0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
7MBP25TEA120

7MBP25TEA120

  • 厂商:

    FUJI(富士电机)

  • 封装:

  • 描述:

    7MBP25TEA120 - IGBT - IPM - Fuji Electric

  • 数据手册
  • 价格&库存
7MBP25TEA120 数据手册
1. Package Outline Drawings Package type : P622 a 注) Notes 1.□は理論寸法を示す。 "□" means theoretical dimensions. 2.端子ピッチは根元寸法とする。 The dimensions of the terminals are defined at the bottom. 3.( )内寸法は、参考値とする。 The dimensions in ( ) means referential values. Indication of Lot No. MS6M 00765 7M BP25 TEA1 20 25A 1200V JAPAN O Lot No. 3 Odered No. in monthly Manufactured month (Jan.~Sep.:1~9,Oct.:O,Nov.:N,Dec.:D) Last digit of manufactured year 23 Dimensions in mm a H04-004-03a 2.Pin Descriptions 端子定義 Main circuit 主回路 Symbol P U V W N B Description Positive input supply voltage. Output (U). Output (V). Output (W). Negative input supply voltage. Collector terminal of Brake IGBT. Control circuit 制御回路 № ① ② ③ ④ Symbol GNDU High side ground (U). ALMU VinU VccU Alarm signal output (U). Logic input for IGBT gate drive (U). High side supply voltage (U). Description ⑤ ⑥ ⑦ ⑧ GNDV High side ground (V). ALMV VinV VccV Alarm signal output (V). Logic input for IGBT gate drive (V). High side supply voltage (V). ⑨ ⑩ ⑪ ⑫ GNDW High side ground (W). ALMW Alarm signal output (W). VinW VccW Logic input for IGBT gate drive (W). High side supply voltage (W). ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲ GND Vcc Low side ground. Low side supply voltage. VinDB Logic input for Brake IGBT gate drive. VinX VinY VinZ ALM Logic input for IGBT gate drive (X). Logic input for IGBT gate drive (Y). Logic input for IGBT gate drive (Z). Low side alarm signal output. MS6M 00765 4 23 a H04-004-03a 3. Block Diagram P VccU VinU 4 3 ALMU 2 RALM 1.5k GNDU 1 VccV VinV 8 7 Pre Driver Vz U ALMV 6 RALM 1.5k GNDV 5 VccW VinW ALMW 12 11 10 Pre Driver Vz V Pre Driver RALM 1.5k Vz W GNDW 9 Vcc VinX 14 16 Pre Driver Vz GND 13 VinY 17 Pre Driver Vz VinZ 18 Pre Driver Vz B VinDB ALM 15 19 Pre Driver RALM 1.5k Vz N Pre-drivers include following functions 1.Amplifier for driver 2.Short circuit protection 3.Under voltage lockout circuit 4.Over current protection 5.IGBT chip over heating protection MS6M 00765 5 a 23 H04-004-03a 4. Absolute Maximum Ratings 絶対最大定格 Tc=25℃ unless otherwise specified. Items Bus Voltage (between terminal P and N) Collector-Emitter Voltage *1 DC Inverter 1ms Duty= 100% *2 Collector Power Dissipation One transistor *3 DC Collector Current 1ms Forward Current Diode Collector Power Dissipation One transistor *3 DC Surge Short operating Symbol VDC VDC(surge) Vsc Vces Ic Icp -Ic Pc Ic Icp IF Pc Vcc Vin Iin VALM IALM Tj Topr Tstg Tsol Viso - Min. 0 0 400 0 -0.5 -0.5 -0.5 -20 -40 - Max. 900 1000 800 1200 25 50 25 139 15 30 15 139 20 Vcc+0.5 3 Vcc 20 150 100 125 260 AC2500 3.5 Units V V V V A A A W A A A W V V mA V mA ℃ ℃ ℃ ℃ Vrms Nm Collector Current Supply Voltage of Pre-Driver *4 Input Signal Voltage *5 Input Signal Current Alarm Signal Voltage *6 Alarm Signal Current *7 Junction Temperature Operating Case Temperature Storage Temperature Solder Temperature *8 Isolating Voltage (Terminal to base, 50/60Hz sine wave 1min.) Screw Torque Mounting (M5) Note *1 : Vces shall be applied to the input voltage between terminal P and U or V or W or DB, N and U or V or W or DB. *2 : 125℃/FWD Rth(j-c)/(Ic×VF MAX)=125/2.05/(25×2.0)×100>100% *3 : Pc=125℃/IGBT Rth(j-c)=125/0.59=139W [Inverter] Pc=125℃/IGBT Rth(j-c)=125/0.59=139W [Brake] *4 : Vcc shall be applied to the input voltage between terminal No.4 and 1, 8 and 5, 12 and 9, 14 and 13 *5 : Vin shall be applied to the input voltage between terminal No.3 and 1, 7 and 5, 11 and 9, 16,17,18 and 13. *6 : VALM shall be applied to the voltage between terminal No.2 and 1, No6 and 5, No10 and 9, No.19 and 13. *7 : IALM shall be applied to the input current to terminal No.2,6,10 and 19. *8 : Immersion time  10±1sec. Brake MS6M 00765 6 23 a H04-004-03a 5. Electrical Characteristics Tj=25℃,Vcc=15V unless otherwise specified. 