Genesys Logic, Inc.
GL9714
PCI ExpressTM PIPE x4 PHY
Datasheet Revision 1.32 Apr. 16, 2007
GL9714 PCI ExpressTM PIPE x4 PHY
Copyright:
Copyright © 2007 Genesys Logic Incorporated. All rights reserved. No part of the materials may be reproduced in any form or by any means without prior written consent of Genesys Logic, Inc.
Disclaimer:
ALL MATERIALS ARE PROVIDED “AS IS” WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NO LICENSE OR RIGHT IS GRANTED UNDER ANY PATENT OR TRADEMARK OF GENESYS LOGIC INC.. GENESYS LOGIC HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS IN REGARD TO MATERIALS, INCLUDING ALL WARRANTIES, IMPLIED OR EXPRESS, OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY. IN NO EVENT SHALL GENESYS LOGIC BE LIABLE FOR ANY DAMAGES INCLUDING, WITHOUT LIMITATION, DAMAGES RESULTING FROM LOSS OF INFORMATION OR PROFITS. PLEASE BE ADVISED THAT THE MATERIALS MAY CONTAIN ERRORS OR OMMISIONS. GENESYS LOGIC MAY MAKE CHANGES TO THE MATERIALS OR TO THE PRODUCTS DESCRIBED THEREIN AT ANY TIME WITHOUT NOTICE.
Trademarks:
is a registered trademark of Genesys Logic, Inc. All trademarks are the properties of their respective owners.
Office:
Genesys Logic, Inc. 12F, No. 205, Sec. 3, Beishin Rd., Shindian City, Taipei, Taiwan Tel: (886-2) 8913-1888 Fax: (886-2) 6629-6168 http ://www.genesyslogic.com
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 2
GL9714 PCI ExpressTM PIPE x4 PHY
Revision History
Revision 1.00 1.10 1.11 1.12 1.13 Date 09/27/2004 04/04/2005 04/12/2005 04/20/2005 09/20/2005 First formal release Update for mass production version Revise register description(SW, DEM), p.19 1. Add operating current for DC electrical characteristics in Table7.1 2. Correct Power Consumption Modify Package Dimension ,Ch9 , p.39 1. Add “Bottom View”, Ch3.1, p.10 2. Change Pin E15 from “TXDK1” to “TXDKA”, Table3.1, p.11 3. Change TXDKA~D type from “O” to “I”, Table3.4, p.15 4. Add a column “I/O Standard”, Table3.4, p.15 5. Change VDDPLL from “C18” to “C8”, Table3.4, p.16 6. Add comment for SCC and OPMODE[1:0], Table3.4 , p.17 1. Update Table3.4, p.15~p.17 2. Add Table3.5, p.17 3. Modify the default value of REG0 and REG1 in Table4.1, p.18 4. Modify Ch4.2 Registers Descriptions for REG0 and REG1, p.19 5. Add Ch 4.3, p.21~p.24 6. Update Table 7.5 and Table 7.6 for power consumption, p.36~p.37 7. Change TXDx to RXDx, Figure8.4, p.41 8. The minimum and maximum value of TCYCLE, Table8.2 and Table 8.5, p.42 1. Update Table 7.9 for temperature ranges (p.39) 2. Update Table 8.1~8.4 for output delay of RX bus (p.41~p.42) 1. Modify the description of OSC25MI and OSC25MO signals, Table 3.4, p.17 2. Update Table 7.1 for deleting IDD1-X4, IDD2-X4, IDD3-X4, IDD1-X2, IDD2-X2, and IDD3-X2 six items, p.34 3. Update Table 7.9 for deleting the ISUPPLY-1.8 item and adding θJA, ΨJT and θJC three items, p.39 Swap the Pin Out of OSC25MI and OSC25MO in Table 3.1~Table 3.4. Update Table 7.9 for the illustration and the value of thermal parameters, p.39 Divide Table 7.9 into Table 7.9(Temperature Range) and Table 7.10(Thermal Characteristics), p.39 Update Fig. 8.1, 8.2 and Table 8.1~8.5 for PIPE input and output timing characteristic, p.40~p.42 Update Table 8.1~8.5 for the description of TCO and TOH, p.41~p.42 1.Update Table 3.5 for the parameter of buffer I/O, p.17 2.Remove Table 7.2, p.34 1.Remove REN and PLPBK bits of SMBus register REGC, p.20 2.Add REG14 ~ REG17 for SLPBK error count result, p.21 3.Add “PS: Please write “0” to…….” description, p.21 Add Duty-H field for Table 8.3 and Table 8.5, p.43 Update Table 8.1~8.5 for timing issue, p.42~44 1. Add a note to Table 8.1, p.42 2. Update Table 7.4, 7.5 for the power consumption of reference voltage 1.25V, p37~p38, correct the index of table7.2, 7.3, p35 Complies with PCI Express Base Specification rev. 1.1, p9 Description
