0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MB39A102

MB39A102

  • 厂商:

    FUJITSU(富士通)

  • 封装:

  • 描述:

    MB39A102 - Evaluation Board - Fujitsu Component Limited.

  • 数据手册
  • 价格&库存
MB39A102 数据手册
FUJITSU SEMICONDUCTOR DATA SHEET DS04-71102-1E ASSP for Power Supply Applications Evaluation Board MB39A102 s DESCRIPTION The MB39A102 evaluation board is a surface mount circuit board with four channels of up conversion, down conversion and up/down conversion circuits. The internal structure consists of one channel of step-down type, two channels of transformer type, and one channel of Sepic type. A total of seven lines of output terminals are provided, supporting voltage settings from -7 V to +15 V and supplying a current Max 500 mA (Sepic type) at a power-supply voltage between +2.5 V and +6 V. The output circuit (ch1) can be changed to the Zata type by optional replacement of components. The board incorporates the protective functions that upon detection of a short circuit or activation of the under voltage lockout protection circuit, the short-circuit protection feature shuts off transistors to stop the output. Also, the short-circuit detection comparator can detect a short circuit through an external input (initial number P12). In addition, each channel can be controlled to be turned on and off and can be set for a soft-start. s EVALUATION BOARD SPECIFICATIONS Terminal Input voltage Oscillation frequency VIN  Vo-1 Vo-2-1 Vo-2-2 Output voltage Vo-2-3 Vo-3-1 Vo-3-2 Vo-4 Min 2.5 400 2.2 13 4.5 −8.3 13 4.5 2.9 Typ 3.6 500 2.5 15 5 −7.5 15 5 3.3 Max 6 600 2.8 17 5.5 −6.7 17 5.5 3.7 V Unit V kHz (Continued) MB39A102 (Continued) Terminal Vo-1 Vo-2-1 Vo-2-2 Output current Vo-2-3 Vo-3-1 Vo-3-2 Vo-4 Short-circuit detection time Soft-start time   Min        4.6 7.6 Typ        7 10.3 Max 250 10 50 −5 10 50 500 12.5 15.8 ms ms mA Unit s TERMINAL DESCRIPTION Symbol VIN VoX CTL GNDX ICGND Function Power-supply terminal VIN = 2.5 V to 6.0 V (Typ: 3.6 V) DC/DC converter output terminal Power-supply control terminal VCTL = 0 V to 0.8 V : Standby mode VCTL = 2.0 V to VIN : Operation mode DC/DC converter GND terminal MB39A102 GND terminal s SWITCH DESCRIPTION SW 1 2 3 4 5 NAME CS1 CS2 CS3 CS4 CTL FUNCTION CH1 control CH2 control CH3 control CH4 control Power supply control ON Output ON Output ON Output ON Output ON Operation mode OFF Output OFF Output OFF Output OFF Output OFF Standby mode 2 MB39A102 s SETUP AND CHECKUP (1) Setup • Connect the power-supply terminal side to VIN and GND. Connect the Vo side to the required loading device or measuring instrument. • Connect a startup power supply from 2.0 V to VIN to the CTL terminal. (This can be done by connection from VIN.) • Set SW5 (CTL) to OFF (Standby mode) and SW1 through SW4 (CS1 through CS4) to OFF (output off). (2) Checkup • Turn on VIN (power supply), set SW5 to ON (Operation mode) and SW1 through SW4 to ON (output on). The IC works normally with the