5.1 Main circuit Item Collector Current at off signal input Symbol ICES VCE(sat) VF ICES Conditions VCE =1200V Vin terminal open. Ic=25A Terminal Chip -Ic=25A Terminal Chip VCE=1200V Vin terminal open. Terminal Chip Terminal Chip Min. 1.2 Typ. 2.4 1.6 1.9 1.9 Max. 1.0 3.1 2.0 1.0 2.6 3.3 3.6 0.3 µs Units mA V V V V mA V V V V Inverter Collector-Emitter saturation voltage Forward voltage of FWD Collector Current at off signal input Brake Collector-Emitter saturation voltage Forward voltage of Diode VCE(sat) Ic=15A VF ton toff trr -Ic=15A Turn-on time Turn-off time Reverse recovery time VDC=600V、Tj=125℃ Ic=25A Fig.1,Fig.6 VDC=600V IF=25A  Fig.1,Fig.6 5.2 Control circuit Item Supply current of P-side pre-driver (one unit) Supply current of N-side pre-driver Input signal threshold voltage Input Zener Voltage Symbol Iccp Conditions Switching Frequency : 0~15kHz Tc=-20~100℃ Fig.7 Min. Typ. Max. 15 Units mA Iccn 1.00 1.25 - 1.35 1.60 8.0 2.0 1500 45 1.70 1.95 4.0 1575 mA Vin(th) Vz ON OFF Rin=20kΩ Fig.2 Tc=-20℃ Tc=25℃ Tc=125℃ V V 1.1 1425 Alarm Signal Hold Time tALM ms Resistor for current limit RALM Ω MS6M 00765 7 a 23 H04-004-03a 5.3 Protection Section (Vcc=15V) Item Over Current Protection Level of Inverter circuit Over Current Protection Level of Brake circuit Over Current Protection Delay time SC Protection Delay time IGBT Chips Over Heating Protection Temperature Level Over Heating Protection Hysteresis Under Voltage Protection Level Under Voltage Protection Hysteresis 6. Thermal Characteristics (Tc=25℃) Item Junction to Case Thermal Resistance *9 Brake Case to Fin Thermal Resistance with Compound *9:( For 1device ,Case is under the device ) 7. Noise Immunity Item Common mode rectangular noise Common mode lightning surge (Vdc=300V, Vcc=15V, Test Circuit Fig 5. ) Conditions Pulse width 1µs,polarity ±,10 minuets Judge:no over-current, no miss operating Rise time 1.2us,Fall time 50µs Interval 20s,10 times Symbol Conditions Tj=125℃ Min. 38 Typ. - Max. - Units A Ioc Tj=125℃ tdoc tsc TjOH Tj=125℃ Tj=125℃ Fig.4 Surface of IGBT Chips TjH VUV VH 11.0 0.2 20 0.5 12.5 23 150 5 8 A µs µs ℃ ℃ V Symbol Inverter IGBT FWD IGBT Rth(j-c) Rth(j-c) Rth(j-c) Rth(c-f) Min. - Typ. 0.05 Max. 0.90 2.05 0.90 - Units ℃/W Min. ±2.0 Typ. - Max. - Units kV ±5.0 - - kV Judge:no over-current, no miss operating 8. Recommended Operating Conditions Item DC Bus Voltage Power Supply Voltage of Pre-Driver Screw Torque (M5) 9. Weight Item Weight Symbol Wt Min. Typ. 270 Max. Units g Symbol VDC Vcc Min. 13.5 2.5 Typ. 15.0 Max. 800 16.5 3.0 Units V V Nm MS6M 00765 8 a 23 H04-004-03a Vin Vin(th) On Vin(th) trr 90% 50% Ic 90% ton tof f 10% Figure 1. Switching Time Waveform Definitions /Vin Vge (Inside IPM) Fault (Inside IPM) /ALM off on Gate On Gate Off on off normal alarm tALM>Max. ① tALM>Max. ② tALM 2ms(typ.) ③ Fault:Over-current,Over-heat or Under-voltage Figure 2. Input/Output Timing Diagram Necessary conditions for alarm reset (refer to 1 to 3 in figure2.) 1 This represents the case when a failure-causing Fault lasts for a period more than tALM. The alarm resets when the input Vin is OFF and the Fault has disappeared. 2 This represents the case when the ON condition of the input Vin lasts for a period more than tALM. The alarm resets when the Vin turns OFF under no Fault conditions. 