0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MB85RS256TYPNF-G-BCERE1

MB85RS256TYPNF-G-BCERE1

  • 厂商:

    FUJITSU(富士通)

  • 封装:

    SOP8_150MIL

  • 描述:

    IC FRAM 256KBIT SPI 33MHZ 8SOP

  • 数据手册
  • 价格&库存
MB85RS256TYPNF-G-BCERE1 数据手册
FUJITSU SEMICONDUCTOR DATA SHEET DS501-00021-2v0-E Memory FRAM 256 K (32 K × 8) Bit SPI MB85RS256B ■ DESCRIPTION MB85RS256B is a FRAM (Ferroelectric Random Access Memory) chip in a configuration of 32,768 words × 8 bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells. MB85RS256B adopts the Serial Peripheral Interface (SPI). The MB85RS256B is able to retain data without using a back-up battery, as is needed for SRAM. The memory cells used in the MB85RS256B can be used for 1012 read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E2PROM. MB85RS256B does not take long time to write data like Flash memories or E2PROM, and MB85RS256B takes no wait time. ■ FEATURES : 32,768 words × 8 bits : SPI (Serial Peripheral Interface) Correspondent to SPI mode 0 (0, 0) and mode 3 (1, 1) Operating frequency : All commands except READ 33 MHz (Max) READ command 25 MHz (Max) High endurance : 1012 times / byte Data retention : 10 years ( + 85 °C), 95 years ( + 55 °C), over 200 years ( + 35 °C) Operating power supply voltage : 2.7 V to 3.6 V Low power consumption : Operating power supply current 6 mA (Typ@33 MHz) Standby current 9 μA (Typ) Operation ambient temperature range : -40 °C to +85 °C Package : 8-pin plastic SOP (FPT-8P-M02) RoHS compliant • Bit configuration • Serial Peripheral Interface • • • • • • • Copyright©2012-2013 FUJITSU SEMICONDUCTOR LIMITED All rights reserved 2013.2 MB85RS256B ■ PIN ASSIGNMENT (TOP VIEW) CS 1 8 VDD SO 2 7 HOLD WP 3 6 SCK GND 4 5 SI (FPT-8P-M02) ■ PIN FUNCTIONAL DESCRIPTIONS Pin No. Pin Name CS Chip Select pin This is an input pin to make chips select. When CS is “H” level, device is in deselect (standby) status and SO becomes High-Z. Inputs from other pins are ignored for this time. When CS is “L” level, device is in select (active) status. CS has to be “L” level before inputting op-code. WP Write Protect pin This is a pin to control writing to a status register. The writing of status register (see “■ STATUS REGISTER”) is protected in related with WP and WPEN. See “■ WRITING PROTECT” for detail. 7 HOLD Hold pin This pin is used to interrupt serial input/output without making chips deselect. When HOLD is “L” level, hold operation is activated, SO becomes High-Z, SCK and SI become do not care. While the hold operation, CS has to be retained “L” level. 6 SCK Serial Clock pin This is a clock input pin to input/output serial data. SI is loaded synchronously to a rising edge, SO is output synchronously to a falling edge. 5 SI Serial Data Input pin This is an input pin of serial data. This inputs op-code, address, and writing data. 2 SO Serial Data Output pin This is an output pin of serial data. Reading data of FRAM memory cell array and status register data are output. This is High-Z during standby. 8 VDD Supply Voltage pin 4 GND Ground pin 1 3 2 Functional description DS501-00021-2v0-E MB85RS256B ■ BLOCK DIAGRAM Control Circuit SCK HOLD Row Decoder CS Address Counter Serial-Parallel Converter SI FRAM Cell Array 32,768 ✕ 8 FRAM Status Register Column Decoder/Sense Amp/ Write Amp WP Data Register SO Parallel-Serial Converter DS501-00021-2v0-E 3 MB85RS256B ■ SPI MODE MB85RS256B corresponds to the SPI mode 0 (CPOL = 0, CPHA = 0) , and SPI mode 3 (CPOL = 1, CPHA = 1) . CS SCK SI 7 6 5 MSB 4 3 2 1 0 LSB SPI Mode 0 CS SCK SI 7 6 5 4 MSB 3 2 1 0 LSB SPI Mode 3 4 DS501-00021-2v0-E MB85RS256B ■ SERIAL PERIPHERAL INTERFACE (SPI) MB85RS256B works as a slave of SPI. More than 2 devices can be connected by using microcontroller equipped with SPI port. By using a microcontroller not equipped with SPI port, SI and SO can be bus connected to use. SCK MOSI MISO SO SPI Microcontroller SI SO SCK SCK MB85RS256B MB85RS256B CS SI CS HOLD HOLD SS1 SS2 HOLD1 HOLD2 MOSI : Master Out Slave In MISO : Master In Slave Out SS : Slave Select System Configuration with SPI Port SO SI SCK Microcontroller MB85RS256B CS HOLD System Configuration without SPI Port DS501-00021-2v0-E 5 MB85RS256B ■ STATUS REGISTER Bit No. Bit Name Function WPEN Status Register Write Protect This is a bit composed of nonvolatile memories (FRAM). WPEN protects writing to a status register (refer to “■ WRITING PROTECT”) relating with WP input. Writing with the WRSR command and reading with the RDSR command are possible. 