1.14
10/13/2005
1.16
11/15/2005
1.17
12/15/2005
1.18
03/15/2006
1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.30 1.31 1.32
03/28/2006 03/30/2006 04/26/2006 05/08/2006 06/09/2006 06/20/2006 07/31/2006 10/27/2006 02/06/2007 03/19/2007 04/16/2007
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 3
GL9714 PCI ExpressTM PIPE x4 PHY
TABLE OF CONTENTS CHAPTER 1 GENERAL DESCRIPTION................................................... 8 CHAPTER 2 FEATURES .............................................................................. 9 CHAPTER 3 PIN ASSIGNMENT .............................................................. 10 3.1 PINOUT ..................................................................................................... 10 3.2 BALL OUT ................................................................................................. 10 3.3 PIN LIST.................................................................................................... 11 3.4 PIN DESCRIPTIONS ................................................................................... 15 CHAPTER 4 REGISTERS .......................................................................... 18 4.1 REGISTERS BASE ADDRESS ...................................................................... 18 4.2 REGISTERS DESCRIPTIONS ...................................................................... 19 4.3 SMBUS PROTOCOL .................................................................................. 22 CHAPTER 5 BLOCK DIAGRAM.............................................................. 26 5.1 SIMPLIFIED DIAGRAM .............................................................................. 26 5.2 TRANSMITTER DATA PATH PER LANE .................................................... 27 5.3 RECEIVER DATA PATH PER LANE ........................................................... 28 CHAPTER 6 FUNCTION DESCRIPTION ............................................... 29 6.1 CLOCK AND RESET................................................................................... 29 6.2 RECEIVER DETECTION ............................................................................ 29 6.3 BEACON TRANSMITTING AND DETECTION.............................................. 29 6.4 RECEIVER STATUS REPORT ..................................................................... 29 6.5 LOOPBACK................................................................................................ 30 6.6 POLARITY INVERSION .............................................................................. 30 6.7 SETTING NEGATIVE DISPARITY............................................................... 30 6.8 BEHAVIOR SUMMARY .............................................................................. 31 6.9 POWER SAVING SUPPORT ........................................................................ 31 6.10 OPERATION MODE AND MULTI-FUNCTIONAL PINS ............................. 32 CHAPTER 7 ELECTRICAL CHARACTERISTICS............................... 35 7.1 DC ELECTRICAL CHARACTERISTICS ...................................................... 35