3 This represents the case when the Fault disappears and the Vin turns OFF within tALM. The alarm resets after lasting for a period of the specified time tALM. /Vin off on Ioc on Ic /ALM ① <tdoc ② alarm tdoc Figure 3. Over-current Protection Timing Diagram Period 1 : When a collector current over the OC level flows and the OFF command is input within a period less than the trip delay time tdoc, the current is hard-interrupted and no alarm is output. Period 2 : When a collector current over the OC level flows for a period more than the trip delay time tdoc, the current is soft-interrupted. If this is detected at the lower arm IGBTs, an alarm is output. MS6M 00765 9 23 a H04-004-03a t SC Ic IALM Ic Ic IALM IALM Figure.4 Definition of tsc CT VccU 20k DC1 5V SW1 VinU GNDU Vcc 20k DC1 5V SW2 VinX GND IPM P U V W N AC400V 4700p Noise Earth Cooling Fin Figure 5. Noise Test Circuit Vcc 20k DC1 5V HCPL4504 GND Vin P IPM L DC600V Ic N Figure 6. Switching Characteristics Test Circuit Icc Vcc IPM P U V W DC1 5V P.G +8V fsw Vin GND Figure 7. Icc Test Circuit N MS6M 00765 10 23 a H04-004-03a 10. Truth table 10.1 IGBT Control The following table shows the IGBT ON/OFF status with respect to the input signal Vin. The IGBT turn-on when Vin is at “Low” level under no alarm condition. Input (Vin) Low High Output (IGBT) ON OFF 10.2 Fault Detection (1) When a fault is detected at the high side, only the detected arm stops its output. At that time the IPM dosen’t any alarm. (2) When a fault is detected at the low side, all the lower arms stop their outputs and the IPM outputs an alarm of the low side. Fault OC High side U-phase UV TjOH OC High side V-phase UV TjOH OC High side W-phase UV TjOH OC Low side UV TjOH IGBT U-phase V-phase W-phase Low side OFF OFF OFF * * * * * * * * * * * * OFF OFF OFF * * * * * * * * * * * * OFF OFF OFF * * * * * * * * * * * * OFF OFF OFF ALM-U L L L H H H H H H H H H Alarm Output ALM-V H H H L L L H H H H H H ALM-W H H H H H H L L L H H H ALM H H H H H H H H H L L L *:Depend on input logic. MS6M 00765 11 23 a H04-004-03a 11. Cautions for design and application 設計・適用上の注意点 1. Trace routing layout should be designed with particular attention to least stray capacity between the primary and secondary sides of optical isolators by minimizing the wiring length between the optical isolators and the IPM input terminals as possible. フォトカプラとIPMの入力端子間の配線は極力短くし、フォトカプラの一次側と二次側の浮遊容量を小さくした パターンレイアウトにして下さい。 2. Mount a capacitor between Vcc and GND of each high-speed optical isolator as close to as possible. 高速フォトカプラのVcc-GND間に、コンデンサを出来るだけ近接して取り付けて下さい。 3. For the high-speed optical isolator, use high-CMR type one with tpHL, tpLH ≦ 0.8µs. 高速フォトカプラは、tpHL,tpLH≦0.8us、高CMRタイプをご使用ください。 4. For the alarm output circuit, use low-speed type optical isolators with CTR ≧ 100%. アラーム出力回路は、低速フォトカプラCTR≧100%のタイプをご使用ください。 5. For the control power Vcc, use four power supplies isolated each. And they should be designed to reduce the voltage variations. 制御電源Vccは、絶縁された4電源を使用してください。また、電圧変動を抑えた設計として下さい。 6. Suppress surge voltages as possible by reducing the inductance between the DC bus P and N, and connecting some capacitors between the P and N terminals. P-N間の直流母線は出来るだけ低インダクタンス化し、P-N端子間にコンデンサを接続するなどしてサージ 電圧を低減して下さい。 7. To prevent noise intrusion from the AC lines, connect a capacitor of some 4700pF between the three-phase lines each and the ground. ACラインからのノイズ侵入を防ぐために、3相各線-アース間に4700pF程のコンデンサを接続して下さい。 8. At the external circuit, never connect the control terminal GNDU to the main terminal U-phase, GNDV to V-phase, GNDW to W-phase, and GND to N-phase. Otherwise, malfunctions may be caused. 