6 to 4 ⎯ Not Used Bits These are bits composed of nonvolatile memories, writing with the WRSR command is possible, and “000” is written before shipment. These bits are not used but they are read with the RDSR command. 3 BP1 2 BP0 7 1 WEL 0 0 Block Protect This is a bit composed of nonvolatile memory. This defines size of write protect block for the WRITE command (refer to “■ BLOCK PROTECT”). Writing with the WRSR command and reading with the RDSR command are possible. Write Enable Latch This indicates FRAM Array and status register are writable. The WREN command is for setting, and the WRDI command is for resetting. With the RDSR command, reading is possible but writing is not possible with the WRSR command. WEL is reset after the following operations. After power ON. After WRDI command recognition. The rising edge of CS after WRSR command recognition. The rising edge of CS after WRITE command recognition. This is a bit fixed to “0”. ■ OP-CODE MB85RS256B accepts 8 kinds of command specified in op-code. Op-code is a code composed of 8 bits shown in the table below. Do not input invalid codes other than those codes. If CS is risen while inputting op-code, the command are not performed. Name Description Op-code WREN Set Write Enable Latch 0000 0110B WRDI Reset Write Enable Latch 0000 0100B RDSR Read Status Register 0000 0101B WRSR Write Status Register 0000 0001B READ Read Memory Code 0000 0011B WRITE Write Memory Code 0000 0010B Read Device ID 1001 1111B Fast Read Memory Code 0000 1011B RDID FSTRD 6 DS501-00021-2v0-E MB85RS256B ■ COMMAND • WREN The WREN command sets WEL (Write Enable Latch) . WEL has to be set with the WREN command before writing operation (WRSR command and WRITE command) . WREN command is applicable to “Up to 33 MHz operation”. CS 0 1 2 3 4 5 6 7 SCK SI Invalid 0 0 0 0 0 1 1 Invalid 0 High-Z SO • WRDI The WRDI command resets WEL (Write Enable Latch) . Writing operation (WRSR command and WRITE command) are not performed when WEL is reset. WRDI command is applicable to “Up to 33 MHz operation”. CS 0 1 2 3 4 5 6 7 SCK SI Invalid SO DS501-00021-2v0-E 0 0 0 0 0 1 0 0 Invalid High-Z 7 MB85RS256B • RDSR The RDSR command reads status register data. After op-code of RDSR is input to SI, 8-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. In the RDSR command, repeated reading of status register is enabled by sending SCK continuously before rising of CS. RDSR command is applicable to “Up to 33 MHz operation”. CS 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SCK SI 0 0 0 0 0 1 0 Invalid 1 Data Out High-Z SO Invalid MSB LSB • WRSR The WRSR command writes data to the nonvolatile memory bit of status register. After performing WRSR op-code to a SI pin, 8 bits writing data is input. WEL (Write Enable Latch) is not able to be written with WRSR command. A SI value correspondent to bit 1 is ignored. Bit 0 of the status register is fixed to “0” and cannot be written. The SI value corresponding to bit 0 is ignored. WP signal level shall be fixed before performing WRSR command, and do not change the WP signal level until the end of command sequence. WRSR command is applicable to “Up to 33 MHz operation”. CS 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SCK Data In Instruction SI SO 8 0 0 0 0 0 0 0 1 7 MSB High-Z 6 5 4 3 2 1 0 LSB DS501-00021-2v0-E MB85RS256B • READ The READ command reads FRAM memory cell array data. Arbitrary 16 bits address and op-code of READ are input to SI. The