following outputs: Vo1 = 2.5 V (Typ) , Vo2-1 = 15 V (Typ) , Vo2-2 = 5 V (Typ) , Vo2-3 = −7.5 V (Typ) , Vo3-1 = 15 V (Typ) , Vo3-2 = 5 V (Typ) , Vo4 = 3.3 V (Typ) 3 MB39A102 s COMPONENT LAYOUT • On-board Component Layout MB39A102 EV BOARD L2 V O1 C6 GND1 C11 C10 R5 C8 P2 R1 C9 D2 VO2-1 D6 C15 C31 R9 C13 P3 D5 C14 GND GND3 Q5 OFF 3 4 1 C3 R4 R3 Q1 P1 C5 C4 D1 L1 T1 D4 Q2 D3 ICGND R19 C23 R21 P6 R20 R22 R23 P5 C22 C20 R14 R15 R16 R17 R13 C21 P9 P10 P11 R10 C12 Q4 VIN SW1 ON C16 R12 C18 D7 V O4 C17 L3 P4 L4 C19 GND4 CTL 2 ON R11 6 OFF 5 REV. 2. 0 Note : Only C1 and C2 parts are set on the rear surface. (Continued) 4 VO3-1 VO3-2 R26 R27 P7 R32 P8 R33 R31 C29 C28 R29 C25 R25 15 16 R36 R35 R34 P12 1 R30 R28 C24 C26 C27 T2 GND2 R24 R2 C30 R37 30 1 M1 R18 VO2-2 C7 R6 1 VO2-3 MB39A102 (Continued) Top side Inside VIN & GND (Layer2) Inside GND (Layer3) Bottom Side 5 MB39A102 s CONNECTION DIAGRAM A P5 R13 R14 3.3 kΩ 12 kΩ −INE1 15 kΩ 29 Offset voltage±10 mV VREF Error − Amp1 + + 1.24 V L priority VCCO CH1 Drive1 Pch 26 R15 C20 CS1 12 µA C1 0.1 µF 0Ω R1 R3 0Ω 0Ω P1 Q1 MCH3309 A L2 22 µH 30 a 0.1 µF 0.047 µF C21 2 kΩ FB1 R16 PWM + Comp1 + − C5 0Ω V O1 2.5 V IO1 = 250 mA 25 OUT1 R4 C4 1 µF L priority 28 Offset voltage±10 mV VREF L priority R17 0Ω R19 R20 DTC1 27 R18 XXX IO = 130 mA at VCCO = 4 V C3 XXX L1 D1 XXX SBS004 C6 4.7 µF GND1 VO2-1 15 V IO2-1 = 10 mA B P6 −INE2 2.4 kΩ 43 kΩ 2 1 R21 15 kΩ CS2 12 µA C22 R22 C23 2 kΩ FB2 Error − Amp2 + + 1.24 V CH2 Drive2 Pch OUT2 P2 Q2 R5 MCH3309 0Ω B D2 T1 D3 SB05-05CP b 0.1 µF PWM +Comp2 + − 2.2 µF C9 VO2-2 5V IO2-2 = 50 mA VO2-3 −7.5 V IO2-3 = −5 mA 24 1 µF R6 SB05-05CP L priority 0Ω 0.047 µF 3 Offset voltage±10 mV VREF Error − Amp3 + + 1.24 V L priority R23 33 kΩ C P7 VIN (2.5 V to 6V) R25 R26 24 kΩ 43 kΩ 20 kΩ DTC2 4 R24 −INE3 IO = 130 mA at VCCO = 4 V C8 C7 XXX D4 2.2 µF SB05-05CP C10 C11 2.2 µF 14 CS3 12 µA CH3 Drive3 Pch OUT3 P3 R9 MCH3309 Q4 R27 15 kΩ C24 15 R28 C25 2 kΩ c 0.1 µF PWM +Comp3 + − Using same transformer GND2 VO3-1 15 V IO3-1 = 10 mA 23 C D5 SB05-05CP 0.047 µF FB3 L priority 13 Offset voltage±10 mV VREF Error − Amp4 + + 1.24 V L priority 0Ω C31 XXX R29 3.3 kΩ GND P8 D R31 R32 3 kΩ 22 kΩ DTC3 12 R30 20 kΩ −INE4 15 kΩ IO = 130 mA at VCCO = 4 V R10 0Ω C13 D6 2.2 µF C14 SB05-05CP C15 T2 P4 2.2 µF 17 16 CH4 Drive4 Nch OUT4 R33 CS4 12 µA C26 d 0.1 µF 0.1 µF C27 1 kΩ FB4 R34 PWM +Comp4 + − 1 µF C12 XXX VO3-2 5V IO3-2 = 50 mA 22 GND0 L priority D 18 19 100 kΩ VREF SCP − Comp 21 IO = 130 mA at VCCO = 4 V H at SCP ErrorAmp Power Supply SCPComp Power Supply ErrorAmp Reference 1.24 V R11 L3 C18 GND3 VO4 3.3 V IO4 = 500 mA R35 30 kΩ DTC4 18 kΩ R36 0Ω R12 180 Ω C16 10 µH 4.7 µF D7 SBS004 15 µF L4 P12 −INS 10 µF C19 P9 Short-circuit detection signal (L : at short) Charge current CSCP 1 µA 20 1V + SCP H :UVLO release 4700 PF C17 1 µF Q5 CPH3206 11 UVLO OSC 0.9 V 0.4 V 2.0 V CT Accuracy ±10% 1.5 MHz Correspondence VCC C28 0.01 µF 5 0.1 µF R2 0Ω GND4 bias C2 VREF VR1ON/OFF 6 CTL Power CTL* e RT 24 kΩ 8 P10 9 7 Accuracy ±1% R37 C29 100 pF P11 VREF Accuracy ±1% 10 GND IC GND C30 0.1 µF * : H : ON (Power ON) L : OFF (At standby) VTH = 1.4 V OFF OFF OFF OFF ON Note : Fixed value of not mounted parts is described by XXX. SW1 ON CS1 OPEN ON CS2 OPEN ON CS3 OPEN ON CS4 OPEN OFF CTL a b c d e IC is operating, and all channels are ON state in above diagram. 