FUJITSU SEMICONDUCTOR DATA SHEET
DS07-12404-2E
8-bit Proprietary Microcontroller
CMOS
F2MC-8L MB89180 Series
MB89181/182/183/P185/PV180
s DESCRIPTION
The MB89180 series has been developed as a general-purpose version of the F2MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, a serial interface, a remote control transmission output, external interrupts, an LCD controller/driver, and a watch prescaler. *: F2MC stands for FUJITSU Flexible Microcontroller.
s FEATURES
• • • • • • • • • F2MC-8L family CPU core Dual-clock control system High speed operation at low voltage Minimum execution time: 0.95 µs/2.7 V, 1.33 µs/2.2 V I/O ports: max. 64 channels 21-bit time-base timer 8/16-bit timer/counter: 1 channel (8 bits × 2 channels) 8-bit serial I/O: 1 channel LCD controller/driver: max. 32 segments outputs × 4 commons
(Continued)
s PACKAGE
64-pin Plastic QFP 64-pin Plastic QFP 64-pin Plastic SQFP 64-pin Ceramic MQFP
(FPT-64P-M06)
(FPT-64P-M09)
(FPT-64P-M03)
(MQP-64C-P01)
MB89180 Series
(Continued) • Remote control transmission output • Buzzer output • Watch prescaler (15 bits) • External interrupts (wake-up function) Four independent channels with edge detection function plus eight “L” level-interrupt channels
s PRODUCT LINEUP
Part number Parameter
MB89181
MB89182
MB89183
MB89P185
MB89PV180
Classification Mass production products (mask ROM products) ROM size 4 K × 8 bits (internal mask ROM) 6 K × 8 bits (internal mask ROM) 8 K × 8 bits (internal mask ROM)
Piggyback/ evaluation One-time product (for PROM product evaluation and development) 16K × 8 bits (internal PROM, programming with generalpurpose EPROM programmer) 32 K × 8 bits (external ROM)
RAM size CPU functions
128 × 8 bits Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: I/O ports (N-ch open drain):
256 × 8 bits 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.95 µs/4.2 MHz 8.57 µs/4.2 MHz
512 × 8 bits
Ports
8 (6 ports also serve as peripherals, and 3 ports are a heavy-current drive type.) Output ports (N-ch open drain): 18 (16 ports also serve as segment pins*1, and 2 ports serve as booster capacitor connection pins.) I/O ports (CMOS): 16 (12 ports also serve as an external interrupt, and 8 ports also serve as segment pins*1.) Output port (CMOS): 1 (also serves as a remote control pin.) Total: 43 (max.) 8-bit timer/counter × 2 channels or 16-bit event counter × 1 channel 8 bits LSB first/MSB first selectability Common output: 4 (COM2 and COM3 also serve as output ports.) Segment output: 32 (max.)*1 Bias power supply pins: 3 LCD display RAM size: 32 × 4 bits Dividing resistor for LCD driving (external resistor selectability) 4 channels (edge selection, also serve as segment pins.)*1 8 channels (only for a level interrupt)
8/16-bit timer/ counter 8-bit serial I/O LDC controller/driver
External interrupt (wake-up function)
(Continued)
2
MB89180 Series
(Continued)
Part number Parameter
MB89181
MB89182
MB89183
MB89P185
MB89PV180
Buzzer output Remote control transmission output Standby mode Process Operating voltage* EPROM for use
2
1 (7 frequency types are selectable by software.) 1 (pulse width and cycle are selectable by software.) Sleep mode, stop mode, and watch mode CMOS 2.2 V* to 6.0 V
3
2.7 V to 6.0 V MBM27C256A-20TV (LCC package)
*1: Selected by the mask option. See section “s Mask Options.” *2: Varies with conditions such as the operating frequency and the connected ICE. (See section “s Electrical Characteristics.”) *3: The operation at less than 2.2 V is assured separately. Please contact FUJITSU LIMITED.
3
MB89180 Series
s PACKAGE AND CORRESPONDING PRODUCTS
Package FPT-64P-M06 FPT-64P-M09 FPT-64P-M03 MQP-64C-P01 : Available × × × MB89181 MB89182 MB89183 MB89P185 MB89PV180 × × ×
× : Not available
Note: For more information about each package, see section “s Package Dimensions.”
s DIFFERENCES AMONG PRODUCTS
1. Memory Size
Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points: • On the MB89181, addresses 0140H and later of the register bank cannot be used. On the MB89182, MB89183, and MB89P185 microcontrollers, addresses 0180H and later of the register bank cannot be used. • On the MB89P185, addresses BFF0H to BFF5H comprise the option setting area, option settings can be read by reading these addresses. • The stack area, etc., is set at the upper limit of the RAM.
2. Current Consumption
• In the case of the MB89PV180, add the current consumed by the EPROM which is connected to the top socket. • When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM. However, the current consumption in sleep/stop modes is the same. (For more information, see section “ s E lectrical Characteristics.” )
3. Mask Options
Functions that can be selected as options and how to designate these options vary by the product. Before using options check section “s Mask Options.” Take particular care on the following point: • Options are fixed on the MB89PV180 except the segment output selection.
4
MB89180 Series
s PIN ASSIGNMENT
(Top view)
*1 *1 *1 *1 *1 *1 *1 *1 *1 *1 *1 *1
SEG4 SEG5 SEG6 SEG7 SEG8/P40 SEG9/P41 SEG10/P42 SEG11/P43 SEG12/P44 SEG13/P45 SEG14/P46 SEG15/P47 SEG16/P50 SEG17/P51 SEG18/P52 SEG19/P53
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
SEG3 SEG2 SEG1 SEG0 COM0 COM1 COM2/P31 COM3/P32 VCC V3 V2 V1 P30/RCO P00/INT20 P01/INT21 P02/INT22
P03/INT23 P04/INT24 P05/INT25 P06/INT26 P07/INT27 RST X0A X1A MODA X0 X1 P20/EC P21 *2 P22/TO P23/SI P24/SO
*1 *1 *1
(FPT-64P-M03) *1: Selected using the mask option (in units of 4 pins). *2: N-ch open drain heavy-current drive type
*1
*1 SEG20/P54 *1 SEG21/P55 *1 SEG22/P56 *1 SEG23/P57 SEG24/INT10/P10 SEG25/INT11/P11 SEG26/INT12/P12 VSS SEG27/INT13/P13 *1 SEG28/P14 *1 SEG29/P15 *1 SEG30/P16 *1 SEG31/P17 *2 BUZ/P27 *2 P26 SCK/P25
5
MB89180 Series
(Top view) SEG3 SEG2 SEG1 SEG0 COM0 COM1 COM2/P31 COM3/P32 VCC V3 V2 V1 P30/RCO P00/INT20 P01/INT21 P02/INT22 SEG4 SEG5 SEG6 SEG7 *1 SEG8/P40 *1 SEG9/P41 *1 SEG10/P42 *1 SEG11/P43 *1 SEG12/P44 *1 SEG13/P45 *1 SEG14/P46 *1 SEG15/P47 *1 SEG16/P50 *1 SEG17/P51 *1 SEG18/P52 *1 SEG19/P53 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
P03/INT23 P04/INT24 P05/INT25 P06/INT26 P07/INT27 RST X0A X1A MODA X0 X1 P20/EC P21 *2 P22/TO P23/SI P24/SO
*1 *1 *1
(FPT-64P-M09) *1: Selected using the mask option (in units of 4 pins). *2: N-ch open drain heavy-current drive type
6
*1
*1 SEG20/P54 *1 SEG21/P55 *1 SEG22/P56 *1 SEG23/P57 SEG24/INT10/P10 SEG25/INT11/P11 SEG26/INT12/P12 VSS SEG27/INT13/P13 *1 SEG28/P14 *1 SEG29/P15 *1 SEG30/P16 *1 SEG31/P17 *2 BUZ/P27 *2 P26 SCK/P25
MB89180 Series
(Top view) SEG2 SEG1 SEG0 COM0 COM1 COM2/P31 COM3/P32 VCC V3 V2 V1 P30/RCO P00/INT20 SEG3 SEG4 SEG5 SEG6 SEG7 *1 SEG8/P40 *1 SEG9/P41 *1 SEG10/P42 *1 SEG11/P43 *1 SEG12/P44 *1 SEG13/P45 *1 SEG14/P46 *1 SEG15/P47 *1 SEG16/P50 *1 SEG17/P51 *1 SEG18/P52 *1 SEG19/P53 *1 SEG20/P54 *1 SEG21/P55 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
