to all modules including the CPU. Wake-up timer used to restart the system clock after a predetermined time 1.3 1.3.1 MPC5634M feature details e200z335 core The e200z335 processor utilizes a four stage pipeline for instruction execution. The Instruction Fetch (stage 1), Instruction Decode/Register file Read/Effective Address Calculation (stage 2), Execute/Memory Access (stage 3), and Register Writeback (stage 4) stages operate in an overlapped fashion, allowing single clock instruction execution for most instructions. The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a Count-Leading-Zeros unit (CLZ), a 32×32 Hardware Multiplier array, result feed-forward hardware, and support hardware for division. Most arithmetic and logical operations are executed in a single cycle with the exception of the divide instructions. A Count-Leading-Zeros unit operates in a single clock cycle. The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to minimize delays during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions into the execution pipeline. Branch target prefetching is performed to accelerate taken branches. Prefetched instructions are placed into an instruction buffer capable of holding six instructions. Branches can also be decoded at the instruction buffer and branch target addresses calculated prior to the branch reaching the instruction decode stage, allowing the branch target to be prefetched early. When a branch is detected at the instruction buffer, a prediction may be made on whether the branch is taken or not. If the branch is predicted to be taken, a target fetch is initiated and its target instructions are placed in the instruction buffer following the branch instruction. Many branches take zero cycle to execute by using branch folding. Branches are folded out from the instruction execution pipe whenever possible. These include unconditional branches and conditional branches with condition codes that can be resolved early. Conditional branches which are not taken and not folded execute in a single clock. Branches with successful target prefetching which are not folded have an effective execution time of one clock. All other taken branches have an execution time of two clocks. Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These instructions can be pipelined to allow MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 11 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview effective single cycle throughput. Load and store multiple word instructions allow low overhead context save and restore operations. The load/store unit contains a dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use dependency does not incur any pipeline bubbles for most cases. The Condition Register unit supports the condition register (CR) and condition register operations defined by the Power Architecture. The condition register consists of eight 4-bit fields that reflect the results of certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions, and provide a mechanism for testing and branching. Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead. The hardware floating-point unit utilizes the IEEE-754 single-precision floating-point format and supports single-precision floating-point operations in a pipelined fashion. The general purpose register file is used for source and destination operands, thus there is a unified storage model for single-precision floating-point data types of 32 bits and the normal integer type. Single-cycle floating-point add, subtract, multiply, compare, and conversion operations are provided. Divide instructions are multi-cycle and are not pipelined. The Signal Processing Extension (SPE) Auxiliary Processing Unit (APU) provides hardware SIMD operations and supports a full complement of dual integer arithmetic operation including Multiply Accumulate (MAC) and dual integer multiply (MUL) in a pipelined fashion. The general purpose register file is enhanced such that all 32 of the GPRs are extended to 64 bits wide and are used for source and destination operands, thus there is a unified storage model for 32 x 32 MAC operations which generate greater than 32-bit results. The majority of both scalar and vector operations (including MAC and MUL) are executed in a single clock cycle. Both scalar and vector divides take multiple clocks. The SPE APU also provides extended load and store operations to support the transfer of data to and from the extended 64-bit GPRs. This SPE APU is fully binary compatible with e200z6 SPE APU used in MPC5554 and MPC5553. The CPU includes support for Variable Length Encoding (VLE) instruction enhancements. This enables the classic Power Architecture instruction set to be represented by a modified instruction set made up from a mixture of 16- and 32-bit instructions. This results in a significantly smaller code size footprint without noticeably affecting performance. The classic Power Architecture instruction set and VLE instruction set are available concurrently. Regions of the memory map are designated as PPC or VLE using an additional configuration bit in each of Table Look-aside Buffers (TLB) entries in the MMU. The CPU core is enhanced by the addition of two additional interrupt sources; Non-Maskable Interrupt and Critical Interrupt. These two sources are routed directly from package pins, via edge detection logic in the SIU to the CPU, bypassing completely the Interrupt Controller. Once the edge detection logic is programmed, it cannot be disabled, except by reset. The non-maskable Interrupt is, as the name suggests, completely un-maskable and when asserted will always result in the immediate execution of the respective interrupt service routine. The non-maskable interrupt is not guaranteed to be recoverable. The Critical Interrupt is very similar to the non-maskable interrupt, but it can be masked by other exceptional interrupts in the CPU and is guaranteed to be recoverable (code execution may be resumed from where it stopped). The CPU core has an additional ‘Wait for Interrupt’ instruction that is used in conjunction with low power STOP mode. When Low Power Stop mode is selected, this instruction is executed to allow the system clock to be stopped. An external interrupt source or the system wake-up timer is used to restart the system clock and allow the CPU to service the interrupt. 1.3.2 Crossbar The XBAR multi-port crossbar switch supports simultaneous connections between three master ports and four slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. The crossbar allows three concurrent transactions to occur from the master ports to any slave port; but each master must access a different slave. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. Requesting masters are treated with equal priority and are granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following features: • 3 master ports: MPC5634M Microcontroller Data Sheet, Rev. 4 12 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • — e200z335 core complex Instruction port — e200z335 core complex Load/Store port — eDMA 4 slave ports — FLASH — calibration bus — SRAM — Peripheral bridge A/B (eTPU2, eMIOS, SIU, DSPI, eSCI, FlexCAN, eQADC, BAM, decimation filter, PIT, STM and SWT) 32-bit internal address, 64-bit internal data paths 1.3.3 eDMA The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 32 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size. The eDMA module provides the following features: • • • • • • All data movement via dual-address transfers: read from source, write to destination Programmable source and destination addresses, transfer size, plus support for enhanced addressing modes Transfer control descriptor organized to support two-deep, nested transfer operations An inner data transfer loop defined by a “minor” byte transfer count An outer data transfer loop defined by a “major” iteration count Channel activation via one of three methods: — Explicit software initiation — Initiation via a channel-to-channel linking mechanism for continuous transfers — Peripheral-paced hardware requests (one per channel) Support for fixed-priority and round-robin channel arbitration Channel completion reported via optional interrupt requests 1 interrupt per channel, optionally asserted at completion of major iteration count Error termination interrupts are optionally enabled Support for scatter/gather DMA processing Channel transfers can be suspended by a higher priority channel • • • • • • 1.3.4 Interrupt controller The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. The INTC allows interrupt request servicing from up to 191 peripheral interrupt request sources, plus 165 sources reserved for compatibility with other family members). For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource can not preempt each other. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 13 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview Multiple processors can assert interrupt requests to each other through software setable interrupt requests. These same software setable interrupt requests also can be used to break the work involved in servicing an interrupt request into a high priority portion and a low priority portion. The high priority portion is initiated by a peripheral interrupt request, but then the ISR asserts a software setable interrupt request to finish the servicing in a lower priority ISR. Therefore these software setable interrupt requests can be used instead of the peripheral ISR scheduling a task through the RTOS. The INTC provides the following features: • • • • • • • • • • • 356 peripheral interrupt request sources 8 software setable interrupt request sources 9-bit vector addresses Unique vector for each interrupt request source Hardware connection to processor or read from register Each interrupt source can be programmed to one of 16 priorities Preemptive prioritized interrupt requests to processor ISR at a higher priority preempts executing ISRs or tasks at lower priorities Automatic pushing or popping of preempted priority to or from a LIFO Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing shared resources Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing logic. 1.3.5 FMPLL The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 20 MHz crystal oscillator or external clock generator. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all software configurable. The PLL has the following major features: • • • • Input clock frequency from 4 MHz to 20 MHz Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz, resulting in system clock frequencies from 16 MHz to 80 MHz with granularity of 4 MHz or better Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock 3 modes of operation — Bypass mode with PLL off — Bypass mode with PLL running (default mode out of reset) — PLL normal mode Each of the three modes may be run with a crystal oscillator or an external clock reference Programmable frequency modulation — Modulation enabled/disabled through software — Triangle wave modulation up to 100 kHz modulation frequency — Programmable modulation depth (0% to 2% modulation depth) — Programmable modulation frequency dependent on reference frequency Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors lock status to report loss of lock conditions Clock Quality Module — detects the quality of the crystal clock and cause interrupt request or system reset if error is detected — detects the quality of the PLL output clock. If an error is detected, causes a system reset or switches the system clock to the crystal clock and causes an interrupt request Programmable interrupt request or system reset on loss of lock • • • • • MPC5634M Microcontroller Data Sheet, Rev. 4 14 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview 1.3.6 Calibration EBI The Calibration EBI controls data transfer across the crossbar switch to/from memories or peripherals attached to the VertiCal connector in the calibration address space. The Calibration EBI is only available in the VertiCal Calibration System. The Calibration EBI includes a memory controller that generates interface signals to support a variety of external memories. The Calibration EBI memory controller supports legacy flash, SRAM, and asynchronous memories. In addition, the calibration EBI supports up to three regions via chip selects (two chip selects are multiplexed with two address bits), along with programmed region-specific attributes. The calibration EBI supports the following features: • • • 22-bit address bus (two most significant signals multiplexed with two chip selects) 16-bit data bus Multiplexed mode with addresses and data signals present on the data lines NOTE The calibration EBI must be configured in multiplexed mode when the extended Nexus trace is used on the VertiCal Calibration System. This is because Nexus signals and address lines of the calibration bus share the same balls in the calibration package. • Memory controller with support for various memory types: — Asynchronous/legacy flash and SRAM — Most standard memories used with the MPC5xx or MPC55xx family Bus monitor — User selectable — Programmable time-out period (with 8 external bus clock resolution) Configurable wait states (via chip selects) 3 chip-select (Cal_CS[0], Cal_CS[2:3]) signals (Multiplexed with 2 most significant address signals) 2 write/byte enable (WE[0:1]/BE[0:1]) signals Configurable bus speed modes — system frequency — 1/2 of system frequency — 1/4 of system frequency Optional automatic CLKOUT gating to save power and reduce EMI Compatible with MPC5xx external bus (with some limitations) Selectable drive strengths; 10 pF, 20 pF, 30 pF, 50 pF • • • • • • • • 1.3.7 SIU The MPC5634M SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and the system reset operation. The reset configuration block contains the external pin boot configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring of internal and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z335 CPU core is via the crossbar switch. The SIU provides the following features: • System configuration — MCU reset configuration via external pins — Pad configuration control for each pad — Pad configuration control for virtual I/O via DSPI serialization System reset monitoring and generation — Power-on reset support — Reset status register provides last reset source to software MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 15 • Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • — Glitch detection on reset input — Software controlled reset assertion External interrupt — 11 interrupt requests — Rising or falling edge event detection — Programmable digital filter for glitch rejection — Critical Interrupt request — Non-Maskable Interrupt request GPIO — GPIO function on 80 I/O pins — Virtual GPIO on 64 I/O pins via DSPI serialization (requires external deserialization device) — Dedicated input and output registers for setting each GPIO and Virtual GPIO pin Internal multiplexing — Allows serial and parallel chaining of DSPIs — Allows flexible selection of eQADC trigger inputs — Allows selection of interrupt requests between external pins and DSPI 1.3.8 ECSM The error correction status module provides status information regarding platform memory errors reported by error-correcting codes. 1.3.9 Flash Devices in the MPC5634M family provide up to 1.5 MB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or data storage. The flash module includes a Fetch Accelerator, that optimizes the performance of the flash array to match the CPU architecture and provides single cycle random access to the flash @ 80 MHz. The flash module interfaces the system bus to a dedicated flash memory array controller. For CPU ‘loads’, DMA transfers and CPU instruction fetch, it supports a 64-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains a four-entry, 128-bit prefetch buffer and a prefetch controller which prefetches sequential lines of data from the flash array into the buffer. Prefetch buffer hits allow no-wait responses. Normal flash array accesses are registered and are forwarded to the system bus on the following cycle, incurring three wait-states. Prefetch operations may be automatically controlled, and are restricted to instruction fetch. The flash memory provides the following features: • • Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword reads are supported. Only aligned word and doubleword writes are supported. Fetch Accelerator — Architected to optimize the performance of the flash with the CPU to provide single cycle random access to the flash up to 80 MHz system clock speed — Configurable read buffering and line prefetch support — Four line read buffers (128 bits wide) and a prefetch controller Hardware and software configurable read and write access protections on a per-master basis Interface to the flash array controller is pipelined with a depth of one, allowing overlapped accesses to proceed in parallel for interleaved or pipelined flash array designs Configurable access timing allowing use in a wide range of system frequencies Multiple-mapping support and mapping-based block access timing (0-31 additional cycles) allowing use for emulation of other memory types • • • • MPC5634M Microcontroller Data Sheet, Rev. 4 16 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • • • • • • • • • Software programmable block program/erase restriction control Erase of selected block(s) Read page size of 128 bits (four words) ECC with single-bit correction, double-bit detection Program page size of 128 bits (four words) to accelerate programming ECC single-bit error corrections are visible to software Minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC Embedded hardware program and erase algorithm Erase suspend, program suspend and erase-suspended program Shadow information stored in non-volatile shadow block Independent program/erase of the shadow block 1.3.10 • • • • SRAM The MPC5634M SRAM module provides a general-purpose up to 94 KB memory block. The SRAM controller includes these features: Supports read/write accesses mapped to the SRAM memory from any master 32 KB or 24 KB block powered by separate supply for standby operation Byte, halfword, word and doubleword addressable ECC performs single-bit correction, double-bit detection on 32-bit data element 1.3.11 BAM The BAM (Boot Assist Module) is a block of read-only memory that is programmed once by Freescale and is identical for all MPC5634M MCUs. The BAM program is executed every time the MCU is powered-on or reset in normal mode. The BAM supports different modes of booting. They are: • • • Booting from internal flash memory Serial boot loading (A program is downloaded into RAM via eSCI or the FlexCAN and then executed) Booting from external memory on calibration bus The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the MPC5634M hardware accordingly. The BAM provides the following features: • • • • • • • • • • • • Sets up MMU to cover all resources and mapping all physical address to logical addresses with minimum address translation Sets up the MMU to allow user boot code to execute as either Classic PowerPC Book E code (default) or as Freescale VLE code Detection of user boot code Automatic switch to serial boot mode if internal flash is blank or invalid Supports user programmable 64-bit password protection for serial boot mode Supports serial bootloading via FlexCAN bus and eSCI using Freescale protocol Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing Supports serial bootloading of either Classic Power Architecture Book E code (default) or Freescale VLE code Supports booting from calibration bus interface Supports censorship protection for internal flash memory Provides an option to enable the core watchdog timer Provides an option to disable the system watchdog timer MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 17 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview 1.3.12 eMIOS The eMIOS (Enhanced Modular Input Output System) module provides the functionality to generate or measuretime events. The channels on this module provide a range of operating modes including the capability to perform dual input capture or dual output compare as well as PWM output. The eMIOS provides the following features: • • 16 channels (24-bit timer resolution) For compatibility with other family members selected channels and timebases are implemented: — Channels 0 to 6, 8 to 15, and 23 — Timebases A, B and C Channels 1, 3, 5 and 6 support modes: — General Purpose Input/Output (GPIO) — Single Action Input Capture (SAIC) — Single Action Output Compare (SAOC) Channels 2, 4, 11 and 13 support all the modes above plus: — Output Pulse Width Modulation Buffered (OPWMB) Channels 0, 8, 9, 10, 12, 14, 15, 23 support all the modes above plus: — Input Period Measurement (IPM) — Input Pulse Width Measurement (IPWM) — Double Action Output Compare (set flag on both matches) (DAOC) — Modulus Counter Buffered (MCB) — Output Pulse Width and Frequency Modulation Buffered (OPWFMB) Three 24-bit wide counter buses — Counter bus A can be driven by channel 23 or by the eTPU2 and all channels can use it as a reference — Counter bus B is driven by channel 0 and channels 0 to 6 can use it as a reference — Counter bus C is driven by channel 8 and channels 8 to 15 can use it as a reference Shared time bases with the eTPU through the counter buses Synchronization among internal and external time bases • • • • • • 1.3.13 eTPU2 The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host CPU, eTPU2 processes instructions and real-time input events, performs output waveform generation, and accesses shared data without host