most significant address bit is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When CS is risen, the READ command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before CS rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely. READ command is applicable to “Up to 25 MHz operation”. CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 18 19 20 21 22 23 24 25 26 27 28 29 30 31 SCK SI SO 16-bit Address OP-CODE 5 4 0 0 0 0 0 0 1 1 X 14 13 12 11 10 MSB High-Z 3 2 1 Invalid 0 LSB MSB 7 6 Data Out 5 4 3 2 1 LSB 0 Invalid • WRITE The WRITE command writes data to FRAM memory cell array. WRITE op-code, arbitrary 16 bits of address and 8 bits of writing data are input to SI. The most significant address bit is invalid. When 8 bits of writing data is input, data is written to FRAM memory cell array. Risen CS will terminate the WRITE command, but if you continue sending the writing data for 8 bits each before CS rising, it is possible to continue writing with automatic address increment. When it reaches the most significant address, it rolls over to the starting address, and writing cycle can be continued infinitely. WRITE command is applicable to “Up to 33MHz operation”. CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 18 19 20 21 22 23 24 25 26 27 28 29 30 31 SCK SI SO 16-bit Address OP-CODE 0 0 0 0 0 0 1 0 X 14 13 12 11 10 5 4 MSB High-Z DS501-00021-2v0-E Data In 3 2 1 0 7 6 LSB MSB 5 4 3 2 1 0 LSB 9 MB85RS256B • FSTRD The FSTRD command reads FRAM memory cell array data. Arbitrary 16 bits address and op-code of FSTRD are input to SI followed by 8 bits dummy. The most significant address bit is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When CS is risen, the FSTRD command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before CS rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely. FSTRD command is applicable to “Up to 33 MHz operation”. CS 0 1 2 3 4 5 6 7 8 OP-CODE 0 0 0 0 1 0 1 1 X 14 13 12 MSB 21 22 23 24 25 9 10 11 30 31 32 33 34 35 36 37 38 39 SCK SI 16-bit Address 2 High-Z 8-bit Dummy Invalid X X 1 0 X X LSB MSB 7 6 SO 5 Data Out 4 3 2 1 LSB 0 Invalid • RDID The RDID command reads fixed Device ID. After performing RDID op-code to SI, 32-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. The output is in order of Manufacturer ID (8bit)/Continuation code (8bit)/Product ID (1st Byte)/Product ID (2nd Byte). RDID command is applicable to “Up to 33 MHz operation”. In the RDID command, SO holds the output state of the last bit after 32-bit Device ID output by continuously sending SCK clock before CS is risen. RDID command is applicable to “Up to 33 MHz operation”. CS 0 1 2 3 4 5 6 7 1 0 0 1 1 1 1 1 8 31 32 33 34 35 36 37 38 39 9 10 11 SCK SI Invalid Data Out SO High-Z Data Out 8 31 30 29 28 7 6 5 4 3 2 MSB 1 0 LSB bit Manufacturer ID Continuation code 7 0 0 6 0 1 5 0 1 4 0 1 3 0 1 Proprietary use 10 Product ID (1st Byte) 0 0 0 Product ID (2nd Byte) 0 0 0 2 1 1 1 0 1 0 0 1 Density 0 0 Hex 04H Fujitsu 7FH Hex 1 0 1 05H Proprietary use 0 1 0 0 1 Hex 09H Density: 00101B = 256kbit DS501-00021-2v0-E MB85RS256B ■ BLOCK PROTECT Writing protect block for WRITE command is configured by the value of BP0 and BP1 in the status register. BP1 BP0 Protected Block 0 0 None 0 1 6000H to 7FFFH (upper 1/4) 1 0 4000H to 7FFFH (upper 1/2) 1 1 0000H to 7FFFH (all) ■ WRITING PROTECT Writing operation of the WRITE command and the WRSR command are protected with the value of WEL, WPEN, WP as shown in the table. WEL WPEN WP Protected Blocks Unprotected Blocks Status Register 0 X X Protected Protected Protected 1 0 X Protected Unprotected Unprotected 1 1 0 Protected Unprotected Protected 1 1 1 Protected Unprotected Unprotected ■ HOLD OPERATION Hold status is retained without aborting a command if HOLD is “L” level while CS is “L” level. The timing for starting and ending hold status depends on the SCK to be “H” level or “L” level when a HOLD pin input is transited to the hold condition as shown in the diagram