制御端子GNDUと主端子U相、制御端子GNDVと主端子V相、制御端子GNDWと主端子W相、 制御端子GNDと主端子Nを外部回路で接続しないで下さい。誤動作の原因になります。 9. Take note that an optical isolator’s response to the primary input signal becomes slow if a capacitor is connected between the input terminal and GND. 入力端子-GND間にコンデンサを接続すると、フォトカプラ一次側入力信号に対する応答時間が長くなります のでご注意ください。 10. Taking the used isolator’s CTR into account, design with a sufficient allowance to decide the primary forward current of the optical isolator. フォトカプラの一次側電流は、お使いのフォトカプラのCTRを考慮し十分に余裕をもった設計にして下さい。 MS6M 00765 12 a 23 H04-004-03a 11. In case of mounting this product on cooling fin, use thermal compound to secure thermal conductivity. If the thermal compound amount was not enough or its applying method was not suitable, its spreading will not be enough, then, thermal conductivity will be worse and thermal run away destruction may occur. Confirm spreading state of the thermal compound when its applying to this product. (Spreading state of the thermal compound can be confirmed by removing this product after mounting.) 素子を冷却フィンに取り付ける際には、熱伝導を確保するためのコンパウンド等をご使用ください。 又、塗布量が不足したり、塗布方法が不適だったりすると、コンパウンドが十分に素子全体に広がらず、 放熱悪化による熱暴走破壊に繋がる事があります。コンバウンドを塗布する際には、 製品全面にコンパウンドが広がっている事を確認してください。 (実装した後に素子を取りはずすとコンパウンドの広がり具合を確認する事が出来ます。) 12. Use this product with keeping the cooling fin's flatness between screw holes within 100um at 100mm and the roughness within 10um. Also keep the tightening torque within the limits of this specification. Too large convex of cooling fin may cause isolation breakdown and this may lead to a critical accident. On the other hand, too large concave of cooling fin makes gap between this product and the fin bigger, then, thermal conductivity will be worse and over heat destruction may occur. 冷却フィンはネジ取り付け位置間で平坦度を100mmで 100um以下、表面の粗さは10um以下にして下さい。 過大な凸反りがあったりすると本製品が絶縁破壊を 起こし、重大事故に発展する場合があります。 また、過大な凹反りやゆがみ等があると、本製品と 冷却フインの間に空隙が生じて放熱が悪くなり、 Mounting holes Heat sink +100μm 0 熱破壊に繋がることがあります。 13. This product is designed on the assumption that it applies to an inverter use. Sufficient examination is required when applying to a converter use. Please contact Fuji Electric Co.,Ltd if you would like to applying to converter use. 本製品は、インバータ用途への適用を前提に設計されております。コンバータ用途へ適用される場合は、 十分な検討が必要です。もし、コンバータへ適用される場合は御連絡ください。 14. Please see the 『Fuji IGBT-IPM R SERIES APPLICATION MANUAL』 and 『Fuji IGBT MODULES N-SERIES APPLICATION MANUAL』. 『富士IGBT-IPM Rシリーズ アプリケーションマニュアル』及び『IGBTモジュール Nシリーズ アプリケーションマニュアル』 を御参照ください。 15. There is thermal interference between nearby power devices, because the Econo IPM is a compact package. Therefore you measure the case temperature just under the IGBT chips that showed in report MT6M04545, and estimate the chip temperature. Econo IPM はパッケージ小型化のため、パワー素子の熱干渉が考えられます。 その為、チップ温度推定は必ず MT6M04545 に示すチップ直下のケース温度を測定して行って下さい。 MS6M 00765 13 23 a H04-004-03a 12. Example of applied circuit 応用回路例 VccU +5V HCPL 4504 0. 1uF 20kΩ VccU ④ + 0uF 1 ③ GNDU ① U V ② W P “H“で U相IGBTオン GNDU +5V HCPL 4504 0. 1uF 20kΩ ④ + 0uF 1 ③ ① P “H“で U相IGBTオン R R V 0 2 C A C+ U V ② VccV W V 0 2 C A C+ M 20kΩ M VccV 20kΩ 0. 1uF ⑧ + 0uF 1 ⑦ B N “H“で V相IGBTオン 0. 1uF ⑧ + 0uF 1 ⑦ B N “H“で V相IGBTオン GNDV ⑤ GNDV ⑤ ⑥ VccW 20kΩ 0. 1uF ⑥ VccW ⑫ + 0uF 1 ⑪ “H“で W相IGBTオン 0. 1uF 20kΩ ⑫ + 0uF 1 ⑪ “H“で W相IGBTオン GNDW ⑨ GNDW ⑨ ⑩ Vcc ⑩ 20kΩ ⑭ + 0uF 1 ⑯ IPM “H“で X相IGBTオン Vcc 20kΩ ⑭ + 0uF 1 ⑯ IPM 0. 1uF 0. 1uF “H“で X相IGBTオン GND ⑬ GND ⑬ 0. 1uF 20kΩ 0. 1uF 20kΩ “H“で Y相IGBTオン ⑰ “H“で Y相IGBTオン ⑰ 0. 1uF 20kΩ 0. 1uF 20kΩ “H“で Z相IGBTオン ⑱ “H“で Z相IGBTオン ⑱ 0. 1uF 20kΩ 0. 1uF 20kΩ “H“で DB_IGBTオン ⑮ “H“で DB_IGBTオン ⑮ ⑲ TLP521 TLP521 ⑲ (a)In case of use of High side alarm   上アームアラーム使用の場合 (b)In case of no use of High side alarm   上アームアラーム不使用の場合 13. Package and Marking 梱包仕様 Please see the MT6M4140 which is packing specification of IPM. IPM梱包仕様書 MT6M4140を御参照ください。 