©2004-2007 Genesys Logic Inc. - All rights reserved. Page 4
GL9714 PCI ExpressTM PIPE x4 PHY
7.2 TRANSMIT AND RECEIVE LATENCY TIME .............................................. 35 7.3 TRANSITION TIME OF POWER STATE ...................................................... 35 7.4 POWER CONSUMPTION ............................................................................ 37 7.5 DIFFERENTIAL TRANSMITTER AND RECEIVER SERIAL OUTPUT ........... 39 7.6 RECOMMENDED OPERATING CONDITIONS ............................................. 40 CHAPTER 8 PIPE TIMING CHARACTERISTICS ............................... 41 8.1 INPUT SETUP, HOLD TIME AND OUTPUT TIMING ................................... 41 8.2 REFERENCE TIMING INFORMATION ........................................................ 44 CHAPTER 9 PACKAGE DIMENSION..................................................... 45 CHAPTER 10 ORDERING INFORMATION .......................................... 46
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 5
GL9714 PCI ExpressTM PIPE x4 PHY
LIST OF FIGURES
FIGURE 3.1 - 233 PIN LFBGA PINOUT DIAGRAM ............................................................ 10 FIGURE 4.1 – SMBUS TOPOLOGY OF GL9714.................................................................. 22 FIGURE 4.2 – DATA VALIDITY ........................................................................................... 22 FIGURE 4.3 – START AND STOP CONDITION.................................................................. 23 FIGURE 4.4 – ACK AND NACK SIGNALING OF SMBUS ................................................... 23 FIGURE 4.5 – SMBUS PACKET PROTOCOL DIAGRAM ELEMENT KEY............................. 24 FIGURE 4.6 – WRITE BYTE PROTOCOL ............................................................................. 24 FIGURE 4.7 – READ BYTE PROTOCOL ............................................................................... 24 FIGURE 4.8 – THE MINIMUM WAIT TIME FROM POWER ON TO PROGRAMMING REGISTERS ......................................................................................................................... 25 FIGURE 5.1 - SIMPLIFIED DIAGRAM .................................................................................. 26 FIGURE 5.2 - TRANSMITTER DATA PATH PER LANE ......................................................... 27 FIGURE 5.3 - RECEIVER DATA PATH PER LANE ............................................................... 28 FIGURE 8.1 – DEFINITION OF INPUT SETUP AND HOLD TIME .......................................... 41 FIGURE 8.2 – DEFINITION OF OUTPUT TIMING................................................................. 42 FIGURE 9.1 - GL9714 233 PIN LFBGA PACKAGE ........................................................... 45
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 6
GL9714 PCI ExpressTM PIPE x4 PHY
LIST OF TABLES
TABLE 3.1 - BALL OUT....................................................................................................... 10 TABLE 3.2 - NUMERIC PIN LIST ......................................................................................... 11 TABLE 3.3 - ALPHABETIC PIN LIST ................................................................................... 13 TABLE 3.4 - PIN DESCRIPTIONS ......................................................................................... 