P01/INT21 P02/INT22 P03/INT23 P04/INT24 P05/INT25 P06/INT26 P07/INT27 RST X0A X1A MODA X0 X1 P20/EC P21*2 P22/TO P23/SI P24/SO P25/SCK
*1 *1 *1
(FPT-64P-M06) *1: Selected using the mask option (in units of 4 pins). *2: N-ch open drain heavy-current drive type
*1
*1 SEG22/P56 *1 SEG23/P57 SEG24/INT10/P10 SEG25/INT11/P11 SEG26/INT12/P12 VSS SEG27/INT13/P13 *1 SEG28/P14 *1 SEG29/P15 *1 SEG30/P16 *1 SEG31/P17 *2 BUZ/P27 *2 P26
7
MB89180 Series
(Top view) SEG2 SEG1 SEG0 COM0 COM1 COM2/P31 COM3/P32 VCC V3 V2 V1 P30/RCO P00/INT20 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8/P40 SEG9/P41 SEG10/P42 SEG11/P43 SEG12/P44 SEG13/P45 SEG14/P46 SEG15/P47 SEG16/P50 SEG17/P51 SEG18/P52 SEG19/P53 SEG20/P54 SEG21/P55 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
*1 *1 *1 *1 *1 *1 *1 *1 *1 *1 *1 *1 *1 *1
85 86 87 88 89 90 91 92 93
77 76 75 74 73 72 71 70 69
P01/INT21 P02/INT22 P03/INT23 P04/INT24 P05/INT25 P06/INT26 P07/INT27 RST X0A X1A MODA X0 X1 P20/EC P21*2 P22/TO P23/SI P24/SO P25/SCK
*1 *1 *1
(MQP-64C-P01) *1: Selected using the mask option (in units of 4 pins). *2: N-ch open drain heavy-current drive type
• Pin assignment on package top (MB89PV180 only) Pin no. 65 66 67 68 69 70 71 72 Pin name N.C. VPP A12 A7 A6 A5 A4 A3 Pin no. 73 74 75 76 77 78 79 80 Pin name A2 A1 A0 N.C. O1 O2 O3 VSS Pin no. 81 82 83 84 85 86 87 88 Pin name N.C. O4 O5 O6 O7 O8 CE A10 Pin no. 89 90 91 92 93 94 95 96 Pin name OE N.C. A11 A9 A8 A13 A14 VCC
N.C.: Internally connected. Do not use. 8
*1
*1 SEG22/P56 *1 SEG23/P57 SEG24/INT10/P10 SEG25/INT11/P11 SEG26/INT12/P12 VSS SEG27/INT13/P13 *1 SEG28/P14 *1 SEG29/P15 *1 SEG30/P16 *1 SEG31/P17 *2 BUZ/P27 *2 P26
20 21 22 23 24 25 26 27 28 29 30 31 32
94 95 96 65 66 67 68
84 83 82 81 80 79 78
MB89180 Series
s PIN DESCRIPTION
Pin no. QFP*1 SQFP*3 39 38 40 43 QFP*2 MQFP*4 40 39 41 44 X0 X1 MODA RST D C Pin name Circuit type A Function Main clock crystal oscillator pins CR oscillation selectability (only for the mask ROM products) Operating mode selection pin Connect directly to VSS. Reset I/O pin This pin is an N-ch open drain output type with a pullup resistor, and hysteresis input type. “L” is output from this pin by an internal reset source. The internal circuit is initialized by the input of “L”. General-purpose I/O ports Also serve as external interrupt 2 input (wake-up function). External interrupt 2 input is hysteresis input. General-purpose I/O ports Also serve as external interrupt 1 input. The interrupt 1 input is a hysteresis type. Also serve as LCD controller/driver segment output. Switching is done by the mask option. General-purpose I/O ports Also serve as LCD controller/driver segment output. Switching is done by the mask option. General-purpose N-ch open-drain I/O port Also serves as the external clock input for the 8-bit timer counter. The resource is a hysteresis input type. General-purpose N-ch open-drain I/O port General-purpose N-ch open-drain I/O port Also serves as the 8-bit timer/counter output General-purpose N-ch open-drain I/O port Also serves as the data input for the 8-bit serial I/O. The resource is a hysteresis input type. General-purpose N-ch open-drain I/O port Also serves as the data output for the 8-bit serial I/O. General-purpose N-ch open-drain I/O port Also serves as the clock I/O for the 8-bit serial I/O. The resource is a hysteresis input type.
44 to 51
45 to 52
P07/INT27 to P00/INT20
E
21 to 23
22 to 24
P10/INT10/ SEG24 to P12/INT12/ SEG26 P13/INT13/ SEG27 P14/SEG28 to P17/SEG31 P20/EC
E/K
25 26 to 29
26 27 to 30
F/K
37
38
H
36 35 34
37 36 35
P21 P22/TO P23/SI
I I H
33 32
34 33
P24/SO P25/SCK
I H
*1: *2: *3: *4:
FPT-64P-M09 FPT-64P-M06 FPT-64P-M03 MQP-64C-P01
(Continued)
9
MB89180 Series
(Continued)
Pin no. QFP*1 SQFP*3 31 30 52 QFP*2 MQFP*4 32 31 53 Pin name P26 P27/BUZ P30/RCO Circuit type I I G Function General-purpose N-ch open-drain I/O port General-purpose N-ch open-drain I/O port Also serves as a buzzer output. General-purpose output-only port Also serves as a remote control transmission output pin. N-ch open-drain type general-purpose output ports Also serve as LCD controller/driver segment output pins. Switching is done by the mask option. LCD controller/driver segment output-only pins N-ch open-drain type general-purpose output ports Also serve as LCD controller/driver common output pins. LCD controller/driver common output-only pins LCD driving power supply pins
13 to 20 5 to 12 61 to 64, 1 to 4 57, 58 59, 60 53, 54, 55 42 41 56 24 *1: *2: *3: *4:
14 to 21 6 to 13 62 to 64, 1 to 5 58, 59 60, 61 54, 55, 56 43 42 57 25
P50/SEG16 to P57/SEG23 P40/SEG8 to P47/SEG15 SEG7 to SEG0 COM3/P32, COM2/P31 COM1, COM0 V1, V2, V3 X0A X1A VCC VSS
J/K J/K K L
K —
B
Subclock crystal oscillator pins (32.768 kHz) Power supply pin Power supply (GND) pin
FPT-64P-M09 FPT-64P-M06 FPT-64P-M03 MQP-64C-P01
10
MB89180 Series
• External EPROM pins (MB89PV180 only) Pin no. 66 67 68 69 70 71 72 73 74 75 77 78 79 80 82 83 84 85 86 87 88 89 91 92 93 94 95 96 65 76 81 90 Pin name VPP A12 A7 A6 A5 A4 A3 A2 A1 A0 O1 O2 O3 VSS O4 O5 O6 O7 O8 CE A10 OE A11 A9 A8 A13 A14 VCC N.C. I/O O O “H” level output pin Address output pins Function
I
Data input pins
O I
Power supply (GND) pin Data input pins
O O O O
ROM chip enable pin Outputs “H” during standby. Address output pin ROM output enable pin Outputs “L” at all times. Address output pins
O O O — EPROM power supply pin Internally connected pins Be sure to leave them open.
11
MB89180 Series
s I/O CIRCUIT TYPE
Type A
X1
Circuit
Remarks • Crystal or ceramic oscillation type (main clock) At an oscillation feedback resistor of approximately 1 MΩ/5.0 V
X0
Standby control signal
X1
• CR oscillation type (main clock) (Selectable only for the MB89181/182/183)
X0
Standby control signal
B
X1A
X0A
• Crystal or ceramic oscillation type (subclock) • At an oscillation feedback resistor of approximately 4.5 MΩ/5.0 V
Standby control signal
C D
R P-ch
• Output pull-up resistor • P-ch of approximately 50 KΩ/5.0 V • Hysteresis input
N-ch
E
R
P-ch
• CMOS I/O The resource is a hysteresis input type.
P-ch
N-ch Port Resource
• Pull-up resistor optional (MB89181/182/183/P185) • CMOS I/O
F
R
P-ch
P-ch
N-ch
• Pull-up resistor optional (MB89181/182/183/P185)
(Continued)
12
MB89180 Series
(Continued)
Type G Circuit
P-ch
Remarks • CMOS output • The P-ch output is a heavy-current drive type.
N-ch
H
R
P-ch
• N-ch open-drain I/O • CMOS input • The resource is a hysteresis input type.
N-ch Port Resource
• Pull-up resistor optional (MB89181/182/183) • N-ch open-drain I/O • CMOS input • P21, P26, and P27 are a heavy-current drive type.