14. Cautions for storage and transportation 保管、運搬上の注意 ・ Store the modules at the normal temperature and humidity (5 to 35°C, 45 to 75%). 常温常湿(5~35℃、45~75%)で保存して下さい。 ・ Avoid a sudden change in ambient temperature to prevent condensation on the module surfaces. モジュールの表面が結露しないよう、急激な温度変化を避けて下さい。 ・ Avoid places where corrosive gas generates or much dust exists. 腐食性ガスの発生場所、粉塵の多い場所は避けて下さい。 ・ Store the module terminals under unprocessed conditions モジュールの端子は未加工の状態で保管すること。. ・ Avoid physical shock or falls during the transportation. 運搬時に衝撃を与えたり落下させないで下さい。 15. Scope of application 適用範囲 This specification is applied to the IGBT-IPM (type: 7MBP25TEA120). 本仕様書は、IGBT-IPM (型式:7MBP25TEA120)に適用する。 16. Based safety standards 準拠安全規格 UL1557 MS6M 00765 14 23 a H04-004-03a 17.Characteristics 17-1.Control Circuit Characteristics(Respresentative) Power supply current v s. Switching frequency Tj=125°C (typ.) 30 P-side N-side Vcc=1 7V Vcc=1 5V Input signal threshold voltage v s. Power supply v oltage (typ.) 2.5 Tj=25°C Tj =125°C Power s upply current : Icc (mA) 25 20 15 10 5 0 0 Input signal threshold voltage : Vin(on),Vin(off) (V) 2 } Vin(off) 1.5 } Vin(o n) Vcc=1 3V 1 Vcc=1 7V Vcc=1 5V Vcc=1 3V 0.5 0 5 10 15 20 25 12 13 14 15 16 17 18 Switching frequency : fsw (kHz) Power supply voltage : Vcc (V) Under v oltage v s. Junction tem perature (typ.) 14 Under voltage hys terisis vs. Jnc tion temperature (typ.) 1 Under voltage hys terisis : VH (V) 40 60 80 100 120 140 12 Under voltage : VUVT (V) 0.8 10 8 6 4 2 0 20 Junction tem perature : Tj (°C) 0.6 0.4 0.2 0 20 40 60 80 100 120 140 Junction temperature : Tj (°C) Alarm hold tim e v s. Power supply v oltage (typ.) 3 200 Ov er heating characteristics TjO H,TjH v s. Vcc (typ.) Over heating protection : TjOH (°C) O H hysterisis : TjH (°C) TjOH 150 Alarm hold time : tALM (m Sec ) 2.5 Tc=100°C 2 1.5 1 0.5 0 12 Tc=25°C 100 50 TjH 0 12 13 14 15 16 17 18 13 14 15 16 17 18 Power supply voltage : Vcc (V) Power supply voltage : Vcc (V) MS6M 00765 15 23 a H04-004-03a 17-2.Main Circuit Characteristics (Representative) Collector current v s. Collector-Emitter v oltage (typ.) Tj=25°C / Chip 50 Vcc=1 5V Collector current v s. Collector-Em itter v oltage (typ.) Tj=25°C / Term inal 50 Vcc=15V Collector Current : Ic (A) 30 Vcc=1 7V Vcc=1 3V C ollector Current : Ic (A) 40 40 Vcc=1 7V 30 Vcc=1 3V 20 20 10 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Em itter voltage : Vce (V) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Emitter voltage : Vce (V) Collector current v s. Collector-Em itter v oltage (typ.) Tj=125°C / Chip 50 Vcc=1 5V Collector current v s. Collector-Emitter v oltage (typ.) Tj=125°C / Term inal 50 Vcc=1 5V Collector Current : Ic (A) Collector Current : Ic (A) 40 Vcc=1 7V 40 Vcc=17V 30 30 Vcc=1 3V Vcc=13V 20 20 10 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Em itter voltage : Vce (V) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Emitter voltage : Vce (V) Forward current v s. Forward v oltage (typ.) Chip 50 Forward current v s. Forward v oltage (typ.) Term inal 50 Forward Current : If (A) 25°C 30 125°C Forward Current : If (A) 40 40 25°C 30 125°C 20 20 10 10 0 0 0.5 1 1.5 2 2.5 Forward voltage : Vf (V) 0 0 0.5 1 1.5 2 2.5 Forward voltage : Vf (V) MS6M 00765 16 23 a H04-004-03a Switching Loss v s. Collector Current (typ.) Edc=600V,Vcc=15V,Tj=25°C Switching Loss : Eon,Eoff,Err (mJ/cycle) Switching Loss : Eon,Eoff,Err (m J/cyc le) 15 Switching Loss vs. Collector Current (typ.) Edc=600V,Vcc=15V,Tj=125°C 15 