FUJITSU SEMICONDUCTOR DATA SHEET
DS04-27225-4E
ASSP For Power Management Applications
6-ch DC/DC Converter IC with Synchronous
Rectifier for Voltage Step-up and Step-down
MB3883
s DESCRIPTION
The MB3883 is a 6-channel step-up/step-down DC/DC converter IC using pulse width modulation (PWM) and synchronous rectification, designed for low voltage, high efficiency, and compact size. This IC is ideal for up conversion, down conversion, and up/down conversion (using a step-up/step-down Zeta system with free input and output settings). The MB3883 can operate at low voltage levels, and has a wide supply voltage range from 1.7 V to 9 V. The MB3883 is available in two packages, an LQFP-48P or a leadless BCC-48P formed with a contact electrode pad only. This is an ideal power supply for high-performance portable devices such as digital still cameras. This product is covered by US Patent Number 6,147,477.
s FEATURES
• Supports synchronous rectification (CH1, 2, 5) • Supports for down-conversion and up/down Zeta conversion (CH1, 2) Supports for up-conversion (CH5) • Supports up-conversion (CH3, 4, 6) • Low start-up voltage : 1.7 V (CH6)
(Continued)
s PACKAGES
48-pin plastic LQFP 48-pad plastic BCC
(FPT-48P-M05)
(LCC-48P-M02)
MB3883
(Continued) • Power supply voltage range
• • • • : 2.4 V to 9 V (CH6) : 3.6 V to 9 V (CH1 to CH5) Built-in high-precision reference voltage circuit : ±1 % Wide operating oscillator frequency range with high-frequency capability : 100 kHz to 1 MHz Error amplifier output for soft start (CH1 to CH6) Totem-pole type output switch control circuit
2
MB3883
s PIN ASSIGNMENTS
(TOP VIEW)
Output block
GND (O)
VCC (O)
OUT5-2
OUT5-1
OUT2-2
OUT2-1
OUT1-2 38
48
47
46
45
44
43
42
41
40
39
37 36 35 34 33 32 31 30 29 28 27 26 25
OUT1-1
OUT6
OUT4
OUT3
RB6
SWOUT SWIN FB6 (CH5, CH6) −IN6 C+IN6 DTC5 FB5 −IN5 −IN (A) 4 OUT (A) 4 FB4 −IN4
1 2 3 4 5 6 7 8 9 10 11 12
DTC1 FB1 −IN1 DTC2 FB2 −IN2 DTC3 FB3 −IN3 VB CT RT (CH1 ∼ CH3)
13
14
15
16
17
18
19
20
21
22
23 CTL4
VREF
−IN (S) 4
CSCP
DTC4
CS
GND
VCC
CTL
CTL1, 2
CTL3
(CH4)
Control block
(FPT-48P-M05)
CTL5
24
3
MB3883
(TOP VIEW)
Output block
GND (O)
VCC (O)
OUT5-2
OUT5-1
OUT2-2
OUT2-1 39
48
47
46
45
44
43
42
41
40
SWOUT SWIN FB6 −IN6 (CH5, CH6) C+IN6 DTC5 FB5 −IN5 −IN (A) 4 OUT (A) 4 FB4 −IN4 −IN (S) 4
1 2 3 4 5 6 7 8 9 10 11 12
38
OUT1-2 37 36 35 34 33 32 31 30 29 28 27 26
OUT6
OUT4
OUT3
RB6
OUT1-1 DTC1 FB1 −IN1 DTC2 FB2 −IN2 DTC3 FB3 −IN3 VB CT RT
14
15
16
17
18
19
20
21
22
23
DTC4
CS
VREF
CSCP
VCC
CTL
CTL1, 2
CTL3
CTL4
(CH4)
Control block
(LCC-48P-M02)
4
CTL5
GND
24
13
25
(CH1 ∼ CH3)
MB3883
s PIN DESCRIPTION
Pin No. 35 34 CH1 36 37 38 32 31 CH2 33 39 40 29 CH3 28 30 41 11 12 14 CH4 43 9 10 13 7 8 CH5 6 45 46 3 4 CH6 5 48 47 Symbol FB1 −IN1 DTC1 OUT1-1 OUT1-2 FB2 −IN2 DTC2 OUT2-1 OUT2-2 FB3 −IN3 DTC3 OUT3 FB4 −IN4 DTC4 OUT4 −IN (A) 4 OUT (A) 4 −IN (S) 4 FB5 −IN5 DTC5 OUT5-1 OUT5-2 FB6 −IN6 C+IN6 RB6 OUT6 I/O O I I O O O I I O O O I I O O I I O I O I O I I O O O I I O O Descriptions Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Main side output pin. Synchronous rectifier side output pin. Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Main side output pin. Synchronous rectifier side output pin. Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Output pin. Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Output pin. Inverting amplifier input pin. Inverting amplifier output pin. Short detection comparator inverted input pin. Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Main side output pin. Synchronous rectifier side output pin. Error amplifier output pin. Error amplifier inverted input pin. Soft start capacitor connection pin. Output current setting resistor connection pin. Output pin.
(Continued)
5
MB3883
(Continued) Pin No.
25 OSC 26 27 1 2 20
Symbol RT CT VB SWOUT SWIN CTL
I/O O O I I
Descriptions Triangular wave frequency setting resistor connection pin. Triangular wave frequency setting capacitor connection pin. Triangular wave oscillator regulator output pin. Output switch control circuit output pin. Output switch control circuit input pin. Power supply, CH6 control pin. “H” level : Power supply CH6 operating mode “L” level : Standby mode CH1, CH2 control pin. When CTL1, 2 pin = “H” level “H” level : CH1, CH2 operating mode “L” level : CH1, CH2 OFF mode CH3 control pin. When CTL3 pin = “H” level “H” level : CH3 operating mode “L” level : CH3 OFF mode CH4 control pin. When CTL4 pin = “H” level “H” level : CH4 operating mode “L” level : CH4 OFF mode CH5 control pin. When CTL5 pin = “H” level “H” level : CH5 operating mode “L” level : CH5 OFF mode Short protection circuit capacitor connection pin. CH1to CH5 soft start circuit capacitor connection pin. Reference voltage and control circuit power supply pin. Output circuit power supply pin. Reference voltage output pin. Ground pin. Output circuit ground pin.