123456 6 MB39A102 s PARTS LIST No Sym Part bol name IC Model name MB39A102 PFT Specification Rating 1 Rating 2 Rating 3 Val- Deviaue tion Features Package Manufacturer Note 1 M1 2 Q1 3 Q2 4 Q4 5 Q5 6 D1 7 D2 8 D3 9 D4 10 D5 11 D6 12 D7 13 L1 14 L2 15 L3 16 L4 17 T1 18 T2 19 C1  PD = 0.9 W PD = 0.9 W PD = 0.9 W PC = 0.9 W                                          RDC = 0.13 Ω RDC = 0.067 Ω RDC = 0.097 Ω FPTFUJITSU 30P-M04 Pch FET MCH3309 Pch FET MCH3309 Pch FET MCH3309 VGSS = 10 V ID = 1.5 A VGSS = 10 V ID = 1.5 A VGSS = 10 V ID = 1.5 A VCEO = 15 V IC = 3.0 A    SC-62 SANYO SANYO SANYO SANYO NPN SBD SBD SBD SBD SBD SBD SBD Coil Coil Coil Coil Transformer Transformer CPH3206 SBS004 SB0505CP SB0505CP SB0505CP SB0505CP SB0505CP SBS004 IF(AV) = 1.0 A VRRM = 15 V IF(AV) = 0.5 A VRRM = 50 V IF(AV) = 0.5 A VRRM = 50 V IF(AV) = 0.5 A VRRM = 50 V IF(AV) = 0.5 A VRRM = 50 V IF(AV) = 0.5 A VRRM = 50 V IF(AV) = 1.0 A VRRM = 15 V                   SOT-23 SANYO SOT-23 SANYO SOT-23 SANYO SOT-23 SANYO SOT-23 SANYO SOT-23 SANYO SOT-23 SANYO          1608  TDK TDK TDK SUMIDA SUMIDA Not mounted RLF5018TIDC1 = 0.63 A IDC2 = 0.86 A 220MR63 RLF5018TIDC1 = 0.94 A IDC2 = 1.3 A 100MR94 RLF5018TIDC1 = 0.76 A IDC2 = 1.0 A 150MR76 CLQ52 5388-T095 CLQ52 5388-T095 22 µ ±20% 10 µ ±20% 15 µ ±20%       50 V          Temperature characteristics B Temperature characteristics B Ceramic C1608JB1 condensH104K er Ceramic C1608JB1 condensH104K er Ceramic condenser 0.1 µ ±10% TDK 20 C2 50 V  25 V 1/4 W 0.1 µ ±10% 1608  3216 3216 TDK Not mounted 21 C3     Temperature characteristics B  TDK  22 C4 23 C5 Ceramic C3216JB1 condensE105K er 1 µ ±10% 0Ω Max 50 mΩ Jumper   (Continued) 7 MB39A102 Sym Part No bol name 24 C6 25 C7 26 C8 27 C9 28 C10 29 C11 30 C12 31 C13 32 C14 33 C15 34 C16 35 C17 36 C18 37 C19 38 C20 39 C21 40 C22 41 C23 42 C24 43 C25 44 C26 45 C27 Model name Specification Rating 1 Rating 2 Rating 3 Value Deviation Features Temperature characteristics B Pack- Manuage facturer Note Ceramic C3216JB1 condenser A475M Ceramic condenser 10 V  25 V 16 V 16 V 16 V  25 V 16 V 16 V 50 V 25 V 10 V 6.3 V 50 V 50 V 50 V 50 V 50 V 50 V 50 V 50 V                                             4.7 µ ±10%  1µ  ±10% 3216  3216 3216 3216 3216  3216 3216 3216 1608 3216 3216 3216 1608 1608 1608 1608 1608 1608 1608 1608 TDK  TDK TDK TDK TDK  TDK TDK TDK TDK TDK TDK TDK TDK TDK TDK TDK TDK TDK TDK TDK Not mounted Not mounted   Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Ceramic C3216JB1 condenser E105K Ceramic C3216JB1 condenser C225K Ceramic C3216JB1 condenser C225K Ceramic C3216JB1 condenser