intervention. Consequently, for each timer event, the host CPU setup and service times are minimized or eliminated. A powerful timer subsystem is formed by combining the eTPU2 with its own instruction and data RAM. High-level assembler/compiler and documentation allows customers to develop their own functions on the eTPU2. The eTPU2 includes these distinctive features: • 32 channels, each channel is associated with one input and one output signal — Enhanced input digital filters on the input pins for improved noise immunity. — Identical, orthogonal channels: each channel can perform any time function. Each time function can be assigned to more than one channel as a given time, so each signal can have any functionality. — Each channel has an event mechanism which supports single and double action functionality in various combinations. It includes two 24-bit capture registers, two 24-bit match registers, 24-bit greater-equal and equal-only comparators — Input and output signal states visible from the host 2 independent 24-bit time bases for channel synchronization: • MPC5634M Microcontroller Data Sheet, Rev. 4 18 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • — First time base clocked by system clock with programmable prescale division from 2 to 512 (in steps of 2), or by output of second time base prescaler — Second time base counter can work as a continuous angle counter, enabling angle based applications to match angle instead of time — Both time bases can be exported to the eMIOS timer module — Both time bases visible from the host Event-triggered microengine: — Fixed-length instruction execution in two-system-clock microcycle — 14 KB of code memory (SCM) — 3 KB of parameter (data) RAM (SPRAM) — Parallel execution of data memory, ALU, channel control and flow control sub-instructions in selected combinations — 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction, absolute value, bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit manipulation, shift operations, sign extension and conditional execution — Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned Multiply/MAC combinations, and unsigned 24-bit divide. The MAC/Divide unit works in parallel with the regular microcode commands Resource sharing features support channel use of common channel registers, memory and microengine time: — Hardware scheduler works as a “task management” unit, dispatching event service routines by predefined, host-configured priority — Automatic channel context switch when a “task switch” occurs, i.e., one function thread ends and another begins to service a request from other channel: channel-specific registers, flags and parameter base address are automatically loaded for the next serviced channel — SPRAM shared between host CPU and eTPU2, supporting communication either between channels and host or inter-channel — Hardware implementation of four semaphores support coherent parameter sharing between both eTPU engines — Dual-parameter coherency hardware support allows atomic access to two parameters by host Test and development support features: — Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution, hardware breakpoints and watchpoints on several conditions — Software breakpoints — SCM continuous signature-check built-in self test (MISC - multiple input signature calculator), runs concurrently with eTPU2 normal operation System enhancements — Timebases and channels are run at full system clock speed — Software watchdog with programmable timeout — Real-time performance information Channel enhancements — Programmable channel mode allows customization of channel function — Channels 1 and 2 can optionally drive angle clock hardware Programming enhancements — Engine relative addressing mode — More flexibility in requesting DMA and interrupt service — Channel flags cannot be tested For MPC5634M, the eTPU2 has been further enhanced with these features: • • • MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 19 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview 1.3.14 eQADC The enhanced queued analog to digital converter (eQADC) block provides accurate and fast conversions for a wide range of applications. The eQADC provides a parallel interface to two on-chip analog to digital converters (ADC), and a single master to single slave serial interface to an off-chip external device. Both on-chip ADCs have access to all the analog channels. The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the on-chip ADCs or to the external device. The block can also receive data from the on-chip ADCs or from an off-chip external device into the six result queues, in parallel, independently of the command queues. The six command queues are prioritized with Queue_0 having the highest priority and Queue_5 the lowest. Queue_0 also has the added ability to bypass all buffering and queuing and abort a currently running conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing when the trigger occurred. The eQADC supports software and external hardware triggers from other blocks to initiate transfers of commands from the queues to the on-chip ADCs or to the external device. It also monitors the fullness of command queues and result queues, and accordingly generates DMA or interrupt requests to control data movement between the queues and the system memory, which is external to the eQADC. The ADCs also support features designed to allow the direct connection of high impedance acoustic sensors that might be used in a system for detecting engine knock. These features include differential inputs; integrated variable gain amplifiers for increasing the dynamic range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics. The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results at a high rate, passing them through a hardware low pass filter, then down-sampling the output of the filter and feeding the lower sample rate results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of out-of-band noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully process the digitized waveform. The eQADC provides the following features: • Dual on-chip ADCs — 2 × 12-bit ADC resolution — Programmable resolution for increased conversion speed (12 bit, 10 bit, 8 bit) – 12-bit conversion time - 1 μs (1M sample/sec) – 10-bit conversion time - 867 ns (1.2M sample/second) – 8-bit conversion time = 733 ns (1.4M sample/second) — Up to 10-bit accuracy at 500 KSample/s and 9-bit accuracy at 1 MSample/s — Differential conversions — Single-ended signal range from 0 to 5 V — Variable gain amplifiers on differential inputs (×1, ×2, ×4) — Sample times of 2 (default), 8, 64 or 128 ADC clock cycles — Provides time stamp information when requested — Parallel interface to eQADC CFIFOs and RFIFOs — Supports both right-justified unsigned and signed formats for conversion results Up to 341 input channels (accessible by both ADCs) 23 additional internal channels for measuring control and monitoring voltages inside the device — Including Core voltage, I/O voltage, LVI voltages, etc. An internal bandgap reference to allow absolute voltage measurements 4 pairs of differential analog input channels — Programmable pull-up/pull-down resistors on each differential input for biasing and sensor diagnostic (200 kΩ, 100 kΩ, 5 kΩ) Silicon die temperature sensor • • • • • 1.176-pin and 208-pin packages have 34 input channels; 144-pin package has 32; 100-pin package has 23. MPC5634M Microcontroller Data Sheet, Rev. 4 20 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • • • — provides temperature of silicon as an analog value — read using an internal ADC analog channel — may be read with either ADC Decimation Filter — Programmable decimation factor (2 to 16) — Selectable IIR or FIR filter — Up to 4th order IIR or 8th order FIR — Programmable coefficients — Saturated or non-saturated modes — Programmable Rounding (Convergent; Two’s Complement; Truncated) — Pre-fill mode to pre-condition the filter before the sample window opens Full duplex synchronous serial interface to an external device — Free-running clock for use by an external device — Supports a 26-bit message length Priority based Queues — Supports six Queues with fixed priority. When commands of distinct Queues are bound for the same ADC, the higher priority Queue is always served first — Queue_0 can bypass all prioritization, buffering and abort current conversions to start a Queue_0 conversion a deterministic time after the queue trigger — Supports software and hardware trigger modes to arm a particular Queue — Generates interrupt when command coherency is not achieved External hardware triggers — Supports rising edge, falling edge, high level and low level triggers — Supports configurable digital filter Supports four external 8-to-1 muxes which can expand the input channels to 56 channels total 1.3.15 DSPI The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for communication between the MPC5634M MCU and external devices. The DSPI supports pin count reduction through serialization and deserialization of eTPU and eMIOS channels and memory-mapped registers. The channels and register content are transmitted using a SPI-like protocol. This SPI-like protocol is completely configurable for baud rate, polarity and phase, frame length, chip select assertion, etc. Each bit in the frame may be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI can be configured to serialize data to an external device that implements the Microsecond Bus protocol. There are two identical DSPI blocks on the MPC5634M MCU. The DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) to improve high speed operation. The DSPIs have three configurations: • • Serial peripheral interface (SPI) configuration where the DSPI operates as an up to 16-bit SPI with support for queues Enhanced deserial serial interface (DSI) configuration where DSPI serializes up to 32 bits with three possible sources per bit — eTPU, eMIOS, new virtual GPIO registers as possible bit source — Programmable inter-frame gap in continuous mode — Bit source selection allows microsecond bus downlink with command or data frames up to 32 bits — Microsecond bus dual receiver mode Combined serial interface (CSI) configuration where the DSPI operates in both SPI and DSI configurations interleaving DSI frames with SPI frames, giving priority to SPI frames • MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 21 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers between the memory and the DSPI FIFOs are accomplished through the use of the eDMA controller or through host software. The DSPI supports these SPI features: • • • • • • • • • Full-duplex, synchronous transfers Selectable LVDS Pads working at 40 MHz for SOUT, SIN and SCK pins Master and Slave Mode Buffered transmit operation using the TX FIFO with parameterized depth of 1 to 16 entries Buffered receive operation using the RX FIFO with parameterized depth of 1 to 16 entries TX and RX FIFOs can be disabled individually for low-latency updates to SPI queues Visibility into the TX and RX FIFOs for ease of debugging FIFO Bypass Mode for low-latency updates to SPI queues Programmable transfer attributes on a per-frame basis: — Parameterized number of transfer attribute registers (from two to eight) — Serial clock with programmable polarity and phase — Various programmable delays: – PCS to SCK delay – SCK to PCS delay – Delay between frames — Programmable serial frame size of 4 to 16 bits, expandable with software control — Continuously held chip select capability 6 Peripheral Chip Selects, expandable to 64 with external demultiplexer Deglitching support for up to 32 Peripheral Chip Selects with external demultiplexer DMA support for adding entries to TX FIFO and removing entries from RX FIFO: — TX FIFO is not full (TFFF) — RX FIFO is not empty (RFDF) 6 Interrupt conditions: — End of queue reached (EOQF) — TX FIFO is not full (TFFF) — Transfer of current frame complete (TCF) — Attempt to transmit with an empty Transmit FIFO (TFUF) — RX FIFO is not empty (RFDF) — FIFO Underrun (slave only and SPI mode, the slave is asked to transfer data when the TxFIFO is empty) — FIFO Overrun (serial frame received while RX FIFO is full) Modified transfer formats for communication with slower peripheral devices Continuous Serial Communications Clock (SCK) Power savings via support for Stop Mode Enhanced DSI logic to implement a 32-bit Timed Serial Bus (TSB) configuration, supporting the Microsecond Bus downstream frame format 2 sources of the serialized data: — eTPU_A and eMIOS output channels — Memory-mapped register in the DSPI Destinations for the deserialized data: — eTPU_A and eMIOS input channels — SIU External Interrupt Request inputs MPC5634M Microcontroller Data Sheet, Rev. 4 22 Preliminary—Subject to Change Without Notice Freescale Semiconductor • • • • • • • • The DSPIs also support these features unique to the DSI and CSI configurations: • • Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • • • — Memory-mapped register in the DSPI Deserialized data is provided as Parallel Output signals and as bits in a memory-mapped register Transfer initiation conditions: — Continuous — Edge sensitive hardware trigger — Change in data Pin serialization/deserialization with interleaved SPI frames for control and diagnostics Continuous serial communications clock Support for parallel and serial chaining of up to four DSPI blocks 1.3.16 eSCI The enhanced serial communications interface (eSCI) allows asynchronous serial communications with peripheral devices and other MCUs. It includes special support to interface to Local Interconnect Network (LIN) slave devices. The eSCI block provides the following features: • • • • • • • Full-duplex operation Standard mark/space non-return-to-zero (NRZ) format 13-bit baud rate selection Programmable 8-bit or 9-bit, data format Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond bus standard Automatic parity generation LIN support — Autonomous transmission of entire frames — Configurable to support all revisions of the LIN standard — Automatic parity bit generation — Double stop bit after bit error — 10- or 13-bit break support Separately enabled transmitter and receiver Programmable transmitter output parity 2 receiver wake up methods: — Idle line wake-up — Address mark wake-up Interrupt-driven operation with flags Receiver framing error detection Hardware parity checking 1/16 bit-time noise detection DMA support for both transmit and receive data — Global error bit stored with receive data in system RAM to allow post processing of errors • • • • • • • • 1.3.17 FlexCAN The MPC5634M MCU contains two controller area network (FlexCAN) blocks. The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. FlexCAN module ‘A’ contains 64 message buffers (MB); FlexCAN module ‘C’ contains 32 message buffers. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 23 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview The FlexCAN module provides the following features: • • Based on and including all existing features of the Freescale TouCAN module Full Implementation of the CAN protocol specification, Version 2.0B — Standard data and remote frames — Extended data and remote frames — Zero to eight bytes data length — Programmable bit rate up to 1 Mbit/s Content-related addressing 64 / 32 message buffers of zero to eight bytes data length Individual Rx Mask Register per message buffer Each message buffer configurable as Rx or Tx, all supporting standard and extended messages Includes 1088 / 544 bytes of embedded memory for message buffer storage Includes a 256-byte and a 128-byte memories for storing individual Rx mask registers Full featured Rx FIFO with storage capacity for six frames and internal pointer handling Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard or 32 partial (8 bits) IDs, with individual masking capability Selectable backwards compatibility with previous FlexCAN versions Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock Listen only mode capability Programmable loop-back mode supporting self-test operation 3 programmable Mask Registers Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority Time Stamp based on 16-bit free-running timer Global network time, synchronized by a specific message Maskable interrupts Warning interrupts when the Rx and Tx Error Counters reach 96 Independent of the transmission medium (an external transceiver is assumed) Multi master concept High immunity to EMI Short latency time due to an arbitration scheme for high-priority messages Low power mode, with programmable wake-up on bus activity • • • • • • • • • • • • • • • • • • • • • • • 1.3.18 • • System timers The system timers provide two distinct types of system timer: Periodic interrupts/triggers using the Peripheral Interrupt Timer (PIT) Operating system task monitors using the System Timer Module (STM) 1.3.18.1 Peripheral Interrupt Timer (PIT) The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has no external input or output pins and is intended to be used to provide system ‘tick’ signals to the operating system, as well as periodic triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock, one is clocked by the crystal clock. This one channel is also referred to as Real Time Interrupt (RTI) and is used to wakeup the device from low power stop mode. The following features are implemented in the PIT: MPC5634M Microcontroller Data Sheet, Rev. 4 24 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • • • • 5 independent timer channels Each channel includes 32-bit wide down counter with automatic reload 4 channels clocked from system clock 1 channel clocked from crystal clock (wake-up timer) Wake-up timer remains active when System STOP mode is entered. Used to restart system clock after predefined time-out period Each channel can optionally generate an interrupt request or a trigger event (to trigger eQADC queues) when the timer reaches zero 1.3.18.2 System Timer Module (STM) The System Timer Module (STM) is designed to implement the software task monitor as defined by AUTOSAR (see http://www.autosar.org). It consists of a single 32-bit counter, clocked by the system clock, and four independent timer comparators. These comparators produce a CPU interrupt when the timer exceeds the programmed value. The following features are implemented in the STM: • • • • One 32-bit up counter with 8-bit prescaler Four 32-bit compare channels Independent interrupt source for each channel Counter can be stopped in debug mode 1.3.19 Software Watchdog Timer (SWT) The Software Watchdog Timer (SWT) is a second watchdog module to complement the standard Power Architecture watchdog integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can provide a system reset or interrupt request when the correct software key is not written within the required time window. The following features are implemented: • • • • • • • 32-bit modulus counter Clocked by system clock or crystal clock Optional programmable watchdog window mode Can optionally cause system reset or interrupt request on timeout Reset by writing a software key to memory mapped register Enabled out of reset Configuration is protected by a software key or a write-once register 1.3.20 Nexus Port Controller The NPC (Nexus Port Controller) block provides real-time development support capabilities for the MPC5634M Power Architecture-based MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NPC block is an integration of several individual Nexus blocks that are selected to provide the development support interface for the MPC5634M. The NPC block interfaces to the host processor (e200z335), eTPU, and internal buses to provide development support as per the IEEE-ISTO 5001-2003 standard. The development support provided includes program trace and run-time access to the MCUs internal memory map and access to the Power Architecture and eTPU internal registers during halt. The Nexus interface also supports a JTAG only mode using only the JTAG pins. MPC5634M in the production 144 LQFP supports a 3.3 V reduced (4-bit wide) Auxiliary port. These Nexus port pins can also be used as 5 V I/O signals to increase usable I/O count of the device. When using this Nexus port as IO, Nexus trace is still possible using VertiCal calibration. In the VertiCal calibration package, the full 12-bit Auxiliary port is available. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 25 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview NOTE In the VertiCal package, the full Nexus Auxiliary port shares balls with the addresses of the calibration bus. Therefore multiplexed address/data bus mode must be used for the calibration bus when using full width Nexus trace in VertiCal assembly. The following features are implemented: • 5-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK) — Always available in production package — Supports both JTAG Boundary Scan and debug modes — 3.3 V interface — Supports Nexus class 1 features — Supports Nexus class 3 read/write feature 9-pin Reduced Port interface in 144 LQFP production package — Alternate function as IO — 5 V (in GPIO or alternate function mode), 3.3 V (in Nexus mode) interface — Auxiliary Output port – 1 MCKO (message clock out) pin – 4 MDO (message data out) pins – 2 MSEO (message start/end out) pins – 1 EVTO (event out) pin — Auxiliary input port – 1 EVTI (event in) pin 17-pin Full Port interface in VertiCal calibration package — 3.3 V interface — Auxiliary Output port – 1 MCKO (message clock out) pin – 4 (reduced port mode) or 12 (full port mode) MDO (message data out) pins; 8 extra full port pins shared with calibration bus – 2 MSEO (message start/end out) pins – 1 EVTO (event out) pin — Auxiliary input port – 1 EVTI (event in) pin Host processor (e200) development support features — IEEE-ISTO 5001-2003 standard class 2 compliant — Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow discontinuities (direct branches, indirect branches, exceptions, etc.), allowing the development tool to interpolate what transpires between the discontinuities. Thus, static code may be traced. — Watchpoint trigger enable of program trace messaging — Data Value Breakpoints (JTAG feature of the e200z335 core): allows CPU to be halted when the CPU writes a specific value to a memory location – 4 data value breakpoints – CPU only – Detects ‘equal’ and ‘not equal’ – Byte, half word, word (naturally aligned) • • • NOTE This feature is imprecise due to CPU pipelining. MPC5634M Microcontroller Data Sheet, Rev. 4 26 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview • • • • — Subset of Power Architecture Book E software debug facilities with OnCE block (Nexus class 1 features) eTPU development support features — IEEE-ISTO 5001-2003 standard class 1 compliant for the eTPU — Nexus based breakpoint configuration and single step support (JTAG feature of the eTPU) Run-time access to the on-chip memory map via the Nexus read/write access protocol. This feature supports accesses for run-time internal visibility, calibration variable acquisition, calibration constant tuning, and external rapid prototyping for powertrain automotive development systems. All features are independently configurable and controllable via the IEEE 1149.1 I/O port Power-on-reset status indication during reset via MDO[0] in disabled and reset modes 1.3.21 JTAG The JTAGC (JTAG Controller) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE 1149.1-2001 standard and supports the following features: • • • IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO) A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions: — BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP A 5-bit instruction register that supports the additional following public instructions: — ACCESS_AUX_TAP_NPC — ACCESS_AUX_TAP_ONCE — ACCESS_AUX_TAP_eTPU — ACCESS_CENSOR 3 test data registers to support JTAG Boundary Scan mode — Bypass register — Boundary scan register — Device identification register A TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry Censorship Inhibit Register — 64-bit Censorship password register — If the external tool writes a 64-bit password that matches the Serial Boot password stored in the internal flash shadow row, Censorship is disabled until the next system reset • • • MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 27 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Overview 1.4 1.4.1 MPC5634M series architecture Block diagram Figure 1 shows a top-level block diagram of the MPC5634M series. JTAG S JTAG Port Calibration Bus Interface Flash 1.5 MB SRAM 62 KB Nexus NMI M 3 x 4 64-bit Crossbar Switch Nexus Port e200z335 SPE Instructions S Data NMI eTPU SIU critical MMU Nexus 2+ S S Interrupt Requests from Peripheral Blocks & eDMA eDMA Interrupt Controller (INTC) M Clocks CQM PLL STM SWT PIT DMA Requests from Peripheral Blocks Voltage Regulator (1.2V, 3.3V, STB RAM) eDMA, FLASH, Bridge B, crossbar, SRAM Configuration 32 KB M Vstby BAM Peripheral Bridge Nexus SIU Interrupt Request Reset Control External Interrupt Request IMUX GPIO & Pad Control eTPU NEXUS 1 16 Ch. eMIOS 2x DSPIs 2x eSCIs 2x CANs eQADC ADCI Serial Analog IF 32 Ch.+ Engine RAM 14 KB/3 KB ADC ADC Analog AMUX Decimation Filter I/O ... ... ... ... Temp. Sensor Figure 1. MPC5634M series block diagram MPC5634M Microcontroller Data Sheet, Rev. 4 28 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Pinout and signal description 1.4.2 Block summary Table 2. MPC5634M series block summary Block Function Executes programs and interrupt handlers. Provides storage for program code, constants, and variables Provides storage for program code, constants, and variables Transfers data across the crossbar switch to/from peripherals attached to the VertiCal connector Performs complex data movements with minimal intervention from the core Provides a synchronous serial interface for communication with external devices Table 2 summarizes the functions of the blocks present on the MPC5634M series microcontrollers. e200z3 core Flash memory RAM (random-access memory) Calibration bus DMA (direct memory access) DSPI (deserial serial peripheral interface) eMIOS (enhanced modular input-output system) Provides the functionality to generate or measure events eQADC (enhanced queued analog-to-digital converter) eSCI (serial communication interface) eTPU (enhanced time processor unit) FlexCAN (controller area network) FMPLL (frequency-modulated phase-locked loop) INTC (interrupt controller) JTAG controller NPC (Nexus Port Controller) PIT (peripheral interrupt timer) Temperature sensor SWT (Software Watchdog Timer) STM (System Timer Module) Provides accurate and fast conversions for a wide range of applications Allows asynchronous serial communications with peripheral devices and other microcontroller units Processes real-time input events, performs output waveform generation, and accesses shared data without host intervention Supports the standard CAN communications protocol Generates high-speed system clocks and supports the programmable frequency modulation of these clocks Provides priority-based preemptive scheduling of interrupt requests Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2003 standard Produces periodic interrupts and triggers Provides the temperature of the device as an analog value Provides protection from runaway code Timer providing a set of output compare events to support AutoSAR and operating system tasks 2 • • Pinout and signal description Pins labeled “NC” are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable device behavior or damage. Pins labeled “NIC” have no internal connection. This section contains the pinouts for all production packages for the MPC5634M family of devices. Please note the following: MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 29 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Pinout and signal description 2.1 144 LQFP pinout (all 144-pin devices) AN[21] AN[0] (DAN0+) AN[1] (DAN0-) AN[2] (DAN1+) AN[3] (DAN1-) AN[4] (DAN2+) AN[5] (DAN2-) AN[6] (DAN3+) AN[7] (DAN3-) REFBYPC VRH VRL AN[22] AN[23] AN[24] AN[25] AN[27] AN[28] AN[30] AN[31] AN[32] AN[33] AN[34] AN[35] VDD AN[12] / MA[0] / ETPU_A[19] / SDS AN[13] / MA[1] / ETPU_A[21] / SDO AN[14] / MA[2] / ETPU_A[27] / SDI AN[15] / FCK / ETPU_A[29] VSS MDO[3] / eTPU_A[25] / GPIO[223] VDDEH7 MDO[2] / eTPU_A[21] / GPIO[222] MDO[1] / eTPU_A[19] / GPIO[221] MDO[0] / eTPU_A[13] / GPIO[220] MSEO[0] / eTPU_A[27] / GPIO[224] Figure 2 shows the pinout for the 144-pin LQFP. Figure 2. 144-pin LQFP pinout (top view; all 144-pin devices) 30 eTPU_A[13] / DSPI_B_PCS[3] / GPIO[127] eTPU_A[12] / DSPI_B_PCS[1] / GPIO[126] eTPU_A[11] / eTPU_A[23] / GPIO[125] eTPU_A[10] / eTPU_A[22] / GPIO[124] eTPU_A[9] / eTPU_A[21] / GPIO[123] eTPU_A[8] / eTPU_A[20] / DSPI_B_SOUT_LVDS+ / GPIO[122] eTPU_A[7] / eTPU_A[19] / DSPI_B_SOUT_LVDS- / eTPU_A[6] / GPIO[121] eTPU_A[6] / eTPU_A[18] / DSPI_B_SCK_LVDS+ / GPIO[120] eTPU_A[5] / eTPU_A[17] / DSPI_B_SCK_LVDS- / GPIO[119] VDDEH4A eTPU_A[4] / eTPU_A[16] / GPIO[118] VSS eTPU_A[3] / eTPU_A[15] / GPIO[117] eTPU_A[2] / eTPU_A[14] / GPIO[116] eTPU_A[1] / eTPU_A[13] / GPIO[115] eTPU_A[0] / eTPU_A[12] / eTPU_A[19] / GPIO[114] VDD eMIOS[0] / eTPU_A[0] / eTPU_A[25] / GPIO[179] eMIOS[2] / eTPU_A[2] / GPIO[181] eMIOS[4] / eTPU_A[4] / GPIO[183] eMIOS[8] / eTPU_A[8] / SCI_B_TX / GPIO[187] eMIOS[9] / eTPU_A[9] / SCI_B_RX / GPIO[188] VSS eMIOS[10] / GPIO[189] VDDEH4B eMIOS[11] / GPIO[190] eMIOS[12] / DSPI_C_SOUT / eTPU_A[27] / GPIO[191] eMIOS[14] / IRQ[0] / eTPU_A[29] / GPIO[193] eMIOS[23] / GPIO[202] CAN_A_TX / SCI_A_TX / GPIO[83] CAN_A_RX / SCI_A_RX / GPIO[84] PLLREF / IRQ[4] / ETRIG[2] / GPIO[208] SCI_B_RX / GPIO[92] BOOTCFG1 / IRQ[3] / ETRIG[3] / GPIO[212] WKPCFG / NMI / DSPI_B_SOUT / GPIO[213] SCI_B_TX / GPIO[91] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 AN[18] AN[17] AN[16] AN[11] / ANZ AN[9] / ANX VDDA VSSA AN[39] / AN[10] / ANY AN[38] / AN[8] / ANW VDDREG VRCCTL VSTBY VRC33 (see signal details, pin 14) (see signal details, pin 15) eTPU_A[29] / DSPI_C_PCS[2] / GPIO[143] eTPU_A[28] / DSPI_C_PCS[1] / GPIO[142] (see signal details, pin 18) (see signal details, pin 19) (see signal details, pin 20) (see signal details, pin 21) VSS (see signal details, pin 23) VDDEH1A (see signal details, pin 25) VDD eTPU_A[21] / IRQ[9] / GPIO[135] eTPU_A[20] / IRQ[8] / GPIO[134] eTPU_A[19] / GPIO[133] eTPU_A[18] / GPIO[132] eTPU_A[17] / GPIO[131] eTPU_A[16] / GPIO[130] eTPU_A[15] / DSPI_B_PCS[5] / GPIO[129] VDDEH1B (see signal details, pin 35) VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144-Pin LQFP signal details: pin 14: eTPU_A[31] / DSPI_C_PCS[4] / eTPU_A[13] / GPIO[145] pin 15: eTPU_A[30] / DSPI_C_PCS[3] / eTPU_A[11] / GPIO[144] pin 18: eTPU_A[27] / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141] pin 19: eTPU_A[26] / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140] pin 20: eTPU_A[25] / IRQ[13] / SCK_C_LVDS+ / GPIO[139] pin 21: eTPU_A[24] / IRQ[12] / SCK_C_LVDS- / GPIO[138] pin 23: eTPU_A[23] / IRQ[11] / eTPU_A[21] / GPIO[137] pin 25: eTPU_A[22] / IRQ[10] / eTPU_A[17] / GPIO[136] pin 35: eTPU_A[14] / DSPI_B_PCS[4] / eTPU_A[9] / GPIO[128] 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 TMS TDI / eMIOS[5] / GPIO[232] EVTO / eTPU_A[4] / GPIO[227] TCK VSS EVTI / eTPU_A[2] / GPIO[231] VDDEH7 MSEO[1] / eTPU_A[29] / GPIO[225] TDO / eMIOS[6] / GPIO[228] MCKO / GPIO[219] JCOMP DSPI_B_PCS[3] / SIN_C / GPIO[108] DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104] DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103] DSPI_B_PCS[0] / GPIO[105] VDDEH6B DSPI_B_PCS[1] / GPIO[106] VSS DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107] DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102] DSPI_B_PCS[4] / SCK_C / GPIO[109] DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110] VDD RSTOUT CAN_C_TX / GPIO[87] SCI_A_TX / eMIOS[13] / GPIO[89] SCI_A_RX / eMIOS[15] / GPIO[90] CAN_C_RX / GPIO[88] RESET VSS VDDEH6A VSSPLL XTAL EXTAL / EXTCLK VDDPLL VSS MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 Pinout and signal description 2.2 176 LQFP pinout (MPC5634M) NIC AN[37] AN[36] AN[21] AN[0] (DAN0+) AN[1] (DAN0-) AN[2] (DAN1+) AN[3] (DAN1-) AN[4] (DAN2+) AN[5] (DAN2-) AN[6] (DAN3+) AN[7] (DAN3-) REFBYPC VRH VRL AN[22] AN[23] AN[24] AN[25] AN[27] AN[28] AN[30] AN[31] AN[32] AN[33] AN[34] AN[35] VDD AN[12] / MA[0] / ETPU_A[19] / SDS AN[13] / MA[1] / ETPU_A[21] / SDO AN[14] / MA[2] / ETPU_A[27] / SDI AN[15] / FCK / ETPU_A[29] GPIO[207] GPIO[206] GPIO[99] GPIO[98] VSS eTPU_A[25] / GPIO[223] VDDEH7 eTPU_A[21] / GPIO[222] eTPU_A[19] / GPIO[221] eTPU_A[13] / GPIO[220] eTPU_A[27] / GPIO[224] VSS Figure 3 shows the 176-pin LQFP pinout for the MPC5634M (1536 KB flash memory). AN[18] AN[17] AN[16] AN[11] / ANZ AN[9] / ANX VDDA VSSA AN[39] / AN[10] / ANY AN[38] / AN[8] / ANW VDDREG VRCCTL VSTBY VRC33 ALT_MCKO VSS VDDE12 ALT_MDO[0] ALT_MDO[1] ALT_MDO[2] ALT_MDO[3] (see signal details, pin 21) (see signal details, pin 22) (see signal details, pin 23) (see signal details, pin 24) (see signal details, pin 25) (see signal details, pin 26) (see signal details, pin 27) (see signal details, pin 28) VSS (see signal details, pin 30) VDDEH1A (see signal details, pin 32) VDD eTPU_A[21] / IRQ[9] / GPIO[135] eTPU_A[20] / IRQ[8] / GPIO[134] eTPU_A[19] / GPIO[133] eTPU_A[18] / GPIO[132] eTPU_A[17] / GPIO[131] eTPU_A[16] / GPIO[130] (see signal details, pin 40) VDDEH1B (see signal details, pin 42) VSS NIC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176-Pin LQFP signal details: pin 21: eTPU_A[31] / DSPI_C_PCS[4] / eTPU_A[13] / GPIO[145] pin 22: eTPU_A[30] / DSPI_C_PCS[3] / eTPU_A[11] / GPIO[144] pin 23: eTPU_A[29] / DSPI_C_PCS[2] / GPIO[143] pin 24: eTPU_A[28] / DSPI_C_PCS[1] / GPIO[142] pin 25: eTPU_A[27] / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141] pin 26: eTPU_A[26] / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140] pin 27: eTPU_A[25] / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139] pin 28: eTPU_A[24] / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138] pin 30: eTPU_A[23] / IRQ[11] / eTPU_A[21] / GPIO[137] pin 32: eTPU_A[22] / IRQ[10] / eTPU_A[17] / GPIO[136] pin 40: eTPU_A[15] / DSPI_B_PCS[5] / GPIO[129] pin 42: eTPU_A[14] / DSPI_B_PCS[4] / eTPU_A[9] / GPIO[128] 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 NIC TMS TDI / eMIOS[5] / GPIO[232] eTPU_A[4] / GPIO[227] TCK VSS eTPU_A[2] / GPIO[231] VDDEH7 eTPU_A[29] / GPIO[225] TDO / eMIOS[6] / GPIO[228] GPIO[219] JCOMP ALT_EVTO VDDE12 ALT_MSEO[0] ALT_MSEO[1] ALT_EVTI VSS DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108] DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104] DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103] DSPI_B_PCS[0] / GPIO[105] VDDEH6B DSPI_B_PCS[1] / GPIO[106] VSS DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107] DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102] DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109] DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110] VDD RSTOUT CAN_C_TX / GPIO[87] SCI_A_TX / eMIOS[13] / GPIO[89] SCI_A_RX / eMIOS[15] / GPIO[90] CAN_C_RX / GPIO[88] RESET VSS VDDEH6A VSSPLL XTAL EXTAL / EXTCLK VDDPLL VSS NIC Note: Pins marked “NIC” have no internal connection. Figure 3. 176-pin LQFP pinout (MPC5634M; top view) MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 31 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages NIC eTPU_A[13] / DSPI_B_PCS[3] / GPIO[127] eTPU_A[12] / DSPI_B_PCS[1] / GPIO[126] eTPU_A[11] / eTPU_A[23] / GPIO[125] eTPU_A[10] / eTPU_A[22] / GPIO[124] eTPU_A[9] / eTPU_A[21] / GPIO[123] eTPU_A[8] / eTPU_A[20] / DSPI_B_SOUT_LVDS+ / GPIO[122] eTPU_A[7] / eTPU_A[19] / DSPI_B_SOUT_LVDS- / eTPU_A[6] / GPIO[121] eTPU_A[6] / eTPU_A[18] / DSPI_B_SCK_LVDS+ / GPIO[120] eTPU_A[5] / eTPU_A[17] / DSPI_B_SCK_LVDS- / GPIO[119] VDDEH4A eTPU_A[4] / eTPU_A[16] / GPIO[118] VSS eTPU_A[3] / eTPU_A[15] / GPIO[117] eTPU_A[2] / eTPU_A[14] / GPIO[116] eTPU_A[1] / eTPU_A[13] / GPIO[115] eTPU_A[0] / eTPU_A[12] / eTPU_A[19] / GPIO[114] VDD eMIOS[0] / eTPU_A[0] / eTPU_A[25] / GPIO[179] eMIOS[1] / eTPU_A[1] / GPIO[180] eMIOS[2] / eTPU_A[2] / GPIO[181] NIC eMIOS[4] / eTPU_A[4] / GPIO[183] NIC NIC eMIOS[8] / eTPU_A[8] / SCI_B_TX / GPIO[187] eMIOS[9] / eTPU_A[9] / SCI_B_RX / GPIO[188] VSS eMIOS[10] / GPIO[189] VDDEH4B eMIOS[11] / GPIO[190] eMIOS[12] / DSPI_C_SOUT / eTPU_A[27] / GPIO[191] eMIOS[13] / GPIO[192] eMIOS[14] / IRQ[0] / eTPU_A[29] / GPIO[193] eMIOS[15] / IRQ[1] / GPIO[194] eMIOS[23] / GPIO[202] CAN_A_TX / SCI_A_TX / GPIO[83] CAN_A_RX / SCI_A_RX / GPIO[84 PLLREF / IRQ[4] / ETRIG[2] / GPIO[208] SCI_B_RX / GPIO[92] BOOTCFG1 / IRQ[3] / ETRIG[3] / GPIO[212] WKPCFG / NMI / DSPI_B_SOUT / GPIO[213] SCI_B_TX / GPIO[91] NIC 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 Pinout and signal description 2.3 176 LQFP pinout (MPC5633M) NIC NC NC AN[21] AN[0] (DAN0+) AN[1] (DAN0-) AN[2] (DAN1+) AN[3] (DAN1-) AN[4] (DAN2+) AN[5] (DAN2-) AN[6] (DAN3+) AN[7] (DAN3-) REFBYPC VRH VRL AN[22] AN[23] AN[24] AN[25] AN[27] AN[28] AN[30] AN[31] AN[32] AN[33] AN[34] AN[35] VDD AN[12] / MA[0] / ETPU_A[19] / SDS AN[13] / MA[1] / ETPU_A[21] / SDO AN[14] / MA[2] / ETPU_A[27] / SDI AN[15] / FCK / ETPU_A[29] NC NC NC NC VSS eTPU_A[25] / GPIO[223] VDDEH7 eTPU_A[21] / GPIO[222] eTPU_A[19] / GPIO[221] eTPU_A[13] / GPIO[220] eTPU_A[27] / GPIO[224] VSS Figure 4 shows the pinout for the 176-pin LQFP for the MPC5633M (1024 KB flash memory). AN[18] AN[17] AN[16] AN[11] / ANZ AN[9] / ANX VDDA VSSA AN[39] / AN[10] / ANY AN[38] / AN[8] / ANW VDDREG VRCCTL VSTBY VRC33 MCKO VSS VDDE12 ALT_MDO[0] ALT_MDO[1] ALT_MDO[2] ALT_MDO[3] (see signal details, pin 21) (see signal details, pin 22) (see signal details, pin 23) (see signal details, pin 24) (see signal details, pin 25) (see signal details, pin 26) (see signal details, pin 27) (see signal details, pin 28) VSS (see signal details, pin 30) VDDEH1A (see signal details, pin 32) VDD eTPU_A[21] / IRQ[9] / GPIO[135] eTPU_A[20] / IRQ[8] / GPIO[134] eTPU_A[19] / GPIO[133] eTPU_A[18] / GPIO[132] eTPU_A[17] / GPIO[131] eTPU_A[16] / GPIO[130] (see signal details, pin 40) VDDEH1B (see signal details, pin 42) VSS NIC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176-Pin LQFP signal details: Pin 21: eTPU_A[31] / DSPI_C_PCS[4] / eTPU_A[13] / GPIO[145] Pin 22: eTPU_A[30] / DSPI_C_PCS[3] / eTPU_A[11] / GPIO[144] Pin 23: eTPU_A[29] / DSPI_C_PCS[2] / GPIO[143] Pin 24: eTPU_A[28]/ DSPI_C_PCS[1] / GPIO[142] Pin 25: eTPU_A[27] / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141] Pin 26: eTPU_A[26] / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140] Pin 27: eTPU_A[25] / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139] Pin 28: eTPU_A[24] / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138] Pin 30: eTPU_A[23] / IRQ[11] / eTPU_A[21] / GPIO[137] Pin 32: eTPU_A[22] / IRQ[10] / eTPU_A[17] / GPIO[136] Pin 40: eTPU_A[15] / DSPI_B_PCS[5] / GPIO[129] Pin 42: eTPU_A[14] / DSPI_B_PCS[4] / eTPU_A[9] / GPIO[128] 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 NIC TMS TDI / eMIOS[5] / GPIO[232] eTPU_A[4] / GPIO[227] TCK VSS eTPU_A[2] / GPIO[231] VDDEH7 eTPU_A[29] / GPIO[225] TDO / eMIOS[6] / GPIO[228] GPIO[219] JCOMP ALT_EVTO VDDE12 ALT_MSEO[0] ALT_MSEO[1] ALT_EVTI VSS DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108] DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104] DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103] DSPI_B_PCS[0] / GPIO[105] VDDEH6B DSPI_B_PCS[1] / GPIO[106] VSS DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107] DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102] DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109] DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110] VDD RSTOUT CAN_C_TX / GPIO[87] SCI_A_TX / eMIOS[13] / GPIO[89] SCI_A_RX / eMIOS[15] / GPIO[90] CAN_C_RX / GPIO[88] RESET VSS VDDEH6A VSSPLL XTAL EXTAL / EXTCLK VDDPLL VSS NIC Notes: 1. Pins marked “NIC” have no internal connection. 2. Pins marked “NC” are not functional pins but may be connected to internal circuitry. Connections to external circuits or other pins on this device can result in unpredictable system behavior or damage. Figure 4. 176-pin LQFP pinout (MPC5633M; top view) MPC5634M Microcontroller Data Sheet, Rev. 4 32 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages NIC eTPU_A[13] / DSPI_B_PCS[3] / GPIO[127] eTPU_A[12] / DSPI_B_PCS[1] / GPIO[126] eTPU_A[11] / eTPU_A[23] / GPIO[125] eTPU_A[10] / eTPU_A[22] / GPIO[124] eTPU_A[9] / eTPU_A[21] / GPIO[123] eTPU_A[8]/eTPU_A[20]/DSPI_B_SOUT_LVDS+/GPIO[122] eTPU_A[7]/eTPU_A[19]/DSPI_B_SOUT_LVDS-/eTPU_A[6]/GPIO[121] eTPU_A[6] / eTPU_A[18] / DSPI_B_SCK_LVDS+ / GPIO[120] eTPU_A[5] / eTPU_A[17] / DSPI_B_SCK_LVDS- / GPIO[119] VDDEH4A eTPU_A[4] / eTPU_A[16] / GPIO[118] VSS eTPU_A[3] / eTPU_A[15] / GPIO[117] eTPU_A[2] / eTPU_A[14] / GPIO[116] eTPU_A[1] / eTPU_A[13] / GPIO[115] eTPU_A[0] / eTPU_A[12] / eTPU_A[19] / GPIO[114] VDD eMIOS[0] / eTPU_A[0] / eTPU_A[25] / GPIO[179] NC eMIOS[2] / eTPU_A[2] / GPIO[181] NIC eMIOS[4] / eTPU_A[4] / GPIO[183] NIC NIC eMIOS[8] / eTPU_A[8] / SCI_B_TX / GPIO[187] eMIOS[9] / eTPU_A[9] / SCI_B_RX / GPIO[188] VSS eMIOS[10] / GPIO[189] VDDEH4B eMIOS[11] / GPIO[190] eMIOS[12] / DSPI_C_SOUT / eTPU_A[27] / GPIO[191] NC eMIOS[14] / IRQ[0] / eTPU_A[29] / GPIO[193] NC eMIOS[23] / GPIO[202] CAN_A_TX / SCI_A_TX / GPIO[83] CAN_A_RX / SCI_A_RX / GPIO[84] PLLREF / IRQ[4]/ETRIG[2] / GPIO[208] SCI_B_RX / GPIO[92] BOOTCFG1 / IRQ[3] / ETRIG[3] / GPIO[212] WKPCFG / NMI / DSPI_B_SOUT / GPIO[213] SCI_B_TX / GPIO[91] NIC 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 2.4 1 MAPBGA208 ballmap (MPC5634M) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 33 Figure 5 shows the 208-pin MAPBGA ballmap for the MPC5634M (1536 KB flash memory) as viewed from above. A VSS AN9 AN11 VDDA1 VSSA1 AN1 AN5 VRH VRL AN27 VSSA0 AN12- SDS ALT_ MDO2 ALT_ MDO3 AN15 FCK VSS ALT_ MDO0 ALT_ MDO1 VSS VRC33 VSS B VDD VSS AN38 AN21 AN0 AN4 REFBYPC AN22 AN25 AN28 VDDA0 AN13-SDO VSS VDD C VSTBY VDD VSS AN17 AN34 AN16 AN3 AN7 AN23 AN32 AN33 AN14-SDI ALT_ MSEO0 ALT_EVTO TCK NIC1 D VRC33 AN39 VDD VSS AN18 AN2 AN6 AN24 AN30 AN31 AN35 VDDEH7 TMS E ETPUA30 ETPUA31 AN37 VDD VDDE7 TDI ALT_EVTI ALT_ MSEO1 JCOMP F ETPUA28 ETPUA29 ETPUA26 AN36 VDDEH6 TDO ALT_MCKO G ETPUA24 ETPUA27 ETPUA25 ETPUA21 VSS VSS VSS VSS DSPI_B_ SOUT GPIO99 DSPI_B_PC S3 DSPI_B_ PCS4 SCI_A_TX DSPI_B_ SIN DSPI_B_ PCS2 GPIO98 DSPI_B_ PCS0 DSPI_B_ PCS1 DSPI_B_ SCK VDDREG H ETPUA23 ETPUA22 ETPUA17 ETPUA18 VSS VSS VSS VSS J ETPUA20 ETPUA19 ETPUA14 ETPUA13 VSS VSS VSS VSS DSPI_B_ PCS5 CAN_C_ TX SCI_B_TX K ETPUA16 ETPUA15 ETPUA7 VDDEH1 VSS VSS VSS VSS SCI_A_RX RSTOUT L ETPUA12 ETPUA11 ETPUA6 ETPUA0 CAN_C_ RX PLLREF WKPCFG RESET M ETPUA10 ETPUA9 ETPUA1 ETPUA5 eTPU_A192 eTPU_A212 SCI_B_RX BOOTCFG1 NIC1 NIC1 VSSPLL N ETPUA8 ETPUA4 ETPUA0 VSS VDD VRC33 EMIOS2 NIC1 EMIOS10 VDDEH6 eTPU_A292 EMIOS12 eTPU_A22 eTPU_A272 eTPU_A42 VRC33 VSS VRCCTL EXTAL P ETPUA3 NIC1 ETPUA2 VSS VDD GPIO207 VDDE7 NIC1 EMIOS8 CAN_A_ TX CAN_A_ RX NIC1 VDD NIC1 VSS XTAL R VSS VDD NIC1 GPIO206 EMIOS4 EMIOS9 eTPU_A252 EMIOS11 EMIOS14 EMIOS23 eTPU_A132 VDD VSS VDDPLL Pinout and signal description T 1 2 VSS VDD EMIOS0 EMIOS1 GPIO219 EMIOS13 EMIOS15 VDDE5 CLKOUT VDD VSS Pins marked “NIC” have no internal connection. eTPU output only channel. Figure 5. 