I
R
P-ch
N-ch
• Pull-up resistor optional (MB89181/182/183) J
R P-ch
• N-ch open-drain output
N-ch
• Pull-up resistor optional (MB89181/182/183) • LCD controller/driver segment output
K
P-ch N-ch
P-ch N-ch
L
N-ch
• N-ch open-drain output • Common output
P-ch N-ch
P-ch N-ch
13
MB89180 Series
s HANDLING DEVICES
1. Preventing Latchup
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum Ratings” in section “s Electrical Characteristics” is applied between VCC and VSS. When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings. Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital power supply (VCC) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.
4. Treatment of N.C. Pins
Be sure to leave (internally connected) N.C. pins open.
5. Power Supply Voltage Fluctuations
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.
6. Precautions when Using an External Clock
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.
14
MB89180 Series
s PROGRAMMING TO THE EPROM ON THE MB89P875
The MB89P185 is an OTPROM version of the MB89180 series.
1. Features
• 16-Kbyte PROM on chip • Options can be set using the EPROM programmer. • Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)
2. Memory Space
Memory space in the EPROM mode is diagrammed below.
Normal operating mode 0000H I/O 0080H RAM 0180H
EPROM mode (Corresponding address on the EPROM programmer)
Not available
8000H
0000H Vacancy (Read value undefined) 3FF0H Not available 3FF6H Vacancy (Read value undefined) Option area
C000H
4000H
ROM 16 KB
Program area (EPROM) 16 KB
FFFFH
7FFFH
15
MB89180 Series
3. Programming to the EPROM
In EPROM mode, the MB89P185 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter. • Programming procedure (1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH in operating mode assign to 4000H to 7FFFH in EPROM mode). Program to 4000H to 7FFFH with the EPROM programmer. (3) Load option data into addresses 3FF0H to 3FF5H of the EPROM programmer. (For information about each corresponding option, see “7. PROM Option Bit Map.”) Program to 3FF0H to 3FF5H with the EPROM programmer.
4. Recommended Screening Conditions
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.
Program, verify
Aging +150°C, 48 Hrs.
Data verification
Assembly
5. Programming Yield
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.
6. EPROM Programmer Socket Adapter
Package FPT-64P-M09 FPT-64P-M06 Compatible socket adapter ROM-64QF2-28DP-8L2 ROM-64QF-28DP-8L3
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and VSS or VCC and VSS can stabilize programming operations.
16
MB89180 Series
7. PROM Option Bit Map
The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map: Bit 7 Vacancy 3FF0H Readable Bit 6 Vacancy Readable P06 Pull-up 1: No 0: Yes P16 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable Bit 5 Bit 4 Bit 3 Vacancy Readable P03 Pull-up 1: No 0: Yes P13 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable Bit 2 Reset pin output 1: Yes 0: No P02 Pull-up 1: No 0: Yes P12 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable Bit 1
Clock mode selection 1: Dual clock 0: Single clock
Bit 0 Power-on reset 1: Yes 0: No P00 Pull-up 1: No 0: Yes P10 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable
Oscillation stabilization delay time
WTM1 WTM0 See “s Mask Options” P05 Pull-up 1: No 0: Yes P15 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable P04 Pull-up 1: No 0: Yes P14 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable
P07 Pull-up 3FF1H 1: No 0: Yes P17 Pull-up 3FF2H 1: No 0: Yes Vacancy 3FF3H Readable Vacancy 3FF4H Readable Vacancy 3FF5H Readable
P01 Pull-up 1: No 0: Yes P11 Pull-up 1: No 0: Yes Vacancy Readable Vacancy Readable Vacancy Readable
Notes: • Set each bit to 1 to erase. • Do not write 0 to the vacant bit. The read value of the vacant bit is 1, unless 0 is written to it. • Address 3FF6H cannot be read and should not be accessed.
17
MB89180 Series
s PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE
1. EPROM for Use
MBM27C256A-20TV
2. Programming Socket Adapter
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below. Package LCC-32(Rectangle) LCC-32(Square) Adapter socket part number ROM-32LC-28DP-YG ROM-32LC-28DP-S
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
3. Memory Space
Memory space in each mode is diagrammed below.
Normal operating mode 0000H I/O 0080H RAM 0180H Corresponding address in ROM programmer
Not available
8000H
0000H
Not available
Not available
C000H
4000H
PROM 16KB
EPROM 16KB
FFFFH
7FFFH
4. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 4000H to 7FFFH. (3) Program to 4000H to 7FFFH with the EPROM programmer. 18
MB89180 Series
s BLOCK DIAGRAM
X0 X1
Main clock oscillator
N-ch open-drain I/O port P26 *2
Clock controller X0A X1A Subclock oscillator (32.768 kHz) Internal bus
8-bit timer/counter
P22/TO P21 *2
8-bit timer/counter Port 2
P20/EC P25/SCK P24/SO P23/SI P27 *2 /BUZ 4 P14 to P17 4 Port 1 4 P10/INT10 to P13/INT13 4 4 SEG28 to SEG31 *1 (Also serve as P14 to P17.) SEG24 to SEG27 *1 (Also serve as P10 to P13.) 8 SEG0 to SEG7
21-bit time-base timer 8 Port 0 P00/INT20 to P07/INT27 8 External interrupt 2 (wake-up function) CMOS I/O port P30/RCO P31/COM2 P32/COM3 RST Port 3 Remote control transmission output N-ch open-drain output port (Only P30 for CMOS output port) Reset circuit RAM ( 256 × 8 b it s m ax . )
8-bit serial I/O
Buzzer output CMOS I/O port External interrupt 1 (wake-up function)
8
LCD controller/driver F 2 M C- 8L CPU
2 COM0, COM1 COM2 (Also serves as P31.) COM3 (Also serves as P32.) 3 V1 to V3
16 32 × 4 bits VRAM
Port 4 and port 5
RO M ( 8 K × 8 b it s m ax . )
4 4 4 4 N-ch open-drain output port P43/SEG11 *1 to P40/SEG8 *1 P57/SEG23 *1 to P54/SEG20 *1 P53/SEG19 *1 to P50/SEG16 *1 P47/SEG15 *1 to P44/SEG12 *1
MODA V CC V SS
Other pins M O DA V CC V SS
*1: The segment or port function is selected by the mask option. *2: N-ch open-drain heavy-current drive type
19
MB89180 Series
s CPU CORE
1. Memory Space
The microcontrollers of the MB89180 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89180 series is structured as illustrated below. Memory Space
0000H 0080H
MB89PV180 I/O RAM 512 B
0000H 0080H 00C0H
MB89181 I/O Unused RAM 128 B
0000H 0080H
MB89182 I/O RAM 256 B
0000H 0080H
MB89183 I/O RAM 256 B
0000H 0080H
MB89P185 I/O RAM 256 B
0100H Register
0100H Register 0140H
0100H Register 0180H
0100H Register 0180H
0100H Register 0180H
0200H 0280H Unused 8000H C000H External ROM 32 KB F000H FFFFH FFFFH ROM 4 KB FFFFH E000H E800H ROM 6KB FFFFH ROM 8 KB FFFFH ROM 16 KB Unused Unused Unused Unused
20
MB89180 Series
2. Registers
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:
Program counter (PC): Accumulator (A): Temporary accumulator (T): Index register (IX): Extra pointer (EP): Stack pointer (SP): Program status (PS):
A 16-bit register for indicating instruction storage positions A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used. A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used. A 16-bit register for index modification A 16-bit pointer for indicating a memory address A 16-bit register for indicating a stack area A 16-bit register for storing a register pointer, a condition code
16 bits PC A T IX EP SP PS : Program counter : Accumulator : Temporary accumulator : Index register : Extra pointer : Stack pointer : Program status
Initial value FFFDH Undefined Undefined Undefined Undefined Undefined I-flag = 0, IL1, 0 = 11 Other bits are undefined.
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)
Structure of the Program Status Register
15 PS 14 13 RP 12 11 10 9 8 7 H 6 I 5 4 3 N 2 Z 1 V 0 C
Vacancy Vacancy Vacancy
IL1, 0
RP
CCR
21
MB89180 Series
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below. Rule for Conversion of Actual Addresses of the General-purpose Register Area
RP Lower OP codes b1 ↓ b0 ↓
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt. H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions. I-flag: IL1, 0: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset. Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.
IL1 0 0 1 1
IL0 0 1 0 1
Interrupt level 1 2 3
High-low High
Low = no interrupt
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0. Z-flag: V-flag: Set when an arithmetic operation results in 0. Cleared otherwise. Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.