below. In case the HOLD pin transited to “L” level when SCK is “L” level, return the HOLD pin to “H” level at SCK being “L” level. In the same manner, in case the HOLD pin transited to “L” level when SCK is “H” level, return the HOLD pin to “H” level at SCK being “H” level. Arbitrary command operation is interrupted in hold status, SCK and SI inputs become do not care. And, SO becomes High-Z while reading command (RDSR, READ). If CS is rising during hold status, a command is aborted. In case the command is aborted before its recognition, WEL holds the value before transition to HOLD status. CS SCK HOLD Hold Condition DS501-00021-2v0-E Hold Condition 11 MB85RS256B ■ ABSOLUTE MAXIMUM RATINGS Parameter Rating Symbol Min Max Unit Power supply voltage* VDD − 0.5 + 4.0 V Input voltage* VIN − 0.5 VDD + 0.5 V VOUT − 0.5 VDD + 0.5 V TA − 40 + 85 °C Tstg − 55 + 125 °C Output voltage* Operation ambient temperature Storage temperature *:These parameters are based on the condition that VSS is 0 V. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING CONDITIONS Parameter Symbol Value Min Typ Max Unit Power supply voltage* VDD 2.7 3.3 3.6 V Input high voltage* VIH VDD × 0.8 ⎯ VDD + 0.5 V Input low voltage* VIL − 0.5 ⎯ + 0.6 V Operation ambient temperature TA − 40 ⎯ + 85 °C *:These parameters are based on the condition that VSS is 0 V. WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. 12 DS501-00021-2v0-E MB85RS256B ■ ELECTRICAL CHARACTERISTICS 1. DC Characteristics (within recommended operating conditions) Parameter Input leakage current*1 Output leakage current* 2 Symbol Condition |ILI| |ILO| Value Unit Min Typ Max VIN = 0 V to VDD ⎯ ⎯ 10 μA VOUT = 0 V to VDD ⎯ ⎯ 10 μA SCK = 25 MHz ⎯ 4 5 mA SCK = 33 MHz ⎯ 5 6 mA Operating power supply current IDD Standby current ISB All inputs VSS or SCK = SI = CS = VDD ⎯ 9 50 μA Output high voltage VOH IOH = −2 mA VDD × 0.8 ⎯ ⎯ V Output low voltage VOL IOL = 2 mA ⎯ ⎯ 0.4 V *1 : Applicable pin : CS, WP, HOLD, SCK, SI *2 : Applicable pin : SO DS501-00021-2v0-E 13 MB85RS256B 2. AC Characteristics Value Parameter Symbol Up to 25MHz operation Up to 33MHz operation* Min Max Min Max Unit SCK clock frequency fCK 0 25 0 33 MHz Clock high time tCH 20 ⎯ 15 ⎯ ns Clock low time tCL 20 ⎯ 15 ⎯ ns Chip select set up time tCSU 10 ⎯ 10 ⎯ ns Chip select hold time tCSH 10 ⎯ 10 ⎯ ns Output disable time tOD ⎯ 20 ⎯ 20 ns Output data valid time tODV ⎯ 18 ⎯ 13 ns Output hold time tOH 0 ⎯ 0 ⎯ ns Deselect time tD 60 ⎯ 40 ⎯ ns Data in rising time tR ⎯ 50 ⎯ 50 ns Data falling time tF ⎯ 50 ⎯ 50 ns Data set up time tSU 5 ⎯ 5 ⎯ ns Data hold time tH 5 ⎯ 5 ⎯ ns HOLD set up time tHS 10 ⎯ 10 ⎯ ns HOLD hold time tHH 10 ⎯ 10 ⎯ ns HOLD output floating time tHZ ⎯ 20 ⎯ 20 ns HOLD output active time tLZ ⎯ 20 ⎯ 20 ns * : All commands except READ are applicable to “Up to 33 MHz operation”. READ command is applicable to “Up to 25MHz operation”. AC Test Condition Power supply voltage Operation ambient temperature Input voltage magnitude Input rising time Input falling time Input judge level Output judge level 14 : 2.7 V to 3.6 V : − 40 °C to + 85 °C : 0.3 V to 2.7 V : 5 ns : 5 ns : VDD/2 : VDD/2 DS501-00021-2v0-E MB85RS256B AC Load Equivalent Circuit 3.3 V 1.2 k Output 30 pF 0.95 k 3. Pin Capacitance Parameter Symbol Condition Output capacitance CO Input capacitance CI VDD = VIN = VOUT = 0 V, f = 1 MHz, TA = +25 °C DS501-00021-2v0-E Value Unit Min Max ⎯ 10 pF ⎯ 10 pF 15 MB85RS256B ■ TIMING DIAGRAM • Serial Data Timing tD CS tCSH tCSU tCH tCL tCH SCK tSU tH Valid in SI tODV SO tOH tOD High-Z High-Z : H or L • Hold Timing CS SCK tHS tHH tHS tHS tHH tHS tHH tHH HOLD High-Z SO tHZ 16 tLZ High-Z tHZ tLZ DS501-00021-2v0-E MB85RS256B ■ POWER ON/OFF SEQUENCE If VDD falls down below 2.0 V, VDD is required to be started from 1.0 V or less to prevent malfunctions when the power is turned on again (see the figure below). tr tpd tpu VDD VDD 3.0 V 3.0 V VIH (Min) VIH (Min) 1.0 V 1.0 V VIL (Max) VIL (Max) GND GND CS >VDD × 0.8* CS CS >VDD × 