15 TABLE 3.5 - PARAMETER OF BUFFER I/O ......................................................................... 17 TABLE 4.1 - BASE ADDRESS FOR REGISTERS .................................................................... 18 TABLE 6.1 - PIN FUNCTIONS .............................................................................................. 32 TABLE 7.1 - DC ELECTRICAL CHARACTERISTICS ............................................................ 35 TABLE 7.2 - TRANSMIT AND RECEIVE LATENCY TIME .................................................... 35 TABLE 7.3 – TRANSITION TIME OF POWER STATE ........................................................... 35 TABLE 7.4 – TYPICAL POWER CONSUMPTION WITH 2-LANES, 4-LANES, AND 1.2V DIFFERENTIAL PEAK TO PEAK OUTPUT VOLTAGE .......................................................... 37 TABLE 7.5 – TYPICAL POWER CONSUMPTION WITH SINGLE-LANE AND 1.2V DIFFERENTIAL PEAK TO PEAK OUTPUT VOLTAGE .......................................................... 38 TABLE 7.6 – TRANSMITTER SERIAL OUTPUT.................................................................... 39 TABLE 7.7 – RECEIVER SERIAL OUTPUT .......................................................................... 40 TABLE 7.8 – TEMPERATURE RANGE ................................................................................. 40 TABLE 7.9 – THERMAL CHARACTERISTICS ...................................................................... 40 TABLE 8.1 – INPUT SETUP, HOLD TIME AND OUTPUT TIMING FOR 8-BIT SDR MODE ... 42 TABLE 8.2 – INPUT SETUP, HOLD TIME AND OUTPUT TIMING FOR 8-BIT DDR MODE .. 43 TABLE 8.3 – INPUT SETUP, HOLD TIME AND OUTPUT TIMING FOR 16-BIT MODE .......... 43 TABLE 8.4 – INPUT SETUP, HOLD TIME AND OUTPUT TIMING FOR 10-BIT SDR MODE . 43 TABLE 8.5 – INPUT SETUP, HOLD TIME AND OUTPUT TIMING FOR 10-BIT DDR MODE 44 TABLE 8.6 – REFERENCE TIMING INFORMATION ............................................................. 44 TABLE 10.1 - ORDERING INFORMATION ........................................................................... 46
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 7
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 1 GENERAL DESCRIPTION
The GL9714 is a 4-lane PCI Express PHY Layer Controller, which is compliant with PCI Express Base Specification rev. 1.0a and Intel’s PHY Interface for the PCI Express Architecture rev. 1.0. It integrates a quad SerDes and the Physical Coding Sublayer (PCS) which performs 8b/10b encoding and decoding, elastic buffer and receiver detection, data serialization and deserialization for each lane. The quad SerDes in the GL9714 supports an effective serial interface speed (2.5 Gb/s) of data bandwidth for each lane, intended for use in ultrahigh-speed bi-directional data transmission system. The GL9714 can also be externally configured for various combinations of lane number and parallel bus width which is flexible and suitable for x1, x2 or x4 lane implementation. It also supports four operational states for power management to minimize power consumption. For production and self-test purposes, the GL9714 provides BIST and an internal loopback capability. The primary application of this chip is to provide very high-speed I/O data channels for point-to-point baseband data transmission over an on-chip termination resister of 50 Ohm +/- 10%. This device can also be used to replace parallel data transmission architectures by providing a reduction in the number of traces, connector pins, and transmit/receive pins. Parallel data loaded into the transmitter is delivered to the receiver over a serial channel. It is then reconstructed into its original parallel format. The maximum data transfer rate in each direction is 1 Giga byte per second with the 4-lane configuration. It also offers various power saving modes to significantly reduce power consumption as well as scalability for a higher data rate in the future.