22
MB89180 Series
The following general-purpose registers are provided: General-purpose registers: An 8-bit register for storing data The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 8 banks can be used on the MB89181 (RAM 128 × 8 bits) and a total of 16 banks can be used on the MB89182/183 (RAM 256 × 8 bits). The bank currently in use is indicated by the register bank pointer (RP). Note: The number of register banks that can be used varies with the RAM size. Register Bank Configuration
This address = 0100H + 8 × (RP) R0 R1 R2 R3 R4 R5 R6 R7 8 banks (MB89181) 16 banks (MB89182/183) Memory area
23
MB89180 Series
s I/O MAP
Address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH to 2FH (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) T2CR T1CR T2DR T1DR SMR1 SDR1 (R/W) (R/W) RCR1 RCR2 (R/W) (R/W) (R/W) PDR4 PDR5 BZCR (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) SYCC STBC WDTC TBTC WPCR PDR3 Read/write (R/W) (W) (R/W) (W) (R/W) (W) Register name PDR0 DDR0 PDR1 DDR1 PDR2 DDR2 Register description Port 0 data register Port 0 data direction register Port 1 data register Port 1 data direction register Port 2 data register Port 2 data direction register Vacancy System clock control register Standby control register Watchdog timer control register Time-base timer control register Watch prescaler control register Port 3 data register Vacancy Port 4 data register Port 5 data register Buzzer register Vacancy Vacancy Vacancy Remote control transmission control register 1 Remote control transmission control register 2 Vacancy Vacancy Timer 2 control register Timer 1 control register Timer 2 data register Timer 1 data register Serial mode register Serial mode register Vacancy
(Continued)
24
MB89180 Series
(Continued)
Address 30H 31H 32H 33H 34H to 5FH 60H to 6FH 70H to 71H 72H 73H to 7BH 7CH 7DH 7EH 7FH Note: Do not use vacancies. (W) (W) (W) ILR1 ILR2 ILR3 (R/W) LCR1 (R/W) VRAM Read/write (R/W) (R/W) (R/W) (R/W) Register name EIE1 EIF1 EIE2 EIF2 Register description External interrupt 1 enable register External interrupt 1 flag register External interrupt 2 enable register External interrupt 2 flag register Vacancy Display data RAM Vacancy LCD controller/driver control register 1 Vacancy Interrupt level setting register 1 Interrupt level setting register 2 Interrupt level setting register 3 Vacancy
25
MB89180 Series
s ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
(VSS = 0.0 V) Parameter Power supply voltage LCD power supply voltage Symbol VCC V1 to V3 VI1 Input voltage VI2 VSS – 0.3 VSS + 7.0 V Value Min. VSS – 0.3 VSS – 0.3 VSS – 0.3 Max. VSS + 7.0 VSS + 7.0 VCC + 0.3 Unit V V V V1 to V3 must not exceed VCC. VI1 must not exceed Vss + 7.0 V. Except P20 to P27 without a pullup resistor P20 to P27 without a pull-up resistor VO1 must not exceed Vss + 7.0 V. Except P20 to P27, P40 to P47, and P50 to P57 without a pull-up resistor P20 to P27, P40 to P47, and P50 to P57 without a pull-up resistor Except P21, P26, P27, and power supply pins P21, P26, and P27 Average value (operating current × operating rate) Except P21, P26, P27, and power supply pins Average value (operating current × operating rate) P21, P26, and P27 Average value (operating current × operating rate) Except P30 and power supply pins P30 Remarks
VO1 Output voltage VO2 IOL1 IOL2 IOLAV1 “L” level average output current IOLAV2 “L” level total output current “L” level total average output current “H” level output current ∑IOL ∑IOLAV IOH1 IOH2
VSS – 0.3
VCC + 0.3
V
VSS – 0.3
VSS + 7.0 10 20 4
V mA mA mA
“L” level output current
8 80 40 –5 –10
mA mA mA mA mA
(Continued)
26
MB89180 Series
(Continued)
(VSS = 0.0 V) Parameter Symbol Value Min. Max. –2 Unit Remarks Average value (operating current × operating rate) Except P30 and power supply pins Average value (operating current × operating rate) P30 Average value (operating current × operating rate)
IOHAV1 “H” level average output current IOHAV2 “H” level total output current “H” level total average output current Power consumption Operating temperature Storage temperature ∑IOH ∑IOHAV PD TA Tstg
mA
–40 –55
–4 –20 –10 300 +85 +150
mA mA mA mW °C °C
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Recommended Operating Conditions
(VSS = 0.0 V) Parameter Symbol Value Min. 2.2*1 Power supply voltage VCC 2.7*1 1.5 Power supply voltage for LCD Operating temperature V1 to V3 TA VSS –40 Max. 6.0 6.0 6.0 VCC*2 +85 Unit Remarks Guaranteed normal operation range, applicable to the mask ROM products MB89P185/PV180 RAM data holding assurance range in stop mode V1 to V3 pins
V V V V °C
*1: The minimum operating power supply voltage varies with the operating frequency and execution time (instruction cycle). *2: The liquid-crystal power supply range and optimum value vary depending on the characteristics of the liquidcrystal display element used.
27
MB89180 Series
6
5 Operation assurance range Operating voltage (V) 4
3
2
1
0 1 2 Main clock operating frequency (MHz) 4.0 2.0
3
4
5
1.0
0.8
Minimum execution time (instruction cycle) (µs) Note: The shaded area is assured only for the MB89181/182/183.
Figure 1
Operating Voltage vs. Main Clock Operating Frequency
28
MB89180 Series
3. DC Characteristics
(VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Value Condition Unit Remarks Min. Typ. Max. 0.7 VCC — VCC + 0.3 VCC + 0.3 V CMOS input Hysteresis input CMOS input
Parameter
Symbol
Pin P00 to P07, P10 to P17, P20 to P27
RST, MODA, EC, SI, SCK, INT10 to INT13, INT20 to INT27
VIH “H” level input voltage VIHS
0.8 VCC
—
V
VIL “L” level input voltage VILS
P00 to P07, P10 to P17, P20 to P27 RST, MODA, EC, SI, SCK, INT10 to INT13, INT20 to INT27 P20 to P27, P40 to P47, P50 to P57 P00 to P07, P10 to P17 P30
P00 to P07, P10 to P17, P20, P22 to P25, P30 to P32, P40 to P47, P50 to P57
—
VSS – 0.3
—
0.3 VCC
V
VSS – 0.3
—
0.2 VCC
V
Hysteresis input
Open-drain output pin application voltage
VD
VSS – 0.3 IOH = –2.0 mA IOH = –6.0 mA 2.4 4.0
— — —
VSS + 6.0 — —
V V V
Without pullup resistor
“H” level output VOH1 voltage VOH2
“L” level output voltage
VOL
IOL = +1.8 mA
—
—
0.4
V
VOL2 VOL3 ILI1
P21, P26, P27 IOL = +8.0 mA RST MODA, P00to P07, P10 to P17, P30 to P32 P20 to P27, P40 to P47, P50 to P57
P00 to P07, P10 to P17, P20 to P27, P40 to P47, P50 to P57, RST
— — —
— — —
0.4 0.4 ±5
V V µA Without pullup resistor Without pullup resistor Without pullup resistor
IOL = +4.0 mA 0.0 V < VI < VCC
Input leakage current
(Hi-z output leakagecurrent)
ILI2
0.0 V < VI < 6 V
—
—
±1
µA
Pull-up resistance
Common output impedance Segment output impedance
RPULL
VI = 0.0 V V1 to V3 = 5.0 V V1 to V3 = 5.0 V
25
50
100
kΩ
RVCOM RVSEG
COM0 to COM3 SEG0 to SEG31
— —
— —
2.5 15
kΩ kΩ
(Continued)
29
MB89180 Series
(Continued)
Parameter LCD divided resistor value Symbol RLCD Pin —
V1 to V3, COM0 to COM3, SEG0 to SEG31
(VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Value Condition Unit Remarks Min. Typ. Max. Between VCC and VSS — FCH = 4.2 MHz VCC = 5.0 V tinst*2 = 0.95 µs
• Main clock operation mode
300 —
500 —
750 ±1
kΩ µA MB89181/ 182/183/ PV180 MB89P185 MB89181/ 182/183/ PV180 MB89P185 MB89181/ 182/183/ PV180 MB89P185
LCD controller/ driver leakage ILCDL current
ICC1
— — — — — —
3.0 3.8 0.25 0.85 0.05 0.65
4.5 6.0 0.4 1.4 0.1 1.1
mA mA mA mA mA mA
ICC2
FCH = 4.2 MHz VCC = 3.0 V tinst*2 = 15.2 µs FCL = 32.768 kHz VCC = 3.0 V tinst*2 = 61 µs
• Main clock operation mode
ICCL
• Subclock operation mode
Power supply current*2
ICCS1
VCC
FCH = 4.2 MHz VCC = 5.0 V tinst*2 = 0.95 µs • Main clock sleep mode FCH = 4.2 MHz VCC = 3.0 V tinst*2 = 15.2 µs • Main clock sleep mode
FCL = 32.768 kHz
—
0.8
1.2
mA
ICCS2
—
0.2
0.3
mA
ICCSL
VCC = 3.0 V tinst*2 = 61 µs
—
25
50
µA
• Subclock mode FCL = 32.768 kHz
ICCT
VCC = 3.0 V • Watch mode TA = +25°C VCC = 5.0 V • Stop mode
Other VCC and VSS
— — — —
10 0.1 0.1 10
15 1 10 —
µA µA µA pF MB89181/ 182/183 MB89PV18 0/P185
ICCH
Input capacitance CIN
f = 1 MHz
*1: The measurement conditions of power supply current are as follows: the external clock, open output pins, and the external LCD dividing resistor. In the case of the MB89PV180, the current consumed by the connected EPROM and ICE is not included. *2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.” Note: For pins which serve as the segment (SEG8 to SEG31) and ports (P10 to P17, P40 to P47, and P50 to P57), see the port parameter when these pins are used as ports and the segment parameter when they are used as segment pins. 30
MB89180 Series
4. AC Characteristics
(1) Reset Timing (VSS = 0.0 V, TA = –40°C to +85°C) Value Unit Remarks Min. Max. 48 tHCYL — ns
Parameter RST “L” pulse width
Symbol tZLZH
Condition —
tZLZH RST 0.2 VCC 0.2 VCC
(2) Power-on Reset (VSS = 0.0 V, TA = –40°C to +85°C) Parameter Power supply rising time Power supply cut-off time Symbol tR tOFF Condition — Value Min. — 1 Max. 50 — Unit ms ms Remarks Power-on reset function only Due to repeated operations
Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.