0.8* CS : do not care CS * : CS (Max) < VDD + 0.5 V Parameter Symbol Value Min Max Unit CS level hold time at power OFF tpd 200 ⎯ ns CS level hold time at power ON tpu 85 ⎯ ns tr 0.05 200 ms Power supply rising time If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed. ■ FRAM CHARACTERISTICS Item Min 1 Read/Write Endurance* 2 Data Retention* 12 10 Max Unit Parameter ⎯ Times/byte Operation Ambient Temperature TA = + 85 °C 10 ⎯ 95 ⎯ ≥ 200 ⎯ Operation Ambient Temperature TA = + 85 °C Years Operation Ambient Temperature TA = + 55 °C Operation Ambient Temperature TA = + 35 °C *1 : Total number of reading and writing defines the minimum value of endurance, as an FRAM memory operates with destructive readout mechanism. *2 : Minimun values define retention time of the first reading/writing data right after shipment, and these values are calculated by qualification results. ■ NOTE ON USE Data written before performing IR reflow is not guaranteed after IR reflow. DS501-00021-2v0-E 17 MB85RS256B ■ ESD AND LATCH-UP Test DUT Value ESD HBM (Human Body Model) JESD22-A114 compliant ≥ |2000 V| ESD MM (Machine Model) JESD22-A115 compliant ≥ |200 V| ESD CDM (Charged Device Model) JESD22-C101 compliant ⎯ Latch-Up (I-test) JESD78 compliant MB85RS256BPNF-G-JNE1 ⎯ Latch-Up (Vsupply overvoltage test) JESD78 compliant ⎯ Latch-Up (Current Method) Proprietary method ⎯ Latch-Up (C-V Method) Proprietary method ⎯ • Current method of Latch-Up Resistance Test Protection Resistance A Test terminal IIN VIN VDD + DUT - VSS VDD (Max.Rating) V Reference terminal Note : The voltage VIN is increased gradually and the current IIN of 300 mA at maximum shall flow. Confirm the latch up does not occur under IIN = ± 300 mA. In case the specific requirement is specified for I/O and IIN cannot be 300 mA, the voltage shall be increased to the level that meets the specific requirement. 18 DS501-00021-2v0-E MB85RS256B • C-V method of Latch-Up Resistance Test Protection Resistance A 1 Test 2 terminal SW + VIN V - C 200pF VDD DUT VDD (Max.Rating) VSS Reference terminal Note : Charge voltage alternately switching 1 and 2 approximately 2 sec interval. This switching process is considered as one cycle. Repeat this process 5 times. However, if the latch-up condition occurs before completing 5times, this test must be stopped immediately. DS501-00021-2v0-E 19 MB85RS256B ■ REFLOW CONDITIONS AND FLOOR LIFE Item Condition Method IR (infrared reflow) , Convection Times 2 Before unpacking Please use within 2 years after production. From unpacking to 2nd reflow Within 8 days In case over period of floor life Baking with 125 °C+/-3 °C for 24hrs+2hrs/-0hrs is required. Then please use within 8 days. (Please remember baking is up to 2 times) Floor life Floor life condition Between 5 °C and 30 °C and also below 70%RH required. (It is preferred lower humidity in the required temp range.) Reflow Profile 260°C 255°C Liquidous Temperature 170 °C to 190 °C (b) RT (c) (a) (a) Average ramp-up rate (b) Preheat & Soak (c) Average ramp-up rate (d) Peak temperature (d’) Liquidous temperature (e) Cooling (d) (e) (d') : 1 °C/s to 4 °C/s : 170 °C to 190 °C, 60 s to 180 s : 1 °C/s to 4 °C/s : Temperature 260 °C Max; 255 °C within 10 s : Up to 230 °C within 40 s or Up to 225 °C within 60 s or Up to 220 °C within 80 s : Natural cooling or forced cooling Note : Temperature on the top of the package body is measured. 