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 8
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 2 FEATURES
Complies with PCI Express Base Specification rev. 1.1 Complies with Intel’s PHY Interface for PCI Express Architecture rev. 1.0 Integrates quad 2.5 gigabit per second (Gbps) Serializer/Deserializer Supports 8-bit or 10-bit parallel interface @250MHz for x1, x2 and x4 implementation Supports 16-bit parallel interface @125MHz for x1 and x2 configuration Supports DDR configuration for 8-bit or 10-bit mode Beacon transmission and reception Receiver detection Transmission and detection of electrical idle Clock tolerance for 600 ppm in frequencies between bit rates at the two end of a Link On-chip 8-bit/10-bit encoding/decoding and comma alignment On-chip PLL provides clock synthesis 1.8-V power supply for core 2.5-V power supply for IO Above 2.0 kV ESD protection 0.18 µm process Available in LFBGA-233 package
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 9
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 3 PIN ASSIGNMENT
3.1 Pinout
17 16 15 14 13 12 11 10 9 A B C D E F G H J K L M N P R T U 8 7 6 5 4 3 2 1
Bottom View
Figure 3.1 - 233 Pin LFBGA Pinout Diagram
3.2 Ball Out
Table 3.1 - Ball Out
1 A B C D E F G H J K L M N P R
REFCLKP REFCLKN
2 TXND TXPD RXDD7 VDD25 RXDD1 RXSTSD1 VDD25 TXDD6 VSS TXDD0 VSS RXDC7 VSS RXDC1 RXSTSC1
3
VDDTXD
4
5
6
7
8
9
OSC25MO
OSC25MI
RXDKD VSS TXCMPD TXDD4 TXDD2 VDD25 VSS VSS RXDC5 VDD25 RXDC3
RXND VDDRXD TXNC VDDTXC RXNC VDDRXC VSSTXD RXPD VSSRXD TXPC VSSTXC RXPC VSSRXC NC VDD18 NC NC VSSTXC VDDPLL NC RXDD3 VSS VSS NC VDD18 RTERM VSSPLL RXDD4 RXDD5 RXDD2 RXDD6 RXSTSD2 RXDD0 VSS VSS VSS TXDD7 RXSTSD0 VSS VSS VSS TXDD5 TXDD3 VSS VSS VSS TXDD1 VDD12 VSS VSS VSS TXDKD VDD18 VSS VSS VSS VDD18 RXDC4 RXDC6 RXDC0 RXDC2 RXSTSC2 RXSTSC0 TXDC3 TXDKC RXIDLED VSS OPMODE0 TXCMPC TXDC7 TXDC5 TXDC1 VSS RXPLRD
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 10
GL9714 PCI ExpressTM PIPE x4 PHY
T U
RXDKC
VSS 1 10
TXNB
VDD25 TXDC4 2 11
VDDTXB
TXDC6 VSS 3 12
TXDC2 TXDC0 4 13
VDD25 VDD18 TXIDLED RXIDLEC RXPLRC PHYSTS RXVLDD RXVLDC TXIDLEC VDD25 5 14 6 15
VDDTXA
7 16
8 17
VDDRXA
9
RXNB VDDRXB TXNA A TXPB VSSTXB RXPB VSSRXB TXPA B NC VDD18 NC TXDA1 C VDD18 NC NC NC TXDA0 TXDA3 D TXDA5 E RXSTSA0 F RXSTSA1 VSS VSS G VSS VSS RXDA5 H VSS VSS VDD12 J VSS VSS TXDB2 K VSS VSS TXCMPB L RXSTSB1 M RXDB3 N PD1 RXVLDB RXVLDA RXDB7 RXDB5 P R SCC
RXNA VSSTXA RXPA VSSGR TXDA6 TXDA4 VDD25 TXDKA TXDA2 TXCMPA RXDA0 RXDA1 RXDA2 RXDA3 RXDA7 VSS RXDA6 VDD25 TXDKB TXDB6 TXDB1 TXDB4 TXDB3 RXDKB TXDB7 RXDB1 VSS RXDB0
VSSRXA TXDA7 RXSTSA2 RXDKA VDD25 RXDA4 VDD18 VDD18 NC TXDB0 VSS TXDB5 RXSTSB0 VDD25
T TESTD U OPMODE1 TESTC 10 11
TXDET/ TXIDLEB VDD25 TXIDLEA RXDB4 LPBK PD0 RXIDLEB RXIDLEA PCLK VSS
RST_N 12
RXPLRB 13
VSS 14
RXPLRA
RXDB2 RXSTSB2 RXDB6 VDD25 16 17
15
3.3 Pin List
Table 3.2 - Numeric Pin List