21
CTL1, 2
I
Control
22
CTL3
I
23
CTL4
I
24
CTL5
I O
18 15 19 42 Power 16 17 44
CSCP CS VCC VCC (O) VREF GND GND (O)
6
MB3883
s BLOCK DIAGRAM
FB1 35 −IN1 34 − + + Error Amp.1 VB1 + + − + − PWM Comp. 1-1
CH1
Drive 1-1
42 VCC (O)
37 OUT1-1
PWM Comp. 1-2 Drive 1-2 38 OUT1-2
1.25 V SCP − Comp.1 + + 1.0 V DTC1 36
FB2 32 −IN2 31 − + + Error Amp.2 VB1
+ + − + −
PWM Comp. 2-1
CH2
Drive 2-1 39 OUT2-1
PWM Comp. 2-2
1.25 V SCP − Comp.2 + + DTC2 33 1.0 V
Drive 2-2
40 OUT2-2
FB3 29 −IN3 28 − + + Error Amp.3
PWM Comp.3 + + −
CH3
Drive 3 41 OUT3
1.25 V SCP − Comp.3 + + DTC3 30 1.0 V
−IN (A) 4 9
− +
INV Amp.4
CH4
OUT (A) 4 10 FB4 11 −IN4 12 − + + Error Amp.4
PWM Comp.4 + + −
Drive 4
43 OUT4
−IN (S) 4 13
1.25 V SCP − Comp.4 + + 1.0 V
DTC4 14
FB5 7 Error Amp.5 VB1
+ + −
PWM Comp. 5-1
CH5
Drive 5-1 PWM Comp. 5-2 Drive 5-2
45 OUT5-1
−IN5 8
− + +
+ −
1.25 V SCP − Comp.5 + + 1.0 V DTC5 6
46 OUT5-2
CH6
FB6 3 (VB : 2 V) Error Amp.6 − + 62.5 kΩ 1.26 V C+IN6 5 + − 0.9 V SCP Comp.6 Power Comp. + − 0.9V SW Drive 63 kΩ (VB : 2 V) PWM Comp.6 + + 0.74 V − 37 kΩ
−IN6 4
37.5 kΩ
Drive 6
47 OUT6 48 RB6
CTL1, 2 21 CTL3 22 CTL4 23 CTL5 24
CT1 1.8 V− 1.1 V− CT2 1.8 V− 1.1 V− 0.8 V− CT CS CTL 0.3 V− Logic OSC 15 CS 2V 27 VB 25 RT 26 CT
1 SWOUT 44 GND (O) 2 SWIN
UVLO
19 VCC Power Ref ON/OFF 20 CTL CTL 2.49 V 16 17 VREF GND
SCP 18 CSCP
H : ON (Power/CH6) L : OFF (Standby mode)
(48 Pin)
7
MB3883
• Block diagram (Expansion 1/2)
FB1 35 −IN1 34 − + + Error Amp.1 VB1
+ + − + −
PWM Comp. 1-1
CH1
Drive 1-1
42 VCC (O)
37 OUT1-1
PWM Comp. 1-2 Drive 1-2 38 OUT1-2
1.25 V SCP − Comp.1 + + DTC1 36 1.0 V
FB2 32 −IN2 31 − + + Error Amp.2 VB1
+ + − + −
PWM Comp. 2-1
CH2
Drive 2-1 39 OUT2-1
PWM Comp. 2-2
1.25 V SCP − Comp.2 + + DTC2 33 1.0 V
Drive 2-2
40 OUT2-2
FB3 29 −IN3 28 − + + Error Amp.3
PWM Comp.3 + + −
CH3
Drive 3 41 OUT3
1.25 V SCP − Comp.3 + + DTC3 30 1.0 V
−IN (A) 4 9
− +
INV Amp.4
CH4
OUT (A) 4 10 FB4 11 −IN4 12 − + + Error Amp.4
PWM Comp.4 + + −
Drive 4
43 OUT4
−IN (S) 4 13
1.25 V SCP − Comp.4 + + 1.0 V
DTC4 14
8
MB3883
• Block diagram (Expansion 2/2)
FB5 7 Error Amp.5 VB1
+ + −
PWM Comp. 5-1
CH5
Drive 5-1 PWM Comp. 5-2 Drive 5-2
45 OUT5-1
−IN5 8
− + +
+ −
1.25 V SCP − Comp.5 + + 1.0 V DTC5 6
46 OUT5-2
CH6
FB6 3 (VB : 2 V) Error Amp.6 − −IN6 4 37.5 kΩ + 62.5 kΩ 1.26 V C+IN6 5 + − 0.9 V SCP Comp.6 Power Comp. + − 0.9V SW Drive 63 kΩ (VB : 2 V) PWM Comp.6 + + 0.74 V − 37 kΩ
Drive 6
47 OUT6 48 RB6
CT1 1.8 V− 1.1 V− CT2 1.8 V− 1.1 V− CTL1, 2 21 0.8 V− CT CTL3 22 CS CTL 0.3 V− Logic CTL4 23 CTL5 24 15 CS 2V 27 VB OSC 25 RT 26 CT
1 SWOUT 44 GND (O) 2 SWIN
UVLO
19 VCC Power Ref ON/OFF 20 CTL CTL 2.49 V 16 17 VREF GND
SCP 18 CSCP
H : ON (Power/CH6) L : OFF (Standby mode)
(48 Pin)
9
MB3883
s ABSOLUTE MAXIMUM RATINGS
Rating Min. −55 Max. 10 20 200 860* 710* +125
Parameter Power supply voltage Output current Output peak current Power dissipation Storage temperature
Symbol VCC IO IO PD Tstg
Condition OUT pin OUT pin, Duty ≤ 5% Ta ≤ +25 °C (LQFP-48P) Ta ≤ +25 °C (BCC-48P)
Unit V mA mA mW mW °C
* : The packages are mounted on the epoxy board (10 cm × 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
10
MB3883
s RECOMMENDED OPERATING CONDITIONS
Value Min. 1.7 2.4 3.6 −1 −0.5 0 0 0 1 2.4 CH1 to CH5 CH6 100 47 8.2 0.082 −30 Typ. 5.0 5.0 2 2 1 24 500 100 18 0.027 0.47 0.1 0.18 25 Max. 9 9 9 0 0 VCC − 1.8 VCC − 0.9 9 15 15 4 51 1000 560 100 1.0 1.0 1.0 85
Parameter Startup power supply voltage Power supply voltage Reference voltage output current VB pin output current Input voltage Control input voltage Output current Output current setting resister Oscillator frequency Timing capacitor Timing resistor Soft-start capacitor Short detection capacitor VB pin capacitor Operating ambient temperature
Symbol VCC VCC IOR IB VIN VCTL IO RB fOSC CT RT CS C+IN6 CSCP CVB Ta CH6 CH6
Condition
Unit V V V mA mA V V V mA mA mA kΩ kHz pF kΩ µF µF µF µF °C
CH1 to CH5 VREF pin VB pin −IN1 to −IN5, −IN (A) 4, −IN (S) 4 pin −IN6 pin CTL pin OUT pin (CH1 to CH5) OUT pin (CH6) SWOUT pin RB6 pin
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.