C225K Ceramic condenser 2.2 µ ±10% 2.2 µ ±10% 2.2 µ ±10%  1µ  ±10%   Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Temperature characteristics B Ceramic C3216JB1 condenser E105K Ceramic C3216JB1 condenser C225K Ceramic C3216JB1 condenser C225K Ceramic C1608JB1 condenser H472K Ceramic C3216JB1 condenser E105K Ceramic C3216JB1 condenser A475M Ceramic C3216JB1 condenser A106M Ceramic C1608JB1 condenser H104K Ceramic C1608JB1 condenser H473K Ceramic C1608JB1 condenser H104K Ceramic C1608JB1 condenser H473K Ceramic C1608JB1 condenser H104K Ceramic C1608JB1 condenser H473K Ceramic C1608JB1 condenser H104K Ceramic C1608JB1 condenser H104K 2.2 µ ±10% 2.2 µ ±10% 4700 P ±10% 1.0 µ ±10% 4.7 µ ±10% 10 µ ±10% 0.1 µ ±10% 0.047 µ ±10% 0.1 µ ±10% 0.047 µ ±10% 0.1 µ ±10% 0.047 µ ±10% 0.1 µ ±10% 0.1 µ ±10% (Continued) 8 MB39A102 Sym Part No bol name 46 C28 47 C29 48 C30 49 C31 50 R1 51 R2 52 R3 53 R4 54 R5 55 R6 56 R9 Model name Specification Rating 1 Rating 2 Rating 3 Value Deviation Features Temperature characteristics B Temperature characteristics B Temperature characteristics B ManuPackage facturer Note Ceramic C1608JB1 condenser H103K Ceramic C1608CH1 condenser H101J Ceramic C1608JB1 condenser H104K Ceramic condenser 50 V 50 V 50 V  1/16 W 1/16 W 1/4 W 1/16 W 1/4 W 1/16 W 1/4 W 1/16 W 1/4 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W  1/16 W                                           0.01 µ ±10% 100 p ±5% 1608 1608 1608  1608 1608 3216 1608 3216 1608 3216 1608 3216 1608 1608 1608 1608 1608 1608  1608 TDK TDK TDK           ssm ssm ssm ssm ssm   ssm Not mounted Not mounted 0.1 µ ±10%  0Ω 0Ω 0Ω 0Ω 0Ω 0Ω 0Ω 0Ω 0Ω  Max 50 mΩ Max 50 mΩ Max 50 mΩ Max 50 mΩ Max 50 mΩ Max 50 mΩ Max 50 mΩ Max 50 mΩ Max 50 mΩ           RR0816P181-D RR0816P332-D RR0816P123-D RR0816P153-D RR0816P202-D           Jumper Jumper Jumper Jumper Jumper Jumper Jumper 57 R10 Jumper 58 R11 Jumper 59 R12 Resistor 60 R13 Resistor 61 R14 Resistor 62 R15 Resistor 63 R16 Resistor 64 R17 Jumper 65 R18 Resistor 66 R19 Resistor 180 Ω ±0.5% ±25 ppm/ °C 3.3 kΩ ±0.5% ±25 ppm/ °C 12 kΩ ±0.5% ±25 ppm/ °C 15 kΩ ±0.5% ±25 ppm/ °C 2.0 kΩ ±0.5% ±25 ppm/ °C 0Ω  Max 50 mΩ      RR0816P242-D 2.4 kΩ ±0.5% ±25 ppm/ °C (Continued) 9 MB39A102 (Continued) No Sym Part bol name Model name RR0816P433-D RR0816P153-D RR0816P202-D RR0816P333-D RR0816P203-D RR0816P242-D RR0816P433-D RR0816P153-D RR0816P202-D RR0816P333-D RR0816P203-D RR0816P302-D RR0816P223-D RR0816P153-D RR0816P102-D RR0816P303-D RR0816P183-D RR0816P243-D DMS-6H Specification Rating 1 Rating 2 Rating 3 Value Deviation Features ManuPackage facturer Note 67 R20 Resistor 68 R21 Resistor 69 R22 Resistor 70 R23 Resistor 71 R24 Resistor 72 R25 Resistor 73 R26 Resistor 74 R27 Resistor 75 R28 Resistor 76 R29 Resistor 77 R30 Resistor 78 R31 Resistor 79 R32 Resistor 80 R33 Resistor 81 R34 Resistor 82 R35 Resistor 83 R36 Resistor 84 R37 Resistor 85 SW1 Switch 86 PIN 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W                                           