20 DS501-00021-2v0-E MB85RS256B ■ RESTRICTED SUBSTANCES This product complies with the regulations below (Based on current knowledge as of November 2011). • EU RoHS Directive (2002/95/EC) • China RoHS (Administration on the Control of Pollution Caused by Electronic Information Products ( )) • Vietnam RoHS (30/2011/TT-BCT) Restricted substances in each regulation are as follows. Substances Threshold Contain status* Lead and its compounds 1,000 ppm ❍ Mercury and its compounds 1,000 ppm ❍ 100 ppm ❍ Hexavalent chromium compound 1,000 ppm ❍ Polybrominated biphenyls (PBB) 1,000 ppm ❍ Polybrominated diphenyl ethers (PBDE) 1,000 ppm ❍ Cadmium and its compounds * : The mark of “❍” shows below a threshold value. DS501-00021-2v0-E 21 MB85RS256B ■ ORDERING INFORMATION Package Shipping form Minimum shipping quantity MB85RS256BPNF-G-JNE1 8-pin plastic SOP (FPT-8P-M02) Tube 1 MB85RS256BPNF-G-JNERE1 8-pin plastic SOP (FPT-8P-M02) Embossed Carrier tape 1500 Part number 22 DS501-00021-2v0-E MB85RS256B ■ PACKAGE DIMENSION 8-pin plastic SOP Lead pitch 1.27 mm Package width × package length 3.9 mm × 5.05 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.75 mm MAX Weight 0.06 g (FPT-8P-M02) 8-pin plastic SOP (FPT-8P-M02) +0.25 Note 1) *1 : These dimensions include resin protrusion. Note 2) *2 : These dimensions do not include resin protrusion. Note 3) Pins width and pins thickness include plating thickness. Note 4) Pins width do not include tie bar cutting remainder. +.010 +0.03 *1 5.05 –0.20 .199 –.008 0.22 –0.07 +.001 .009 –.003 8 5 *2 3.90±0.30 6.00±0.20 (.154±.012) (.236±.008) Details of "A" part 45° 1.55±0.20 (Mounting height) (.061±.008) 0.25(.010) 0.40(.016) 1 "A" 4 1.27(.050) 0.44±0.08 (.017±.003) 0.13(.005) 0~8° M 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) 0.15±0.10 (.006±.004) (Stand off) 0.10(.004) C 2002-2012 FUJITSU SEMICONDUCTOR LIMITED F08004S-c-5-10 Dimensions in mm (inches). Note: The values in parentheses are reference values. Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/ DS501-00021-2v0-E 23 MB85RS256B ■ MARKING [MB85RS256BPNF-G-JNE1] [MB85RS256BPNF-G-JNERE1] RS256B E11150 300 [FPT-8P-M02] 24 DS501-00021-2v0-E MB85RS256B ■ PACKING INFORMATION 1. Tube 1.1 Tube Dimensions • Tube/stopper shape Tube Transparent polyethylene terephthalate (treated to antistatic) Stopper (treated to antistatic) Tube length: 520 mm Tube cross-sections and Maximum quantity Maximum quantity Package form Package code FPT-8P-M02 SOP, 8, plastic (2) pcs/ tube pcs/inner box pcs/outer box 95 7600 30400 1.8 2.6 7.4 6.4 4.4 ©2006-2010 FUJITSU SEMICONDUCTOR LIMITED C 2006 FUJITSU LIMITED F08008-SET1-PET:FJ99L-0022-E0008-1-K-1 F08008-SET1-PET:FJ99L-0022-E0008-1-K-3 t = 0.5 Transparent polyethylene terephthalate (Dimensions in mm) DS501-00021-2v0-E 25 MB85RS256B 1.2 Tube Dry pack packing specifications IC Tube Stopper For SOP Index mark Label I *1*3 Aluminum Iaminated bag Heat seal Dry pack Desiccant Humidity indicater Aluminum Iaminated bag (tubes inside) Inner box Cushioning material Inner box Label I *1*3 Cushioning material Outer box*2 Outer box Use adhesive tapes. Label II-A *3 Label II-B *3 *1: For a product of witch part number is suffixed with “E1”, a “ G bag and the inner boxes. Pb ” marks is display to the moisture barrier *2: The space in the outer box will be filled with empty inner boxes, or cushions, etc. *3: Please refer to an attached sheet about the indication label. Note: The packing specifications may not be applied when the product is delivered via a distributer. 26 DS501-00021-2v0-E MB85RS256B 1.3 Product label indicators Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)] XXXXXXXXXXXXXX (Customer part number or FJ part number) C-3 Label (LEAD FREE mark) (3N)1 XXXXXXXXXXXXXX XXX (Part number and quantity) QC PASS (3N)2 XXXXXXXXXX XXXXXX (FJ control number) XXX pcs XXXXXXXXXXXXXX (Quantity) (Customer part number or FJ part number) (Customer part number or FJ part number bar code) XXXX/XX/XX (Packed years/month/day) ASSEMBLED IN xxxx XXXXXXXXXXXXXX (Customer part number or FJ part number) (FJ control number bar code) XX/XX XXXX-XXX XXX (Package count) XXXX-XXX XXX XXXXXXXXXX (FJ control number ) (Lot Number and quantity) XXXXXXXXXXXXXX (Comment) Perforated line Supplemental Label Label II-A: Label on Outer box [D Label] (100mm × 100mm) D Label XXXXXXXXXXXXX (Customer Name) (CUST.) XXXXXXXXX (Delivery Address) (DELIVERY POINT) XXXXXXXXXXXXXX (TRANS.NO.) (FJ control number) XXXXXXXXXXXXXX (PART NO.) (Customer part number or FJ part number) XXX (FJ control number) XXX (FJ control