11
MB3883
s ELECTRICAL CHARACTERISTICS
(Ta = +25 °C, VCC = 5 V) Parameter Reference voltage Reference voltage block [REF] Output voltage temperature stability Input stability Load stability Short-circuit output current
Under voltage lockout protection circuit block [U.V.L.O]
Symbol
Pin No. 16 16 16 16 16 37 37 37 47 15 15 18 18 18 18
Conditions Ta = −30 °C to +85 °C VCC = 3.6 V to 9 V VREF = 0 mA to −1 mA VREF = 2 V VCC = VCC = VCC =
Value Min. 2.46 −10 −10 −20 2.6 1.20 1.35 −1.4 0.65 −1.4 450 Typ. 2.49 0.5* −5 2.8 0.2 1.30 1.5 50 −1.0 0.70 50 50 −1.0 500 1 Max. 2.51 10 10 −1 3.0 1.40 1.65 100 −0.6 0.75 100 100 −0.6 550 10
Unit V % mV mV mA V V V V mV µA V mV mV µA kHz %
VREF ∆VREF /VREF Line Load IOS VTH VH VRST VTH VSTB ICS VTH VSTB VI ICSCP fOSC ∆f/fdv
CH1 to CH5 CH6
[CS]
Threshold voltage Hysteresis width Reset voltage Threshold voltage Input standby voltage Charge current Threshold voltage Input standby voltage Input latch voltage Input source current Oscillator frequency Frequency stability for voltage Frequency stability for temperature
Short circuit detection block [SCP]
Soft-start block
Triangular wave oscillator block [OSC]
37, 38, 39, 40, 41, CT = 100 pF, RT = 18 kΩ 43, 45, 46, 47 VB = 2 V 37, 38, 39, 40, 41, VCC = 3.6 V to 9 V 43, 45, 46, 47 37, 38, 39, 40, 41, Ta = −30 °C to +85 °C 43, 45, 46, 47
∆f/fdt
1*
%
*: Standard design value.
(Continued)
12
MB3883
(Ta = +25 °C, VCC = 5 V) Parameter Threshold voltage VT temperature stability Error amplifier block (CH1 to CH5) [Error Amp.]
Symbol
Pin No.
Conditions
Value Min. 1.23 −320 −120 60 Typ. 1.25 0.5* −80 −30 100 1.0* 2.4 50 −2.0 140 1.26 0.5* −20 75 1.0* 1.3 0 −2.0 120 0 −30 100 1.0* 2.4 50 −2.0 140 Max. 1.27 200 −1.0 1.28 200 −1.0 10 200 −1.0
Unit V % nA nA dB MHz V mV mA µA V % nA dB MHz V mV mA µA mV nA dB MHz V mV mA µA
VTH
35, 32, 29, 11, 7 FB = 1.45 V
∆VT/VT 35, 32, 29, 11, 7 Ta = −30 °C to +85 °C 34, 31, 28, 8 −IN = 0 V (CH1 to CH3, CH5) −IN = 0 V (CH4)
Input bias current
IB 12
Voltage gain Frequency bandwidth Output voltage Output source current Output sink current Threshold voltage VT temperature stability Input bias current Voltage gain Frequency bandwidth Output voltage Output source current Output sink current Input offset voltage Input bias current Voltage gain Frequency bandwidth Output voltage Output source current Output sink current
AV BW VOH VOL ISINK VTH ∆VT/VT IB AV BW VOH VOL ISOURCE ISINK VIO IB AV BW VOH VOL ISOURCE ISINK
35, 32, 29, 11, 7 DC 35, 32, 29, 11, 7 AV = 0 dB 35, 32, 29, 11, 7 35, 32, 29, 11, 7
2.2 70 1.24 −100 60
ISOURCE 35, 32, 29, 11, 7 FB = 1.45 V 35, 32, 29, 11, 7 FB = 1.45 V 3 3 4 3 3 3 3 3 3 10 9 10 10 10 10 10 10 FB = 0.55 V Ta = −30 °C to +85 °C −IN = 0 V DC AV = 0 dB FB = 0.55 V FB = 0.55 V OUT = 1.25 V −IN = 0 V DC AV = 0 dB OUT = 1.25 V OUT = 1.25 V
Error amplifier bolck (CH6) [Error Amp.]
1.1 60 −10 −120 60 2.2 70
*: Standard design value.
Inverting amplifier bolck (CH4) [Inv Amp.]
(Continued)
13
MB3883
(Ta = +25 °C, VCC = 5 V) Parameter
Short detection comparator block (CH1 to CH5) [SCP Comp.]
Symbol VTH
Pin No. 37, 38, 39, 40, 41, 43, 45, 46 34, 31, 28, 8
Conditions CH1 to CH5 −IN = 0 V (CH1 to CH3, CH5) −IN = 0 V (CH4)
Value Min. Typ. Max. 0.97 −320 −200 1.00 −80 −50 1.03
Unit V nA nA
Threshold voltage
Input bias current
IB 13
Short detection Output block Output block Output block PWM Comp. PWM Comp. block comparator (CH1 to CH5) (CH6) (CH1 to CH5) (CH1, CH2, CH5) block(CH6) block (CH6) [Drive] [Drive-2(Nch MOS)] [Drive-1(Pch MOS)] [PWM Comp.] [PWM Comp.]
[SCP Comp.]
Threshold voltage
VTH
47
0.8
0.9
1.0
V
Threshold voltage
VT0 VT100
37, 39, 41, 43, 45 Duty cycle = 0 % 37, 39, 41, 43, 45 Duty cycle = 100 % DTC = 0.4 V (CH1 to CH5) Duty cycle = 0 % Duty cycle = Max. CT = 100 pF, RT = 18 kΩ, RB = 24 kΩ Duty ≤ 5 %, OUT = 0 V Duty ≤ 5 %, OUT = 5 V OUT = −15 mA OUT = 15 mA
1.0 −1.0
1.1 1.8 −0.3
1.9 0.84 90 −80 30 25 −80 30 25 −1.4
V V µA
Input current
IDTC
36, 33, 30, 14, 6
Threshold voltage Maximum duty cycle Output source current Output sink current Output ON resistor
VT0 VTmax Dtr ISOURCE ISINK ROH ROL
47 47 47 37, 39, 45 37, 39, 45 37, 39, 45 37, 39, 45
0.2 70 65 65
0.3 0.74 80 −130 100 18 16 −130 100 18 16 −2.0 40
V V % mA mA Ω Ω mA mA Ω Ω mA mA
Output source current Output sink current Output ON resistor
ISOURCE ISINK ROH ROL
38, 40, 41, 43, 46 Duty ≤ 5 %, OUT = 0 V 38, 40, 41, 43, 46 Duty ≤ 5 %, OUT = 5 V 38, 40, 41, 43, 46 OUT = −15 mA 38, 40, 41, 43, 46 OUT = 15 mA 47 47
Output source current Output sink current
ISOURCE ISINK
RB = 24 kΩ, OUT = 0.7 V −2.6 Duty ≤ 5 %, OUT = 0.7 V
*: Standard design value.