43 kΩ ±0.5% ±25 ppm/ °C 15 kΩ ±0.5% ±25 ppm/ °C 2.0 kΩ ±0.5% ±25 ppm/ °C 33 kΩ ±0.5% ±25 ppm/ °C 20 kΩ ±0.5% ±25 ppm/ °C 2.4 kΩ ±0.5% ±25 ppm/ °C 43 kΩ ±0.5% ±25 ppm/ °C 15 kΩ ±0.5% ±25 ppm/ °C 2.0 kΩ ±0.5% ±25 ppm/ °C 33 kΩ ±0.5% ±25 ppm/ °C 20 kΩ ±0.5% ±25 ppm/ °C 3.0 kΩ ±0.5% ±25 ppm/ °C 22 kΩ ±0.5% ±25 ppm/ °C 15 kΩ ±0.5% ±25 ppm/ °C 1.0 kΩ ±0.5% ±25 ppm/ °C 30 kΩ ±0.5% ±25 ppm/ °C 18 kΩ ±0.5% ±25 ppm/ °C 24 kΩ ±0.5% ±25 ppm/ °C 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608 1608   ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm MATSUKYU MacEight       Terminal WT-2-1 pins SANYO TDK SUMIDA ssm MATSUKYU MacEight : : : : : : SANYO Electric Co., Ltd. TDK Corporation Sumida Corporation SUSUMU CO., LTD. Matsukyu Co., Ltd. MacEight Co., Ltd. 10 MB39A102 s INITIAL SETTINGS (1) Output voltage CH1 : Vol (V) = 1.24/R15× (R13+R14+R15) = 2.5 (V) : CH2 : Vo2-2 (V) = 1.24/R21× (R19+R20+R21) = 5.0 (V) : CH3 : Vo3-2 (V) = 1.24/R27× (R25+R26+R27) = 5.0 (V) : CH4 : Vo4 (V) = 1.24/R33× (R31+R32+R33) = 3.3 (V) : (2) Oscillation frequency fosc (kHz) = 1200000/ (C29 (pF) × R37 (kΩ) ) = 500 (kHz) : (3) Soft-start time CH1 : ts (s) = 0.103×C20 (µF) = 10.3 (ms) : CH2 : ts (s) = 0.103×C22 (µF) = 10.3 (ms) : CH3 : ts (s) = 0.103×C24 (µF) = 10.3 (ms) : CH4 : ts (s) = 0.103×C26 (µF) = 10.3 (ms) : (4) Short-circuit detection time tscp (s) = 0.70×C28 (µF) = 7.0 (ms) : 11 MB39A102 s REFERENCE DATA • Conversion efficiency  Input voltage • TOTAL efficiency 100 95 TOTAL efficiency η (%) 90 85 80 75 70 65 60 2.0 At VIN = 2.59 V : CH1 stops by short-circuit detection operation VO1 = 2.5 V, IO1 = 250 mA VO2-1 = 15 V, IO2-1 = 10 mA VO2-2 = 5 V, IO2-2 = 50 mA VO2-3 = −7.5 V, IO2-3 = −5 mA VO3-1 = 15 V, IO3-1 = 10 mA VO3-2 = 5 V, IO3-2 = 50 mA VO4 = 3.3 V, IO4 = 500 mA fOSC = 500 kHz 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input voltage VIN (V) • Each CH Efficiency 100 95 Each CH efficiency η (%) 90 CH1 85 CH4 80 75 70 65 60 2.0 CH2 CH3 Notes: Only concerned CH is ON Include external SW Tr operating current CH2 and CH3 are discontinuous mode. 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input voltage VIN (V) 12 MB39A102 • Load Reguration (VIN = 3.6 V) • CH1 5 DC/DC converter output voltage (V) 4 3 2 Setting VO1 = 2.5 V 1 0 0 50 100 150 200 250 300 Load current IO (mA) • CH2, CH3 7 DC/DC converter output voltage (V) 6 Setting VO3-2 = 5 V 5 Setting VO2-2 = 5 V 4 3 Note : CH of using transformer only uses feedback control output. VO2-1, VO3-1 : IO = 10 mA Fix VO2-3 : IO = −5 mA Fix 0 10 20 30 40 50 2 Load current IO (mA) 13 MB39A102 • CH4 5 DC/DC converter output voltage (V) 4 Setting VO4 = 3.3 V 3 2 1 0 0 100 200 300 400 500 Load current IO (mA) 14 MB39A102 • Line Regulation • Output is a feedback control. 