tR 2.0 V 0.2 V
tOFF
VCC
0.2 V
0.2 V
31
MB89180 Series
(3) Clock Timing (VSS = 0.0 V, TA = –40°C to +85°C) Parameter Clock frequency Clock cycle time Symbol FCH FCL tHCYL tLCYL PWH PWL PWHL PWLL tCR tCF Pin X0, X1 X0A, X1A X0, X1 X0A, X1A X0 X0A X0, X0A Value Min. 1 — 238 — 20 — — Typ. — 32.768 — 30.5 — 15.2 — Max. 4.2 — 1000 — — — 10 Unit MHz kHz ns µs ns µs ns External clock Remarks Main clock Subclock Main clock Subclock
Input clock pulse width
Input clock pulse rising/ falling time
X0 and X1 Timing and Conditions
tHCYL 0.8 VCC 0.2 VCC X0 PWH tCF PWL tCR
Main clock Conditions
When crystal or ceramic resonator is used X0 FCH Open C1 C2 FCH R1 C FCH X1
When an external clock is used X0 X1
When CR oscillation option is used X0 X1
32
MB89180 Series
X0A and X1A Timing and Conditions
tLCYL 0.8 VCC 0.2 VCC X0A PWHL tCF PWLL tCR
Subclock Conditions
When crystal or ceramic resonator is used X0A X1A When single-clock option is used X0A X1A
When an external clock is used X0A X1A
R2 FCL FCL
Open
Open
C1
C2
(4) Instruction Cycle Parameter Symbol Value (typical) 4/FCH, 8/FCH, 16/FCH, 64/FCH 2/FCL Unit µs µs Remarks (4/FCH) tinst = 0.95 µs when operating at FCH = 4.2 MHz tinst = 61.036 µs when operating at FCL = 32.768 kHz
Instruction cycle tinst (minimum execution time)
33
MB89180 Series
(5) Serial I/O Timing (VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C) Parameter Serial clock cycle time SCK ↓ → SO time Valid SI → SCK ↑ SCK ↑ → valid SI hold time Serial clock “H” pulse width Serial clock “L” pulse width SCK ↓ → SO time Valid SI → SCK ↑ SCK ↑ → valid SI hold time Symbol tSCYC tSLOV tIVSH tSHIX tSHSL tSLSH tSLOV tIVSH tSHIX Pin SCK SCK, SO SI, SCK SCK, SI SCK SCK SCK, SO SI, SCK SCK, SI External shift clock mode Internal shift clock mode Condition Value Min. 2 tinst* –200 0.5 tinst* 0.5 tinst* 1 tinst* 1 tinst* 0 0.5 tinst* 0.5 tinst* Max. — 200 — — — — 200 — — Unit µs ns µs µs µs µs ns µs µs Remarks
* : For information on tinst, see “(4) Instruction Cycle.” Internal Shift Clock Mode
tSCYC 2.4 V SCK 0.8 V tSLOV SO 2.4 V 0.8 V tIVSH SI 0.8 V cc 0.2 V cc tSHIX 0.8 V cc 0.2 V cc 0.8 V
External Shift Clock Mode
tSLSH 0.8 VCC SCK 0.2 VCC tSLOV SO 2.4 V 0.8 V tIVSH SI 0.8 VCC 0.2 VCC tSHIX 0.2 VCC
tSHSL 0.8 VCC
0.8 VCC 0.2 VCC
34
MB89180 Series
(6) Peripheral Input Timing (VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Value Pin Unit Remarks Min. Max. INT10 to INT13, EC INT10 to INT13, EC INT20 to INT27 INT20 to INT27 1 tinst* 1 tinst* 2 tinst* 2 tinst* — — — — µs µs µs µs
Parameter Peripheral input “H” pulse width 1 Peripheral input “L” pulse width 1 Peripheral input “H” pulse width 2 Peripheral input “L” pulse width 2
Symbol tILIH1 tIHIL1 tILIH2 tIHIL2
* : For information on tinst, see “(4) Instruction Cycle.”