(Continued)
14
MB3883
(Continued)
(Ta = +25 °C, VCC = 5 V) Symbol VIH VIL ISWIN ISOURCE ISINK ROH ROL VIH CTL input voltage VIL 20, 21, 22, 23, 24 20, 21, 22, 23, 24 19 42 19, 42 Standby mode 0 0.5 V Pin No. 5 5 5 1 1 1 1 20, 21, 22, 23, 24 Conditions SWOUT = “L” level SWOUT = “H” level SWIN = 5 V Duty ≤ 5 %, SWOUT = 0 V Duty ≤ 5 %, SWOUT = 5 V SWOUT = −4 mA SWOUT = 4 mA Active mode Value Min. 1.5 0 1.5 Typ. 100 −9 17 250 100 Max. 9 0.5 200 400 150 9 Unit V V µA mA mA Ω Ω V
Parameter SW input voltage Output switch control block (Drive-1 [SW]) Control block (CTL, CTL1 to CTL5) [CTL] Input current Output source current Output sink current Output ON resistor
Input current
ICTL ICCS ICCS (O) ICC
CTL = 5 V CTL = 0 V CTL = 0 V CTL = CTL1, 2 = CTL3 = CTL4 = CTL5 = 5 V
100 6
200 10 10 9
µA µA µA mA
General
Standby current Power supply current
*: Standard design value.
15
MB3883
s TYPICAL CHARACTERISTICS
Power supply current vs. power supply voltage Power supply current ICC (mA) Reference voltage VREF (V)
10 8 6 4 2 0 0 2 4 6 8 10 Ta = +25 °C CTL = CTL1, 2 = CTL3 = CTL4 = CTL5 = 5 V 5 4 3 2 1 0 0 2 4 6 8 10
Reference voltage vs. power supply voltage
Ta = +25 °C CTL = CTL1, 2 = CTL3 = CTL4 = CTL5 = 5 V VREF = 0 mA
Power supply voltage VCC (V)
Power supply voltage VCC (V)
Reference voltage vs. ambient temperature
2.56
Reference voltage VREF (V)
2.54 2.52 2.5 2.48 2.46 2.44 −40
VCC = 5 V CTL = CTL1, 2 = CTL3 = CTL4 = CTL5 = 5 V VREF = 0 mA
−20
0
20
40
60
80
100
Ambient temperature Ta (°C)
Reference voltage vs. control voltage Reference voltage VREF (V)
5 4 3 2 1 0 0 1 2 3 4 5 Ta = +25 °C VCC = 5 V VREF = 0 mA 300
Control current vs. control voltage
Ta = +25 °C VCC = 5 V
Control current ICTL (µA)
250 200 CTL 150
CTL1, 2 ∼ CTL5 100 50 0 0 2 4 6 8 10
Control voltage VCTL (V)
Control voltage VCTL (V)
(Continued)
16
MB3883
Triangular wave upper and lower limit voltage vs. triangular wave oscillator frequency Triangular wave upper and lower limit voltage VCT (V) Triangular wave upper and lower limit voltage VCT (V)
1 Ta = +25 °C 0.9 VCC = 5 V 0.8 RT = 18 kΩ 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 200 400 600 800 1000 1200
Triangular wave upper and lower limit voltage vs. ambient temperature
1 VCC = 5 V 0.9 RT = 18 kΩ 0.8 CT = 100 pF 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 −40 −20 0 20 40 60 80 100
Upper
Upper
Lower
Lower
Triangular wave oscillator frequency fOSC (kHz) Triangular wave oscillator frequency vs. timing capacitor
10000
Ambient temperature Ta ( °C)
Triangular wave oscillator frequency vs. timing resistor
10000
Triangular wave oscillator frequency fOSC (kHz)
Triangular wave oscillator frequency fOSC (kHz)
Ta = +25 °C VCC = 5 V
Ta = +25 °C VCC = 5 V
1000 RT = 4.3 kΩ 100 RT = 100 kΩ RT = 18 kΩ
1000 CT = 47 pF 100 CT = 1000 pF CT = 100 pF CT = 470 pF CT = 220 pF
10 10
100
1000
10000
10 1k
10 k
100 k
1M
Timing capacitor CT (pF) Triangular wave oscillator frequency vs. ambient temperature
560
Timing resistor RT (Ω)
Triangular wave oscillator frequency fOSC (kHz)
540 520 500 480 460 440 −40 −20
VCC = 5 V CTL = CTL1, 2 = CTL3 = CTL4 = CTL5 = 5 V RT = 18 kΩ CT = 100 pF
0
20
40
60
80
100
Ambient temperature Ta ( °C)
(Continued)
17
MB3883
(Continued)
Error amplifier gain and phase vs. frequency (CH1)
40 Ta = +25 °C VCC = 5 V 180 240 kΩ 90 0 AV −20 −40 1k 10 k 100 k 1M −90 −180 10 M
Gain AV (dB)
20 0
φ
Phase φ (deg)
10 kΩ IN − + 1 µF 10 kΩ 2.4 kΩ
34
− + +
35 OUT
Error Amp.1 1.25 V CS CTL Logic
Frequency f (Hz)
Error amplifier gain and phase vs. frequency (CH6)
40 Ta = +25 °C VCC = 5 V 180 240 kΩ 90 0 AV −20 −40 1k 10 k 100 k 1M −90 −180 10 M
Gain AV (dB)
20 0
φ
Phase φ (deg)
IN
10 kΩ −+ 1 µF 10 kΩ 2.4 kΩ
4 VB
− + + 1.26 V
3 OUT Error Amp.6
CS CTL Logic
Frequency f (Hz) Power dissipation vs. ambient temperature (LQFP-48P)
1000 1000
Power dissipation vs. ambient temperature (BCC-48P) Power dissipation PD (mW)
Power dissipation PD (mW)
860 800 600 400 200 0 −40
800 710 600 400 200 0 −40
Ambient temperature Ta ( °C)
−20
0
20
40
60
80
100
−20
0
20
40
60
80
100
Ambient temperature Ta ( °C)
18
MB3883
s FUNCTIONS
1. DC-DC Converter Functions
(1) Reference voltage block The reference voltage circuit generates a temperature-compensated reference voltage (typically = 2.49 V) from : the voltage supplied from the power supply terminal (pin 19). The voltage is used as the reference voltage for the IC’s internal circuitry. The reference voltage can supply a load current of up to 1 mA to an external device through the VREF terminal (pin 16). (2) Triangular-wave oscillator block The triangular wave oscillator incorporates a timing capacitor and a timing resistor connected respectively to the CT terminal (pin 26) and RT terminal (pin 25) to generate triangular oscillation waveform CT (amplitude of 0.3 V to 0.8 V), CT1 (amplitude 1.1 V to 1.8 V in phase with CT), or CT2 (amplitude 1.1 V to 1.8 V in inverse phase with CT). CT1 and CT2 are input to the PWM comparator in the IC. (3) Error amplifier (Error Amp.) block The error amplifier detects the DC/DC converter output voltage and outputs PWM control signals. It supports a wide range of in-phase input voltages from 0 V to “VCC - 1.8 V” (channels 1 to 5), or 0 V to “Vcc-0.9 V”(channel6) allowing easy setting from the external power supply. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the output pin to inverted input pin of the error amplifier, enabling stable phase compensation to the system. (4) Inverting amplifier (Inv Amp.) block The inverting amplifier detects the DC/DC converter output voltage (as a negative voltage) and outputs a control signal to the error amp. (5) PWM comparator (PWM Comp.) block The PWM comparator is a voltage-to-pulse width converter for controlling the output duty depending on the input voltage. Channels 1, 2, and 5 main sides,channel 3,4, and 6 : The comparator keeps the output transistor on while the error amplifier output voltage and DTC voltageremain higher than the triangular wave voltage. Channels 1, 2, and 5 synchronous rectification sides : The comparator keeps the output transistor on while the error amplifier output voltage remain lower than the triangular wave voltage. (6) Output block The output block on the main side and on the synchronous rectification side is both in the totem pole configuration, capable of driving an external P-channel MOS FET (channels 1, 2 main sides, channel 5 synchronous rectification side), NPN transistor (channel 6), and N-channel MOS FET (channels 3, 4, channel 5 main side, channels 1, 2 synchronous rectification sides).