Eon 10 Eon 10 5 5 Eoff Err 0 Eoff Err 0 0 10 20 30 40 50 Collector Current : Ic (A) 0 10 20 30 40 50 Collector Current : Ic (A) Reversed biased safe operating area Vcc=15V,Tj≦125℃ (min.) 350 Thermal resistance : Rth(j-c) (℃/W) 300 Collector current : Ic (A) 250 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 Collector-Emitter voltage : Vce (V) Transient thermal resistance (max.) FWD 1 IGBT SCSOA (non-repetitive pulse) 0.1 RBSOA (Repetitive pulse) 0.01 0.001 0.01 0.1 1 10 Pulse width :Pw (sec) Power derating for IG BT (m ax.) (per dev ice) 200 100 Power derating for FW D (max.) (per dev ice) Collecter Power Dissipation : Pc (W ) Collecter Power Dissipation : Pc (W ) 150 80 60 100 40 50 20 0 0 20 40 60 80 100 120 140 160 Case Tem perature : Tc (°C) 0 0 20 40 60 80 100 120 140 160 Case Tem perature : Tc (°C) MS6M 00765 17 23 a H04-004-03a Switching tim e v s. Collector current (typ.) Edc=600V,Vcc=15V,Tj=25°C 10000 Switching tim e vs. Collector current (typ.) Edc=600V,Vcc=15V,Tj=125°C 10000 Switching time : ton,toff,tf (nSec) ton 1000 toff Switching time : ton,toff,tf (nSec ) toff ton 1000 100 tf 100 tf 10 0 10 20 30 40 Collector current : Ic (A) 50 10 0 10 20 30 40 50 Collector current : Ic (A) Rev erse recovery characteristics trr,Irr v s.IF (typ.) trr125°C Reverse recovery current:Irr(A) Reverse recovery time:trr(nsec) trr25°C 100 Irr25°C 10 Irr125°C 1 0 10 20 30 40 50 Forward c urrent:IF(A) MS6M 00765 18 23 a H04-004-03a 17-3.Dynamic Brake Characteristics (Respresentative) Collector current v s. Collector-Emitter v oltage (typ.) Tj=25°C 40 Vcc=15V Collector current v s. Collector-Emitter v oltage (typ.) Tj=125°C 40 Vcc=1 5V Collector Current : Ic (A) 30 Vcc=1 7V Vcc=1 3V Collector C urrent : Ic (A) 30 Vcc=1 7V Vcc=13V 20 20 10 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Em itter voltage : Vce (V) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Emitter voltage : Vce (V) Transient thermal resistance (max.) 1 Thermal resistance : Rth(j-c) (℃/W) IGBT Collector current : Ic (A) 210 180 150 120 90 60 30 0 0.01 0.1 1 0 Reversed biased safe operating area Vcc=15V,Tj≦125℃ ( min.) 0.1 SCSOA (non-repetitive pulse) RBSOA (Repetitive pulse) 200 400 600 800 1000 1200 1400 0.01 0.001 Pulse width :Pw (sec) Collector-Emitter voltage : Vce (V) Power derating for IGBT (max.) (per dev ice) 200 Collecter Power Dissipation : Pc (W ) 150 100 50 0 0 20 40 60 80 100 120 140 160 Case Tem perature : Tc (°C) MS6M 00765 19 23 a H04-004-03a 18. Reliability Test Items Test categories Test items 1 Terminal strength 端子強度 (Pull test) 2 Mounting Strength 締付け強度 3 Vibration 振動 Pull force Test methods and conditions Reference norms EIAJ ED-4701 Test Method 401 MethodⅠ Test Method 402 methodⅡ Test Method 403 Condition code B Number Acceptof ance sample number 5 (1:0) : 20 N (main terminal) 10 N (control terminal) Test time : 10 ±1 sec. Screw torque : 2.5 ~ 3.5 N・m (M5) Test time : 10 ±1 sec. Range of frequency : 10~500 Hz Sweeping time : 15 min. Acceleration : 100 m/s2 Sweeping direction : Each X,Y,Z axis Test time : 6 hr. (2hr./direction) 4 Shock Maximum acceleration : 5000 m/s2 Pulse width 1.0 ms 衝撃 Direction : Each X,Y,Z axis Test time : 3 times/direction 5 Solderabitlity Solder temp. : 235 ±5 ℃ はんだ付け性 Immersion duration : 5.0 ±0.5 sec. Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 6 Resistance to Solder temp. : 260 ±5 ℃ soldering heat Immersion time : 10 ±1sec. はんだ耐熱性 Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 1 High temperature Storage temp. : 125 ±5 ℃ storage 高温保存 Test duration : 1000 hr. 2 Low temperature Storage temp. : -40 ±5 ℃ storage 低温保存 Test duration : 1000 hr. 3 Temperature Storage temp. : 85 ±2 ℃ humidity storage Relative humidity : 85 ±5% Test duration : 1000hr. 