Pin# A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 Pin Name REFCLKP TXND VDDTXD RXND VDDRXD TXNC VDDTXC RXNC VDDRXC TXNB VDDTXB RXNB VDDRXB Pin# C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Pin Name OSC25MO RXDD7 NC VDD18 NC NC VSSTXC VDDPLL NC VDD18 NC VDD18 NC Pin# E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 Pin Name RXDKD RXDD1 RXDD4 RXDD5 Pin# G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 VSS VSS VSS VSS VSS Pin Name TXCMPD VDD25 RXSTSD2 RXDD0 Pin# J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 VSS VSS VSS VSS VSS Pin Name TXDD2 VSS TXDD5 TXDD3
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 11
GL9714 PCI ExpressTM PIPE x4 PHY
A14 A15 A16 A17 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 TXNA VDDTXA RXNA VDDRXA REFCLKN TXPD VSSTXD RXPD VSSRXD TXPC VSSTXC RXPC VSSRXC TXPB VSSTXB RXPB VSSRXB TXPA VSSTXA RXPA VSSRXA C14 C15 C16 C17 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 TXDA1 VSSGR TXDA6 TXDA7 OSC25MI VDD25 RXDD3 VSS VSS NC VDD18 RTERM VSSPLL NC NC NC TXDA0 TXDA3 TXDA4 VDD25 RXSTSA2 E14 E15 E16 E17 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 RXSTSA0 TXCMPA RXDA0 VDD25 TXDA5 TXDKA TXDA2 RXDKA VSS RXSTSD1 RXDD2 RXDD6 G14 G15 G16 G17 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 RXDA5 RXDA3 RXDA7 VDD18 VSS VSS VSS VSS VSS RXSTSA1 RXDA1 RXDA2 RXDA4 TXDD4 TXDD6 TXDD7 RXSTSD0 J14 J15 J16 J17 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 TXDB2 VDD25 TXDKB NC VSS VSS VSS VSS VSS VDD12 VSS RXDA6 VDD18 VDD25 TXDD0 TXDD1 VDD12
Pin# L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
Pin Name VSS VSS TXDKD VDD18
Pin# N1 N2 N3 N4 N5 N6
Pin Name RXDC5 VSS RXDC6 RXDC0
Pin# R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Pin Name RXDC3 RXSTSC1 TXCMPC TXDC7 TXDC5 TXDC1 VSS RXPLRD OPMODE0 SCC
Pin Pin Name # U1 VSS U2 U3 U4 U5 U6 U7 TXDC4 VSS TXDC0 PHYSTS RXVLDD RXVLDC
VSS VSS VSS VSS VSS
N7 N8 N9 N10 N11 N12 N13
U8 TXIDLEC U9 VDD25
U10 OPMODE1 TESTC RST_N
R11 TXDET/LPBK U11 R12 R13 RXDB3 RXDKB R14 R15 TXIDLEB VDD25 TXIDLEA RXDB4 U12
U13 RXPLRB U14 VSS
TXCMPB TXDB6
N14 N15
U15 RXPLRA
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 12
GL9714 PCI ExpressTM PIPE x4 PHY
L16 L17 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 RXSTSB1 TXDB4 TXDB3 VSS TXDB1 TXDB0 VSS RXDC7 VDD18 RXDC4 N16 N17 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 TXDB7 TXDB5 VDD25 RXDC1 RXDC2 RXSTSC2 RXSTSC0 TXDC3 TXDKC RXIDLED VSS PD1 RXVLDB RXVLDA RXDB7 RXDB5 RXDB1 VSS RXSTSB0 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 RXDB0 VDD25 RXDKC VDD25 TXDC6 TXDC2 VDD25 VDD18 TXIDLED RXIDLEC RXPLRC TESTD PD0 RXIDLEB RXIDLEA PCLK VSS RXDB2 RXSTSB2 Blank U16 U17 RXDB6 VDD25
Table 3.3 - Alphabetic Pin List
Pin Name NC NC NC NC NC NC NC NC NC NC NC OPMODE0 OPMODE1 OSC25MO OSC25MI PCLK Pin# C3 C5 C6 C9 C11 C13 D6 D10 D11 D12 K17 R9 U10 C1 D1 T14 Pin Name RXDD0 RXDD1 RXDD2 RXDD3 RXDD4 RXDD5 RXDD6 RXDD7 RXDKA RXDKB RXDKC RXDKD RXIDLEA RXIDLEB RXIDLEC RXIDLED Pin# G4 E2 F3 D3 E3 E4 F4 C2 E17 N15 T1 E1 T13 T12 T8 P8 Pin Name TXCMPA TXCMPB TXCMPC TXCMPD TXDA0 TXDA1 TXDA2 TXDA3 TXDA4 TXDA5 TXDA6 TXDA7 TXDB0 TXDB1 TXDB2 TXDB3 Pin# F15 L14 R3 G1 D13 C14 E16 D14 D15 E14 C16 C17 L17 L16 K14 M16 Pin Name TXNC TXND TXPA TXPB TXPC TXPD VDD12 VDD12 VDD18 VDD18 VDD18 VDD18 VDD18 VDD18 VDD18 VDD18 Pin# A6 A2 B14 B10 B6 B2 J14 K4 C4 C10 C12 D7 H17 J17 L4 M3 Pin Name VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS Pin# H7 H8 H9 H10 H11 J2 J7 J8 J9 J10 J11 J15 K7 K8 K9 K10 Page 13
©2004-2007 Genesys Logic Inc. - All rights reserved.