208-pin MAPBGA ballmap (MPC5634M; top view) Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 2.5 1 MAPBGA208 ballmap (MPC5633M only) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 34 Preliminary—Subject to Change Without Notice Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Pinout and signal description Figure 6 shows the 208-pin MAPBGA ballmap for the MPC5633M (1024 KB flash memory) as viewed from above. A VSS AN9 AN11 VDDA1 VSSA1 AN1 AN5 VRH VRL AN27 VSSA0 AN12 CAL_ MDO2 CAL_ MDO3 AN15 CAL_ MDO0 CAL_MDO1 VRC33 VSS B VDD VSS AN38 AN21 AN0 AN4 REFBYPC AN22 AN25 AN28 VDDA0 AN13 VSS VDD C VSTBY VDD VSS AN17 AN34 AN16 AN3 AN7 AN23 AN32 AN33 AN14 VSS CAL_ MSEO0 CAL_EVTO TCK NIC1 D VRC33 AN39 VDD NC2 VSS AN18 AN2 AN6 AN24 AN30 AN31 AN35 VDDEH7 VSS TMS E ETPUA30 ETPUA31 VDD NC2 VDDE7 TDI CAL_ EVTI CAL_MCKO CAL_ MSEO1 JCOMP F ETPUA28 ETPUA29 ETPUA26 VDDEH6 TDO G ETPUA24 ETPUA27 ETPUA25 ETPUA21 VSS VSS VSS VSS DSPI_B_ SOUT NC2 DSPI_B_ PCS3 DSPI_B_ PCS4 SCI_A_TX DSPI_B_ SIN DSPI_B_ PCS2 NC2 DSPI_B_ PCS0 DSPI_B_ PCS1 DSPI_B_ SCK VDDREG H ETPUA23 ETPUA22 ETPUA17 ETPUA18 VSS VSS VSS VSS J ETPUA20 ETPUA19 ETPUA14 ETPUA13 VSS VSS VSS VSS DSPI_B_ PCS5 CAN_C_ TX SCI_B_TX K ETPUA16 ETPUA15 ETPUA7 VDDEH1 VSS VSS VSS VSS SCI_A_RX RSTOUT L ETPUA12 ETPUA11 ETPUA6 ETPUA0 CAN_C_ RX PLLREF WKPCFG RESET M ETPUA10 ETPUA9 ETPUA1 ETPUA5 SCI_B_RX BOOTCFG1 NIC1 NIC1 VSSPLL N ETPUA8 ETPUA4 ETPUA0 VSS VDD NC2 VRC33 EMIOS2 NIC1 EMIOS10 VDDEH6 EMIOS12 eTPUA19_O VRC33 VSS VRCCTL EXTAL P ETPUA3 NIC1 ETPUA2 VSS VDD NC2 VDDE7 NIC1 EMIOS8 eTPUA29_O eTPUA2_O eTPUA21_O CAN_A_ TX CAN_A_ RX NIC1 VDD NC2 VSS XTAL R VSS VDD NIC1 EMIOS4 NC2 EMIOS9 EMIOS11 NC2 EMIOS14 NC2 eTPUA27_O EMIOS23 VDD VSS VDDPLL T VSS VDD EMIOS0 GPIO219 eTPUA25_O eTPUA4_O eTPUA13_O VDDE5 CLKOUT VDD VSS 1 2 Pins marked “NIC” have no internal connection. Pins marked “NC” may be connected to internal circuitry. Connections to external circuits or other pins on this device can result in unpredictable system behavior or damage. Figure 6. 208-pin MAPBGA ballmap (MPC5633M; top view) Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 2.6 t Signal summary Table 3. MPC563xM signal properties Pad Config. Register (PCR)2 PCR I/O PA Type Field3 Voltage4 / Pad Type Reset State5 Function / State After Reset6 Pin No. 144 176 208 LQFP LQFP MAPBGA Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 35 Name Function1 Dedicated GPIO GPIO[98] GPIO[99] GPIO[206]9 GPIO[207]9 GPIO GPIO GPIO GPIO PCR[98] PCR[99] PCR[206] PCR[207] — — — — I/O I/O I/O I/O VDDEH7 Slow VDDEH7 Slow VDDEH7 Slow VDDEH7 Slow - / Up - / Up - / Up - / Up GPIO[98]/Up GPIO[99]/Up GPIO[206]/Up GPIO[207]/Up — — — — 1417 1427 1437 1447 J158 H138 R48 P58 Reset / Configuration RESET RSTOUT PLLREF IRQ[4] ETRIG[2] GPIO[208] BOOTCFG1 IRQ[3] ETRIG[3] GPIO[212] WKPCFG NMI DSPI_B_SOUT GPIO[213] External Reset Input External Reset Output FMPLL Mode Selection External Interrupt Request eQADC Trigger Input GPIO Boot Config. Input External Interrupt Request eQADC Trigger Input GPIO Weak Pull Config. Input Non-Maskable Interrupt DSPI_B Data Output GPIO — PCR[230] PCR[208] — — 011 010 100 000 011 010 100 000 01 11 10 00 I O I I I I/O I I I I/O I I O I/O VDDEH6a Slow VDDEH6a Slow VDDEH6a Slow I / Up RSTOUT/ Low PLLREF / Up RESET / Up RSTOUT/ High - / Up 80 85 68 97 102 83 L16 K15 M14 PCR[212] VDDEH6a BOOTCFG1 Slow / Down - / Down 70 85 M15 Pinout and signal description PCR[213] VDDEH6a Slow WKPCFG / Up - / Up 71 86 L15 Calibration10 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[340] PCR[345] PCR I/O PA 3 Type Field — — O O O O O O O O O O O O O O O O I O O I Voltage4 / Pad Type VDDE12 Fast VDDE1212 VDDE713 Fast VDDE1212 Fast VDDE1212 Fast VDDE1212 Fast VDDE1212 Fast VDDE1212 Fast VDDE1212 Fast VDDE1212 Fast VDDE1212 Fast VDDE1212 Fast VDDE12 Fast Reset State5 O / Low O / Low14 Function / State After Reset6 CAL_ADDR / Low MDO / ALT_ADDR11 / Low ALT_MDO / CAL_ADDR11 / Low ALT_MDO / CAL_ADDR11 / Low ALT_MDO / CAL_ADDR11 / Low ALT_MDO / CAL_ADDR15 / Low ALT_MSEO15 / CAL_ADDR16/ Low ALT_MSEO15 / CAL_ADDR16/ Low ALT_EVTI / CAL_ADDR18 ALT_EVTO / High ALT_MCKO / Enabled NEXUSCFG / Down Pin No. 144 176 208 LQFP LQFP MAPBGA — — — 17 — A14 36 Name Function1 CAL_ADDR[12:15] CAL_ADDR[16]20 ALT_MDO[0]11 Preliminary—Subject to Change Without Notice Freescale Semiconductor CAL_ADDR[17]20 ALT_MDO[1]11 CAL_ADDR[18]20 ALT_MDO[2]11 CAL_ADDR[19]20 ALT_MDO[3]11 CAL_ADDR[20:27] ALT_MDO[4:11] CAL_ADDR[28]20 ALT_MSEO[0]11 CAL_ADDR[29]20 ALT_MSEO[1]11 CAL_ADDR[30]20 ALT_EVTI11 ALT_EVTO ALT_MCKO NEXUSCFG MPC5634M Microcontroller Data Sheet, Rev. 4 Nexus Event Out Nexus Msg Clock Out Pinout and signal description Calibration Address Bus Calibration Address Bus Nexus Msg Data Out Calibration Address Bus Nexus Msg Data Out Calibration Address Bus Nexus Msg Data Out Calibration Address Bus Nexus Msg Data Out Calibration Address Bus Nexus Msg Data Out Calibration Address Bus Nexus Msg Start/End Out Calibration Address Bus Nexus Msg Start/End Out Calibration Address Bus Nexus Event In PCR[345] — O / Low14 — 18 B14 PCR[345] — O / Low14 — 19 A13 PCR[345] — O / Low14 — 20 B13 PCR[345] — O / Low — — — PCR[345] — O / Low16 — 118 C15 PCR[345] — O / Low16 — 117 E16 PCR[345] PCR[344] PCR[344] — — — — — —17 O / Low O / Low I / Down — — — — 116 120 14 — E15 D15 F15 — Nexus/Calibration bus selector Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[336] PCR[338] PCR[339] PCR[341] PCR[341] PCR[342] PCR[342] PCR[343] PCR[342] — — — PCR I/O PA 3 Type Field — 11 10 11 10 O O O O O I/O I/O O O O O O Voltage4 / Pad Type VDDE12 Fast VDDE12 Fast VDDE12 Fast VDDE12 Fast VDDE12 Fast VDDE12 Fast VDDE12 Fast VDDE12 Fast VDDE12 Fast Reset State5 O / High O / High O / High - / Up - / Up O / High O / High O / High O / High Function / State After Reset6 CAL_CS / High CAL_CS / High CAL_CS / High - / Up - / Up CAL_OE / High CAL_RD_WR /High CAL_TS / High CAL_WE / High Pin No. 144 176 208 LQFP LQFP MAPBGA — — — — — — — — — — — — — — — — — — — — — — — — — — — Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 37 Name Function1 CAL_CS[0] CAL_CS[2] CAL_ADDR[10] CAL_CS[3] CAL_ADDR[11] CAL_DATA[0:9] CAL_DATA[10:15] CAL_OE CAL_RD_WR CAL_TS_ALE CAL_WE_BE[0:1] Calibration Chip Selects Calibration Chip Selects Calibration Address Bus Calibration Chip Selects Calibration Address Bus Calibration Data Bus Calibration Data Bus Calibration Output Enable Calibration Read/Write Calibration Transfer Start Address Latch Enable Calibration Write Enable Byte Enable NEXUS19 EVTI20 eTPU_A[2] GPIO[231] EVTO 20 eTPU_A[4] GPIO[227] MCKO20 GPIO[219] MDO[0]20 eTPU_A[13] GPIO[220] Nexus Event In eTPU A Ch. GPIO Nexus Event Out eTPU A Ch. GPIO Nexus Msg Clock Out GPIO Nexus Msg Data Out eTPU A Ch. GPIO PCR[231] 01 10 00 0121 10 00 N/A21 00 01 10 00 I O I/O O O I/O O I/O O O I/O VDDEH7 Multi-V VDDEH7 Multi-V VDDEH7 Multi-V VDDEH7 Multi-V -/-/103 126 P10 Pinout and signal description PCR[227] I / Up I / Up 106 129 T10 PCR[219] PCR[220] -/-/- -/-/- 99 110 122 135 T6 T11 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[221] PCR I/O PA 3 Type Field 0121 10 00 0121 10 00 0121 10 00 0121 10 00 0121 10 00 O O I/O O O I/O O O I/O O O I/O O O I/O Voltage4 / Pad Type VDDEH7 Multi-V VDDEH7 Multi-V VDDEH7 Multi-V VDDEH7 Multi-V VDDEH7 Multi-V Reset State5 -/Function / State After Reset6 -/Pin No. 144 176 208 LQFP LQFP MAPBGA 111 136 N11 38 Name Function1 MDO[1]20 eTPU_A[19] GPIO[221] MDO[2]20 eTPU_A[21] GPIO[222] MDO[3]20 eTPU_A[25] GPIO[223] MSEO[0]20 eTPU_A[27] GPIO[224] MSEO[1]20 eTPU_A[29] GPIO[225] MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice Freescale Semiconductor Nexus Msg Data Out eTPU A Ch. GPIO Nexus Msg Data Out eTPU A Ch. GPIO Nexus Msg Data Out eTPU A Ch. GPIO TCK TDI22 eMIOS[5] GPIO[232] TDO22 eMIOS[6] GPIO[228] TMS JCOMP JTAG Test Clock Input JTAG Test Data Input eMIOS Ch. GPIO Pinout and signal description PCR[222] -/- -/- 112 137 P11 PCR[223] -/- -/- 114 139 T7 Nexus Msg Start/End Out eTPU A Ch. GPIO Nexus Msg Start/End Out eTPU A Ch. GPIO PCR[224] -/- -/- 109 134 R10 PCR[225] -/- -/- 101 124 P9 JTAG / TEST — PCR[232] — 0123 10 00 0123 10 00 — — CAN I I O I/O O O I/O I I VDDEH7 Multi-V VDDEH7 Multi-V VDDEH7 Multi-V VDDEH7 Multi-V VDDEH7 Multi-V TCK / Down -/TCK / Down -/105 107 128 130 C16 E14 JTAG Test Data Output eMIOS Ch. GPIO JTAG Test Mode Select Input JTAG TAP Controller Enable PCR[228] -/- -/- 100 123 F14 — — TMS / Up JCOMP / Down TMS / Up JCOMP / Down 108 98 131 121 D14 F16 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[83] PCR I/O PA 3 Type Field 01 10 00 01 10 00 01 00 01 00 O O I/O I I I/O O I/O I I/O eSCI SCI_A_TX eMIOS[13] GPIO[89] SCI_A_RX eMIOS[15] GPIO[90] SCI_B_TX GPIO[91] SCI_B_RX GPIO[92] eSCI_A Transmit eMIOS Ch. GPIO eSCI_A Receive eMIOS Ch. GPIO eSCI_B Transmit GPIO eSCI_B Receive GPIO PCR[89] 01 10 00 01 10 00 01 00 01 00 O O I/O I O I/O I/O I/O I I/O DSPI Pinout and signal description DSPI_B_SCK DSPI_C_PCS[1] GPIO[102] DSPI_B_SIN DSPI_C_PCS[2] GPIO[103] DSPI_B_SOUT DSPI_C_PCS[5] GPIO[104] DSPI_B Clock DSPI_C Periph Chip Select GPIO DSPI_B Data Input DSPI_C Periph Chip Select GPIO DSPI_B Data Output DSPI_C Periph Chip Select GPIO PCR[102] 01 10 00 01 10 00 01 10 00 I/O O I/O I O I/O O O I/O VDDEH6b Medium VDDEH6b Medium VDDEH6b Medium - / Up - / Up 89 106 J16 VDDEH6a Slow VDDEH6a Slow VDDEH6a Slow VDDEH6a Slow - / Up - / Up 83 100 J14 Voltage4 / Pad Type VDDEH6a Slow VDDEH6a Slow VDDEH6a Medium VDDEH6a Slow Reset State5 - / Up Function / State After Reset6 - / Up24 Pin No. 144 176 208 LQFP LQFP MAPBGA 66 81 P12 Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 39 Name Function1 CAN_A_TX SCI_A_TX GPIO[83] CAN_A_RX SCI_A_RX GPIO[84] CAN_C_TX GPIO[87] CAN_C_RX GPIO[88] CAN_A Transmit eSCI_A Transmit GPIO CAN_A Receive eSCI_A Receive GPIO CAN_C Transmit GPIO CAN_C Receive GPIO PCR[84] - / Up - / Up 67 82 R12 PCR[87] PCR[88] - / Up - / Up - / Up - / Up 84 81 101 98 K13 L14 PCR[90] - / Up - / Up 82 99 K14 PCR[91] PCR[92] - / Up - / Up - / Up - / Up 72 69 87 84 L13 M13 PCR[103] - / Up - / Up 95 112 G15 PCR[104] - / Up - / Up 96 113 G13 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[105] PCR[106] PCR[107] PCR I/O PA 3 Type Field 01 00 01 00 01 10 00 01 10 00 01 10 00 01 10 00 O I/O O I/O O O I/O O I I/O O I/O I/O O O I/O Voltage4 / Pad Type VDDEH6b Medium VDDEH6b Medium VDDEH6b Medium VDDEH6b Medium VDDEH6b Medium VDDEH6b Medium Reset State5 - / Up - / Up - / Up Function / State After Reset6 - / Up - / Up - / Up Pin No. 144 176 208 LQFP LQFP MAPBGA 94 92 90 111 109 107 G16 H16 H15 40 Name Function1 DSPI_B_PCS[0] GPIO[105] DSPI_B_PCS[1] GPIO[106] Preliminary—Subject to Change Without Notice Freescale Semiconductor DSPI_B_PCS[2] DSPI_C_SOUT GPIO[107] DSPI_B_PCS[3] DSPI_C_SIN GPIO[108] DSPI_B_PCS[4] DSPI_C_SCK GPIO[109] DSPI_B_PCS[5] DSPI_C_PCS[0] GPIO[110] MPC5634M Microcontroller Data Sheet, Rev. 4 AN[0] DAN0+ AN[1] DAN0AN[2] DAN1+ AN[3] DAN1AN[4] DAN2+ AN[5] DAN2AN[6] DAN3+ Pinout and signal description DSPI_B Periph Chip Select GPIO DSPI_B Periph Chip Select GPIO DSPI_B Periph Chip Select DSPI_C Data Output GPIO DSPI_B Periph Chip Select DSPI_C Data Input GPIO DSPI_B Periph Chip Select DSPI_C Clock GPIO DSPI_B Periph Chip Select DSPI_C Periph Chip Select GPIO PCR[108] - / Up - / Up 97 114 G14 PCR[109] - / Up - / Up 88 105 H14 PCR[110] - / Up - / Up 87 104 J13 eQADC Single Ended Analog Input Positive Terminal Diff. Input Single Ended Analog Input Negative Terminal Diff. Input Single Ended Analog Input Positive Terminal Diff. Input Single Ended Analog Input Negative Terminal Diff. Input Single Ended Analog Input Positive Terminal Diff. Input Single Ended Analog Input Negative Terminal Diff. Input Single Ended Analog Input Positive Terminal Diff. Input — — — — — — — — — — — — — — I I I I I I I I I I I I I I VDDA VDDA VDDA VDDA VDDA VDDA VDDA I/I/I/I/I/I/I/AN[0] / AN[1] / AN[2] / AN[3] / AN[4] / AN[5] / AN[6] / 143 142 141 140 139 138 137 172 171 170 169 168 167 166 B5 A6 D6 C7 B6 A7 D7 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 — PCR I/O PA 3 Type Field — I I Voltage4 / Pad Type VDDA Reset State5 I/Function / State After Reset6 AN[7] / Pin No. 144 176 208 LQFP LQFP MAPBGA 136 165 C8 Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 41 Name Function1 AN[7] DAN3AN[8] AN[9] ANX AN[10] AN[11] ANZ AN[12] MA[0] ETPU_A[19] SDS AN[13] MA[1] ETPU_A[21] SDO AN[14] MA[2] ETPU_A[27] SDI AN[15] FCK ETPU_A[29] AN[16] AN[17] AN[18] AN[21] AN[22] AN[23] Single Ended Analog Input Negative Terminal Diff. Input See AN[38]-AN[8]-ANW Single Ended Analog Input External Multiplexed Analog Input See AN[39]-AN[10]-ANY Single Ended Analog Input External Multiplexed Analog Input Single Ended Analog Input Mux Address ETPU_A Ch. eQADC Serial Data Strobe Single Ended Analog Input Mux Address ETPU_A Ch. eQADC Serial Data Out Single Ended Analog Input Mux Address ETPU_A Ch. eQADC Serial Data In Single Ended Analog Input eQADC Free Running Clock ETPU_A Ch. Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input — — I I VDDA I/- AN[9] / - 5 5 A2 — — I I I O O O I O O O I O O I I O O I I I I I I VDDA I/- AN[11] / - 4 4 A3 PCR[215] 11 10 01 00 11 10 01 00 11 10 01 00 11 10 01 — — — — — — VDDEH7 I/- AN[12] / - 119 148 A12 PCR[216] VDDEH7 I/- AN[13] / - 118 147 B12 PCR[217] VDDEH7 I/- AN[14] / - 117 146 C12 PCR[218] VDDEH7 I/- AN[15] / - 116 145 C13 Pinout and signal description — — — — — — VDDA VDDA VDDA VDDA VDDA VDDA I/I/I/I/I/I/- AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / - 3 2 1 144 132 131 3 2 1 173 161 160 C6 C4 D5 B4 B8 C9 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 — — — — — — — — — — — — — — — — — PCR I/O PA 3 Type Field — — — — — — — — — — — — — — — — — I I I I I I I I I I I I I I I I I eTPU2 Voltage4 / Pad Type VDDA VDDA VDDA VDDA VDDA VDDA VDDA VDDA VDDA VDDA VDDA VDDA VDDA VDDA VDDA VSSA0 VRL Reset State5 I/I/I/I/I/I/I/I/I/I/I/I/I/I/-/-/-/Function / State After Reset6 AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[x] / AN[38] / AN[39] / VRH VRL REFBYPC Pin No. 144 176 208 LQFP LQFP MAPBGA 130 129 128 127 126 125 124 123 122 121 — — 9 8 134 133 135 159 158 157 156 155 154 153 152 151 150 1747 1757 9 8 163 162 164 D8 B9 A10 B10 D9 D10 C10 C11 C5 D11 F48 E38 B3 D2 A8 A9 B7 42 Name Function1 AN[24] AN[25] AN[27] Preliminary—Subject to Change Without Notice Freescale Semiconductor AN[28] AN[30] MPC5634M Microcontroller Data Sheet, Rev. 4 AN[31] AN[32] AN[33] AN[34] AN[35] AN[36] AN[37] AN[38]-AN[8]ANW AN[39]-AN[10]ANY VRH VRL REFBYPC eTPU_A[0] eTPU_A[12] eTPU_A[19] GPIO[114] eTPU_A[1] eTPU_A[13] GPIO[115] eTPU_A Ch. eTPU_A Ch. eTPU_A Ch. GPIO eTPU_A Ch. eTPU_A Ch. GPIO Pinout and signal description Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Single Ended Analog Input Multiplexed Analog Input Single Ended Analog Input Multiplexed Analog Input Voltage Reference High Voltage Reference Low Bypass Capacitor Input PCR[114] 011 010 100 000 01 10 00 I/O O O I/O I/O O I/O VDDEH1b - / WKPCFG Slow - / WKPCFG 52 61 L4, N3 PCR[115] VDDEH1b - / WKPCFG Slow - / WKPCFG 51 60 M3 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[116] PCR I/O PA 3 Type Field 01 10 00 01 10 00 01 10 00 001 010 100 000 001 010 100 000 0001 0010 0100 1000 0000 001 010 100 000 01 10 00 01 10 00 I/O O I/O I/O O I/O I/O O I/O I/O O O I/O I/O O O I/O I/O O O O I/O I/O O O I/O I/O O I/O I/O O I/O Voltage4 / Pad Type Reset State5 Function / State After Reset6 - / WKPCFG Pin No. 144 176 208 LQFP LQFP MAPBGA 50 59 P2 Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 43 Name Function1 eTPU_A[2] eTPU_A[14] GPIO[116] eTPU_A[3] eTPU_A[15] GPIO[117] eTPU_A[4] eTPU_A[16] GPIO[118] eTPU_A[5] eTPU_A[17] DSPI_B_SCK_LVDSGPIO[119] eTPU_A[6] eTPU_A[18] DSPI_B_SCK_LVDS+ GPIO[120] eTPU_A[7] eTPU_A[19] DSPI_B_SOUT_LVDSeTPU_A[6] GPIO[121] eTPU_A[8] eTPU_A[20] DSPI_B_SOUT_LVDS+ GPIO[122] eTPU_A[9] eTPU_A[21] GPIO[123] eTPU_A[10] eTPU_A[22] GPIO[124] eTPU_A Ch. eTPU_A Ch. GPIO eTPU_A Ch. eTPU_A Ch. GPIO eTPU_A Ch. eTPU_A Ch. GPIO eTPU_A Ch. eTPU_A Ch. DSPI_B CLOCK LVDSGPIO eTPU_A Ch. eTPU_A Ch. DSPI_B Clock LVDS+ GPIO eTPU_A Ch. eTPU_A Ch. DSPI_B Data Output LVDSeTPU_A Ch. GPIO eTPU_A Ch. eTPU_A Ch. DSPI_B Data Output LVDS+ GPIO eTPU_A Ch. eTPU_A Ch. GPIO eTPU_A Ch. eTPU_A Ch. GPIO VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow PCR[117] - / WKPCFG 49 58 P1 PCR[118] - / WKPCFG 47 56 N2 PCR[119] - / WKPCFG 45 54 M4 PCR[120] VDDEH1b - / WKPCFG Slow - / WKPCFG 44 53 L3 PCR[121] VDDEH1b - / WKPCFG Slow - / WKPCFG 43 52 K3 PCR[122] VDDEH1b - / WKPCFG Slow - / WKPCFG 42 51 N1 Pinout and signal description PCR[123] VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow - / WKPCFG 41 50 M2 PCR[124] - / WKPCFG 40 49 M1 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[125] PCR I/O PA 3 Type Field 01 10 00 01 10 00 01 10 00 001 010 100 000 01 10 00 01 00 01 00 01 00 01 00 01 10 00 01 10 00 I/O O I/O I/O O I/O I/O O I/O I/O O O I/O I/O O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I/O I/O I I/O Voltage4 / Pad Type Reset State5 Function / State After Reset6 - / WKPCFG Pin No. 144 176 208 LQFP LQFP MAPBGA 39 48 L2 44 Name Function1 eTPU_A[11] eTPU_A[23] GPIO[125] eTPU_A[12] DSPI_B_PCS[1] GPIO[126] eTPU_A[13] DSPI_B_PCS[3] GPIO[127] eTPU_A[14] DSPI_B_PCS[4] eTPU_A[9] GPIO[128] eTPU_A[15] DSPI_B_PCS[5] GPIO[129] eTPU_A[16] GPIO[130] eTPU_A[17] GPIO[131] eTPU_A[18] GPIO[132] eTPU_A[19] GPIO[133] eTPU_A[20] IRQ[8] GPIO[134] eTPU_A[21] IRQ[9] GPIO[135] Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice eTPU_A Ch. eTPU_A Ch. GPIO eTPU_A Ch. GPIO eTPU_A Ch. GPIO eTPU_A Ch. GPIO eTPU_A Ch. GPIO Pinout and signal description VDDEH1b - / WKPCFG Slow VDDEH1b Medium -/ WKPCFG eTPU_A Ch. DSPI_B Periph Chip Select GPIO eTPU_A Ch. DSPI_B Periph Chip Select GPIO eTPU_A Ch. DSPI_B Periph Chip Select eTPU_A Ch. GPIO eTPU_A Ch. DSPI_B Periph Chip Select GPIO PCR[126] - / WKPCFG 38 47 L1 PCR[127] VDDEH1b - / WKPCFG Medium VDDEH1b - / WKPCFG Medium - / WKPCFG 37 46 J4 PCR[128] - / WKPCFG 35 42 J3 PCR[129] VDDEH1b - / WKPCFG Medium VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow VDDEH1a - / WKPCFG Slow - / WKPCFG 33 40 K2 PCR[130] PCR[131] PCR[132] PCR[133] PCR[134] - / WKPCFG - / WKPCFG - / WKPCFG - / WKPCFG - / WKPCFG 32 31 30 29 28 39 38 37 36 35 K1 H3 H4 J2 J1 eTPU_A Ch. External Interrupt Request GPIO eTPU_A Ch. External Interrupt Request GPIO PCR[135] - / WKPCFG 27 34 G4 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[136] PCR I/O PA 3 Type Field 001 010 100 000 001 010 100 000 001 010 100 000 001 010 100 000 001 010 100 000 0001 0010 0100 1000 0000 10 01 00 10 01 00 I/O I O I/O I/O I O I/O I/O I O I/O I/O I O I/O I/O I O I/O I/O I O O I/O I/O O I/O I/O O I/O Voltage4 / Pad Type Reset State5 Function / State After Reset6 - / WKPCFG Pin No. 144 176 208 LQFP LQFP MAPBGA 25 32 H2 Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 45 Name Function1 eTPU_A[22] IRQ[10] eTPU_A[17] GPIO[136] eTPU_A[23] IRQ[11] eTPU_A[21] GPIO[137] eTPU_A[24]25 IRQ[12] DSPI_C_SCK_LVDSGPIO[138] eTPU_A[25]25 IRQ[13] DSPI_C_SCK_LVDS+ GPIO[139] eTPU_A[26]25 IRQ[14] DSPI_C_SOUT_LVDSGPIO[140] eTPU_A[27]25 IRQ[15] DSPI_C_SOUT_LVDS+ DSPI_B_SOUT GPIO[141] eTPU_A[28]25 DSPI_C_PCS[1] GPIO[142] eTPU_A[29]25 DSPI_C_PCS[2] GPIO[143] eTPU_A Ch. External Interrupt Request eTPU_A Ch. External GPIO eTPU_A Ch. External Interrupt Request eTPU_A Ch. External GPIO eTPU_A Ch. External Interrupt Request DSPI_C Clock LVDSGPIO eTPU_A Ch. External Interrupt Request DSPI _C Clock LVDS+ GPIO eTPU_A Ch. External Interrupt Request DSPI_C Data Output LVDSGPIO eTPU_A Ch. External Interrupt Request DSPI_C Data Output LVDS+ DSPI_B Data Output GPIO eTPU_A Ch. (Output Only) DSPI_C Periph Chip Select GPIO eTPU_A Ch. (Output Only) DSPI_C Periph Chip Select GPIO VDDEH1a - / WKPCFG Slow PCR[137] VDDEH1a - / WKPCFG Slow - / WKPCFG 23 30 H1 PCR[138] VDDEH1a - / WKPCFG Slow - / WKPCFG 21 28 G1 PCR[139] VDDEH1a - / WKPCFG Medium - / WKPCFG 20 27 G3 PCR[140] VDDEH1a - / WKPCFG Slow - / WKPCFG 19 26 F3 PCR[141] VDDEH1a - / WKPCFG Slow - / WKPCFG 18 25 G2 Pinout and signal description PCR[142] VDDEH1a - / WKPCFG Medium VDDEH1a - / WKPCFG Medium - / WKPCFG 17 24 F1 PCR[143] - / WKPCFG 16 23 F2 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[144] PCR I/O PA 3 Type Field 011 010 001 000 011 010 001 000 I/O O O I/O I/O O O I/O Voltage4 / Pad Type Reset State5 Function / State After Reset6 - / WKPCFG Pin No. 144 176 208 LQFP LQFP MAPBGA 15 22 E1 46 Name Function1 eTPU_A[30] DSPI_C_PCS[3] eTPU_A[11] GPIO[144] Preliminary—Subject to Change Without Notice Freescale Semiconductor eTPU_A[31] DSPI_C_PCS[4] eTPU_A[13] GPIO[145] MPC5634M Microcontroller Data Sheet, Rev. 4 eMIOS[0] eTPU_A[0] eTPU_A[25]26 GPIO[179] eMIOS[1] eTPU_A[1] GPIO[180] eMIOS[2] eTPU_A[2] GPIO[181] eMIOS[4] eTPU_A[4] GPIO[183] eMIOS[8] eTPU_A[8]27 SCI_B_TX GPIO[187] eMIOS[9] eTPU_A[9]27 SCI_B_RX GPIO[188] eMIOS[10] GPIO[189] eMIOS Ch. eTPU_A Ch. eTPU_A Ch. GPIO eMIOS Ch. eTPU_A Ch. GPIO eMIOS Ch. eTPU_A Ch. GPIO eMIOS Ch. eTPU_A Ch. GPIO eMIOS Ch. eTPU_A Ch. eSCI_B Transmit GPIO eMIOS Ch. eTPU_A Ch. eSCI_B Receive GPIO eMIOS Ch. GPIO Pinout and signal description eTPU_A Ch. DSPI_C Periph Chip Select eTPU_A Ch. GPIO eTPU_A Ch. DSPI_C Periph Chip Select eTPU_A Ch. GPIO VDDEH1a - / WKPCFG Medium PCR[145] VDDEH1a - / WKPCFG Medium - / WKPCFG 14 21 E2 eMIOS PCR[179] 001 010 100 000 01 10 00 01 10 00 01 10 00 001 010 100 000 001 010 100 000 01 00 I/O O O I/O I/O O I/O I/O O I/O I/O O I/O I/O O O I/O I/O O I I/O I/O I/O VDDEH1b - / WKPCFG Slow - / WKPCFG 54 63 T4 PCR[180] VDDEH1b - / WKPCFG Slow VDDEH1b - / WKPCFG Slow VDDEH6a - / WKPCFG Slow VDDEH6a - / WKPCFG Slow - / WKPCFG — 647 T58 PCR[181] - / WKPCFG 55 65 N7 PCR[183] - / WKPCFG 56 67 R5 PCR[187] - / WKPCFG 57 70 P8 PCR[188] VDDEH6a - / WKPCFG Slow - / WKPCFG 58 71 R7 PCR[189] VDDEH6a - / WKPCFG Slow - / WKPCFG 