19
MB3883
2. Channel Control Function
Channels are turned on and off depending on the voltage levels at the CTL terminal (pin 20), CTL1, 2 terminal (pin 21), CTL3 terminal (pin 22), CTL4 terminal (pin 23), and CTL5 terminal (pin 24). Channel On/Off Setting Conditions Voltage level at CTL pin Channel on/off state CTL L CTL1, 2 × CTL3 × CTL4 × L L H L L H H H L L H H L H H × : Undefined CTL5 × L H L H L H L H L H L H L H L H Power/CH6 CH1, CH2 CH3 CH4 CH5 OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF (Standby state) OFF OFF ON OFF OFF ON ON ON OFF OFF ON ON OFF ON ON
3. Protective Functions
(1) Timer-latch short-circuit protection circuit The short-circuit detection comparator in each channel detects the output voltage level and, if any channel output voltage falls below the short-circuit detection voltage, the timer circuits is actuated to start charging the external capacitor CSCP connected to the CSCP terminal (pin 18). When the capacitor voltage reaches about 0.70 V, the circuit is turned off the output transistor and sets the dead time to 100 %. To reset the actuated protection circuit, turn the power supply on back. (See “SETTING TIME CONSTANT FOR TIMER-LATCH SHORT-CIRCUIT PROTECTION CIRCUIT”.) (2) Undervoltage lockout protection circuit The transient state or a momentary decrease in supply voltage, which occurs when the power supply is turned on, may cause the IC to malfunction, resulting in breakdown or degradation of the system. To prevent such malfunctions, the undervoltage lockout protection circuit detects a decrease in internal reference voltage with respect to the power supply voltage, turns off the output transistor, and sets the dead time to 100% while holding the CSCP terminal (pin 18) at the “L” level. The circuit restores the output transistor to normal when the supply voltage reaches the threshold voltage of the undervoltage lockout protection circuit. (3) Output switch control circuit When the power is turned on, this circuit prevents reactive current flow to external step-up circuits on CH5 and CH6. When the SWIN terminal (pin 2) is a state at “H” level after releasing UVLO and the C+IN6 terminal (pin5) voltage goes above 0.9 V (Typ.), the SWOUT terminal (pin 1) becomes “L” level. External P-ch MOS FET is turned on at this time and the output voltage is generated. 20
MB3883
4. Soft Start Operation
1. Description • When the CTL, CTL1,2, CTL3, CTL4, and CTL5 terminals are driven high (“H” level) at the same time The capacitor (C+IN6) connected to the C+IN6 terminal (pin 5) starts charging. When the C+IN6 terminal voltage falls below 0.9 V (Typ.), the capacitor (Cs) connected to the CS terminal (pin 15) starts charging and the error amp. provides a soft start by comparing the CH1 to CH5 output voltage to the voltage at the CS terminal. Input CTL (pin 20) CTL1, 2 (pin 21) CTL3 (pin 22) CTL4 (pin 23) CTL5 (pin 24) Output
2V
VB (pin 27) C+IN6 (pin 5) CH6 output voltage Vo6
2.49 V 0.9 V
VREF (pin 16) CS (pin15) CH1 to CH5 output voltage Vo1 to Vo5
t 1.25 V
(1)
(3) (2)
(4)
(1) to (2) : CH6 soft start interval (3) to (4) : CH1 to CH5 soft start interval
21
MB3883
• After a CH6 soft start, when the CTL1, 2, CTL3, CTL4, and CTL5 terminals are driven high The capacitor (Cs) connected to the CS terminal (pin 15) starts charging and the error amp provides a soft start by comparing the CH1 to CH5 output voltage to the voltage at the CS terminal. Input
CTL ( pin 20) CTL1, 2 ( pin 21) CTL3 ( pin 22) CTL4 ( pin 23) CTL5 ( pin 24) Output
2V
VB ( pin 27) C+IN6 ( pin 5) CH6 output voltage Vo6
2.49 V 0.9 V
VREF ( pin 16) CS ( pin 15) CH1 to CH3 output voltage Vo1 to Vo3 CH4, CH5 output voltage Vo4, Vo5
t 1.25 V 1.25 V
(1)
(3) (2)
(4) (6)’
(5) (7)’
(6)
(7)
(1) to (2) (3) (4) to (5) (6) to (7) (6)’ to (7)’
: CH6 soft start interval : VREF Output start : CH1 to CH3 soft start interval : CH4, CH5 soft start interval : CH4 (CH5) soft start interval (waveform) as CTL4 (CTL5) go “H” from “L” during CH1 to CH3 soft start interval
Note : Each of the terminals CTL1,2, CTL3, CTL4, and CTL5 can be switched on or off independently. When any of these CTL terminals is switched on, a soft start operation is provided as shown in the above timing chart. 22
MB3883
2. Soft Start Settings • CH6 soft start time The soft start operation is determined by the capacitor (C+IN6) connected to the C+IN6 terminal (pin 5). The soft start time depends on the input voltage and load current.