tIHIL1
tILIH1 0.8 VCC 0.2 VCC 0.8 VCC
INT10 to INT13, EC
0.2 VCC
tIHIL2
tILIH2 0.8 VCC 0.2 VCC 0.8 VCC
INT20 to INT27
0.2 VCC
35
MB89180 Series
s EXAMPLE CHARACTERISTICS
(1) “L” level Output Voltage
VOL2 vs.IOL
VCC = 3.0 V VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V VOL2 (V) VCC = 2.0 V 1.0 TA = +25°C 0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.1 0 0.3 0.2 0.1 0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V VCC = 2.5 V VCC = 3.0 V
VOL1 vs. IOL
VOL1 (V) 0.6 0.5 0.4 0.3 VCC = 2.5 V VCC = 2.0 V
TA = +25°C
(2) “H” level Output Voltage
VCC vs.VOH1 vs. IOH
VCC vs. VOH1 (V) VCC = 2.0 V 1.0 TA = +25°C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 –1 –2 –3 –4 –5 IOH (mA) VCC = 2.5 V VCC = 3.0 V
VCC vs. VOH2 vs. IOH
VCC vs. VOH2 (V) VCC = 2.0 V 1.0 TA = +25°C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 IOH (mA) VCC = 2.5 V VCC = 3.0 V
VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V
VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V
36
MB89180 Series
(3) “H” Level Input Voltage/“L” Level Input Voltage (CMOS Input)
VIN vs. VCC
VIN (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 1 2 3 4 5 6 7 VCC (V) TA = +25°C
(4) “H” Level Input Voltage/“L” Level Input Voltage (Hysteresis Input)
VIN vs. VCC
VIN (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 1 2 3 4 5 6 7 VCC (V) VILS TA = +25°C VIHS
VIHS: Threshold when input voltage in hysteresis characteristics is set to “H” level VILS: Threshold when input voltage in hysteresis characteristics is set to “L” level
(5) Power Supply Current (External Clock)
ICC1 vs. VCC (Mask ROM products)
ICC1 (mA) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 1 2 3 4 5 6 7 VCC (V) FCH = 1 MHz FCH = 4.2 MHz FCH = 3 MHz TA = +25°C
ICC2 vs. VCC (Mask ROM products)
ICC2 (mA) 1.0 TA = +25°C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 VCC (V) FCH = 1 MHz FCH = 3 MHz FCH = 4.2 MHz
(Continued)
37
MB89180 Series
(Continued)
ICCS1 vs. VCC
ICCS1 (mA) 1.2 TA = +25°C 1.1 FCH = 4.2 MHz 1.0 0.9 FCH = 3 MHz 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 VCC (V) FCH = 1 MHz
ICCS2 vs. VCC ICCS2 (mA) 1.0 TA = +25°C 0.9
0.8 0.7 0.6 FCH = 4.2 MHz 0.5 FCH = 3 MHz 0.4 FCH = 1 MHz 0.3 0.2 0.1 0 1 2 3 4 5 6 7 VCC (V)
ICCL (µA) 200 180 160 140 120 100 80 60 40 20 0
ICCL vs. VCC (Mask ROM units)
TA = +25°C
ICCT (µA) 30
ICCT vs. VCC
TA = +25°C
25
FCL = 32.768 kHz
20
FCL = 32.768 kHz
15
10
5
0 1 2 3 4 5 6 7 VCC (V)
1
2
3
4
5
6
7 VCC (V)
(Continued)
38
MB89180 Series
(Continued)
ICCSL (µA) 200 180 160 140 120 100 80 60 40 20 0 1
ICCSL vs. VCC
TA = +25°C
FCL = 32.768 kHz
2
3
4
5
6
7 VCC (V)
(6) Pull-up Resistance Value
RPULL vs. VCC
RPULL (kΩ) 1,000 500
100 50 TA = +85°C TA = +25°C TA = –40°C 10 1 2 3 4 5 6 7 VCC (V)
39
MB89180 Series
s INSTRUCTIONS
Execution instructions can be divided into the following four groups: • • • • Transfer Arithmetic operation Branch Others
Table 1 lists symbols used for notation of instructions. Table 1 Symbol dir off ext #vct #d8 #d16 dir: b rel @ A AH AL T TH TL IX Direct address (8 bits) Offset (8 bits) Extended address (16 bits) Vector table number (3 bits) Immediate data (8 bits) Immediate data (16 bits) Bit direct address (8:3 bits) Branch relative address (8 bits) Register indirect (Example: @A, @IX, @EP) Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.) Upper 8 bits of accumulator A (8 bits) Lower 8 bits of accumulator A (8 bits) Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.) Upper 8 bits of temporary accumulator T (8 bits) Lower 8 bits of temporary accumulator T (8 bits) Index register IX (16 bits) Instruction Symbols Meaning
(Continued)
40
MB89180 Series
(Continued)
Symbol EP PC SP PS dr CCR RP Ri × (×) (( × )) Extra pointer EP (16 bits) Program counter PC (16 bits) Stack pointer SP (16 bits) Program status PS (16 bits) Accumulator A or index register IX (16 bits) Condition code register CCR (8 bits) Register bank pointer RP (5 bits) General-purpose register Ri (8 bits, i = 0 to 7) Indicates that the very × is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Indicates that the contents of × is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) The address indicated by the contents of × is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Meaning
Columns indicate the following: Mnemonic: ~: #: Operation: TL, TH, AH: Assembler notation of an instruction Number of instructions Number of bytes Operation of an instruction A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following: • “–” indicates no change. • dH is the 8 upper bits of operation description data. • AL and AH must become the contents of AL and AH immediately before the instruction is executed. • 00 becomes 00. N, Z, V, C: OP code: An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag. Code of an instruction. If an instruction is more than one code, it is written according to the following rule: Example: 48 to 4F ← This indicates 48, 49, ... 4F.
41
MB89180 Series
Table 2 Mnemonic MOV dir,A MOV @IX +off,A MOV ext,A MOV @EP ,A MOV Ri,A MOV A,#d8 MOV A,dir MOV A,@IX +off MOV A,ext MOV A,@A MOV A,@EP MOV A,Ri MOV dir,#d8 MOV @IX +off,#d8 MOV @EP ,#d8 MOV Ri,#d8 MOVW dir,A MOVW @IX +off,A MOVW ext,A MOVW @EP ,A MOVW EP ,A MOVW A,#d16 MOVW A,dir MOVW A,@IX +off MOVW A,ext MOVW A,@A MOVW A,@EP MOVW A,EP MOVW EP ,#d16 MOVW IX,A MOVW A,IX MOVW SP ,A MOVW A,SP MOV @A,T MOVW @A,T MOVW IX,#d16 MOVW A,PS MOVW PS,A MOVW SP ,#d16 SWAP SETB dir: b CLRB dir: b XCH A,T XCHW A,T XCHW A,EP XCHW A,IX XCHW A,SP MOVW A,PC ~ 3 4 4 3 3 2 3 4 4 3 3 3 4 5 4 4 4 5 5 4 2 3 4 5 5 4 4 2 3 2 2 2 2 3 4 3 2 2 3 2 4 4 2 3 3 3 3 2 # 2 2 3 1 1 2 2 2 3 1 1 1 3 3 2 2 2 2 3 1 1 3 2 2 3 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 2 2 1 1 1 1 1 1 Transfer Instructions (48 instructions) Operation (dir) ← (A) ( (IX) +off ) ← (A) (ext) ← (A) ( (EP) ) ← (A) (Ri) ← (A) (A) ← d8 (A) ← (dir) (A) ← ( (IX) +off) (A) ← (ext) (A) ← ( (A) ) (A) ← ( (EP) ) (A) ← (Ri) (dir) ← d8 ( (IX) +off ) ← d8 ( (EP) ) ← d8 (Ri) ← d8 (dir) ← (AH),(dir + 1) ← (AL) ( (IX) +off) ← (AH), ( (IX) +off + 1) ← (AL) (ext) ← (AH), (ext + 1) ← (AL) ( (EP) ) ← (AH),( (EP) + 1) ← (AL) (EP) ← (A) (A) ← d16 (AH) ← (dir), (AL) ← (dir + 1) (AH) ← ( (IX) +off), (AL) ← ( (IX) +off + 1) (AH) ← (ext), (AL) ← (ext + 1) (AH) ← ( (A) ), (AL) ← ( (A) ) + 1) (AH) ← ( (EP) ), (AL) ← ( (EP) + 1) (A) ← (EP) (EP) ← d16 (IX) ← (A) (A) ← (IX) (SP) ← (A) (A) ← (SP) ( (A) ) ← (T) ( (A) ) ← (TH),( (A) + 1) ← (TL) (IX) ← d16 (A) ← (PS) (PS) ← (A) (SP) ← d16 (AH) ↔ (AL) (dir): b ← 1 (dir): b ← 0 (AL) ↔ (TL) (A) ↔ (T) (A) ↔ (EP) (A) ↔ (IX) (A) ↔ (SP) (A) ← (PC) TL – – – – – AL AL AL AL AL AL AL – – – – – – – – – AL AL AL AL AL AL – – – – – – – – – – – – – – – AL AL – – – – TH – – – – – – – – – – – – – – – – – – – – – AH AH AH AH AH AH – – – – – – – – – – – – – – – – AH – – – – AH – – – – – – – – – – – – – – – – – – – – – dH dH dH dH dH dH dH – – dH – dH – – – dH – – AL – – – dH dH dH dH dH NZVC –––– –––– –––– –––– –––– ++–– ++–– ++–– ++–– ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– –––– –––– –––– ++–– ++–– ++–– ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– ++++ –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– OP code 45 46 61 47 48 to 4F 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5 D6 D4 D7 E3 E4 C5 C6 C4 93 C7 F3 E7 E2 F2 E1 F1 82 83 E6 70 71 E5 10 A8 to AF A0 to A7 42 43 F7 F6 F5 F0