number) XXX (FJ control number) XXXXXXXXXXXXXX (Part number) (PART NAME) XXXXXXXXXXXXXX (Part number) XXX/XXX (Q’TY/TOTAL Q’TY) (CUSTOMER'S REMARKS) XXXXXXXXXXXXXXXXXXXX (3N)3 XXXXXXXXXXXXXX XXX XX (UNIT) (PACKAGE COUNT) XXX/XXX (3N)4 XXXXXXXXXXXXXX XXX (FJ control number + Product quantity) (FJ control number + Product quantity bar code) (Part number + Product quantity) (3N)5 XXXXXXXXXX (FJ control number) (Part number + Product quantity bar code) (FJ control number bar code) Label II-B: Outer boxes product indicate XXXXXXXXXXXXXX (Lot Number) XXXX-XXX XXXX-XXX (Part number) (Count) X X (Quantity) XXX XXX XXX Note: Depending on shipment state, “Label II-A” and “Label II-B” on the external boxes might not be printed. DS501-00021-2v0-E 27 MB85RS256B 1.4 Dimensions for Containers (1) Dimensions for inner box H W L L W H 540 125 75 (Dimensions in mm) (2) Dimensions for outer box H W L L W H 565 270 180 (Dimensions in mm) 28 DS501-00021-2v0-E MB85RS256B 2. Emboss Tape 2.1 Tape Dimensions PKG code FPT-8P-M02 Maximum storage capacity Reel No 3 pcs/reel pcs/inner box pcs/outer box 1500 1500 10500 ø1.5 +0.1 –0 8±0.1 1.75±0.1 2±0.05 4±0.1 B 0.3±0.05 A B A 5.5±0.1 12 +0.3 –0.1 5.5±0.05 ø1.5 +0.1 –0 SEC.B-B 2.1±0.1 6.4±0.1 0.4 3.9±0.2 SEC.A-A C 2012 FUJITSU SEMICONDUCTOR LIMITED SOL8-EMBOSSTAPE9 : NFME-EMB-X0084-1-P-1 (Dimensions in mm) Material : Conductive polystyrene Heat proof temperature : No heat resistance. Package should not be baked by using tape and reel. DS501-00021-2v0-E 29 MB85RS256B 2.2 IC orientation • ER type Index mark (User Direction of Feed) (User Direction of Feed) (Reel side) 2.3 Reel dimensions Reel cutout dimensions E ∗ D C B A W1 W2 r W3 ∗: Reel No Hub unit width dimensions 1 2 3 4 5 6 7 8 Tape width 8 12 16 24 Symbol A 254 ± 2 254 ± 2 330 ± 2 254 ± 2 330 ± 2 254 ± 2 330 ± 2 C 13 ± 0.2 D 21 ± 0.8 E 10 11 44 12 13 56 12 Dimensions in mm 14 15 16 24 330 ± 2 150 +2 -0 100 +2 -0 150 +2 -0 100 +2 -0 100 ± 2 13 +0.5 -0.2 20.5 +1 -0.2 2 ± 0.5 W1 8.4 +2 -0 W2 less than 14.4 less than 18.4 less than 22.4 less than 30.4 less than 38.4 less than 50.4 less than 62.4 less than 18.4 less than 22.4 less than 30.4 W3 7.9 ~ 10.9 11.9 ~ 15.4 15.9 ~ 19.4 23.9 ~ 27.4 31.9 ~ 35.4 43.9 ~ 47.4 55.9 ~ 59.4 12.4 ~ 14.4 16.4 ~ 18.4 24.4 ~ 26.4 r 30 32 100 +2 -0 100 +2 -0 B 9 12.4 +2 -0 16.4 +2 -0 24.4 +2 -0 32.4 +2 -0 44.4 +2 -0 +0.1 56.4 +2 12.4 +1 16.4 +1 -0 -0 -0 24.4 -0 1.0 DS501-00021-2v0-E MB85RS256B 2.4 Taping (φ330mm Reel) Dry Pack Packing Specifications Outside diameter: φ 330mm reel Label I *1, *4 Embossed tapes Label I *1, *4 Desiccant Humidity indicator Aluminum laminated bag Dry pack Label I *1, *4 Heat seal Inner box Inner box Label I *1, *4 Taping Outer box *2, *3 Outer box Use adhesive tapes. Label II-A *4 Label II-B *4 *1: For a product of witch part number is suffixed with “E1”, a “ G bag and the inner boxes. Pb ” marks is display to the moisture barrier *2: The size of the outer box may be changed depending on the quantity of inner boxes. *3: The space in the outer box will be filled with empty inner boxes, or cushions, etc. *4: Please refer to an attached sheet about the indication label. Note: The packing specifications may not be applied when the product is delivered via a distributer. DS501-00021-2v0-E 31 MB85RS256B 2.5 Product label indicators Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)] XXXXXXXXXXXXXX (Customer part number or FJ part number) C-3 Label (LEAD FREE mark) (3N)1 XXXXXXXXXXXXXX XXX (Part number and quantity) QC PASS (3N)2 XXXXXXXXXX XXXXXX (FJ control number) XXX pcs XXXXXXXXXXXXXX (Quantity) (Customer part number or FJ part number) (Customer part number or FJ part number bar code) XXXX/XX/XX (Packed years/month/day) ASSEMBLED IN xxxx XXXXXXXXXXXXXX (Customer part number or FJ part number) (FJ control number bar code) XX/XX XXXX-XXX XXX (Package count) XXXX-XXX XXX XXXXXXXXXX (FJ control number ) (Lot Number and quantity) XXXXXXXXXXXXXX (Comment) Perforated line Supplemental Label