GL9714 PCI ExpressTM PIPE x4 PHY
PD0 PD1 PHYSTS REFCLKN REFCLKP RST_N RTERM RXDA0 RXDA1 RXDA2 RXDA3 RXDA4 RXDA5 RXDA6 RXDA7 RXDB0 RXDB1 RXDB2 RXDB3 RXDB4 RXDB5 RXDB6 RXDB7 RXDC0 RXDC1 RXDC2 RXDC3 RXDC4 RXDC5 RXDC6 RXDC7 T11 P10 U5 B1 A1 U12 D8 F16 G15 G16 H15 G17 H14 J16 H16 R16 P15 T16 N14 R15 P14 U16 P13 N4 P2 P3 R1 M4 N1 N3 M2 RXNA RXNB RXNC RXND RXPA RXPB RXPC RXPD RXPLRA RXPLRB RXPLRC RXPLRD RXSTSA0 RXSTSA1 RXSTSA2 RXSTSB0 RXSTSB1 RXSTSB2 RXSTSC0 RXSTSC1 RXSTSC2 RXSTSD0 RXSTSD1 RXSTSD2 RXVLDA RXVLDB RXVLDC RXVLDD SCC TESTC TESTD A16 A12 A8 A4 B16 B12 B8 B4 U15 U13 T9 R8 F14 G14 D17 P17 M14 T17 P5 R2 P4 H4 F2 G3 P12 P11 U7 U6 R10 U11 T10 TXDB4 TXDB5 TXDB6 TXDB7 TXDC0 TXDC1 TXDC2 TXDC3 TXDC4 TXDC5 TXDC6 TXDC7 TXDD0 TXDD1 TXDD2 TXDD3 TXDD4 TXDD5 TXDD6 TXDD7 M15 N17 L15 N16 U4 R6 T4 P6 U2 R5 T3 R4 K2 K3 J1 J4 H1 J3 H2 H3 VDD18 VDD25 VDD25 VDD25 VDD25 VDD25 VDD25 VDD25 VDD25 VDD25 VDD25 VDD25 VDD25 VDD25 VDDPLL VDDRXA VDDRXB VDDRXC VDDRXD VDDTXA VDDTXB VDDTXC VDDTXD VSS VSS VSS VSS VSS VSS VSS VSS T6 D2 D16 F17 G2 K1 K15 P1 R13 R17 T2 T5 U9 U17 C8 A17 A13 A9 A5 A15 A11 A7 A3 D4 D5 F1 G7 G8 G9 G10 G11 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSGR VSSPLL VSSRXA VSSRXB VSSRXC VSSRXD VSSTXA VSSTXB VSSTXC VSSTXC VSSTXD K11 L1 L2 L7 L8 L9 L10 L11 M1 M17 N2 P9 P16 R7 T15 U1 U3 U14 C15 D9 B17 B13 B9 B5 B15 B11 B7 C7 B3
TXDET/LPBK R11
TXDKA TXDKB TXDKC TXDKD TXIDLEA TXIDLEB TXIDLEC TXIDLED TXNA TXNB
E15 K16 P7 L3 R14 R12 U8 T7 A14 A10
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 14
GL9714 PCI ExpressTM PIPE x4 PHY 3.4 Pin Descriptions
Table 3.4 - Pin Descriptions
PIPE Interface Pin Name RST_N I/O Standard LVCMOS2 Pin# U12 Type I Description Global reset Parallel interface clock All data movement across the parallel interface is synchronous to this clock. 1. For 8-bit mode: PCLK operates at 250 MHz and is applied to synchronize all TXDx, RXDx data bus and all commands. 2. For 16-bit mode: PCLK operates at 125 MHz and is applied to synchronize all TXDx, RXDx data bus and all commands. 3. For 10-bit mode(TBC): PCLK operates at 250 MHz and is applied to synchronize the TXDx data bus and all commands. 1. For 8-bit and 16-bit modes: Encodes receiver status and error codes for the received data stream and receiver detection 000 Received data OK 001 1 SKP added 010 1 SKP removed 011 Receiver detected 100 8B/10B decode error 101 Elastic Buffer overflow 110 Elastic Buffer underflow 111 Receiver disparity error 2. For 10-bit modes: RXSTSx[2]: RBCx, synchronize the RXDx data bus RXSTSx[1]: RXPRSNTx, report the result of receiver detection RXSTSx[0]: RXDx9, bit 9 of RXDx data bus Indicates receiver detection of an electrical idle This is an asynchronous signal. Used to communicate completion of several PHY functions including power state transitions and receiver detection Indicates symbol lock and valid data on RXDx and RXDKx Sets the running disparity to negative Forces Tx output to electrical idle K-code indication for the received symbols Parallel data output bus Page 15
PCLK
SSTL2_I
T14
O
RXSTSA[2:0] RXSTSB[2:0] RXSTSC[2:0] RXSTSD[2:0]
SSTL2_I
D17, G14, F14 T17, M14, P17 P4, R2, P5 G3, F2, H4
O
RXIDLEA~D
LVCMOS2
T13, T12, T8, P8
O
PHYSTS RXVLDA~D TXCMPA~D TXIDLEA~D RXDKA~D RXDA[7:0]
SSTL2_I LVCMOS2 SSTL2_I LVCMOS2 SSTL2_I SSTL2_I
U5 P12, P11, U7, U6 F15, L14, R3, G1
R14, R12, U8, T7 E17, N15, T1, E1
H16, J16, H14, G17, H15, G16, G15, F16
O O I I O O
©2004-2007 Genesys Logic Inc. - All rights reserved.