Notes: • During byte transfer to A, T ← A is restricted to low bytes. • Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F2MC-8 family)
42
MB89180 Series
Table 3 Mnemonic ADDC A,Ri ADDC A,#d8 ADDC A,dir ADDC A,@IX +off ADDC A,@EP ADDCW A ADDC A SUBC A,Ri SUBC A,#d8 SUBC A,dir SUBC A,@IX +off SUBC A,@EP SUBCW A SUBC A INC Ri INCW EP INCW IX INCW A DEC Ri DECW EP DECW IX DECW A MULU A DIVU A ANDW A ORW A XORW A CMP A CMPW A RORC A ROLC A CMP A,#d8 CMP A,dir CMP A,@EP CMP A,@IX +off CMP A,Ri DAA DAS XOR A XOR A,#d8 XOR A,dir XOR A,@EP XOR A,@IX +off XOR A,Ri AND A AND A,#d8 AND A,dir ~ 3 2 3 4 3 3 2 3 2 3 4 3 3 2 4 3 3 3 4 3 3 3 19 21 3 3 3 2 3 2 2 2 3 3 4 3 2 2 2 2 3 3 4 3 2 2 3 # 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 1 2 2 Arithmetic Operation Instructions (62 instructions) Operation (A) ← (A) + (Ri) + C (A) ← (A) + d8 + C (A) ← (A) + (dir) + C (A) ← (A) + ( (IX) +off) + C (A) ← (A) + ( (EP) ) + C (A) ← (A) + (T) + C (AL) ← (AL) + (TL) + C (A) ← (A) − (Ri) − C (A) ← (A) − d8 − C (A) ← (A) − (dir) − C (A) ← (A) − ( (IX) +off) − C (A) ← (A) − ( (EP) ) − C (A) ← (T) − (A) − C (AL) ← (TL) − (AL) − C (Ri) ← (Ri) + 1 (EP) ← (EP) + 1 (IX) ← (IX) + 1 (A) ← (A) + 1 (Ri) ← (Ri) − 1 (EP) ← (EP) − 1 (IX) ← (IX) − 1 (A) ← (A) − 1 (A) ← (AL) × (TL) (A) ← (T) / (AL),MOD → (T) (A) ← (A) ∧ (T) (A) ← (A) ∨ (T) (A) ← (A) ∀ (T) (TL) − (AL) (T) − (A) → C→A C ← A← (A) − d8 (A) − (dir) (A) − ( (EP) ) (A) − ( (IX) +off) (A) − (Ri) Decimal adjust for addition Decimal adjust for subtraction (A) ← (AL) ∀ (TL) (A) ← (AL) ∀ d8 (A) ← (AL) ∀ (dir) (A) ← (AL) ∀ ( (EP) ) (A) ← (AL) ∀ ( (IX) +off) (A) ← (AL) ∀ (Ri) (A) ← (AL) ∧ (TL) (A) ← (AL) ∧ d8 (A) ← (AL) ∧ (dir) TL – – – – – – – – – – – – – – – – – – – – – – – dL – – – – – – – – – – – – – – – – – – – – – – – TH – – – – – – – – – – – – – – – – – – – – – – – 00 – – – – – – – – – – – – – – – – – – – – – – – AH – – – – – dH – – – – – – dH – – – – dH – – – dH dH 00 dH dH dH – – – – – – – – – – – – – – – – – – – – NZVC ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++– –––– –––– ++–– +++– –––– –––– ++–– –––– –––– ++R– ++R– ++R– ++++ ++++ ++–+ ++–+ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– OP code 28 to 2F 24 25 26 27 23 22 38 to 3F 34 35 36 37 33 32 C8 to CF C3 C2 C0 D8 to DF D3 D2 D0 01 11 63 73 53 12 13 03 02 14 15 17 16 18 to 1F 84 94 52 54 55 57 56 58 to 5F 62 64 65
(Continued)
43
MB89180 Series
(Continued)
Mnemonic AND A,@EP AND A,@IX +off AND A,Ri OR A OR A,#d8 OR A,dir OR A,@EP OR A,@IX +off OR A,Ri CMP dir,#d8 CMP @EP ,#d8 CMP @IX +off,#d8 CMP Ri,#d8 INCW SP DECW SP ~ 3 4 3 2 2 3 3 4 3 5 4 5 4 3 3 # 1 2 1 1 2 2 1 2 1 3 2 3 2 1 1 Operation (A) ← (AL) ∧ ( (EP) ) (A) ← (AL) ∧ ( (IX) +off) (A) ← (AL) ∧ (Ri) (A) ← (AL) ∨ (TL) (A) ← (AL) ∨ d8 (A) ← (AL) ∨ (dir) (A) ← (AL) ∨ ( (EP) ) (A) ← (AL) ∨ ( (IX) +off) (A) ← (AL) ∨ (Ri) (dir) – d8 ( (EP) ) – d8 ( (IX) + off) – d8 (Ri) – d8 (SP) ← (SP) + 1 (SP) ← (SP) – 1 Table 4 Mnemonic BZ/BEQ rel BNZ/BNE rel BC/BLO rel BNC/BHS rel BN rel BP rel BLT rel BGE rel BBC dir: b,rel BBS dir: b,rel JMP @A JMP ext CALLV #vct CALL ext XCHW A,PC RET RETI ~ 3 3 3 3 3 3 3 3 5 5 2 3 6 6 3 4 6 # 2 2 2 2 2 2 2 2 3 3 1 3 1 3 1 1 1 TL – – – – – – – – – – – – – – – TH – – – – – – – – – – – – – – – AH – – – – – – – – – – – – – – – NZVC ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++++ ++++ ++++ ++++ –––– –––– OP code 67 66 68 to 6F 72 74 75 77 76 78 to 7F 95 97 96 98 to 9F C1 D1
Branch Instructions (17 instructions) Operation TL – – – – – – – – – – – – – – – – – TH – – – – – – – – – – – – – – – – – AH – – – – – – – – – – – – – – dH – – NZVC –––– –––– –––– –––– –––– –––– –––– –––– –+–– –+–– –––– –––– –––– –––– –––– –––– Restore OP code FD FC F9 F8 FB FA FF FE B0 to B7 B8 to BF E0 21 E8 to EF 31 F4 20 30
If Z = 1 then PC ← PC + rel If Z = 0 then PC ← PC + rel If C = 1 then PC ← PC + rel If C = 0 then PC ← PC + rel If N = 1 then PC ← PC + rel If N = 0 then PC ← PC + rel If V ∀ N = 1 then PC ← PC + rel If V ∀ N = 0 then PC ← PC + reI If (dir: b) = 0 then PC ← PC + rel If (dir: b) = 1 then PC ← PC + rel (PC) ← (A) (PC) ← ext Vector call Subroutine call (PC) ← (A),(A) ← (PC) + 1 Return from subrountine Return form interrupt Table 5
Other Instructions (9 instructions) Operation TL – – – – – – – – – TH – – – – – – – – – AH – dH – – – – – – – NZVC –––– –––– –––– –––– –––– –––R –––S –––– –––– OP code 40 50 41 51 00 81 91 80 90
Mnemonic PUSHW A POPW A PUSHW IX POPW IX NOP CLRC SETC CLRI SETI
~ 4 4 4 4 1 1 1 1 1
# 1 1 1 1 1 1 1 1 1
44
s INSTRUCTION MAP
LH
0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NOP
1 SWAP
2 RET
3 RETI
4
PUSHW
5 A
6
7
8
9 SETI SETC
A
B
C
D
E
F
POPW MOV MOVW CLRI A A,ext A,PS
INCW DECW JMP MOVW CLRB BBC A A @A A,PC dir: 0 dir: 0,rel INCW DECW MOVW MOVW CLRB BBC SP SP SP,A A,SP dir: 1 dir: 1,rel
PUSHW POPW MOV MULU DIVU JMP CALL MOVW CLRC IX A A addr16 addr16 IX ext,A PS,A
ROLC A
CMP A
ADDC SUBC XCH XOR AND OR A A A, T A A
A
INCW DECW MOVW MOVW MOV MOV CLRB BBC IX IX IX,A A,IX @A,T A,@A dir: 2 dir: 2,rel
RORC CMPW ADDCW SUBCW XCHW XORW ANDW ORW INCW DECW MOVW MOVW MOVW MOVW CLRB BBC A A A A EP EP EP,A A,EP A, T A A A @A,T A,@A dir: 3 dir: 3,rel MOV CMP ADDC SUBC A,#d8 A,#d8 A,#d8 A,#d8 XOR AND OR DAA A,#d8 A,#d8 A,#d8 DAS CLRB BBC MOVW MOVW MOVW XCHW dir: 4 dir: 4,rel A,ext ext,A A,#d16 A,PC
MOVW MOVW MOVW XCHW MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC A,dir dir,A SP,#d16 A,SP A,dir A,dir A,dir A,dir dir,A A,dir A,dir A,dir dir,#d8 dir,#d8 dir: 5 dir: 5,rel
MOV A,@IX +d CMP A,@IX +d ADDC A,@IX +d SUBC A,@IX +d MOV @IX +d,A XOR AND A,@IX +d A,@IX +d OR A,@IX +d MOV CMP @IX +d,#d8 @IX +d,#d8
MOVW MOVW CLRB BBC MOVW XCHW dir: 6 dir: 6,rel A,@IX +d @IX +d,A IX,#d16 A,IX
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP @EP,#d8 @EP,#d8 dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16 A,EP MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNC A,R0 A,R0 A,R0 A,R0 R0,A A,R0 A,R0 A,R0 R0,#d8 R0,#d8 dir: 0 dir: 0,rel R0 R0 #0 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BC A,R1 A,R1 A,R1 A,R1 R1,A A,R1 A,R1 A,R1 R1,#d8 R1,#d8 dir: 1 dir: 1,rel R1 R1 #1 rel INC DEC CALLV BP MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS R2 R2 #2 rel A,R2 A,R2 A,R2 A,R2 R2,A A,R2 A,R2 A,R2 R2,#d8 R2,#d8 dir: 2 dir: 2,rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BN A,R3 A,R3 A,R3 A,R3 R3,A A,R3 A,R3 A,R3 R3,#d8 R3,#d8 dir: 3 dir: 3,rel R3 R3 #3 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNZ A,R4 A,R4 A,R4 A,R4 R4,A A,R4 A,R4 A,R4 R4,#d8 R4,#d8 dir: 4 dir: 4,rel R4 R4 #4 rel INC DEC CALLV BZ MOV A CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS R5 R5 #5 A,R5 A,R5 A,R5 A,R5 R5,A A,R5 A,R5 A,R5 R5,#d8 R5,#d8 dir: 5 dir: 5,rel rel
MB89180 Series
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BGE A,R6 A,R6 A,R6 A,R6 R6,A A,R6 A,R6 A,R6 R6,#d8 R6,#d8 dir: 6 dir: 6,rel R6 R6 #6 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BLT R7 R7 #7 rel A,R7 A,R7 A,R7 A,R7 R7,A A,R7 A,R7 A,R7 R7,#d8 R7,#d8 dir: 7 dir: 7,rel
45
MB89180 Series
s MASK OPTIONS
Part number No. Specifying procedure MB89181/182/183 Specify when ordering masking
Can be set per pin (P10 to P17 are available only when segment output is not selected.)