CH6 soft start time ts (s) = − C+IN6 (F) × 37.5 (kΩ) × 62.5 (kΩ) ln 100 (kΩ)
(
1−
VC+IN6 (V) 1.26 (V)
)
Error Amp.6
(VB : 2 V) VC+IN6 − C+IN6 5 (1.26 V) C+IN6 (62.5 kΩ) (37.5 kΩ) +
CH6 soft start equivalent circuit Example: The soft start time until CH6 output voltage reaches 95% of the set voltage is determined as follows: ts (s) = 0.07 × C+IN6 (µF) : • CH1 to CH5 soft start time CH1 to CH5 soft start time ts (s) = 1.25 × CS (µF) : Note : The short-circuit detection function remains working during soft start operation on channels 1 through 5.
s SETTING THE TRIANGULAR OSCILLATOR FREQUENCY
The triangular oscillator frequency is determined by the timing capacitor (CT) connected to the CT terminal (pin 26), and the timing resistor (RT) connected to the RT terminal (pin 25). Triangular oscillator frequency fOSC (kHz) = : 900000 CT (pF) •RT (kΩ)
23
MB3883
s SETTING THE OUTPUT VOLTAGE
• CH1 to CH3, CH5
VO FB1 35 R1 −IN1 R2 34 − + + Error Amp.1 VO = 1.25 V (R1 + R2 ) R2
1.25 V
− + + 1.0 V
SCP Comp.1
• CH4
VO
R1 −IN (A) 4 9 − + R2 OUT (A) 4 10 R3 FB4 11 12 −IN4 − + + 1.25 V
INV Amp.4
VO =
V−IN (A) 4 − VOUT (A) 4 R1 R2
[ VOUT (A) 4 = V−IN4 ]
Error Amp.4
24
MB3883
• CH6
VO FB6 3 R1 4 −IN6 R2 37.5 kΩ 1.26 V (VB : 2 V) − + 62.5 kΩ Error Amp.6 VO = 1.26 V R2 (R1 + R2)
C+IN6 5
25
MB3883
s SETTING THE OUTPUT CURRENT
The output circuit (drive 6) is structured as illustrated below (in the output circuit diagram). As found in “Output Current Waveform” below, the source current value of the output current waveform has a constant current setting. Note that the source current is set by the following equation: • Output source current = (VB / RB) × 80 (A)
42 VCC (O)
80 I
Source current
× 33
External NPN transistor Output source current
47 OUT6
I
Output sink current Sink current
× 33 70 kΩ
48 0.6 V
RB6 RB VB
44 GND (O)
In the output circuit diagram
Output source current (Peak) Output source current Output current
0
Output sink current (Peak)
t
Output current waveform 26
MB3883
s SETTING TIME CONSTANT FOR TIMER-LATCH SHORT-CIRCUIT PROTECTION CIRCUIT
The short detection comparator (SCP comparator) in each channel monitors the output voltage. While the switching regulator load conditions are stable on all channels, the LOG_SCP output remains at “H” level, transistor Q1 is turned on, and the CSCP terminal (pin 18) is held at “L” level. If the load condition on a channel changes rapidly due to a short of the load, causing the output voltage to drop, the output of the short detection comparator on that channel goes to “H” level. This causes transistor Q1 to be turned off and the external short protection capacitor CSCP connected to the CSCP terminal to be charged at 1.0 µA. Short detection time (tPE) tPE (s) = 0.70 × CSCP (µF) : : When the capacitor CSCP is charged to the threshold voltage (VTH = 0.70 V), the latch is set and the external FET is turned off (dead time is set to 100%). At this point, the latch input is closed and the CSCP terminal is held at “L” level.
A R1 34 −IN1 R2 1.0 V Drive 1−2 − + SCP Comp.1 Drive 1−1
External FET
37 OUT1−1
38 OUT1−2
− + 0.9 V
SCP Comp.6 LOG_SCP
Drive 6 CSCP 18 R S Timer-latch short protection circuit 1 µA bias bias
47 OUT6
CSCP
UVLO Ref
Q1
Power ON/OFF CTL
20 CTL
Timer-latch short circuit protection circuit
27
MB3883
s TREATMENT WITHOUT USING CSCP
When not using the timer-latch short protection circuit, connect the CSCP terminal (pin 18) to GND with the shortest distance.
CSCP
18
Treatment without using CSCP
s OPERATING WITHOUT THE SOFT START FUNCTION
To disable the CH1 to CH5 soft start function, leave the CS terminal (pin 15) open. To disable the CH6 soft start function, leave the C+IN6 terminal (pin 5) open.
“Open”
CS 15
“Open”
5 C+IN6
When no soft start time is set
28
MB3883
s SETTING THE DEAD TIME
When the device is set for step-up inverted output based on the step-up or step-up/down Zeta method or flyback method, the FB pin voltage may reach and exceed the rectangular wave voltage due to load fluctuation. If this is the case, the output transistor is fixed to a full-ON state (ON duty = 100 %). To prevent this, set the maximum duty of the output transistor. To set it, set the voltage at the DTC1 terminal (pin 36) by applying a resistive voltage divider to the VREF voltage as shown below. When the voltage at the DTC1 terminal (pin 36) is higher than the triangular wave voltage (CT1), the output transistor is turned on. The maximum duty calculation formula assuming that triangular wave amplitude = 0.7 : V and triangular wave minimum voltage = 1.1 V is given below. (Same to other channels.) : DUTY (ON) max= : Vdt − 1.1 V × 100 (%) , Vdt = 0.7 V Rb Ra + Rb × VREF
When the DTC1 terminal is not used, connect it directly to the VREF terminal (pin 16) as shown below (when no dead time is set). (Same to other channels.)
VREF
16 Ra 36 Rb Vdt
DTC1
When using DTC to set dead time (Same to other channels.) ( CH1)
VREF
16 36
DTC1
When no dead time is set ( Same to other channels.) ( CH 1)
29
MB3883
s TREATMENT WITHOUT USING CH4 INV Amp.
When not using the CH4 INV Amp., connect the -IN(A)4 terminal (pin 9) to the OUT(A)4 terminal (pin 10) with the shortest distance.
9 −IN(A)4 10 OUT(A)4
Treatment without using CH4 INV Amp.