高温高湿保存 4 Unsaturated Test temp. : 120 ±2 ℃ pressure cooker Atmospheric pressure : 1.7x105 Pa : 85 ±5% プレッシャークッカー Test humidity Test duration : 96 hr. 5 Temperature Test temp. : Minimum storage temp. -40 ±5℃ cycle Maximum storage temp. 125 ±5℃ Normal temp. 5 ~ 35℃ 温度サイクル Dwell time : Tmin ~ TN ~ Tmax ~ TN 1hr. 0.5hr. 1hr. 0.5hr. Number of cycles : 100 cycles 6 Thermal shock +0 Test temp. : High temp. side 100 -5 ℃ 熱衝撃 +5 5 5 (1:0) (1:0) Mechanical Tests Test Method 404 Condition code B 5 (1:0) Test Method 303 Condition code A 5 (1:0) Test Method 302 Condition code A 5 (1:0) Test Method 201 Test Method 202 Test Method 103 Test code C Test Method 103 Test code E 5 5 5 (1:0) (1:0) (1:0) 5 (1:0) Environment Tests Test Method 105 5 (1:0) Test Method 307 method Ⅰ Condition code A 5 (1:0) Fluid used Dipping time Transfer time Number of cycles : : : : Low temp. side 0 -0 ℃ Pure water (running water) 5 min. par each temp. 10 sec. 10 cycles MS6M 00765 20 23 a H04-004-03a Test categories Test items 1 High temperature reverse bias 高温逆バイアス Test temp. Bias Voltage Bias Method Test duration ON time OFF time Test temp. Number of cycles Test methods and conditions : Ta = 125 ±5℃ (Tj ≦ 150 ℃) : VC = 0.8×VCES : Applied DC voltage to C-E Vcc = 15V : 1000 hr. : 2 sec. : 18 sec. : ∆ Tj=100 ±5deg Tj ≦ 150 ℃, Ta=25 ±5℃ : 15000 cycles AcceptReference norms Number EIAJ ance of sample ED-4701 number Test Method 101 5 (1:0) Endurance Endurance Tests Tests 2 Intermitted operating life (Power cycle) 断続動作 Test Method 106 5 (1:0) 19. Failure Criteria Item Electrical characteristic Characteristic Leakage current Saturation voltage Forward voltage Thermal resistance IGBT FWD Symbol ICES VCE(sat) VF Rth(j-c) Rth(j-c) Ioc tALM Viso Failure criteria Lower limit Upper limit LSL×0.8 LSL×0.8 USL×2 USL×1.2 USL×1.2 USL×1.2 USL×1.2 USL×1.2 USL×1.2 Unit mA V V ℃/W ℃/W A ms Note Over Current Protection Alarm signal hold time Isolation voltage Visual inspection Visual inspection Peeling Plating and the others Broken insulation The visual sample LSL : Lower specified limit. USL : Upper specified limit. Note : Each parameter measurement read-outs shall be made after stabilizing the components at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests. And in case of the wetting tests, for example, moisture resistance tests, each component shall be made wipe or dry completely before the measurement. MS6M 00765 21 23 a H04-004-03a Warnings 1. This product shall be used within its absolute maximum rating (voltage, current, and temperature). This product may be broken in case of using beyond the ratings. 製品の絶対最大定格(電圧,電流,温度等)の範囲内で御使用下さい。絶対最大定格を超えて使用すると、素子が 破壊する場合があります。  2. Connect adequate fuse or protector of circuit between three-phase line and this product to prevent the equipment from causing secondary destruction. 万一の不慮の事故で素子が破壊した場合を考慮し、商用電源と本製品の間に適切な容量のヒューズ又はブレーカーを 必ず付けて2次破壊を防いでください。 3. When studying the device at a normal turn-off action, make sure that working paths of the turn-off voltage and current are within the RBSOA specification. And ,when studying the device duty at a short-circuit current non-repetitive interruption, make sure that the paths are also within the avalanche proof(PAV) specification which is calculated from the snubber inductance, the IPM inner inductance and the turn-off current. In case of use of IGBT-IPM over these specifications, it might be possible to be broken. 通常のターンオフ動作における素子責務の検討の際には、ターンオフ電圧・電流の動作軌跡がRBSOA仕様内にある ことを確認して下さい。また、非繰返しの短絡電流遮断における素子責務の検討に際しては、スナバーインダクタンスと IPM内部インダクタンス及びターンオフ電流から算出されるアバランシェ耐量(PAV)仕様内である事を確認して下さい。 