60 73 N8 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 PCR[190] PCR[191] PCR I/O PA 3 Type Field 01 00 001 010 100 000 01 00 001 010 100 000 01 10 00 01 00 I/O I/O I/O O O I/O I/O I/O O I O I/O O I I/O I/O I/O Voltage4 / Pad Type Reset State5 Function / State After Reset6 - / WKPCFG - / WKPCFG Pin No. 144 176 208 LQFP LQFP MAPBGA 62 63 75 76 R8 N10 Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 47 Name Function1 eMIOS[11] GPIO[190] eMIOS[12]28 DSPI_C_SOUT eTPU_A[27] GPIO[191] eMIOS[13] GPIO[192] eMIOS[14] IRQ[0] eTPU_A[29] GPIO[193] eMIOS[15] IRQ[1] GPIO[194] eMIOS[23] GPIO[202] eMIOS Ch. GPIO eMIOS Ch. DSPI C Data Output eTPU_A Ch. GPIO eMIOS Ch. GPIO eMIOS Ch. External Interrupt Request eTPU_A Ch. GPIO eMIOS Ch. External Interrupt Request GPIO eMIOS Ch. GPIO VDDEH6a - / WKPCFG Slow VDDEH6a - / WKPCFG Medium PCR[192] PCR[193] VDDEH6a - / WKPCFG VDDEH6a - / WKPCFG Slow - / WKPCFG - / WKPCFG — 64 777 78 T88 R9 PCR[194] VDDEH6a - / WKPCFG Slow VDDEH6a - / WKPCFG Slow - / WKPCFG — 797 T98 PCR[202] - / WKPCFG 65 80 R11 Clock Synthesizer XTAL EXTAL EXTCLK CLKOUT Crystal Oscillator Output Crystal Oscillator Input External Clock Input System Clock Output — — PCR[229] — — — O I O VDDEH6a VDDEH6a VDDE12 Fast O/I/CLKOUT / Enabled XTAL29 / EXTAL 30/ 76 75 — 93 92 — P16 N16 T14 Pinout and signal description - CLKOUT / Enabled Power / Ground VDDPLL VSSPLL31 VSTBY PLL Supply Voltage PLL Ground Power Supply for Standby RAM — — — — — — I I I VDDPLL (1.2V) VSSPLL VSTBY I/I/I/— — — 74 77 12 91 94 12 R16 M16 C1 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 — — — — — — — — — — PCR I/O PA 3 Type Field — — — — — — — — — — O O I I I I I I I I Voltage4 / Pad Type VRC33 NA VDDA (5.0 V) VDDA VSSA VDDA VSSA VSSA VDDREG (5.0 V) VDD (1.2 V) Reset State5 O/O/I/I/I/I/I/I/I/I/Function / State After Reset6 — — — — — — — — — Pin No. 144 176 208 LQFP LQFP MAPBGA 13 11 6 — — — — 7 10 26, 53, 86, 120 13 11 6 — — — — 7 10 33, 62, 103, 149 A15, D1, N6, N12 N14 — B11 A11 A4 A5 — K16 B1, B16, C2, D3, E4, N5, P4, P13, R3, R14, T2, T15 48 Name Function1 VRC33 VRCCTL Preliminary—Subject to Change Without Notice Freescale Semiconductor VDDA32 MPC5634M Microcontroller Data Sheet, Rev. 4 VDDA0 VSSA0 VDDA1 VSSA1 VSSA33 VDDREG VDD Pinout and signal description 3.3V Voltage Regulator Bypass Capacitor Voltage Regulator Control Output Analog Power Input for eQADC Analog Power Input for eQADC Analog Ground Input for eQADC Analog Power Input for eQADC Analog Ground Input for eQADC Analog Ground Input for eQADC Voltage Regulator Supply Internal Logic Supply Input Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Table 3. MPC563xM signal properties (continued) Pad Config. Register (PCR)2 — PCR I/O PA 3 Type Field — Voltage4 / Pad Type VSS0 Reset State5 I/Function / State After Reset6 Pin No. 144 176 208 LQFP LQFP MAPBGA 22, 36, 48, 59, 73, 79, 91, 104, 115 A1, A16, 15, B2, B15, 29, C3, C14, 43, D4, D13, 57, G7, G8, 72, G9, G10, 90, H7, H8, 96, 108, H9, H10, 1157, J7, J8, J9, 127, J10, K7, 133, K8, K9, 140 K10, N4, N13, P3, P14, R2, R15, T1, T16 16, 1197 — K4 N9 — T13 — F13 D12 E13, P6 Pinout and signal description Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 49 Name Function1 VSS Ground VDDE1234 VDDEH1A VDDEH1B VDDEH4 VDDEH4A VDDEH4B VDDE5 VDDEH6a36 VDDEH6b VDDEH6 VDDEH7 VDDE7 1 I/O Supply Input I/O Supply Input I/O Supply Input I/O Supply Input I/O Supply Input I/O Supply Input I/O Supply Input I/O Supply Input I/O Supply Input — — — — — — — — — — — — — — — — — — — I VDDE12 (3.3V ) VDDEH135 (3.3V - 5.0V) VDDEH4 I/I/I/I/I/I/I/I/I/- - — 24, 34 31, 41 — — I I I I I I VDDEH435 (3.3V - 5.0V) VDDE5 VDDEH6 (3.3V - 5.0V) VDDEH6 VDDEH737 (3.3V - 5.0V) VDDE7 46, 61 55, 74 — 78, 93 — 102, 113 — — 95, 110 — 125, 138 — For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or secondary function or GPIO is done in the SIU except where explicitly noted. Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 2 Values in this column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR number. For example, PCR[190] refers to the SIU register named SIU_PCR190. 3 The Pad Configuration Register (PCR) PA field is used by software to select pin function. 4 The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3 V to 5.0 V range (-10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/- 10%). 5 Terminology is O - output, I - input, Up - weak pull up enabled, Down - weak pull down enabled, Low - output driven low, High - output driven high. A dash for the function in this column denotes that both the input and output buffer are turned off. 6 Function after reset of GPI is general purpose input. A dash for the function in this column denotes that both the input and output buffer are turned off. 7 Not available on 1 MB version of 176-pin package. 8 Not available on 1 MB version of 208-pin package. 9 The GPIO functions on GPIO206 and GPIO207 can be selected as trigger functions in the SIU for the ADC by making the proper selections in the SIU_ETISR and SIU_ISEL3 registers in the SIU. 10 Signals in this section are available only on calibration package. 11 On the calibration package, the Nexus function on this pin is enabled when the NEXUSCFG pin is high and Nexus is configured to full port mode. On the 208-pin package, the Nexus function on this pin is enabled permanently. 12 In the calibration package, the I/O segment containing this pin is called VDDE12. 13 In the 208-pin package, the I/O segment containing this pin is called VDDE7 14 When configured as Nexus (208-pin package or calibration package with NEXUSCFG=1), and JCOMP is asserted during reset, MDO[0] is driven high until the crystal oscillator becomes stable, at which time it is then negated. 15 The function of this pin is Nexus when NEXUSCFG is high. 16 High when the pin is configured to Nexus, low otherwise. 17 O/Low for the calibration with NEXUSCFG=0; I/Up otherwise. 18 ALT_ADDR/Low for the calibration package with NEXUSCFG=0; EVTI/Up otherwise. 19 In 176-pin and 208-pin packages, the Nexus function is disabled and the pin/ball has the secondary function 20 This signal is not available in the 176-pin package. 21 The primary function is not selected via the PA field when the pin is a Nexus signal. Instead, it is activated by the Nexus controller. 22 TDI and TDO are required for JTAG operation. 23 The primary function is not selected via the PA field when the pin is a JTAG signal. Instead, it is activated by the JTAG controller. 24 The function and state of the CAN_A and eSCI_A pins after execution of the BAM program is determined by the BOOTCFG1 pin. 25 ETPUA[24:29] are input and output. The input muxing is controlled by SIU_ISEL8 register. 26 eTPU_A[25] is an output only function. 27 Only the output channels of eTPU[8:9] are connected to pins. 28 Only the output of eMIOS[12] is connected to the pin. The DSPI_C_SOUT is not available in this device. 29 The function after reset of the XTAL pin is determined by the value of the signal on the PLLCFG[1] pin. When bypass mode is chosen XTAL has no function and should be grounded. 30 The function after reset of the EXTAL_EXTCLK pin is determined by the value of the signal on the PLLCFG[1] pin. If the EXTCLK function is chosen, the valid operating voltage for the pin is 1.62 V to 3.6 V. If the EXTAL function is chosen, the valid operating voltage is 3.3 V. 31 VSSPLL and VSSREG are connected to the same pin. 32 This pin is shared by two pads: VDDA_AN, using pad_vdde_hv, and VDDA_DIG, using pad_vdde_int_hv. 33 This pin is shared by two pads: VSSA_AN, using pad_vsse_hv, and VSSA_DIG, using pad_vsse_int_hv. 50 Preliminary—Subject to Change Without Notice Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Pinout and signal description Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 34 VDDE12/VSSE12 35 LVDS pins are to be used for decoupling capacitors only. pins will not work at 3.3 V. 36 The VDDEH6 segment may be powered from 3.0 V to 5.0 V for mux address or SSI functions, but must meet the VDDA specifications of 4.5 V to 5.25 V for analog input function. 37 If using JTAG or Nexus, the I/O segment that contains the JTAG and Nexus pins must be powered by a 5 V supply. The 3.3 V Nexus/JTAG signals are derived from the 5 volt power supply. Freescale Semiconductor MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 51 Table 4. Pad types Pad Type Slow Medium Fast MultiV Analog LVDS Name pad_ssr_hv pad_msr_hv pad_fc pad_multv_hv pad_ae_hv pad_lo_lv Suplly Voltage 3.0V - 5.25 V 3.0 V - 5.25 V 3.0 V - 3.6 V 3.0 V - 5.25 V (high swing mode) 4.5 V - 5.25 V (low swing mode) 0.0 - 5.25 V — Pinout and signal description Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Pinout and signal description 2.7 Signal Details Table 5. Signal details Signal CLKOUT EXTAL EXTCLK PLLREF Module or Function Clock Generation Clock Generation Clock Generation Clock Generation Description MPC5634M clock output for the external/calibration bus interface Input pin for an external crystal oscillator or an external clock source based on the value driven on the PLLREF pin at reset. External clock input PLLREF is used to select whether the oscillator operates in xtal mode or external reference mode from reset. PLLREF=0 selects external reference mode. Table 5 contains details on the multiplexed signals that appear in Table 3, “MPC563xM signal properties.” XTAL SCK_B_LVDSSCK_B_LVDS+ SOUT_B_LVDSSOUT_B_LVDS+ SCK_C_LVDSSCK_C_LVDS+ SOUT_C_LVDSSOUT_C_LVDS+ PCS_B[0] PCS_C[0] PCS_B[1:5] PCS_C[1:5] SCK_B SCK_C SIN_B SIN_C SOUT_B SOUT_C CAL_ADDR[12:30] CAL_CS[0:3] Clock Generation DSPI DSPI DSPI DSPI DSPI_B - DSPI_C DSPI_B - DSPI_C DSPI_B - DSPI_C DSPI_B - DSPI_C DSPI_B - DSPI_C Calibration Bus Calibration Bus Crystal oscillator input LVDS pair used for DSPI_B TSB mode transmission LVDS pair used for DSPI_B TSB mode transmission LVDS pair used for DSPI_C TSB mode transmission LVDS pair used for DSPI_C TSB mode transmission Peripheral chip select when device is in master mode—slave select when used in slave mode Peripheral chip select when device is in master mode—not used in slave mode DSPI clock—output when device is in master mode; input when in slave mode DSPI data in DSPI data out The CAL_ADDR[12:30] signals specify the physical address of the bus transaction. CSx is asserted by the master to indicate that this transaction is targeted for a particular memory bank on the Primary external bus. The CAL_DATA[0:15] signals contain the data to be transferred for the current transaction. OE is used to indicate when an external memory is permitted to drive back read data. External memories must have their data output buffers off when OE is negated. OE is only asserted for chip-select accesses. CAL_DATA[0:15] CAL_OE Calibration Bus Calibration Bus MPC5634M Microcontroller Data Sheet, Rev. 4 52 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Pinout and signal description Table 5. Signal details (continued) Signal CAL_RD_WR CAL_TS_ALE Module or Function Calibration Bus Calibration Bus Description RD_WR indicates whether the current transaction is a read access or a write access. The Transfer Start signal (TS) is asserted by the MPC5634M to indicate the start of a transfer. The Address Latch Enable (ALE) signal is used to demultiplex the address from the data bus. CAL_EVTO CAL_MCKO NEXUSCFG eMIOS[0:23] AN[0:39] FCK MA[0:2] REFBYPC SDI SDO SDS VRH VRL SCI_A_RX SCI_B_RX SCI_A_TX SCI_B_TX ETPU_A[0:31] CAN_A_TX CAN_C_TX CAN_A_RX CAN_C_RX JCOMP TCK TDI TDO TMS Calibration Bus Calibration Bus Nexus/Calibration Bus eMIOS eQADC eQADC eQADC eQADC eQADC eQADC eQADC eQADC eQADC eSCI_A - eSCI_B eSCI_A - eSCI_B eTPU FlexCan_A FlexCAN_C FlexCAN_A FlexCAN_C JTAG JTAG JTAG JTAG JTAG Nexus Event Out Nexus Message Clock Out Nexus/Calibration Bus selector eMIOS I/O channels Single-ended analog inputs for analog-to-digital converter eQADC free running clock for eQADC SSI. These three control bits are output to enable the selection for an external Analog Mux for expansion channels. Bypass capacitor input Serial data in Serial data out Serial data select Voltage reference high input Voltage reference low input eSCI receive eSCI transmit eTPU I/O channel FlexCAN transmit FlexCAN receive Enables the JTAG TAP controller. Clock input for the on-chip test and debug logic. Serial test instruction and data input for the on-chip test and debug logic. Serial test data output for the on-chip test logic. Controls test mode operations for the on-chip test and debug logic. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 53 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Pinout and signal description Table 5. Signal details (continued) Signal EVTI Module or Function Nexus Description EVTI is an input that is read on the negation of RESET to enable or disable the Nexus Debug port. After reset, the EVTI pin is used to initiate program synchronization messages or generate a breakpoint. Output that provides timing to a development tool for a single watchpoint or breakpoint occurrence. MCKO is a free running clock output to the development tools which is used for timing of the MDO and MSEO signals. Trace message output to development tools. This pin also indicates the status of the crystal oscillator clock following a power-on reset, when MDO[0] is driven high until the crystal oscillator clock achieves stability and is then negated. Output pin—Indicates the start or end of the variable length message on the MDO pins The BOOTCFG1 pin is sampled during the assertion of the RSTOUT signal, and the value is used to update the RSR and the BAM boot mode The following values are for BOOTCFG[0:1}: 0: Boot from internal flash memory 1: FlexCAN/eSCI boot WKPCFG SIU - Configuration The WKPCFG pin is applied at the assertion of the internal reset signal (assertion of RSTOUT), and is sampled 4 clock cycles before the negation of the RSTOUT pin. The value is used to configure whether the eTPU and eMIOS pins are connected to internal weak pull up or weak pull down devices after reset. The value latched on the WKPCFG pin at reset is stored in the Reset Status Register (RSR), and is updated for all reset sources except the Debug Port Reset and Software External Reset. 0: Weak pulldown applied to eTPU and eMIOS pins at reset 1: Weak pullup applied to eTPU and eMIOS pins at reset. ETRIG[2:3] IRQ[0:15] SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx EVTO MCKO MDO[3:0] Nexus Nexus Nexus MSEO[1:0] BOOTCFG[1] Nexus SIU - Configuration SIU - External Interrupts The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX Select Register 1 is used to select the IRQ[0:15] pins as inputs to the IRQs. MPC5634M Microcontroller Data Sheet, Rev. 4 54 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Pinout and signal description Table 5. Signal details (continued) Signal NMI GPIO[n] Module or Function SIU - External Interrupts Non-Maskable Interrupt SIU - GPIO Configurable general purpose I/O pins. Each GPIO input and output is separately controlled by an 8-bit input (GPDI) or output (GPDO) register. Additionally, each GPIO pins is configured using a dedicated SIU_PCR register. The GPIO pins are generally multiplexed with other I/O pin functions. RESET SIU - Reset The RESET pin is an active low input. The RESET pin is asserted by an external device during a power-on or external reset. The internal reset signal asserts only if the RESET pin asserts for 10 clock cycles. Assertion of the RESET pin while the device is in reset causes the reset cycle to start over. The RESET pin has a glitch detector which detects spikes greater than two clock cycles in duration that fall below the switch point of the input buffer logic of the VDDEH input pins. The switch point lies between the maximum VIL and minimum VIH specifications for the VDDEH input pins. RSTOUT SIU - Reset The RSTOUT pin is an active low output that uses a push/pull configuration. The RSTOUT pin is driven to the low state by the MCU for all internal and external reset sources. There is a delay between initiation of the reset and the assertion of the RSTOUT pin. Description MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 55 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Pinout and signal description Table 6. Power/ground segmentation Power Segment VDDE12 Voltage 1.8 V - 3.3 V I/O Pins Powered by Segment CAL_CS0, CAL_CS2, CAL_ADDR[12], CAL_ADDR[13], CAL_ADDR[14], CAL_ADDR[15], CAL_ADDR[16], CAL_ADDR[17], CAL_ADDR[18], CAL_ADDR[19], CAL_ADDR[20], CAL_ADDR[21], CAL_ADDR[22], CAL_ADDR[23], CAL_ADDR[24], CAL_ADDR[25], CAL_ADDR[26], CAL_ADDR[27], CAL_ADDR[28], CAL_ADDR[29], CAL_ADDR[30], CAL_DATA[0], CAL_DATA[1], CAL_DATA[2], CAL_DATA[3], CAL_DATA[4], CAL_DATA[5], CAL_DATA[6], CAL_DATA[7], CAL_DATA[8], CAL_DATA[9], CAL_DATA[10], CAL_DATA[11], CAL_DATA[12], CAL_DATA[13], CAL_DATA[14], CAL_DATA[15], CAL_RD_WR, CAL_WE[0]/BE[0], CAL_WE[1]/BE[1], CAL_OE, CAL_TS_ALE, CAL_EVTO, CAL_MCKO, NEXUSCFG ETPUA21, ETPUA22, ETPUA23, ETPUA24, ETPUA25, ETPUA26, ETPUA27, ETPUA28, ETPUA29, ETPUA30, ETPUA31 ETPUA10, ETPUA11, ETPUA12, ETPUA13, ETPUA14, ETPUA15, ETPUA16, ETPUA17, ETPUA18, ETPUA19, ETPUA20 EMIOS0, ETPUA0, ETPUA1, ETPUA2, ETPUA3, ETPUA4, ETPUA5, ETPUA6, ETPUA7, ETPUA8, ETPUA9 CAN_A_TX, CAN_A_RX, EMIOS1, EMIOS2, EMIOS4, EMIOS8, EMIOS9, EMIOS10, EMIOS11, EMIOS12, EMIOS13, EMIOS14, EMIOS15, EMIOS23 RESET, RSTOUT, PLLREF, BOOTCFG[1], WKPCFG, CAN_C_TX, CAN_C_RX, SCI_A_TX, SCI_A_RX, SCI_B_TX, SCI_B_RX DSPI_B_SCK, DSPI_B_SIN, DSPI_B_SOUT, DSPI_B_PCS0, DSPI_B_PCS1, DSPI_B_PCS2, DSPI_B_PCS3, DSPI_B_PCS4, DSPI_B_PCS5, DSPI_C_SCK, DSPI_C_SIN, DSPI_C_SOUT, DSPI_C_PCS0, DSPI_C_PCS1, DSPI_C_PCS2 GPIO[98], GPIO[99], GPIO[206], GPIO[207], EVTI, EVTO, MDO0, MDO1, MDO2, MDO3, MSEO[0], MSEO[1], TCK, TDI, TDO, TMS, JCOMP, AN12, AN13, AN14, AN15 AN0, AN1, AN2, AN3, AN4, AN5, AN6, AN7, AN8, AN9, AN10, AN11, AN16, AN17, AN18, AN19, AN20, AN21, AN22, AN23, AN24, AN25, AN26, AN27, AN28, AN29, AN30, AN31, AN32, AN33, AN34, AN35, AN36, AN37, AN38, AN39, VRH Other Power Segments VRH VDDREG VRCCTL 0V 5V — REFBYPC — — VDDEH1A 3.3 V - 5.0 V VDDEH1B 3.3 V - 5.0 V VDDEH4A VDDEH4B 3.3 V - 5.0 V 3.3 V - 5.0 V VDDEH6A 3.3 V - 5.0 V VDDEH6B 3.3 V - 5.0 V VDDEH7 3.3 V - 5.0 V VDDA 5.0 V MPC5634M Microcontroller Data Sheet, Rev. 4 56 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 6. Power/ground segmentation Power Segment VDDPLL VSTBY VSS VSSA0 , Voltage 1.2 V 1 V, 2 V – 5 V — — I/O Pins Powered by Segment — — — VRL 3 Electrical characteristics This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC5634M series of MCUs. The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 3.1 Parameter classification The electrical parameters shown in this document are guaranteed by various methods. To provide a better understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables. Note that only controller characteristics (“CC”) are classified. System requirements (“SR”) are operating conditions that must be provided to ensure normal device operation. Table 7. Parameter classifications Classification tag P C T Tag description Those parameters are guaranteed during production testing on each individual device. Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. Those parameters are derived mainly from simulations. D NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 57 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.2 Maximum ratings Table 8. Absolute maximum ratings1 Value2 Symbol Parameter 1.2 V core supply voltage3 Flash core voltage4,5 SRAM standby voltage6 Clock synthesizer voltage3 Voltage regulator control input voltage5 Analog supply voltage6 I/O supply voltage5,8 I/O supply voltage6,8 DC input voltage9 VDDEH powered I/O pads VDDE powered I/O pads VDDA powered I/O pads VDDREG VRH VSS – VSSA VRH – VRL VRL – VSSA VSSPLL – VSS IMAXD IMAXA SR SR SR SR SR SR SR SR Voltage regulator supply voltage6 Analog reference high voltage6 VSS differential voltage VREF differential voltage6 Reference to VRL Reference to VSSA Conditions min VDD VFLASH VSTBY VDDPLL VRC337 VDDA VDDE VDDEH VIN SR SR SR SR SR SR SR SR SR – 0.3 – 0.3 – 0.3 – 0.3 – 0.3 – 0.3 – 0.3 – 0.3 –1.010 –1.010 –1.0 – 0.3 – 0.3 – 0.1 – 0.3 – 0.3 – 0.1 Per pin, applies to all digital pins Per pin, applies to all analog pins –3 — max 1.32 3.6 5.5 1.32 3.6 5.5 3.6 5.5 VDDEH + 0.3 V11 VDDE + 0.3 V12 VDDA + 0.3 V 5.5 5.5 0.1 5.5 0.3 0.1 3 5 mA V V V V V V mA mA V V V V V V V V V Unit VRL to VSSA differential voltage VSSPLL to VSS differential voltage Maximum DC digital input current13 Maximum DC analog input current14 MPC5634M Microcontroller Data Sheet, Rev. 4 58 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 8. Absolute maximum ratings1 (continued) Value2 Symbol Parameter Conditions min TJ SR Maximum operating temperature range15 – die junction temperature Storage temperature range Maximum solder temperature16 Moisture sensitivity level17 – 40.0 max 150.0 o Unit C TSTG TSDR MSL 1 SR SR SR – 55.0 — — 150.0 260.0 3 o C C o — Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2 TBD: To Be Defined. 3 Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V +10%. 4 The V FLASH supply is connected to VRC33 in the package substrate. This specification applies to calibration package devices only. 5 Allowed 5.3 V for 10 hours cumulative time, remaining time at 3.3 V +10%. 6 Allowed 6.8 V for 10 hours cumulative time, remaining time at 5 V +10%. 7 The pin named as V RC33 is internally connected to the pads VFLASH and VRC33 in the 144 LQFP package. These limits apply when the internal regulator is disabled and VRC33 power is supplied externally. 8 All functional non-supply I/O pins are clamped to V SS and VDDE, or VDDEH. 