Label II-A: Label on Outer box [D Label] (100mm × 100mm) D Label XXXXXXXXXXXXX (Customer Name) (CUST.) XXXXXXXXX (Delivery Address) (DELIVERY POINT) XXXXXXXXXXXXXX (TRANS.NO.) (FJ control number) XXXXXXXXXXXXXX (PART NO.) (Customer part number or FJ part number) XXX (FJ control number) XXX (FJ control number) XXX (FJ control number) XXXXXXXXXXXXXX (Part number) (PART NAME) XXXXXXXXXXXXXX (Part number) XXX/XXX (Q’TY/TOTAL Q’TY) (CUSTOMER'S REMARKS) XXXXXXXXXXXXXXXXXXXX (3N)3 XXXXXXXXXXXXXX XXX XX (UNIT) (PACKAGE COUNT) XXX/XXX (3N)4 XXXXXXXXXXXXXX XXX (FJ control number + Product quantity) (FJ control number + Product quantity bar code) (Part number + Product quantity) (3N)5 XXXXXXXXXX (FJ control number) (Part number + Product quantity bar code) (FJ control number bar code) Label II-B: Outer boxes product indicate XXXXXXXXXXXXXX (Lot Number) XXXX-XXX XXXX-XXX (Part number) (Count) X X (Quantity) XXX XXX XXX Note: Depending on shipment state, “Label II-A” and “Label II-B” on the external boxes might not be printed. 32 DS501-00021-2v0-E MB85RS256B 2.6 Dimensions for Containers (1) Dimensions for inner box H W L Tape width L W H 12, 16 24, 32 44 40 365 50 345 65 56 75 (Dimensions in mm) (2) Dimensions for outer box H W L L W H 415 400 315 (Dimensions in mm) DS501-00021-2v0-E 33 MB85RS256B ■ MAJOR CHANGES IN THIS EDITION A change on a page is indicated by a vertical line drawn on the left side of that page. Page Section Change Results ■ FEATURES Revised the Data retention 10 years ( + 85 °C) →10 years ( + 85 °C), 95 years ( + 55 °C), over 200 years ( + 35 °C) ■ COMMAND • RDID Deleted the following description: “RDID command is applicable to “Up to 33 MHz operation”.” 1 10 17 ■ POWER ON/OFF SEQUENCE Revised the following description: “VDD pin is required to be rising from 0 V because turning the power on from an intermediate level may cause malfunctions, when the power is turned on.” → “If VDD falls down below 2.0 V, VDDin is required to be started from 1.0 V or less to prevent malfunctions when the power is turned on again (see the figure below).” Moved the following description under the table: “If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed.” 18 21 34 ■ FRAM CHARACTERISTICS Revised the table and Note ■ ESD AND LATCH-UP Revised the following description: “occurred” → “occur” ■ RESTRICTED SUBSTANCES Revised the following description: “the below regulations” → “the regulations below” “as belows” → “as follows” DS501-00021-2v0-E MB85RS256B MEMO DS501-00021-2v0-E 35 MB85RS256B FUJITSU SEMICONDUCTOR LIMITED Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/ For further information please contact: North and South America FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/ Asia Pacific FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://sg.fujitsu.com/semiconductor/ Europe FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/ FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. 30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District, Shanghai 201204, China Tel : +86-21-6146-3688 Fax : +86-21-6146-3660 http://cn.fujitsu.com/fss/ Korea FUJITSU SEMICONDUCTOR KOREA LTD. 902 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fsk/ FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 2/F, Green 18 Building, Hong Kong Science Park, Shatin, N.T., Hong Kong Tel : +852-2736-3232 Fax : +852-2314-4207 http://cn.fujitsu.com/fsp/ Specifications are subject to change without notice. For further information please contact each office. All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions. Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws. The company names and brand names herein are the trademarks or registered trademarks of their respective owners. Edited: Sales Promotion Department
MB85RS256TYPNF-G-BCERE1 价格&库存

很抱歉,暂时无法提供与“MB85RS256TYPNF-G-BCERE1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MB85RS256TYPNF-G-BCERE1
  •  国内价格
  • 1+51.37560
  • 10+45.06840
  • 30+41.22360

库存:1