これらの仕様を越えて使用すると、素子が破壊する場合があります。 4. Use this product after realizing enough working on environment and considering of product's reliability life. This product may be broken before target life of the system in case of using beyond the product's reliability life. 製品の使用環境を十分に把握し、製品の信頼性寿命が満足できるか検討の上、本製品を適用して下さい。 製品の信頼性寿命を超えて使用した場合、装置の目標寿命より前に素子が破壊する場合があります。 5. If the product had been used in the environment with acid, organic matter, and corrosive gas (For example : hydrogen sulfide, sulfurous acid gas), the product's performance and appearance can not be ensured easily. 酸・有機物・腐食性ガス(硫化水素,亜硫酸ガス等)を含む環境下で使用された場合、製品機能・外観などの保証は 致しかねます。 6. Use this product within the power cycle curve (Technical Rep.No. : MT6M04057). Power cycle capability is classified to delta-Tj mode which is stated as above and delta-Tc mode. Delta-Tc mode is due to rise and down of case temperature (Tc), and depends on cooling design of equipment which use this product. In application which has such frequent rise and down of Tc, well consideration of product life time is necessary. 本製品は、パワーサイクル寿命カーブ以下で使用下さい(技術資料No.: MT6M04057)。 パワーサイクル耐量にはこのΔTjによる場合の他に、ΔTcによる場合があります。 これはケース温度(Tc)の上昇下降による熱ストレスであり、本製品をご使用する際の放熱設計に依存します。 ケース温度の上昇下降が頻繁に起こる場合は、製品寿命に十分留意してご使用下さい。 MS6M 00765 22 23 a H04-004-03a 7. Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor contact problem. 主端子及び制御端子に応力を与えて変形させないで下さい。 端子の変形により、接触不良などを引き起こす場合が あります。 8. If excessive static electricity is applied to the control terminals, the devices can be broken. Implement some countermeasures against static electricity. 制御端子に過大な静電気が印加された場合、素子が破壊する場合があります。取り扱い時は静電気対策を 実施して下さい。 Caution 1. Fuji Electric Device Technology is constantly making every endeavor to improve the product quality and reliability. However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents causing injury or death, damage to property like by fire, and other social damage resulted from a failure or malfunction of the semiconductor products made by Fuji Electric Device Technology, take some measures to keep safety such as redundant design, spread-fire-preventive design, and malfunction-protective design. 富士電機デバイステクノロジーは絶えず製品の品質と信頼性の向上に努めています。しかし、半導体製品は故障が発生したり、 誤動作する場合があります。富士電機デバイステクノロジー製半導体製品の故障または誤動作が、結果として人身事故・火災等による 財産に対する損害や社会的な損害を起こさないように冗長設計・延焼防止設計・誤動作防止設計など安全確保のための手段を 講じて下さい。 2. The application examples described in this specification only explain typical ones that used the Fuji Electric Device Technology products. This specification never ensure to enforce the industrial property and other rights, nor license the enforcement rights. 本仕様書に記載してある応用例は、富士電機デバイステクノロジー製品を使用した代表的な応用例を説明するものであり、本仕様書に よって工業所有権、その他権利の実施に対する保障または実施権の許諾を行うものではありません。 3. The product described in this specification is not designed nor made for being applied to the equipment or systems used under life-threatening situations. When you consider applying the product of this specification to particular used, such as vehicle-mounted units, shipboard equipment, aerospace equipment, medical devices, atomic control systems and submarine relaying equipment or systems, please apply after confirmation of this product to be satisfied about system construction and required reliability. 本仕様書に記載された製品は、人命にかかわるような状況下で使用される機器あるいはシステムに用いられることを 目的として設計・製造されたものではありません。本仕様書の製品を車両機器、船舶、航空宇宙、医療機器、原子力 制御、海底中継機器あるいはシステムなど、特殊用途へのご利用をご検討の際は、システム構成及び要求品質に 満足することをご確認の上、ご利用下さい。 If there is any unclear matter in this specification, please contact Fuji Electric Device Technology Co., Ltd. MS6M 00765 23 23 a H04-004-03a
7MBP25TEA120 价格&库存

很抱歉,暂时无法提供与“7MBP25TEA120”相匹配的价格&库存,您可以联系我们找货

免费人工找货