30
MB3883
s APPLICATION EXAMPLE
VCC (O) 42 OUT1-1 37 Q1 R1 150 Ω C10 3300 pF C1 4.7 µF A L1 15 µH L2 22 µH Vo1 (3.3 V) (250 mA) C2 4.7 µF
A FB1 R12 35 C23 2.7 kΩ 0.1 µF R13 R6 22 kΩ 1 kΩ 34 −IN1 R14 15 kΩ R15 24 kΩ DTC1 36
CH1
C17 2.2 µF OUT1-2 38
Q3
D1
R16 47 kΩ
Q2 OUT2-1 39 R2 300 Ω C11 2700 pF
C3 4.7 µF B L3 22 µH L4 22 µH
FB2 C24 B 32 R17 0.1 µF 15 kΩ R7 1 kΩ 31 −IN2 R18 15 kΩ R19 DTC2 24 kΩ 33 R20 47 kΩ FB3 C 29 R21 C25 15 kΩ 0.1 µF R22 R8 150 kΩ 1 kΩ 28 −IN3 R23 15 kΩ R24 24 kΩ DTC3 30 R25 47 kΩ −IN (A) 4
Vo2 (2.5 V) (150 mA) C4 4.7 µF
CH2
C18 2.2 µF OUT2-2 40
Q4
D2
Vo6 (5.0 V) C D3
4 3 2 1 8 7 5 6
C5 1 µF D4 C6 1 µF
C19 2.2 µF
Vo3-1 (15 V) (12 mA) Vo3-2 (−7.5 V) (2.5 mA)
CH3
OUT3 41 Q5
D Q7
VREF R3 18 kΩ R4 27 kΩ
9 R27 VIN 10 kΩ OUT (A) 4 (1.8 V ~ 10 5.0 V) FB4 R28 11 C26 10 kΩ 0.1 µF R9 1 kΩ 12 −IN4 D 13 R29 −IN (S) 4 47 kΩ R30 DTC4 24 kΩ 14 R31 47 kΩ FB5 F R32 7 C27 15 kΩ 0.1 µF R33 R10 30 kΩ 1 kΩ 8 −IN5 R34 15 kΩ R35 24 kΩ DTC5 R36 47 kΩ 6
E R26 120 kΩ
E C7 Vo6 D5 1 µF (5.0 V)
1 5
CH4
C20 2.2 µF OUT4 43
6 4
3 2 D6 7 8
D7
C8 1 µF C9 1 µF
Q6 L5 15 µH F D8 OUT5-1 45 Q9 Q8 C21 2.2 µF OUT5-2 46 C12 4.7 µF
Vo4-3 (−15 V) (4 mA) Vo4-2 (6.5 V) (6 mA) Vo4-1 (13.5 V) (2.7 mA)
Q10
Vo5 (5.0 V) (100 mA)
CH5
C13 2.2 µF
G FB6 3 R37 C28 15 kΩ 0.1 µF R38 R11 30 kΩ 1 kΩ 4 −IN6 R39 15 kΩ C+IN6 5 C29 0.33 µF
L6 22 µH G Q12 OUT6 47 RB6 Q11 48 C16 56 pF R5 20 kΩ SWOUT 1 44 GND (O) D9 C22 2.2 µF
Vo6 (5.0 V)
CH6
C14 4.7 µF
C15 2.2 µF
CTL1, 2 21 CTL3 22 CTL4 23 CTL5 24 15 CS C30 0.1 µF 27 25 VB RT 26 18 CT CSCP 16 C33 0.1 µF VREF 17 GND
2 SWIN VCC 19 (5.0 V) 20 CTL
H: SWOUT = L L: SWOUT = H
H : ON (Power/CH6) L : OFF (Standby mode)
(48 Pin)
C31 R40 C32 0.1 µF 18 kΩ 100 pF
31
MB3883
• Application example (Expansion1/2)
A FB1 R12 35 C23 2.7 kΩ 0.1 µF R13 R6 22 kΩ 1 kΩ 34 −IN1 R14 15 kΩ R15 24 kΩ DTC1 36
VCC (O) 42 OUT1-1 37
Q1 R1 150 Ω C10 3300 pF
C1 4.7 µF A L1 15 µH L2 22 µH
Vo1 (3.3 V) (250 mA) C2 4.7 µF
CH1
C17 2.2 µF OUT1-2 38
Q3
D1
R16 47 kΩ
Q2 OUT2-1 39 R2 300 Ω C11 2700 pF
C3 4.7 µF B L3 22 µH L4 22 µH
FB2 C24 B 32 R17 0.1 µF 15 kΩ R7 1 kΩ 31 −IN2 R18 15 kΩ R19 DTC2 24 kΩ 33 R20 47 kΩ FB3 C 29 R21 C25 15 kΩ 0.1 µF R22 R8 150 kΩ 1 kΩ 28 −IN3 R23 15 kΩ R24 24 kΩ DTC3 30
Vo2 (2.5 V) (150 mA) C4 4.7 µF
CH2
C18 2.2 µF OUT2-2 40
Q4
D2
Vo6 (5.0 V) C D3
4 3 2 1 8 7 5 6
C5 1 µF D4 C6 1 µF
C19 2.2 µF
Vo3-1 (15 V) (12 mA) Vo3-2 (−7.5 V) (2.5 mA)
CH3
OUT3 41 Q5
R25 47 kΩ E R26 120 kΩ
D Q7 9
VREF R3 18 kΩ R4 27 kΩ
−IN (A) 4
R27 VIN 10 kΩ OUT (A) 4 (1.8 V ~ 10 5.0 V) FB4 R28 11 C26 10 kΩ 0.1 µF R9 1 kΩ 12 −IN4 D 13 R29 −IN (S) 4 47 kΩ R30 DTC4 24 kΩ 14 R31 47 kΩ
1
5
E C7 Vo6 D51 µF (5.0 V)
3 2 D6 7
CH4
C20 2.2 µF OUT4 43
6 4 8
D7
C8 1 µF C9 1 µF
Q6
Vo4-3 (−15 V) (4 mA) Vo4-2 (6.5 V) (6 mA) Vo4-1 (13.5 V) (2.7 mA)
32
MB3883
• Application example (Expansion 2/2)
L5 15 µH F FB5 F R32 7 C27 15 kΩ 0.1 µF R33 R10 30 kΩ 1 kΩ 8 −IN5 R34 15 kΩ R35 24 kΩ DTC5 R36 47 kΩ 6 D8 OUT5-1 45 Q9 Q8 C21 2.2 µF OUT5-2 46
Q10
Vo5 (5.0 V) (100 mA)
CH5
C12 4.7 µF
C13 2.2 µF
G FB6 3 R37 C28 15 kΩ 0.1 µF R38 R11 30 kΩ 1 kΩ 4 −IN6 R39 15 kΩ C+IN6 5 C29 0.33 µF
L6 22 µH G Q12 OUT6 47 RB6 Q11 48 C16 56 pF R5 20 kΩ SWOUT 1 44 GND (O) D9 C22 2.2 µF
Vo6 (5.0 V)
CH6
C14 4.7 µF
C15 2.2 µF
CTL1, 2 21 CTL3 22 CTL4 23 CTL5 24 15 CS C30 0.1 µF 27 25 VB RT 26 18 CT CSCP 16 C33 0.1 µF VREF 17 GND
2 SWIN VCC 19 (5.0 V) 20 CTL
H: SWOUT = L L: SWOUT = H
H : ON (Power/CH6) L : OFF (Standby mode)
(48 Pin)
C31 R40 C32 0.1 µF 18 kΩ 100 pF
33
MB3883
s PARTS LIST
COMPONENT Q1, Q2 Q3 to Q6, Q8 Q9, Q10, Q12 Q7, Q11 D1, D2, D8, D9 D3 to D7 L1, L5 L2 to L6 C1 to C4 C5 to C9 C10 C11 C12, C14 C13, C15 C16 C17 to C22 C23 to C28 C29 C30, C31, C33 R1 R2 R3 R4 R5 R8 to R11 R12 R13 R14 R15, R19, R24 R16, R20, R25 R17, R18, R21 R22 R23, R39 R26 R27, R28 R29, R31, R36 R30, R35 R32, R34, 37 R33, R38 R40 ITEM PNP Tr FET FET NPN Tr Diode Diode Coil Coil Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor SPECIFICATION VCEO = −12 V VDSS = 30 V VDSS = −20 V VCEO = 15 V VF = 0.40 V (Max.) , IF = 1 A VF = 0.55 V (Max.) , IF = 500 mA 15 µH 22 µH 4.7 µF 1 µF 3300 pF 2700 pF 4.7 µF 2.2 µF 56 pF 2.2 µF 0.1 µF 0.33 µF 0.1 µF 150 Ω 300 Ω 18 kΩ 27 kΩ 20 kΩ 1 kΩ 2.7 kΩ 22 kΩ 15 kΩ 24 kΩ 47 kΩ 15 kΩ 150 kΩ 15 kΩ 120 kΩ 10 kΩ 47 kΩ 24 kΩ 15 kΩ 30 kΩ 18 kΩ 1 A, 74.5 mΩ 0.77 A, 104 mΩ 10 V 25 V 50 V 50 V 10 V 16 V 50 V 16 V 16 V 10 V 16 V 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W VENDOR SANYO Fairchild SANYO SANYO SANYO SANYO TDK TDK PARTS NO. CPH3106 NDS355AN CPH3303 CPH3206 SBS004 SB05-05CP SLF6028T-150M1R0 SLF6028T-220MR77