6 DC/DC converter output voltage (V) Setting VO2-2 = 5 V 5 Setting VO3-2 = 5 V 4 Setting VO4 = 3.3 V 3 Setting VO1 = 2.5 V 2 1 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input voltage VIN (V) • Output is a feedback control none. 17 DC/DC converter output voltage (V) 16 Setting VO3-1 = 15 V Setting VO2-1 = 15 V 15 14 13 12 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input voltage VIN (V) (Continued) 15 MB39A102 (Continued) • Output is a feedback control none. −5 DC/DC converter output voltage (V) −6 −7 Setting VO2-3 = −7.5 V −8 −9 −10 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input voltage VIN (V) 16 MB39A102 s COMPONENT SELECTION METHODS 1. Board view Schottky Barrier Diode Output smoothing condenser Transformer L2 C3 R4 0 P-ch MOS FET Inductor (L2) MB39A102 EV BOARD Q1 P1 C5 220 000 000 R3 C4 Vo1 C6 CH1 GND1 Vo2-3 D1 L1 T1 D4 C11 CH2 Vo2-2 C7 ES1 Q2 0 1 R21 R20 R22 R23 R24 R2 C30 P6 P5 R14 R15 123 153 202 0 332 R13 R6 D3 C10 D2 P2 C9 R19 242 433 202 333 203 0 000 C21 R5 C8 0 ICGND C23 C22 M1 C20 30 R16 R17 R18 P11 R1 Output smoothing condenser Schottky Barrier Diode CH3 P10 C28 15 R29 C25 R25 242 333 203 202 433 153 R36 16 R35 R34 R32 P8 183 303 102 P9 R30 R28 R26 R27 C27 P12 R31 302 223 153 R33 R10 C12 0 Q4 C15 VIN 000 R9 C31 C13 P3 D5 Vo3-1 Vo3-2 P7 1 C24 C26 T2 D6 GND2 C29 243 R37 Vo2-1 MB39A102 0140 401 ES C14 GND SW1 1 Q5 C16 R12 181 ON 2 OFF 3 GND3 Output smoothing condenser 1 2 3 4 4 CTL ON R11 C17 Vo4 5 OFF MKK C18 D7 CH4 C19 100 000 5 OFF L3 P4 Transformer 6 150 GND4 6 L4 R E V. 2 . 0 Output smoothing condenser NPN Tr Inductor (L3) Inductor (L4) Schottky Barrier Diode Board Photograph 17 MB39A102 The following subsections show the component selection methods with the following common parametric values. 2. CH1 : Output 2.5 V (Downconversion Type) VIN (Max) = 6.0 V, Io = 250 mA, fosc = 500 kHz (1) P-ch MOS FET (MCH3309 (SANYO product) ) VDS = −20 V, VGS = ±10 V, ID = −1.5 A, RDS (ON) = 340 mΩ (Max) , Qg = 3.2 nC • Drain current: Peak value The peak drain current of this FET must be within its rated current. If the FET’s peak drain current is ID, it is obtained by the following formula. VO = VIN × tON t VO = 1 × VO tON = t × VIN fOSC VIN VIN (Max) −VO × tON ID ≥ IO + 2L 6−2.5 1 ≥ 0.25 + × × 0.417 500×103 2×22×10−6 ≥ 0.316 A • Drain-source voltage / Gate-source voltage The source-drain and gate-source voltages of the FET should be in the rated voltage value of FET. The FET source-drain voltage (VDS) and gate-source voltage (VGS) are obtained by the following formula. VDS ≤ −VIN (Max) ≤ −6 V VGS ≥ VIN (Max) ≥ 6V (2) Schottky Barrier Diode (SBS004 (SANYO product) ) VF (forward voltage) = 0.35 V (Max) : at IF = 1 A, VRRM (repeated peak reverse voltage) = 15 V IF (mean output current) = 1 A, IFSM (surge forward current) = 10 A • Diode current: Peak value The peak diode current must be within its rated current. If the peak diode current is IFSM, it is obtained by the following formula. IFSM ≥ IO + VO × tOFF 2L 2.5 1 ≥ 0.25 + × × (1−0.417) 500×103 2×22×10−6 ≥ 0.316 A 18 MB39A102 • Diode current: Average value The mean value of diode current