MB89P185 Set with EPROM programmer
Can be set per pin (P10 to P17 are available only when segment output is not selected.)
MB89PV180 Setting not possible
1
Pull-up resistors P00 to P07, P10 to P17
2
Pull-up resistors P40 to P47, P50 to P57 Pull-up resistors P20 to P27 Power-on reset With power-on reset Without power-on reset Selection of oscillation stabilization delay time The initial value of the main clock oscillation stabilization time is selectable by bit value of WTM1 and WTM0. Main clock oscillation type Crystal or ceramic oscillator CR Reset pin output With reset output Without reset output Clock mode selection Dual-clock mode Single-clock mode Segment output selection 32 segments:No port selection 28 segments:Selection of P17 to P14 24 segments: Selection of P17 to P10 20 segments:Selection of P17 to P10,and P57 to P54 16 segments:Selection of P17 to P10,and P57 to P50 12 segments:Selection of P17 to P10,P57 to P50, and P47 to P44 8 segments: Selection of P17 to P10,P57 to P50, and P47 to P40
Can be set per pin (Available only when segment output is not selected.) Can be set per pin
Fixed to without pullup resistor Fixed to without pullup resistor Selectable Selectable WTM1 WTM0 0 0: 22/FCH 0 1: 212/FCH 1 0: 216/FCH 1 1: 218/FCH Crystal or ceramic oscillator Selectable
Fixed to without pullup resistor
3
4
Selectable Selectable WTM1 WTM0 0 0: 22/FCH 0 1: 212/FCH 1 0: 216/FCH 1 1: 218/FCH Selectable
Fixed to with poweron reset
5
Fixed to oscillation stabilization time of 216/FCH
6
Crystal or ceramic oscillator With reset output Fixed to dual-clock mode
7
Selectable
8
Selectable
Selectable
9
Selectable Selects the number of segments.
-101: 32 segments -102: 28 segments -103: 24 segments -104: 20 segments -105: 16 segments -106: 12 segments -107: 8 segments
46
MB89180 Series
s ORDERING INFORMATION
Part number MB89181PF MB89182PF MB89183PF MB89P185PF-101 MB89P185PF-102 MB89P185PF-103 MB89P185PF-104 MB89P185PF-105 MB89P185PF-106 MB89P185PF-107 MB89181FM MB89182FM MB89183FM MB89P185PFM-101 MB89P185PFM-102 MB89P185PFM-103 MB89P185PFM-104 MB89P185PFM-105 MB89P185PFM-106 MB89P185PFM-107 MB89181PFV MB89182PFV MB89183PFV MB89PV180CF-101 MB89PV180CF-102 MB89PV180CF-103 MB89PV180CF-104 MB89PV180CF-105 MB89PV180CF-106 MB89PV180CF-107 Package Remarks
64-pin Plastic QFP (FPT-64P-M06)
64-pin Plastic QFP (FPT-64P-M09)
64-pin Plastic SQFP (FPT-64P-M03)
64-pin Ceramic MQFP (MQP-64C-P01)
47
MB89180 Series
s PACKAGE DIMENSIONS
64-pin Plastic QFP (FPT-64P-M06)
24.70±0.40(.972±.016)
51
3.35(.132)MAX
33
20.00±0.20(.787±.008)
0.05(.002)MIN (Mounting height) (STAND OFF)
52
32
14.00±0.20 (.551±.008) INDEX
64 20
18.70±0.40 (.736±.016)
12.00(.472) REF
16.30±0.40 (.642±.016)
"A" LEAD No.
1 19
1.00(.0394) TYP
0.40±0.10 (.016±.004)
0.15±0.05(.006±.002) 0.20(.008)
M
Details of "A" part 0.25(.010) "B" 0.10(.004) 18.00(.709)REF 22.30±0.40(.878±.016) 0.30(.012) 0.18(.007)MAX 0.63(.025)MAX
Details of "B" part
0 10° 1.20±0.20 (.047±.008)
C
1994 FUJITSU LIMITED F64013S-3C-2
Dimensions in mm (inches)
64 pin, Plastic QFP (FPT-64P-M09)
14.00±0.20(.551±.008)SQ
48
12.00±0.10(.472±.004)SQ
33
1.50 –0.10 +.008 .059 –.004
+0.20
49
32
9.75 (.384) REF 1 PIN INDEX
13.00 (.512) NOM
64
17
LEAD No.
1
16
Details of "A" part "A"
M
0.65(.0256)TYP
0.30±0.10 (.012±.004)
0.13(.005)
0.127 –0.02 +.002 .005 –.001
+0.05
0.10±0.10 (STAND OFF) (.004±.004)
0.10(.004) 0 10°
0.50±0.20 (.020±.008)
Dimensions in mm (inches). 48
MB89180 Series
(Continued)
64 pin, PlasticLQFP (FPT-64P-M03)
+0.20
12.00±0.20(.472±.008)SQ
48
10.00±0.10(.394±.004)SQ
1.50 −0.10 +.008 .059 −.004
33
(Mounting Height)
49
32
7.50 (.295) REF INDEX
11.00 (.433) NOM
64
17 1 16
+0.08
Details of "A" part "A" 0.127 −0.02 +.002 .005 −.001
+0.05
LEAD No.
0.50±0.08 (.0197±.0031)
0.18 −0.03 +.003 .007 −.001
0.10±0.10 (STAND OFF) (.004±.004)
0.50±0.20 (.020±.008) 0.10(.004) 0 10˚
C
1995 FUJITSU LIMITED F64009S-2C-5
Dimensions in mm (inches).
64-pin Ceramic MQFP (MQP-64C-P01)
18.70(.736)TYP 16.30±0.33 (.642±.013) 15.58±0.20 (.613±.008) 12.00(.472)TYP 1.20 –0.20 +.016 .047 –.008
+0.40
INDEX AREA
1.00±0.25 (.039±.010)
1.00±0.25 (.039±.010)
1.27±0.13 (.050±.005) 22.30±0.33 (.878±.013) 24.70(.972) TYP 0.30(.012) TYP 18.12±0.20 12.02(.473) (.713±.008) TYP 10.16(.400) 14.22(.560) TYP TYP
18.00(.709) TYP
1.27±0.13 (.050±.005)
0.30(.012)TYP 7.62(.300)TYP 9.48(.373)TYP 11.68(.460)TYP
0.40±0.10 (.016±.004)
0.40±0.10 (.016±.004)
1.20 –0.20 +.016 .047 –.008
+0.40
0.50(.020)TYP
10.82(.426) 0.15±0.05 MAX (.006±.002)
C
1994 FUJITSU LIMITED M64004SC-1-3
Dimensions in mm (inches) 49
FUJITSU LIMITED
For further information please contact:
Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.
F9703 © FUJITSU LIMITED Printed in Japan
24