Note : SANYO : SANYO Electric Co., Ltd. Fairchild : Fairchild Semiconductor Corporation TDK : TDK Corporation
34
MB3883
s REFERENCE DATA
Conversion efficiency vs. load current (CH1 : Zeta method with synchronous rectification)
90 88 Vin Iin Q1 R1 82 Ω C10 3300 pF C1 4.7 µF A L1 10 µH L2 22 µH
Vo1 (3.3 V)
Conversion efficiency η (%)
86 84 82 80 78 76 74 72 70 0 50 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V
To OUT1-1
C17 2.2 µF
IL Q3 D1 C2 4.7 µF
To OUT1-2
η (%) =
Vo1 × IL × 100 Vin × Iin
Ta = +25 °C 3.3 V output VCC = VCC(O) = 5 V
100 150 200 250 300 350 400 450 500
Load current IL (mA) Conversion efficiency vs. load current (CH2 : Zeta method with synchronous rectification)
90 88 Vin Iin Q2 R2 110 Ω C11 3300 pF C3 4.7 µF B L3 15 µH L4 22 µH Vo2 (2.5 V)
Conversion efficiency η (%)
86 84 82 80 78 76 74 72 70 0 50 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V
To OUT2-1
C18 2.2 µF
IL Q4 D2 C4 4.7 µF
To OUT2-2
η (%) =
Vo2 × IL × 100 Vin × Iin
Ta = +25 °C 2.5 V output VCC = VCC(O) = 5 V
100 150 200 250 300 350 400 450 500
Load current IL (mA) Note : The above application uses a constant of Vin=2.5 V, with settings made at maximum load.
(Continued)
35
MB3883
(Continued)
Conversion efficiency vs. load current (CH5 : Up conversion method with synchronous rectification)
100 99 Iin L5 10 µH F D8 Q9 Q8 C21 2.2 µF C12 4.7 µF C13 2.2 µF Q10 Vo5 (5.0 V)
Conversion efficiency η (%)
98 97 96 95 94 93 92 91 90 0 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V 50 100 150
Ta = +25 °C 5 V output VCC = VCC(O) = 5 V
Vin
To OUT5-1
IL
To OUT5-2 To SWOUT
η (%) = Vo5 × IL × 100 Vin × Iin
200
250
300
Load current IL (mA) Note : The above application uses a constant of Vin=2.5V, with settings made at maximum load.
36
MB3883
s USAGE PRECAUTION
• Printed circuit board ground lines should be set up with consideration for common impedance. • Take appropriate static electricity measures.
• • • •
Containers for semiconductor materials should have anti-static protection or be made of conductive material. After mounting, printed circuit boards should be stored and shipped in conductive bags or containers. Work platforms, tools, and instruments should be properly grounded. Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.
• Do not apply negative voltages.
The use of negative voltages below –0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation.
s ORDERING INFORMATION
Part number MB3883PFV MB3883PV Package 48-pin plastic LQFP (FPT-48P-M05) 48-pad plastic BCC (LCC-48P-M02) Remarks
37
MB3883
s PACKAGE DIMENSIONS
48-pin plastic LQFP (FPT-48P-M05)
9.00±0.20(.354±.008)SQ *7.00 –0.10 (.276 –.004 )SQ
36 25
+0.40 +.016
Note 1) * : These dimensions include resin protrusion. Note 2) Pins width and pins thickness include plating thickness.
0.145±0.055 (.006±.002)
37
24
0.08(.003) INDEX
Details of "A" part 1.50 –0.10 .059 –.004
+0.20 +.008
(Mounting height)
48
13
"A" 0˚~8˚ LEAD No. 0.50(.020)
1 12
0.10±0.10 (.004±.004) (Stand off)
0.20±0.05 (.008±.002)
0.08(.003)
M
0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006)
0.25(.010)
C
2002 FUJITSU LIMITED F48013S-c-5-9
Dimensions in mm (inches)
(Continued)
38
MB3883
(Continued) 48-pin plastic BCC (LCC-48P-M02)
6.20(.244)TYP 5.00(.197)REF 7.00±0.10(.276±.004) 37 25 25 (0.80(.031)MAX) (Mount height) 0.50(.020) TYP 0.50±0.10 (.020±.004)
"C" 37
0.50(.020) TYP 6.15(.242) REF 5.00(.197) REF 0.50±0.10 (.020±.004)
7.00±0.10 (.276±.004) INDEX AREA
6.20(.244) TYP
13 1 13 0.075±0.025 (.003±.001) (Stand off) Details of "A" part 0.05(.002) 0.14(.006) MIN 0.40±0.06 (.016±.002)
"C"
"A" 6.15(.242)REF
"B"
1
Details of "B" part C0.2(.008) 0.45±0.06 (.018±.002)
Details of "C" part 0.45±0.06 (.018±.002)
0.30±0.06 (.012±.002)
C
0.45±0.06 (.018±.002)
0.45±0.06 (.018±.002)
2001 FUJITSU LIMITED C48055S-c-4-2
Dimensions in mm (inches)
39
MB3883
FUJITSU LIMITED
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
F0210 © FUJITSU LIMITED Printed in Japan