must be within its rated current. If the mean value of diode current is IF, it is obtained by the following formula. IF ≥ IO × tOFF t ≥ 0.25 × 0.583 ≥ 0.146A • Repeated peak reverse voltage The repeated peak reverse voltage must be within its rated voltage. If the repeated peak reverse voltage is VRRM, it is obtained by the following formula. VRRM ≥ VIN (Max) ≥ 6V (3) Inductor (SLF12565T-220M3R5 : TDK product) 22 µH (tolerance ± 20%) , rated current = 0.63 A The condition for L to be a continuous current within the operating voltge range is obtained by the following formula. L ≥ VIN (Max) −VO × tON 2IO 6−2.5 1 ≥ × × 0.42 2×0.25 500×103 ≥ 5.88 µH The load current satisfying the continuous current condition is obtained by the following formula. IO ≥ VO × tOFF 2L 2.5 1 ≥ × × (1−0.42) 500×103 2×22×10−6 ≥ 66 mA • Ripple current: Peak value The peak ripple current must be within the rated current of the inductor. If the peak ripple current is IL, it is obtained by the following formula. IL ≥ IO + VIN (Max) −VO × tON 2L 6−2.5 1 ≥ 0.25 + × × 0.417 500×103 2×22×10−6 ≥ 0.316 A • Ripple current: Peak-to-peak value If the peak-to-peak ripple current is ∆IL, it is obtained by the following formula. VIN (Max) −VO ∆I L = × tON L 6−2.5 1 = × × 0.42 500×103 22×10−6 = 0.134 A : 19 MB39A102 3. CH2, CH3 : (Transformer Conversion Type) VIN (Max) = 6 V VIN (Min) = 2.5 V VO2-1, VO3-1 = 15 V VO2-2, VO3-2 = 5 V VO2-3 = −7.5 V IO2-1, IO3-1 = 10 mA IO2-2, IO3-2 = 50 mA IO2-3 = −5 mA (1) P-ch MOS FET (MCH3309 (SANYO product) ) VDS = −20 V, VGS = ±10 V, ID = −1.5 A, RDS (ON) = 340 mΩ (Max) , Qg = 3.2 nC The FET’s rated drain current must be at least 0.7 A. The FET’s rated drain-source and gate-source voltages must be at least 9 V. (2) Schottky Barrier Diode (SB05-05CP (SANYO product) ) VRRM (repeated peak reverse voltage) = 50 V, IF (average output current) = 500 mA, IFSM (surge forward current) = 5 A The each diode rated parameter must be at least VRRM (repeated peak reverse voltage) = 49 V, IF (mean output current) = 50 mA, IFSM (surge forward current) = 0.3 A. 4. CH4 : 3.3 V output (Sepic Type) VIN (Min) = 2.5 V, IO = 500 mA, fOSC = 500 kHz (1) NPN Tr (CPH3206 (SANYO product) ) VCEO = 15 V, VCBO = 15 V, IC = 3 A, hFE = 200 (Min) • Collector current: Peak value The peak collector current of this Tr must be within its rated current. If the Tr’s peak collector current is IC, it is obtained by the following formula. tON VO = VIN × tOFF VO tON = t × VIN+VO 1 VO = × fOSC VIN+VO VO+VIN (Min) 1+1 IC ≥ × IO + 1 × VIN (Min) × tON VIN (Min) 2 L3 L4 1 1 3.3+2.5 1 1 + ≥ × 0.5 + × 2.5 × × 0.69 2.5 2 10×10−6 15×10−6 500×103 ( ) ( ) ≥ 1.397 A Collector-emitter voltage / Collector-base voltage The collector-emitter and collector-base voltages of the Tr should be in the rated voltage value of Tr. The Tr’s collector-emitter voltage (VCEO) and collector-base voltage (VCBO) are obtained by the following formula. VCEO = VCBO ≥ VIN (Max) + VO ≥ 6+3.3 ≥ 9.3 V 20 MB39A102 (2) Schottky Barrier Diode (SBS004 (SANYO product) ) VF (forward voltage) = 0.35 V (Max) : at IF = 1 A, VRRM (repeated peak reverse voltage) = 15 V IFSM (surge forward current) = 10 A, IF (mean output current) = 1 A • Diode current: Peak value The peak current of this diode must be within its rated current. If the diode’s peak current is IFSM, it is obtained by the following formula. 