9 AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of 60 hours over the complete lifetime of the device (injection current not limited for this duration). 10 Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met. 11 Internal structures hold the input voltage less than the maximum voltage on all pads powered by V DDEH supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage specifications. 12 Internal structures hold the input voltage less than the maximum voltage on all pads powered by V DDE supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage specifications. 13 Total injection current for all pins (including both digital and analog) must not exceed 25 mA. 14 Total injection current for all analog input pins must not exceed 15 mA. 15 Lifetime operation at these specification limits is not guaranteed. 16 Solder profile per CDF-AEC-Q100. 17 Moisture sensitivity per JEDEC test method A112. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 59 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.3 Thermal characteristics Table 9. Thermal characteristics for 144-pin LQFP1 Symbol RθJA RθJA RθJMA RθJMA RθJB RθJCtop ΨJT 1 2 C CC CC CC CC CC CC CC Parameter Conditions Single layer board - 1s Four layer board - 2s2p Single layer board Four layer board 2s2p Value 43 35 34 29 22 8 2 Unit °C/W °C/W °C/W °C/W °C/W °C/W °C/W D Junction-to-Ambient, Natural Convection2 D Junction-to-Ambient, Natural Convection2 D Junction-to-Ambient2 D Junction-to-Ambient D Junction-to-Board 3 2 D Junction-to-Case4 D Junction-to-Package Top, Natural Convection5 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Table 10. Thermal characteristics for 176-pin LQFP1 Symbol RθJA RθJA RθJMA RθJMA RθJB RθJCtop ΨJT 1 2 C CC CC CC CC CC CC CC Parameter Convection2 Convection2 Conditions Single layer board - 1s Four layer board - 2s2p Single layer board - 1s Four layer board - 2s2p Value 43 36 35 30 25 9 2 Unit °C/W °C/W °C/W °C/W °C/W °C/W °C/W D Junction-to-Ambient, Natural D Junction-to-Ambient, Natural D Junction-to-Ambient2 D Junction-to-Ambient2 D Junction-to-Board3 D Junction-to-Case4 D Junction-to-Package Top, Natural Convection5 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. MPC5634M Microcontroller Data Sheet, Rev. 4 60 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 11. Thermal characteristics for 208-pin MAPBGA1 Symbol RθJA RθJMA RθJA RθJMA RθJB RθJC ΨJT 1 2 C Parameter Junction-to-ambient, natural convection2,3 Junction-to-ambient natural convection2,4 Junction-to-ambient2,4 Junction-to-ambient2,4 Junction-to-board5 Junction-to-case6 Junction-to-package top natural convection7 Conditions One layer board - 1s Four layer board - 2s2p Single layer board Four layer board 2s2p Four layer board - 2s2p Value 39 24 31 20 13 6 2 Unit °C/W °C/W °C/W °C/W °C/W °C/W °C/W CC CC CC CC CC CC CC D D D D D D D 3 4 5 6 7 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 3.3.1 General notes for specifications at maximum junction temperature TJ = TA + (RθJA * PD) Eqn. 1 An estimation of the chip junction temperature, TJ, can be obtained from the equation: where: TA = ambient temperature for the package (oC) RθJA = junction-to-ambient thermal resistance (oC/W) PD = power dissipation in the package (W) The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the: • Construction of the application board (number of planes) MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 61 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics • • • Effective size of the board which cools the component Quality of the thermal and electrical connections to the planes Power dissipated by adjacent components Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has: • • • One oz. (35 micron nominal thickness) internal planes Components are well separated Overall power dissipation on the board is less than 0.02 W/cm2 The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation: TJ = TB + (RθJB * PD) where: TB = board temperature for the package perimeter (oC) RθJB = junction-to-board thermal resistance (oC/W) per JESD51-8S PD = power dissipation in the package (W) When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to a board with internal planes. The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: RθJA = RθJC + RθCA where: RθJA = junction-to-ambient thermal resistance (oC/W) RθJC = junction-to-case thermal resistance (oC/W) RθCA = case to ambient thermal resistance (oC/W) RθJC s device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, RθCA. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. Eqn. 3 Eqn. 2 MPC5634M Microcontroller Data Sheet, Rev. 4 62 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (ΨJT) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation: TJ = TT + (ΨJT x PD) where: TT ΨJT PD = thermocouple temperature on top of the package (oC) = thermal characterization parameter (oC/W) = power dissipation in the package (W) Eqn. 4 The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 USA (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the web at http://www.jedec.org. • • • C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications”, Electronic Packaging and Production, pp. 53-58, March 1998. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 63 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.4 EMI (Electromagnetic Interference) characteristics Table 12. EMI testing specifications1 Symbol Radiated emissions, electric field Parameter VRE_TEM Conditions VDDREG = 5.25 V; TA = +25 °C 150 kHz – 30 MHz RBW 9 kHz, Step Size 5kHz 30 MHz – 1 GHz – RBW 120 kHz, Step Size 80 kHz fOSC/fBUS Frequency Level (Max) 20 20 26 26 K 3 13 13 11 13 L 2 — — — — dBμV Unit dBμV 16 MHz crystal 150 kHz – 50 MHz 40 MHz bus 50 – 150 MHz No PLL frequency modulation 150 – 500 MHz 500 – 1000 MHz IEC Level SAE Level 16 MHz crystal 40 MHz bus +/-2% PLL frequency modulation 150 kHz– 50 MHz 50 – 150 MHz 150 – 500 MHz 500 – 1000 MHz IEC Level SAE Level 1 EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. 3.5 Electromagnetic static discharge (ESD) characteristics Table 13. ESD ratings1,2 Symbol — R1 C — SR SR SR SR ESD for field induced charge Model (FCDM) Number of pulses per pin All pins Corner pins Positive pulses (HBM) Negative pulses (HBM) — 1 Parameter ESD for Human Body Model (HBM) HBM circuit description Conditions — — — Value 2000 1500 100 500 750 1 1 1 Unit V Ω pF V — SR — — — SR Number of pulses — All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.” MPC5634M Microcontroller Data Sheet, Rev. 4 64 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.6 Power Management Control (PMC) and Power On Reset (POR) electrical specifications Table 14. PMC Operating conditions and external regulators supply voltage ID 1 2 3 Name Jtemp Vddreg Vdd SR SR C Parameter Min –40 4.5 1 Typ 27 5 1.3 Max 150 5.25 1.32 Unit °C V V — Junction temperature — PMC 5 V supply voltage VDDREG CC C Core supply voltage 1.2 V VDD when external regulator is used without disabling the internal regulator (PMC unit turned on, LVI monitor active)2 CC C Core supply voltage 1.2 V VDD when external regulator is used with a disabled internal regulator (PMC unit turned-off, LVI monitor disabled) CC C Voltage regulator core supply maximum required DC output current CC C Regulated 3.3 V supply voltage when external regulator is used without disabling the internal regulator (PMC unit turned-on, internal 3.3V regulator enabled, LVI monitor active)4 CC C Regulated 3.3 V supply voltage when external regulator is used with a disabled internal regulator (PMC unit turned-off, LVI monitor disabled) CC C Voltage regulator 3.3 V supply maximum required DC output current 1.263 3a — 1.14 1.2 1.32 V 4 5 Ivdd Vdd33 400 3.3 — 3.45 — 3.6 mA V 5a — 3 3.3 3.6 V 6 1 2 — 80 — — mA During start up operation the minimum required voltage to come out of reset state is 4.6 V. An internal regulator controller can be used to regulate core supply. 3 The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V. 4 An internal regulator can be used to regulate 3.3 V supply. Table 15. PMC electrical characteristics ID 1 1a 1b Name Vbg — — C Parameter Min — Vbg–4.5% Vbg–10mV Typ 1.219 Vbg Vbg Max — Unit V Notes CC C Nominal bandgap voltage reference CC C Untrimmed bandgap reference voltage CC C Trimmed bandgap reference voltage (5 V, 27 °C)1 CC C Bandgap reference temperature variation Vbg+4.5% V Vbg+10mV V 1c — — 100 — ppm /°C MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 65 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 15. PMC electrical characteristics (continued) ID 1d 2 Name — Vdd C Parameter Min — — Typ 1500 1.28 Max — — Unit ppm /V V Notes CC C Bandgap reference supply voltage variation CC C Nominal VDD core supply internal regulator target DC output voltage2 CC C Nominal VDD core supply internal regulator target DC output voltage variation at power-on reset 2a — Vdd–6% Vdd Vdd+10% V 2b — CC C Nominal VDD core supply Vdd–10%3 internal regulator target DC output voltage variation after power-on reset CC C Trimming step Vdd CC C Voltage regulator controller for core supply maximum DC output current CC C Nominal LVI for rising core supply4 CC C Variation of LVI for rising core supply at power-on reset — 20 Vdd Vdd+3% V 2c 2d — Ivrcctl 20 — — — mV mA 3 3a Lvi1p2 — — 1.120 1.160 1.200 — 1.280 V V See note 5 3b — CC C Variation of LVI for rising Lvi1p2–3% core supply after power-on reset CC C Trimming step LVI core supply CC C LVI core supply hysteresis CC C POR 1.2 V rising CC C POR 1.2 V rising variation CC C POR 1.2 V falling CC C POR 1.2 V falling variation CC C Nominal 3.3 V supply internal regulator DC output voltage CC C Nominal 3.3 V supply internal regulator DC output voltage variation at power-on reset — — — Lvi1p2 Lvi1p2+3% V See note 5 3c 3d 4 4a 4b 4c 5 — Lvi1p2_h Por1.2V_r — Por1.2V_f — Vdd33 20 40 0.709 — — — mV mV V Por1.2V_r– Por1.2V_r Por1.2V_r+ V 35% 35% — 0.638 — V Por1.2V_f– Por1.2V_f Por1.2V_f+ V 35% 35% — 3.39 — V 5a — Vdd33 V MPC5634M Microcontroller Data Sheet, Rev. 4 66 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 15. PMC electrical characteristics (continued) ID 5b Name — C Parameter Min Typ Vdd33 Max Unit Notes With internal load up to Idd3p3 CC C Nominal 3.3 V supply Vdd33 – 7. internal regulator DC output 5% voltage variation power-on reset CC C Voltage regulator 3.3 V output impedance at maximum DC load CC C Voltage regulator 3.3 V maximum DC output current — Vdd33 + 7 V % 5c — — 2 Ω 5d Idd3p3 80 — — mA 5e 6 Vdd33 ILim CC C Voltage regulator 3.3 V DC current limit Lvi3p3 CC C Nominal LVI for rising 3.3 V supply — — 130 3.090 — — mA V The Lvi3p3 specs are also valid for the Vddeh LVI See note 6 6a — CC C Variation of LVI for rising 3.3 V supply at power-on reset Lvi3p3–6% Lvi3p3 Lvi3p3+6% V 6b — CC C Variation of LVI for rising Lvi3p3–3% 3.3 V supply after power-on reset CC C Trimming step LVI 3.3 V CC C LVI 3.3 V hysteresis CC C Nominal POR for rising 3.3 V supply — — — Lvi3p3 Lvi3p3+3% V See note 6 6c 6d 7 — Lvi3p3_h Por3.3V_r 20 60 1.96 — — — mV mV V The 3.3V POR specs are also valid for the Vddeh POR 7a 7b 7c 8 8a — Por3.3V_f — Lvi5p0 — CC C Variation of POR for rising 3.3 V supply CC C Nominal POR for falling 3.3 V supply CC C Variation of POR for falling 3.3 V supply CC C Nominal LVI for rising 5 V VDDREG supply Por3.3V_r– Por3.3V_r Por3.3V_r+ V 35% 35% — 1.76 — V Por3.3V_f– Por3.3V_f Por3.3V_f+ V 35% 35% — 4.290 Lvi5p0 — V CC C Variation of LVI for rising 5 V Lvi5p0–6% VDDREG supply at power-on reset CC C Variation of LVI for rising 5 V Lvi5p0–3% VDDREG supply power-on reset CC C Trimming step LVI 5 V — Lvi5p0+6% V 8b — Lvi5p0 Lvi5p0+3% V 8c — 20 — mV MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 67 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 15. PMC electrical characteristics (continued) ID 8d 9 9a 9b 9c 1 2 3 4 5 6 Name Lvi5p0_h Por5V_r — Por5V_f — C Parameter Min — — Por5V_r– 35% — Por5V_f– 35% Typ 60 2.6 Por5V_r 2.4 Por5V_f Max — — Unit mV V Notes CC C LVI 5 V hysteresis CC C Nominal POR for rising 5 V VDDREG supply CC C Variation of POR for rising 5 V VDDREG supply CC C Nominal POR for falling 5 V VDDREG supply CC C Variation of POR for falling 5 V VDDREG supply Por5V_r+ V 35% — V Por5V_f+ V 35% The limits will be reviewed after data collection from 3 different lots in a full production environment. Using external ballast transistor. Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset. LVI for falling supply is calculated as LVI rising - LVI hysteresis. Lvi1p2 tracks DC target variation of internal Vdd regulator. Minimum and maximum Lvi1p2 correspond to minimum and maximum Vdd DC target respectively. Lvi3p3 tracks DC target variation of internal Vdd33 regulator. Minimum and maximum Lvi3p3 correspond to minimum and maximum Vdd33 DC target respectively. MPC5634M Microcontroller Data Sheet, Rev. 4 68 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.6.1 Regulator example VDDREG The resistor may or may not be required. This depends on the allowable power dissipation of the npn bypass transistor device. The bypass transistor MUST be operated out of saturation region. VRCCTL MCU VDD Mandatory decoupling capacitor network VSS VRCCTL capacitor is required Figure 7. Core Voltage Regulator Controller External Components Preferred Configuration 3.6.2 Recommended power transistors The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON SemiconductorTM BCP68T1 or NJD2873 as well as Philips SemiconductorTM BCP68. The collector of the external transistor is preferably connected to the same voltage supply source as the output stage of the regulator. Table 16. Recommended operating characteristics Symbol hFE (β) PD Parameter DC current gain (Beta) Absolute minimum power dissipation Value 60 – 550 >1.0 (1.5 preferred) 1.0 > 2001 >0.7 Unit — W A mV V ICMaxDC Minimum peak collector current VCESAT Collector-to-emitter saturation voltage VBE 1 Base-to-emitter voltage Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 69 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.7 Power up/down sequencing 5 V → 3.3 V and 1.2 V There is no power sequencing required among power sources during power up and power down, in order to operate within specification but use of the following sequence is strongly recommended when the internal regulator is bypassed: This is also the normal sequence when the internal regulator is enabled. Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc., the state of the I/O pins during power up/down varies according to table Table 17 for all pins with fast pads (pad_fc), and Table 18 for all pins with medium (pad_msr_hv), slow (pad_ssr_hv) and multi-voltage (pad_multv_hv) pads. Table 17. Power sequence pin states for fast pads VDDE LOW VDDE VDDE VDDE VRC33 X LOW VRC33 VRC33 VDD X X LOW VDD Fast (pad_fc) LOW HIGH HIGH IMPEDANCE FUNCTIONAL Table 18. Power sequence pin states for medium, slow and multi-voltage pads Medium (pad_msr_hv) Slow (pad_ssr_hv) Multi-voltage (pad_multv_hv) LOW HIGH IMPEDANCE FUNCTIONAL VDDEH LOW VDDEH VDDEH VDD X LOW VDD 3.8 DC electrical specifications Table 19. DC electrical specifications1 Value2 Symbol C Parameter Conditions min VDD VDDE VDDEH VRC33 VDDA VINDC SR SR SR SR SR SR — — — — — — Core supply voltage I/O supply voltage I/O supply voltage 3.3 V regulated voltage3 Analog supply voltage Analog input voltage5 — — — — — — 1.14 1.62 3.0 3.0 4.754 VSSA–0.3 typ — — — — — — max 1.32 3.6 5.25 3.6 5.25 VDDA+0.3 V V V V V V Unit MPC5634M Microcontroller Data Sheet, Rev. 4 70 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 19. DC electrical specifications1 (continued) Value2 Symbol C Parameter Conditions min VSS – VSSA VRL VRL – VSSA VRH VRH – VRL VDDF VFLASH7 VSTBY SR SR SR SR SR SR SR SR — — — — — — — — VSS differential voltage Analog reference low voltage VRL differential voltage Analog reference high voltage VREF differential voltage Flash operating voltage 6 Flash read voltage SRAM standby voltage Voltage regulator supply voltage8 Clock synthesizer operating voltage VSSPLL to VSS differential voltage Slow/medium pad I/O input low voltage — — — — — — — — — — — — Hysteresis enabled hysteresis disabled Fast pad I/O input low voltage Hysteresis enabled hysteresis disabled Multi-voltage pad I/O input low voltage in low-swing mode9,10,11,12 Multi-voltage pad I/O input low voltage in high-swing mode Hysteresis enabled Hysteresis disabled Hysteresis enabled Hysteresis disabled –100 VSSA –100 VDDA–0.1 4.75 1.14 3.0 0.9 2.0 4.0 1.14 –100 VSS–0.3 VSS–0.3 VSS–0.3 VSS–0.3 VSS–0.3 VSS–0.3 VSS–0.3 VSS–0.3 typ — — — — — — — — — — — — — — — — — — — — max 100 VSSA+0.1 100 VDDA 5.25 1.32 3.6 1.2 5.5 5.25 1.32 100 0.35*VDDEH 0.40*VDDEH 0.35*VDDE 0.40*VDDE 0.8 1.1 0.35 VDDEH 0.4 VDDEH V V V V V mV V mV V mV V V V V V Unit VDDREG VDDPLL VSSPLL – VSS VIL_S SR SR SR SR — — — — — VIL_F SR — — VIL_LS SR — — VIL_HS SR — — MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 71 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 19. DC electrical specifications1 (continued) Value2 Symbol C Parameter Conditions min VIH_S SR — — VIH_F SR — — VIH_LS SR — — VIH_HS SR — — VOL_S CC C Multi-voltage pad I/O input high voltage in low-swing mode9,10,11,12,13 Multi-voltage pad I/O input high voltage in high-swing mode14 Slow/medium pad I/O input high voltage Hysteresis enabled hysteresis disabled Hysteresis enabled hysteresis disabled Hysteresis enabled Hysteresis disabled Hysteresis enabled Hysteresis disabled — 0.65 VDDEH 0.55 VDDEH 0.65 VDDE 0.55 VDDE 2.5 2.2 0.65 VDDEH 0.55 VDDEH — typ — — — — — — — — — max VDDEH+0.3 VDDEH+0.3 VDDE+0.3 VDDE+0.3 4.0 4.0 VDDEH+0.3 VDDEH+0.3 0.2*VDDEH V V V V V Unit Fast pad I/O input high voltage Slow/medium multi-voltage pad I/O output low voltage17,15 Fast pad I/O output low voltage16,17 Multi-voltage pad I/O output low voltage in low-swing mode9,10,11,12,16 Multi-voltage pad I/O output low voltage in high-swing mode16 Slow/medium pad I/O output high voltage17,15 Fast pad I/O output high voltage16,17 Multi-voltage pad I/O output high voltage in low-swing mode9,10,11,12,16 VOL_F VOL_LS CC SR C — — IOL = 2 mA — — — — 0.2*VDDE 0.6 V V VOL_HS SR — — — — 0.2 VDDEH V VOH_S CC P — 0.8 VDDEH — — V VOH_F VOH_LS CC SR P — — IOH = 2 mA 0.8 VDDE 2.3 — 3.1 — 3.7 V V MPC5634M Microcontroller Data Sheet, Rev. 4 72 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 19. DC electrical specifications1 (continued) Value2 Symbol C Parameter Conditions min VOH_HS SR — Multi-voltage pad I/O output high voltage in high-swing mode16 Slow/medium/multi-v oltage I/O input hysteresis Fast I/O input hysteresis Low-Swing-Mode Multi-Voltage I/O Input Hysteresis Operating current 1.2 V supplies — 0.8 VDDEH typ — max — V Unit VHYS_S CC C — 0.1 * VDDEH — — V VHYS_F VHYS_LS CC CC C C — hysteresis enabled 0.1 * VDDE 0.25 — — — — V V IDD+IDDPLL18 CC CC CC C C C C C C C VDD=1.32 V, 80 MHz VDD=1.32 V, 60 MHz VDD=1.32 V, 40 MHz — — — — — — — — — — — — — — — — 195 135 98 100 700 TBD TBD 60 mA IDDSTBY IDDSTBY150 IDDSLOW IDDSTOP IDD33 CC CC CC Operating current 1.2 V supplies Operating current 1.2 V supplies VDD low-power mode operating current @ 1.32 V Operating current 3.3 V supplies @ 80 MHz Operating current 5.0 V supplies @ 80 MHz TJ=55 oC, 80 MHz TJ=150 oC, 80 MHz Slow mode19 Stop mode20 VRC333 μA μA mA CC C mA IDDA IREF IDDREG CC C C VDDA Analog reference supply current (transient) VDDREG — — — — 15.0 1.0 mA C — — 70 MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 73 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 19. DC electrical specifications1 (continued) Value2 Symbol C Parameter Conditions min IDDH1 IDDH4 IDDH6 IDDH7 IDD7 IDDH9 IDD12 CC C C C C C C C IACT_S CC C C IACT_F CC C C C IACT_MV_PU CC C Multi-voltage pad weak pullup current Slow/medium I/O weak pull up/down current22 Fast I/O weak pull up/down current22 Operating current VDDE21 supplies @ 80 MHz VDDEH1 VDDEH4 VDDEH6 VDDEH7 VDDE7 VDDEH9 VDDE12 3.0 V – 3.6 V 4.5 V – 5.25 V 1.62 V – 1.98 V 2.25 V – 2.75 V 3.0 V – 3.6 V VDDE=3.0–3.6 pad_multv_hv, all process corners, high swing mode only 4.5 V – 5.25 V Multivoltage pad weak pulldown current VDDE=3.0–3.6 V9, pad_multv_hv, all process corners, high swing mode only 4.5 V – 5.25 V I/O input leakage current23 DC injection current (per pin) Analog input current, channel off, AN[0:7], AN38, AN3924 Analog input current, channel off, all other analog pins (ANX)24 — — — V9, — — — — — — — 15 35 36 34 42 20 typ — — — — — — — — — — — — — 95 200 120 139 158 75 μA μA μA max See note 21 mA Unit C IACT_MV_PD CC C 25 10 — — 175 60 μA C IINACT_D IIC IINACT_A CC SR SR C C C 25 –2.5 –1.0 –250 — — — — 200 2.5 1.0 250 μA mA nA C — 150 — 150 MPC5634M Microcontroller Data Sheet, Rev. 4 74 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 19. DC electrical specifications1 (continued) Value2 Symbol C Parameter Conditions min CL CC C C C C CIN CIN_A CIN_M CC CC CC C C C Input capacitance (digital pins) Input capacitance (analog pins) Input capacitance (digital and analog pins26) Weak Pull-Up/Down Resistance27,28 200 kΩ Option Weak Pull-Up/Down Resistance27,28 100 kΩ Option Weak Pull-Up/Down Resistance27 5 kΩ Option Load capacitance (fast I/O)25 DSC(PCR[8:9]) = 0b00 DSC(PCR[8:9]) = 0b01 DSC(PCR[8:9]) = 0b10 DSC(PCR[8:9]) = 0b11 — — — — — — — — — — typ — — — — — — — max 10 20 30 50 7 10 12 pF pF pF pF Unit RPUPD200K SR — — 130 — 280 kΩ RPUPD100K SR — — 65 — 140 kΩ RPUPD5K SR — — 5 V ± 10% supply 3.3 V ± 10% supply — 1.4 1.7 –40.0 — — — 5.2 7.7 125.0 kΩ TA (TL to TH) SR — Operating temperature range ambient (packaged) Slew rate on power supply pins ο C — 1 2 3 4 5 6 7 SR — — — — 50 V/ms These specifications are design targets and subject to change per device characterization. TBD: To Be Defined. These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0). ADC is functional with 4 V ≤ VDDA ≤ 4.75 V but with derated accuracy. This means the ADC will continue to function at full speed with no bad behavior, but the accuracy will be degraded. Internal structures hold the input voltage less than VDDA + 1.0 V on all pads powered by VDDA supplies, if the maximum injection current specification is met (3 mA for all pins) and VDDA is within the operating voltage specifications. The VDDF supply is connected to VDD in the package substrate. This specification applies to calibration package devices only. VFLASH is only available in the calibration package. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 75 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Regulator is functional, with derated performance, with supply voltage down to 4.0 V. Multi-voltage pads (type pad_multv_hv) cannot be below 4.5 V when in low-swing mode. 10 The slew rate (SRC) setting must be 0b11 when in low-swing mode. 11 While in low-swing mode there are no restrictions in transitioning to high-swing mode. 12 Pin in low-swing mode can accept a 5 V input. 13 Values are pending characterization. 14 Pin in low-swing mode can accept a 5 V input. 15 Characterization based capability: IOH_S = {6, 11.6} mA and IOL_S = {9.2, 17.7} mA for {slow, medium} I/O with VDDEH=4.5 V; IOH_S = {2.8, 5.4} mA and IOL_S = {4.2, 8.1} mA for {slow, medium} I/O with VDDEH=3.0 V 16 Characterization based capability: IOH_F = {12, 20, 30, 40} mA and IOL_F = {24, 40, 50, 65} mA for {00, 01,10, 11} drive mode with VDDE=3.0 V; IOH_F = {7, 13, 18, 25} mA and IOL_F = {18, 30, 35, 50} mA for {00, 01, 10, 11} drive mode with VDDE=2.25 V; IOH_F = {3, 7, 10, 15} mA and IOL_F = {12, 20, 27, 35} mA for {00, 01, 10, 11} drive mode with VDDE=1.62 V 17 All VOL/VOH values 100% tested with ± 2 mA load. 18 Run mode as follows: System clock = 40/60/80 MHz + FM 2% Code executed from flash memory ADC0 at 16 MHz with DMA enabled ADC1 at 8 MHz eMIOS pads toggle in PWM mode with a rate between 10 kHz and 10 kHz eTPU pads toggle in PWM mode with a rate between 10 kHz and 500 kHz CAN configured for a bit rate of 500 kHz DSPI configured in master mode with a bit rate of 2 MHz eSCI transmission configured with a bit rate of 100 kHz 19 Bypass mode, system clock at 1 MHz (using system clock divider), PLL shut down, CPU running simple executive code, 4 x ADC conversion every 10 ms, 2 x PWM channels at 1 kHz, all other modules stopped. 20 Bypass mode, system clock at 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules stopped. 21 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. See Table 20 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment. 22 Absolute value of current, measured at V and V . IL IH 23 Weak pull up/down inactive. Measured at V DDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types: fast (pad_fc). 24 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types: pad_a and pad_ae. 25 Applies to CLKOUT, external bus pins, and Nexus pins. 26 Applies to the FCK, SDI, SDO, and SDS pins. 27 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics. 28 When the pull-up and pull-down of the same nominal 200 KΩ or 100 KΩ value are both enabled, assuming no interference from external devices, the resulting pad voltage will be 0.5*VDDE ± 2.5% 9 8 MPC5634M Microcontroller Data Sheet, Rev. 4 76 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.9 I/O Pad current specifications NOTE MPC5634M devices use two sets of I/O pads (5 V and 3.3 V). See Table 1 and Table 4 in Section 2.6, “Signal summary,” for the pad type associated with each signal. The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 20 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 20. Table 20. I/O pad average IDDE specifications1 Pad Type Slow Symbol C Period (ns) 37 130 650 840 24 62 317 425 10 10 10 10 10 10 10 10 Load2 (pF) 50 50 50 200 50 50 50 200 50 30 20 10 50 30 20 10 VDDE (V) 5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25 3.6 3.6 3.6 3.6 1.98 1.98 1.98 1.98 Drive/Slew Rate Select 11 01 00 00 11 01 00 00 11 10 01 00 11 10 01 00 IDDE Avg (mA)3 9 2.5 0.5 1.5 14 5.3 1.1 3 50.4 14.2 16.4 9.8 22.9 6.7 4.5 3 IDDE RMS (mA) – – – – – – – – 101.6 57.3 43.6 15.9 45.3 25.3 17.3 9.6 IDRV_SSR_HV CC CC CC CC D D D D D D D D D D D D D D D D Medium IDRV_MSR_HV CC CC CC CC Fast IDRV_FC CC CC CC CC CC CC CC CC MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 77 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 20. I/O pad average IDDE specifications1 (continued) Pad Type MultiV (High Swing Mode) Symbol C Period (ns) 15 30 50 300 300 15 30 Load2 (pF) 50 50 50 50 200 30 30 VDDE (V) 5.25 5.25 5.25 5.25 5.25 5.25 5.25 Drive/Slew Rate Select 11 10 01 00 00 11 11 IDDE Avg (mA)3 TBD TBD TBD TBD TBD TBD NA IDDE RMS (mA) – – – – – – – IDRV_MULTV_ HV CC CC CC CC CC D D D D D D D MultiV (Low Swing Mode) 1 2 IDRV_MULTV_ HV CC CC Numbers from simulations at best case process, 150 °C. All loads are lumped. 3 Average current is for pad configured as output only. 3.9.1 I/O pad VRC33 current specifications The power consumption of the VRC33 supply is dependent on the usage of the pins on all I/O segments. The power consumption is the sum of all output pin VRC33 currents for all I/O segments. The output pin VRC33 current can be calculated from Table 21 based on the voltage, frequency, and load on all medium, slow, and multv_hv pins. The output pin VRC33 current can be calculated from Table 22 based on the voltage, frequency, and load on all fast pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 21 and Table 22. Table 21. I/O pad VRC33 average IDDE specifications1 Pad Type Slow Symbol IDRV_SSR_HV CC CC CC CC Medium IDRV_MSR_HV CC CC CC CC C D D D D D D D D Period (ns) 100 200 800 800 40 100 500 500 Load2 (pF) 50 50 50 200 50 50 50 200 Slew Rate Select 11 01 00 00 11 01 00 00 IDD33 Avg (µA) 0.8 0.04 0.06 0.009 TBD 0.11 0.02 0.01 IDD33 RMS (µA) 235.7 87.4 47.4 47 TBD 76.5 56.2 56.2 MPC5634M Microcontroller Data Sheet, Rev. 4 78 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 21. I/O pad VRC33 average IDDE specifications1 (continued) Pad Type MultiV3 (High Swing Mode) Symbol IDRV_MULTV_ HV C CC CC CC CC D D D D D D D D Period (ns) 40 100 500 500 40 100 500 500 Load2 (pF) 50 50 50 200 30 30 30 30 Slew Rate Select 11 01 00 00 11 11 11 11 IDD33 Avg (µA) TBD 0.11 0.02 0.01 TBD TBD TBD TBD IDD33 RMS (µA) TBD 76.5 56.2 56.2 TBD TBD TBD TBD MultiV4 (Low Swing Mode) IDRV_MULTV_ HV CC CC CC CC 1 These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. 2 All loads are lumped. 3 Average current is for pad configured as output only. 4 In low swing mode, multi-voltage pads (pad_multv_hv) must operate in highest slew rate setting. Table 22. VRC33 pad average DC current1 Pad Type C Perio d (ns) 10 10 10 10 10 10 10 10 Load2 (pF) 50 30 20 10 50 30 20 10 VRC33 (V) 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 VDDE (V) 3.6 3.6 3.6 3.6 1.98 1.98 1.98 1.98 Drive Select 11 10 01 00 11 10 01 00 IDD33 Avg (µA) 3.32 2.28 1.73 1.39 2.3 1.64 1.37 1.06 IDD33 RMS (µA) 11.77 7.07 5.75 4.77 7.81 4.96 4.31 4.09 Symbol CC CC CC CC Fast IDRV_FC CC CC CC CC 1 D D D D D D D D These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. 2 All loads are lumped. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 79 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.9.2 LVDS pad specifications LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is an enhanced feature of the DSPI module. The LVDS pads are compliant with LVDS specifications and support data rates up to 50 MHz. Table 23. DSPI LVDS pad specification 1, 2 # Characteristic Symbol C Data Rate 4 Data Frequency FLVDSCLK CC D 50 MHz Condition Min. Value Typ. Value Max. Value Unit Driver Specs 5 Differential output voltage VOD3 CC CC CC 6 7 8 9 10 11 12 Common mode voltage (LVDS), VOS Rise/Fall time Propagation delay (Low to High) Propagation delay (High to Low) Delay (H/L), sync Mode Delay, Z to Normal (High/Low) Diff Skew Itphla-tplhbI or Itplhb-tphlaI VOS3 TR/TF TPLH TPHL tPDSYNC TDZ TSKEW CC CC CC CC CC CC CC D D D D D D D D D D SRC=0b00 or 0b11 SRC=0b01 SRC=0b10 150 90 160 1.075 1.2 2 4 4 4 500 0.5 400 320 480 1.325 V ns ns ns ns ns ns mV Termination 13 14 1 2 Trans. Line (differential Zo) Temperature CC CC D D 95 –40 100 105 150 Ω °C These are typical values that are estimated from simulation. These specifications are subject to change per device characterization. 3 Preliminary target values. Actual specifications to be determined. MPC5634M Microcontroller Data Sheet, Rev. 4 80 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.10 Oscillator and PLLMRFM electrical characteristics Table 24. PLLMRFM electrical specifications1 (VDDPLL =1.14 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH) Value Symbol C Parameter PLL reference frequency range2 Conditions min max 20 80 16 512 80 20 80 1 / fsys 3.7 56 75 5 6 10 — VRC33 Vxtal – 0.4 VRC33 /2 – 0.4 30 200 60 6 Unit fref_cryst al CC C C Crystal reference External reference 4 4 4 4 16 4 0 — 1.6 24 1.2 –5 –6 MHz fref_ext fpll_in fvco fsys fsys CC CC CC CC C C C C C Phase detector input frequency range (after pre-divider) VCO frequency range3 On-chip PLL frequency2 System frequency in bypass mode4 — — — Crystal reference External reference MHz MHz MHz MHz tCYC fLORL fLORH fSCM CJITTER CC CC C C C System clock period Loss of reference frequency window5 — Lower limit Upper limit ns MHz CC CC C C C Self-clocked mode frequency 6,7 CLKOUT period jitter8,9,10,11 Peak-to-peak (clock edge to clock edge) Long-term jitter (avg. over 2 ms interval) — fSYS maximum MHz % fCLKOUT ns ms V tcst VIHEXT CC CC C C C Crystal start-up time 12, 13 EXTAL input high voltage — Crystal Mode14, 0.8≤Vxtal≤1.5V15 External Reference14, 16 — Vxtal + 0.4 VRC33/ 2 + 0.4 — 0 VILEXT CC C C EXTAL input low voltage Crystal Mode14, 0.65≤Vxtal≤1.25V15 External Reference14, 16 V — tlpll tdc fLCK CC CC CC CC C C C C XTAL load capacitance12 PLL lock time 12, 17 Duty cycle of reference Frequency LOCK range — — — — 5 — 40 –6 pF μs % % fsys MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 81 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 24. PLLMRFM electrical specifications1 (VDDPLL =1.14 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued) Value Symbol C Parameter Conditions min fUL fCS fDS fMOD 1 2 Unit max 18 ±4.0 –8.0 100 kHz % fsys %fsys CC CC C C C Frequency un-LOCK range Modulation Depth — Center spread Down Spread –18 ±0.25 –0.5 — CC C Modulation frequency18 — All values given are initial design targets and subject to change. Considering operation with PLL not bypassed. 3f VCO is calculated as follows: — In Legacy Mode fVCO = (fcrystal/(PREDIV+1))*(4*(MFD+4)) — In Enhanced Mode fvco = (Fcrystal/(EPREDIV+1))*(EMFD+4) 4 All internal registers retain data at 0 Hz. 5 “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode. 6 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the f LOR window. 7f VCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. 8 This value is determined by the crystal manufacturer and board design. 9 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f SYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 10 Proper PC board layout procedures must be followed to achieve specifications. 11 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C JITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 12 This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 13 Proper PC board layout procedures must be followed to achieve specifications. 14 This parameter is guaranteed by design rather than 100% tested. 15 Vxtal range is preliminary and subject to change pending characterization data. 16 VIHEXT cannot exceed VRC33 in external reference mode. 17 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 18 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50kHz. MPC5634M Microcontroller Data Sheet, Rev. 4 82 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.11 Temperature sensor electrical characteristics Table 25. Temperature sensor electrical characteristics Value Symbol — — — CC CC CC C Parameter Conditions min C Temperature monitoring range C Sensitivity C Accuracy TJ = –40 to 150 °C –40 — –5 typical — 6.3 — max 150 — 5 °C mV/°C °C Unit 3.12 eQADC electrical characteristics Table 26. eQADC conversion specifications (operating) Value Symbol C Parameter min fADCLK CC TSR — OFFNC OFFWC GAINNC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC C C C C C C C C C C C C – P P P P DNL ADC clock (ADCLK) frequency Conversion cycles Stop mode recovery time1 Resolution2 Offset error without calibration Offset error with calibration Full scale gain error without calibration Full scale gain error with calibration Disruptive input injection current 3, 4, 5, 6 Incremental error due to injection current7,8 Total unadjusted error (TUE) at 8 MHz Total unadjusted error at 16 MHz Variable gain amplifier accuracy INL (gain=1)9 8 MHz ADC 16 MHz ADC 8 MHz ADC 16 MHz ADC –4 –8 –311 –311 4 8 311 311 Counts10 Counts Counts Counts 2 2+13 — 1.25 0 –4 –120 –4 –3 –4 –4 –8 max 16 128+14 10 — 100 4 0 4 3 4 46 8 MHz ADCLK cycles μs mV Counts Counts Counts Counts mA Counts Counts Counts Unit GAINWC IINJ EINJ TUE8 TUE16 GAINVGA1 MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 83 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 26. eQADC conversion specifications (operating) (continued) Value Symbol C Parameter min GAINVGA2 CC CC CC CC CC GAINVGA4 CC CC CC CC CC 1 Unit max – P P P P – P P P P Variable gain amplifier accuracy (gain=2)9 INL 8 MHz ADC 16 MHz ADC DNL 8 MHz ADC 16 MHz ADC Variable gain amplifier accuracy (gain=4)9 INL 8 MHz ADC 16 MHz ADC DNL 8 MHz ADC 16 MHz ADC –7 –8 –4 –4 7 8 4 4 Counts Counts Counts Counts –5 –8 –3 –3 5 8 3 3 Counts Counts Counts Counts Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms. 2 At V RH – VRL = 5.12 V, one count = 1.25 mV. Without using pregain. 3 Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs greater then VRH and 0x0 for values less then VRL. Other channels are not affected by non-disruptive conditions. 4 Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage. 5 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use the larger of the calculated values. 6 Condition applies to two adjacent pins at injection limits. 7 Performance expected with production silicon. 8 All channels have same 10 kΩ < Rs < 100 kΩ; Channel under test has Rs=10 kΩ; I =I INJ INJMAX,IINJMIN 9 Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of ×1, ×2, or ×4. Settings are for differential input only. Tested at ×1 gain. Values for other settings are guaranteed by as indicated. 10 At VRH – VRL = 5.12 V, one LSB = 1.25 mV. 11 Guaranteed 10-bit mono tonicity. 3.13 Platform flash controller electrical characteristics Table 27. APC, RWSC, WWSC settings vs. frequency of operation1 Target Max Frequency (MHz) 30 60 80 All 1 APC2 000 001 010 111 RWSC2 000 001 010 111 WWSC 01 01 01 11 Illegal combinations exist, all entries must be taken from the same row MPC5634M Microcontroller Data Sheet, Rev. 4 84 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 2 APC must be equal to RWSC 3.14 Flash memory electrical characteristics Table 28. Program and erase specifications Symbol Tdwprogram TBKPRG Parameter P Double Word (64 bits) Program Time4 P Bank Program (512KB) P Bank Program (64KB) T16kpperase T32kpperase T128kpperase 4, 5 Min Value — — — — — — Typical Value1 22 1.45 0.18 300 400 800 Initial Max2 50 1.65 0.21 500 600 1300 Max3 500 33 4.10 5000 5000 7500 Unit μs s s ms ms ms 4, 5 P 16 KB Block Pre-program and Erase Time P 32 KB Block Pre-program and Erase Time P 128 KB Block Pre-program and Erase Time 1 2 3 4 5 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. Actual hardware programming times. This does not include software overhead. Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column). Table 29. Flash module life1 Value Symbol P/E Parameter C Number of program/erase cycles per block for 16 Kbyte blocks over the operating temperature range (TJ) C Number of program/erase cycles per block for 32 Kbyte blocks over the operating temperature range (TJ) C Number of program/erase cycles per block for 128 Kbyte blocks over the operating temperature range (TJ) C Minimum data retention at 85 °C average ambient temperature2 Conditions Min — 100,000 Typ — cycles Unit P/E — 10,000 100,000 cycles (TBD) 100,000 cycles (TBD) — — — years years years P/E — 1,000 Retention Blocks with 0 – 1,000 P/E cycles Blocks with 10,000 P/E cycles Blocks with 100,000 P/E cycles 20 10 5 1 2 TBD: To be defined Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 85 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.15 3.15.1 AC Specifications Pad AC specifications Table 30. Pad AC specifications (4.5 V)1,2 Output Delay (ns)3,4 Low-to-High / Rise/Fall Edge (ns)4,5 Drive Load SRC/DSC High-to-Low (pF) Name C Min CC CC D D 4.6/3.7 13/10 Max 12/12 32/32 Min 2.2/2.2 9/9 N/A Max 5.3/5.9 22/22 50 200 MSB,LSB 119 1010 12/15 28/31 70/74 96/96 10/11 40/42 50 200 50 200 50 200 1010 30/34 61/61 156/164 200/200 7.49/7.02 28.5/26.8 50 01 200 50 00 200 50 200 1010 10.1/9.46 30.5/28.7 62.5/29.0 82.3/84.9 7/7 50 01 200 50 00 200 30 119 119 119 00 01 Medium6,7,8 CC CC CC CC CC CC D D D D D D 12/13 23/23 69/71 95/90 7.3/5.7 24/19 28/34 52/59 152/165 205/220 19/18 58/58 5.6/6 11/14 34/35 44/51 4.4/4.3 17/15 N/A Slow8,11 CC CC CC CC CC CC D D D D D D 26/27 49/45 137/142 182/172 4.1/3.6 10.4/10.2 61/69 115/115 320/330 420/420 10.3/8.9 24.2/23.6 13/13 27/23 72/74 90/85 3.28/2.98 12.7/11.54 N/A MultiV12 (High Swing Mode) CC CC CC CC D D D D D 8.38/6.11 15.9/13.6 61.7/10.4 85.5/37.3 2.31/2.34 16/12.9 31/28.5 92.2/24.3 132.6/78. 9 7.62/6.33 5.48/4.81 14.6/13.1 42.0/12.2 57.7/46.4 1.26/1.67 N/A MultiV (Low Swing Mode) Fast13 pad_i_hv14 pull_hv 1 CC CC CC D D 0.5/0.5 NA 1.9/1.9 6000 0.3/0.3 ±1.5/1.5 5000/5000 0.5 50 N/A N/A These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDE = 1.62 V to 1.98 V, VDDEH = 4.5 V to 5.25 V, TA = TL to TH. 2 TBD: To Be Defined. MPC5634M Microcontroller Data Sheet, Rev. 4 86 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3 4 This parameter is supplied for reference and is not guaranteed by design and not tested. Delay and rise/fall are measured to 20% or 80% of the respective signal. 5 This parameter is guaranteed by characterization before qualification rather than 100% tested. 6 In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output pads 7 Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown. 8 Output delay is shown in Figure 8. Add a maximum of one system clock to the output delay for delay with respect to system clock. 9 Can be used on the tester. 10 This drive select value is not supported. If selected, it will be approximately equal to 11. 11 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown. 12 Selectable high/low swing IO pad with selectable slew in high swing mode only. 13 Fast pads are 3.3 V pads. 14 Stand alone input buffer. Also has weak pull-up/pull-down. Table 31. Pad AC specifications (3.3 V)1 Output Delay (ns)2,3 Low-to-High / High-to-Low Min Medium5,6,7 CC CC D D 5.8/4.4 16/13 Max 18/17 46/49 Rise/Fall Edge (ns)3,4 SRC/DSC Pad Type C Drive Load (pF) Min 2.7/2.1 11.2/8.6 N/A Max 7.6/8.5 30/34 50 200 MSB,LSB 118 109 15.5/19 38/43 86/86 120/120 15/17 57/63 50 200 50 200 50 200 109 38/42 82/85 190/190 250/250 5.7/5.6 TBD 50 200 50 200 30 200 109 15/15 38/46 100/100 134/134 50 200 50 200 00 01 118 00 01 11 00 01 CC CC CC CC Slow7,10 CC CC D D D D D D 14/16 27/27 83/86 113/109 9.2/6.9 30/23 37/45 69/82 200/210 270/285 27/28 81/87 6.5/6.7 15/13 38/38 53/46 5.5/4.1 21/16 N/A CC CC CC CC MultiV (High Swing Mode) 7,11 D D D D D D 31/31 58/52 162/168 216/205 80/90 144/155 415/415 533/540 3.7/3.1 TBD 15.4/15.4 32/26 80/82 106/95 CC CC N/A CC CC CC CC D D D D 32 72 210 295 MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 87 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 31. Pad AC specifications (3.3 V)1 (continued) Output Delay (ns)2,3 Low-to-High / High-to-Low Min MultiV7,11 (Low Swing Mode) CC CC CC CC CC CC CC CC CC CC Fast CC CC pad_i_hv12 pull_hv 1 Rise/Fall Edge (ns)3,4 Pad Type C Drive Load (pF) SRC/DSC Max 7.4/6.1 NA NA NA NA NA NA NA 2.5/2.5 2.5/2.5 2.5/2.5 2.5/2.5 Min Max 5.4/4.8 NA NA NA NA NA NA NA 1.2/1.2 1.2/1.2 1.2/1.2 1.2/1.2 30 NA NA NA NA NA NA NA 10 20 30 50 0.5 50 MSB,LSB 118 D D D D D D D D D D D D D D TBD 10 01 00 00 01 10 118 N/A N/A CC CC 0.5/0.5 NA 3/3 6000 0.4/0.4 ±1.5/1.5 5000/5000 These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH. 2 This parameter is supplied for reference and is not guaranteed by design and not tested. 3 Delay and rise/fall are measured to 20% or 80% of the respective signal. 4 This parameter is guaranteed by characterization before qualification rather than 100% tested. 5 In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output pads 6 Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown. 7 Output delay is shown in Figure 8. Add a maximum of one system clock to the output delay for delay with respect to system clock. 8 Can be used on the tester 9 This drive select value is not supported. If selected, it will be approximately equal to 11. 10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown. 11 Selectable high/low swing IO pad with selectable slew in high swing mode only. 12 Stand alone input buffer. Also has weak pull-up/pull-down. MPC5634M Microcontroller Data Sheet, Rev. 4 88 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 32. Pad AC specifications (1.8 V) Output Delay (ns)1,2 Low-to-High / High-to-Low Min CC CC Fast CC CC 1 2 Rise/Fall Edge (ns)3 Pad Type C Drive Load (pF) SRC/DSC Max 3.0/3.0 3.0/3.0 3.0/3.0 3.0/3.0 Min 2.0/1.5 2.0/1.5 2.0/1.5 2.0/1.5 Max 10 20 30 50 MSB,LSB 00 01 10 114 D D D D This parameter is supplied for reference and is not guaranteed by design and not tested. Delay and rise/fall are measured to 20% or 80% of the respective signal. 3 This parameter is guaranteed by characterization before qualification rather than 100% tested. 4 Can be used on the tester. VDDE/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH Pad Output Figure 8. Pad output delay VOL MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 89 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.16 3.16.1 AC timing IEEE 1149.1 interface timing Table 33. JTAG pin AC electrical characteristics1 # 1 2 3 4 5 6 7 8 9 Symbol tJCYC tJDC tTCKRISE tTMSS, tTDIS tTMSH, tTDIH tTDOV tTDOI tTDOHZ tJCMPPW tJCMPS tBSDV tBSDVZ tBSDHZ tBSDST tBSDHT CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC C D D D D D D D D D D D D D D D Characteristic TCK Cycle Time TCK Clock Pulse Width TCK Rise and Fall Times (40% – 70%) TMS, TDI Data Setup Time TMS, TDI Data Hold Time TCK Low to TDO Data Valid TCK Low to TDO Data Invalid TCK Low to TDO High Impedance JCOMP Assertion Time JCOMP Setup Time to TCK Low TCK Falling Edge to Output Valid TCK Falling Edge to Output Valid out of High Impedance TCK Falling Edge to Output High Impedance Boundary Scan Input Valid to TCK Rising Edge TCK Rising Edge to Boundary Scan Input Invalid Min. Value 100 40 — 5 25 — 0 — 100 40 — — — 50 50 Max. Value — 60 3 — — 23 — 20 — — 50 50 50 — — Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 10 11 12 13 14 15 1 JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.25 V with multi-voltage pads programmed to Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b00. These specifications apply to JTAG boundary scan only. See Table 34 for functional specifications. MPC5634M Microcontroller Data Sheet, Rev. 4 90 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages TCK TMS, TDI TDO TCK 3 Freescale Semiconductor 7 5 4 1 3 2 Figure 9. JTAG test clock input timing 6 Figure 10. JTAG test access port timing MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 2 Electrical characteristics 8 91 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 92 TCK JCOMP 9 Figure 11. JTAG JCOMP timing MPC5634M Microcontroller Data Sheet, Rev. 4 Preliminary—Subject to Change Without Notice 10 Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 93 TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 12. JTAG boundary scan timing 3.16.2 # 1 1a 2 3 4 6 7 8 9 9a Nexus timing Table 34. Nexus debug port timing1 Symbol tMCYC tMCYC tMDC tMDOV tMSEOV tEVTOV tEVTIPW tEVTOPW tTCYC tTCYC CC CC CC CC CC CC CC CC CC CC C D D D D D D D D D D Characteristic MCKO Cycle Time Absolute Minimum MCKO Cycle Time MCKO Duty Cycle MCKO Low to MDO Data Valid5 MCKO Low to MSEO Data Valid5 MCKO Low to EVTO Data Valid5 EVTI Pulse Width EVTO Pulse Width TCK Cycle Time Absolute Minimum TCK Cycle Time Min. Value Max. Value 22,3 1004 40 – 0.1 0.1 – 0.1 4.0 1 46,7 1008 8 — 60 0.2 0.2 0.2 — — — — Unit tCYC ns % tMCYC tMCYC tMCYC tTCYC tMCYC tCYC ns MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice Electrical characteristics Table 34. Nexus debug port timing1 (continued) # 10 11 12 13 14 15 1 Symbol tTDC tNTDIS tNTDIH tNTMSS tNTMSH tJOV CC CC CC CC CC CC C D D D D D D Characteristic TCK Duty Cycle TDI Data Setup Time TDI Data Hold Time TMS Data Setup Time TMS Data Hold Time TCK Low to TDO Data Valid Min. Value Max. Value 40 5 25 5 25 10 60 — — — — 20 Unit % ns ns ns ns ns 2 3 4 5 6 7 8 All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.25 V with multi-voltage pads programmed to Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10. Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used. This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute minimum MCKO period specification. This may require setting the MCKO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on the actual system frequency being used. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used. This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute minimum TCK period specification. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used. 1 2 MCKO 3 4 6 MDO MSEO EVTO Output Data Valid Figure 13. Nexus output timing MPC5634M Microcontroller Data Sheet, Rev. 4 94 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages TCK EVTI EVTO TMS, TDI TDO TCK Freescale Semiconductor 13 11 12 9 14 7 8 15 Figure 15. Nexus TDI, TMS, TDO timing MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 14. Nexus event trigger and test clock timings Preliminary—Subject to Change Without Notice Electrical characteristics 8 7 95 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.16.3 Calibration bus interface timing Table 35. Calibration bus operation timing 1 66 MHz (ext. bus)2 # 1 Symbol TC CC C P Characteristic Min CLKOUT Period 15.2 Max — Unit ns Notes Signals are measured at 50% VDDE. 2 3 4 5 tCDC tCRT tCFT tCOH CC CC CC CC D CLKOUT duty cycle D CLKOUT rise time D CLKOUT fall time P CLKOUT Posedge to Output Signal Invalid or High Z(Hold Time) ADDR[8:31] CS[0:3] DATA[0:31] OE RD_WR TS WE[0:3]/BE[0:3] 45% — — 1.04/1.5 55% 3 3 TC ns ns ns Hold time selectable via SIU_ECCR[EBTS] bit: EBTS=0: 1.0ns EBTS=1: 1.5ns — 6 tCOV CC P CLKOUT Posedge to Output Signal Valid (Output Delay) ADDR[8:31] CS[0:3] DATA[0:31] OE RD_WR TS WE[0:3]/BE[0:3] — 6.04/7.0 ns Output valid time selectable via SIU_ECCR[EBTS] bit: EBTS=0: 5.5ns EBTS=1: 6.5ns 7 tCIS CC P Input Signal Valid to CLKOUT Posedge (Setup Time) DATA[0:31] 5.0 — ns 8 tCIH CC P CLKOUT Posedge to Input Signal Invalid (Hold Time) DATA[0:31] 1.0 — ns 9 10 1 2 3 4 5 tAPW tAAI CC CC P P ALE Pulse Width5 ALE Negated to Address Invalid5 6.5 3 — — ns ns Calibration bus timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDE = 1.62 V to 3.6 V (unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10. The external bus is limited to half the speed of the internal bus. The maximum external bus frequency is 66 MHz. Refer to Fast Pad timing in Table 31 and Table 32 (different values for 3.3 V vs. 1.8 V). The EBTS=0 timings are only valid/ tested at VDDE=2.25-3.6 V, whereas EBTS=1 timings are valid/tested at 1.6-3.6 V. Measured at 50% of ALE. MPC5634M Microcontroller Data Sheet, Rev. 4 96 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 97 Voh_f VDDE/2 Vol_f 3 2 2 4 1 CLKOUT Figure 16. CLKOUT timing CLKOUT VDDE/2 6 5 5 VDDE/2 OUTPUT BUS VDDE/2 6 5 5 OUTPUT SIGNAL VDDE/2 6 OUTPUT SIGNAL VDDE/2 Figure 17. Synchronous output timing MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice Electrical characteristics 98 CLKOUT ipg_clk ALE CLKOUT A/D INPUT BUS INPUT SIGNAL TS VDDE/2 7 7 ADDR VDDE/2 DATA 9 10 VDDE/2 Figure 18. Synchronous input timing Figure 19. ALE signal timing MPC5634M Microcontroller Data Sheet, Rev. 4 8 Preliminary—Subject to Change Without Notice 8 Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics 3.16.4 eMIOS timing Table 36. eMIOS timing1 Min. Value 4 1 Max. Value — — # 1 2 1 Symbol tMIPW tMOPW CC CC C D D Characteristic eMIOS Input Pulse Width eMIOS Output Pulse Width Unit tCYC tCYC eMIOS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.25 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00. 3.16.5 DSPI timing Table 37. DSPI timing1,2 40 MHz 60 MHz Min. 28.4 ns 26 25 (½tSC) –2 — Max. 3.5 ms — — (½tSC) +2 25 80 MHz Unit Min. Max. 5.8 ms — — (½tSC) +2 25 Min. 24.4 ns 22 21 (½tSC) –2 — Max. 2.9 ms — — (½tSC) +2 25 — ns ns ns ns # Symbol C Characteristic SCK Cycle Time3,4 PCS to SCK Delay5 After SCK Delay6 SCK Duty Cycle Slave Access Time (SS active to SOUT driven) Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid) PCSx to PCSS time PCSS to PCSx time 1 2 3 4 5 tSCK tCSC tASC tSDC tA CC CC CC CC CC D D D D D 48.8 ns 46 45 (½tSC) –2 — 6 tDIS CC D — 25 — 25 — 25 ns 7 8 9 tPCSC tPASC tSUI CC CC CC D D 4 5 — — 4 5 — — 4 5 — — ns ns Data Setup Time for Inputs D D D D Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)7 Master (MTFE = 1, CPHA = 1) 20 2 –4 20 — — — — 20 2 6 20 — — — — 20 2 8 20 — — — — ns MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 99 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Table 37. DSPI timing1,2 (continued) 40 MHz # Symbol C Characteristic Min. 1 0 tHI CC D D D D 1 1 tSUO CC D D D D 1 2 tHO CC D D D D 1 60 MHz Min. Max. 80 MHz Unit Min. Max. Max. Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)7 Master (MTFE = 1, CPHA = 1) –4 7 45 –4 — — — — –4 7 25 –4 — — — — –4 7 21 –4 — — — — ns Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA=0) Master (MTFE = 1, CPHA=1) — — — — 6 25 45 6 — — — — 6 25 25 6 — — — — 6 25 21 6 ns Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) –5 5.5 8 –5 — — — — –5 5.5 4 –5 — — — — –5 5.5 3 –5 — — — — ns 2 3 4 5 6 7 All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type M or MH. DSPI signals using pad types of S or SH have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3.0–5.25 V, TA = TL to TH, and CL = 50 pF with SRC = 0b11. Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 62 MHz parts allow for a 60 MHz system clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM. The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated based on two MPC5634M devices communicating over a DSPI link. The actual minimum SCK cycle time is limited by pad performance. The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10. MPC5634M Microcontroller Data Sheet, Rev. 4 100 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Electrical characteristics Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 101 2 PCSx 4 SCK Output (CPOL=0) 4 1 3 SCK Output (CPOL=1) 9 SIN 10 Data 12 SOUT First Data Data Last Data 11 Last Data First Data Figure 20. DSPI classic SPI timing – master, CPHA = 0 PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 SIN First Data 12 SOUT First Data Data Data Last Data 11 Last Data Figure 21. DSPI classic SPI timing – master, CPHA = 1 MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice Electrical characteristics Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Freescale Semiconductor 2 SS 1 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN 10 Data 12 Data 11 4 3 6 Last Data First Data Last Data Figure 22. DSPI classic SPI timing – slave, CPHA = 0 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 5 SOUT 11 12 First Data 9 10 Data Last Data Data Last Data 6 SIN First Data Figure 23. DSPI classic SPI timing – slave, CPHA = 1 MPC5634M Microcontroller Data Sheet, Rev. 4 102 Preliminary—Subject to Change Without Notice Electrical characteristics Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 103 3 PCSx 4 2 SCK Output (CPOL=0) SCK Output (CPOL=1) 9 SIN First Data 12 SOUT First Data Data Data 11 Last Data Last Data 4 1 10 Figure 24. DSPI modified transfer format timing – master, CPHA = 0 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 9 SIN First Data Data 12 SOUT First Data Data 10 Last Data 11 Last Data Figure 25. DSPI modified transfer format timing – master, CPHA = 1 MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice Electrical characteristics Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages SS 2 1 3 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN First Data Data Data 11 12 Last Data 10 Last Data 6 4 Figure 26. DSPI modified transfer format timing – slave, CPHA =0 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 5 SOUT 11 12 First Data 9 10 Data Last Data Data Last Data 6 SIN First Data Figure 27. DSPI modified transfer format timing – slave, CPHA =1 7 PCSS PCSx 8 Figure 28. DSPI PCS strobe (PCSS) timing MPC5634M Microcontroller Data Sheet, Rev. 4 104 Preliminary—Subject to Change Without Notice Freescale Semiconductor Mechanical outline drawings 3.16.6 eQADC SSI timing Table 38. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)1 CLOAD = 25pF on all outputs. Pad drive strength set to maximum. # 1 1 2 3 4 5 6 7 8 1 Symbol fFCK tFCK CC CC C D D D D D D D D D Rating FCK Frequency 2, 3 FCK Period (tFCK = 1/ fFCK) Clock (FCK) High Time Clock (FCK) Low Time SDS Lead/Lag Time SDO Lead/Lag Time Data Valid from FCK Falling Edge (tFCKLT+tSDO_LL) eQADC Data Setup Time (Inputs) eQADC Data Hold Time (Inputs) Min 1/17 2 tSYS_CLK − 6.5 tSYS_CLK − 6.5 –7.5 –7.5 1 22 1 Typ Max 1/2 17 9* tSYS_CLK + 6.5 8* tSYS_CLK + Unit fSYS_CL K tSYS_CL K tFCKHT CC tFCKLT CC ns ns ns ns ns ns ns 6.5 tSDS_LL CC tSDO_LL CC tDVFE CC +7.5 +7.5 tEQ_SU CC tEQ_HO CC SS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.25 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00. 2 Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays. 3 FCK duty is not 50% when it is generated through the division of the system clock by an odd number. 1 2 FCK 4 SDS 25th 2nd 26th 3 4 5 SDO External Device Data Sample at FCK Falling Edge 6 1st (MSB) 5 8 7 SDI eQADC Data Sample at FCK Rising Edge 1st (MSB) 2nd 25th 26th Figure 29. eQADC SSI timing 4 Mechanical outline drawings MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 105 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Mechanical outline drawings 106 4.1 144 LQFP MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 30. 144 LQFP package mechanical drawing (part 1) Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Freescale Semiconductor Mechanical outline drawings MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 31. 144 LQFP package mechanical drawing (part 2) Preliminary—Subject to Change Without Notice 107 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Mechanical outline drawings 108 MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 32. 144 LQFP package mechanical drawing (part 3) Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 4.2 Freescale Semiconductor 176 LQFP MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 33. 176 LQFP package mechanical drawing (part 1) Preliminary—Subject to Change Without Notice Mechanical outline drawings 109 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Mechanical outline drawings 110 MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 34. 176 LQFP package mechanical drawing (part 2) Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Freescale Semiconductor Mechanical outline drawings MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 35. 176 LQFP package mechanical drawing (part 3) Preliminary—Subject to Change Without Notice 111 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Mechanical outline drawings 112 4.3 208 MAPBGA MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 36. 208 MAPBGA package mechanical drawing (part 1) Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Freescale Semiconductor Mechanical outline drawings MPC5634M Microcontroller Data Sheet, Rev. 4 Figure 37. 208 MAPBGA package mechanical drawing (part 2) Preliminary—Subject to Change Without Notice 113 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Ordering information 5 Ordering information Table 41. Orderable part number summary Part Number SPC5632MF0MLQA6 SPC5632MF0MLQA4 SPC5633MF0MMGA8 SPC5633MF0MLUA8 SPC5633MF0MLQA8 SPC5633MF0MMGA6 SPC5633MF0MLUA6 SPC5633MF0MLQA6 SPC5633MF0MLQA4 SPC5634MF0MMGA8 SPC5634MF0MLUA8 SPC5634MF0MLQA8 SPC5634MF0MMGA6 SPC5634MF0MLUA6 SPC5634MF0MLQA6 Flash/SRAM (Kbytes) 768 / 48 768 / 48 1024 / 64 1024 / 64 1024 / 64 1024 / 64 1024 / 64 1024 / 64 1024 / 64 1536 / 94 1536 / 94 1536 / 94 1536 / 94 1536 / 94 1536 / 94 Package 144 LQFP Pb-free 144 LQFP Pb-free 208 MAPBGA Pb-free 176 LQFP Pb-free 144 LQFP Pb-free 208 MAPBGA Pb-free 176 LQFP Pb-free 144 LQFP Pb-free 144 LQFP Pb-free 208 MAPBGA Pb-free 176 LQFP Pb-free 144 LQFP Pb-free 208 MAPBGA Pb-free 176 LQFP Pb-free 144 LQFP Pb-free Speed (MHz) 60 40 80 80 80 60 60 60 40 80 80 80 60 60 60 Table 41 shows the orderable part numbers for the MPC5634M series. MPC5634M Microcontroller Data Sheet, Rev. 4 114 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Ordering information Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages 115 Example code: Qualification Status PowerPC Core Automotive Platform Core Version Flash Size (core dependent) Product Fab/Mask rev. Temperature Spec. Package Code Silicon rev. Maximum Frequency S PC 56 3 4 M F0 M LU A 8 Qualification Status M = MC status S = Auto qualified P = PC status Flash Size (z3 core) 2 = 768 KB Package Code LQ = 144 LQFP LU = 176 LQFP MG = 208 MAPBGA 3 = 1 MB 4 = 1.5 MB Automotive Platform 56 = PPC in 90 nm 57 = PPC in 65 nm Product Family M= MPC5634M Silicon rev. A = rev. 1 or later Fab/Mask rev. Core Version 3 = e200z3 F0 = ATMC Rev. 0 Maximum Frequency 4 = 40 MHz Temperature Spec. M = –40°C to 150°C 6 = 60 MHz 8 = 80 MHz MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice Document revision history 6 Document revision history Table 42. Revision history Revision Rev. 1 Rev. 2 Date 4/2008 12/2008 Initial release • Maximum amount of flash increased from 1 MB to 1.5 MB. Flash memory type has changed. Rev. 1 and later devices use LC flash instead of FL flash. • Additional packages offered—now includes100 LQFP and 176 LQFP. Please note that the pinouts can vary for the same package depending on the amount of flash memory included in the device. • Device comparison table added. • Feature details section added • Signal summary table expanded. Now includes PCR register numbers and signal selection values and pin numbers for all production packages. • Electrical characteristics updated. • DSPI timing data added for 40 MHz and 60 MHz. • Thermal characteristics data updated. Data added for 100- and 176-pin packages. • DSPI LVDS pad specifications added. Electrical characteristics updated • Flash memory electrical characteristics updated for LC flash • Power management control (PMC) and Power on Reset (POR) specifications updated • EMI characteristics data added • Maximum ratings updated • I/O pad current specifications updated • I/O Pad VRC33 current specifications added • Temperature sensor electrical characteristics added Pad type added to “Voltage” column of signal summary table Many signal names have changed to make them more understandable • DSPI: PCS_C[n] is now DSPI_C_PCS[n]; SOUT_C is now DSPI_C_SOUT, SIN_C is now DSPI_C_SIN, and SCK_C is now DSPI_C_SCK • CAN: CNTXB is now CAN_B_TX and CNRXB is now CAN_B_RC • SCI: RXDB is now SCI_B_RX and TXDB is now SCI_B_TX • In cases where multiple instances of the same IP block is incorporated into the device, e.g., 2 SCI blocks, the above nomenclature applies to all blocks “No connect” pins on pinouts clarified • Pins labelled “NIC” have no internal connection and should be tied to ground • Pins labelled “NC” are not functional pins but may be connected to internal circuits They are to be left floating Some of the longer multiplexed signal names appearing on pinouts have been moved to the inside of the package body to avoid having to use smaller fonts Orderable parts table updated Part number decoder added Substantive changes Table 42 summarizes revisions to this document. Rev. 3 2/2009 MPC5634M Microcontroller Data Sheet, Rev. 4 116 Preliminary—Subject to Change Without Notice Freescale Semiconductor Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages Document revision history Table 42. Revision history (continued) Revision Rev.4 Date 12/2009 Substantive changes 208-pin MAPBGA ballmap for the MPC5633M (1024 KB flash memory) has changed. Power Management Control (PMC) and Power On Reset (POR) electrical specifications updated Temperature sensor data added Specifications now indicate how each controller characteristic parameter is guaranteed. I/O pad current specifications updated I/O Pad VRC33 current specifications updated PAD AC characteristics updated VGA gain specifications added to eQADC electrical characteristics DC electrical specifications updated: • Footnote added to RPUPD100K and RPUPD200K: When the pull-up and pull-down of the same nominal 200 KΩ or 100 KΩ value are both enabled, assuming no interference from other devices, the resulting pad voltage will be 0.5*VDDE ± 2.5% • IOL condition added to VOL_LS. • IOH condition added to VOH_LS. • Minimum VOH_LS is 2.3 V (was 2.7 V). • Separate IDDPLL removed from IDD spec because we can only measure IDD + IDDPLL. IDD increased by 15 mA (to 195 mA) to account for IDDPLL. IDD now documented as IDD + IDDPLL. Footnote added detailing runtime configuration used to measure IDD + IDDPLL. • Specifications for IDDSTBY and IDDSTBY150 reformatted to make more clear. • VSTBY is now specified by two ranges. The area in between those ranges is indeterminate. LVDS pad specifications updated: • Min value for VOD at SRC=0b01 is 90 mV (was 120); and 160 mV (was 180) at SRC = 0b10 Changes to Signal Properties table: • VDDE7 removed as voltage segment from Calibration bus pins. Calibration bus pins are powered by VDDE12 only. • GPIO[139] and GPIO[87] pins changed to Medium pads • Some signal names have changed on 176-pin QFP package pinout: “CAL_x” signals renamed to “ALT_x”. Changes to Pad Types table: • Column heading changed from “Voltage” to “Supply Voltage” • MultiV pad high swing mode voltage changed to 3.0 V – 5.25 V (was 4.5 V – 5.25 V) • MultiV pad low swing mode voltage changed to 4.5 V – 5.25 V (was 3.0 V – 3.6 V) Signal details table added Power/ground segmentation table added 100-pin package is no longer available MPC5634M Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor Preliminary—Subject to Change Without Notice 117 Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2008, 2009. All rights reserved. Document Number: MPC5634M Rev. 4 12/2009 Preliminary—Subject to Change Without Notice Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: MPC5634M and MPC5633M products in 208 MAPBGA packages
SPC5733MF0MLQA4 价格&库存

很抱歉,暂时无法提供与“SPC5733MF0MLQA4”相匹配的价格&库存,您可以联系我们找货

免费人工找货