1+1 × VO × tOFF IFSM ≥ VO+VIN (Min) × IO + 1 VIN (Min) 2 L3 L4 1 1 3.3+2.5 1 1 + ≥ × 0.5 + × 3.3 × × (1−0.569) 2.5 2 10×10−6 15×10−6 500×103 ( ) ( ) ≥ 1.397 A • Diode current: Average value The mean value of diode current must be within its rated current. If the mean value of diode current is IF, it is obtained by the following formula. IF ≥ IO ≥ 0.5 A • Repeated peak reverse voltage The repeated peak reverse voltage of this diode must be within its rated voltage. If the diode’s repeated peak reverse voltage is VRRM, it is obtained by the following formula. VRRM ≥ VIN (Max) +VO ≥ 6+3.3 ≥ 9.3 V (3) Inductor (L3 : RLF5018T-100MR94, TDK product) 10 µH (tolerance ± 20%) , rated current = 0.94 A The condition for L to be a continuous current within the operating voltge range is obtained by the following formula. 2 L ≥ VIN (Max) × tON 2IOVO 62 1 ≥ × × 0.355 2×0.5×3.3 500×103 ≥ 7.7µH The load current satisfying the continuous current condition is obtained by the following formula. 2 IO ≥ VIN (Max) × tON 2LVO 62 1 ≥ × × 0.355 2×10×10−6×3.3 500×103 ≥ 0.387 A Note : The continuous current condition becomes a large current value compared with the current value obtained by L4. 21 MB39A102 • IL current: Peak value The peak IL current of this inductor must be within its rated current. IL current is obtained by the following formula. VO × IO + VIN (Min) × tON IL ≥ VIN (Min) 2L 3.3 2.5 1 ≥ × 0.5 + × × 0.57 500×103 2.5 2×10×10−6 ≥ 0.802 A (4) Inductor (L4 : RLF5018T-150MR76, TDK product) 15 µH (tolerance ± 20%) , rated current = 0.76 A The condition for L to be a continuous current within the operating voltge range is obtained by the following formula. L ≥ VIN (Max) × tON 2IO 6 1 ≥ × × 0.355 2×0.5 500×103 ≥ 4.3µH The load current satisfying the continuous current condition is obtained by the following formula. IO ≥ VIN (Max) × tON 2L 6 1 ≥ × × 0.355 500×103 2×15×10−6 ≥ 0.142 A Note : The continuous current condition becomes a large current value compared with the current value obtained by L3. • IL current: Peak value The peak IL current of this inductor must be within its rated current. IL current is obtained by the following formula. IL ≥ IO + VIN (Max) × tON 2L 6 1 ≥ 0.5 + × × 0.355 500×103 2×15×10−6 ≥ 0.642 A 22 MB39A102 s ORDERING INFORMATION EV board part No. MB39A102EVB EVboard version No. MB39A102EV Board Rev. 2.0 Note IC Package TSSOP 23 MB39A102 FUJITSU LIMITED All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. F0301 © FUJITSU LIMITED Printed in Japan
MB39A102 价格&库存

很抱歉,暂时无法提供与“MB39A102”相匹配的价格&库存,您可以联系我们找货

免费人工找货