GL9714 PCI ExpressTM PIPE x4 PHY
RXDB[7:0] RXDC[7:0] RXDD[7:0]
P13, U16, P14, R15, N14, T16, P15, R16 M2, N3, N1, M4, R1, P3, P2, N4 C2, F4, E4, E3, D3, F3, E2, G4
TXDKA~D TXDA[7:0] TXDB[7:0] TXDC[7:0] TXDD[7:0]
TXDET/LPBK
SSTL2_I
E15, K16, P7, L3
C17, C16, E14, D15, D14, E16, C14, D13 N16, L15, N17, M15, M16, K14, L16, L17 R4, T3, R5, U2, P6, T4, R6, U4 H3, H2, J3, H1, J4, J1, K3, K2
I
K-code indication for the transmitted symbols
SSTL2_I
I
Parallel data input bus
LVCMOS2
R11
I
PD[1:0]
LVCMOS2
P10, T11
I
Receiver detection/Loopback Sets the power states 00 P0, normal operation 01 P0s, low recovery time latency, power saving state
10 P1, longer recovery time(64us max) latency, lower power state
RXPLRA~D
LVCMOS2
U15, U13, T9, R8
I
11 P2, lowest power state Inverts the polarity on the RXP/RXN
Power and Ground Signals Pin Name VDD25 VDD18 VDD12 Pin#
D2, D16, F17, G2, K1, K15, P1, R13, R17, T2, T5, U9, U17 C4, C10, C12, D7, H17, J17, L4,
Type P P P
Description 2.5V Power Supplies for general I/O 1.8V Power Supplies for core and bias voltage 1.25V Reference Voltage for high speed I/O
VSS
VDDPLL VSSPLL VDDRXA~D VSSRXA~D VDDTXA~D VSSTXA~D VSSGR
M3, T6 J14, K4 D4, D5, F1, G7, G8, G9, G10, G11, H7, H8, H9, H10, H11, J2, J7, J8, J9, J10, J11, J15, K7, K8, K9, K10, K11, L1, L2, L7, L8, L9, L10, L11, M1, M17, N2, P9, P16, R7, T15, U1, U3, U14 C8 D9
A17, A13, A9, A5
P
Digital ground
P P P P P
1.8V Power Supplies for internal PLL Ground for internal PLL 1.8V Power Supplies for receiver part 1.8V Power Supplies for transceiver part Ground for the guard ring of the SerDes block
B17, B13, B9, B5 A15, A11, A7, A3 B15, B11, B7, C7, B3
C15
Serial Signals Pin Name RXNA~D RXPA~D RTERM Pin# A16, A12, A8, A4
B16, B12, B8, B4
Type I I I
Description Received serial input, complement Received serial input, true Connects an external 5.1KΩ resistor to ground Page 16
D8
©2004-2007 Genesys Logic Inc. - All rights reserved.
GL9714 PCI ExpressTM PIPE x4 PHY
for calibrating the on-chip termination resistors TXNA~D TXPA~D A14, A10, A6, A2
B14, B10, B6, B2
O O
Transmitted serial output, complement Transmitted serial output, true
Other Signals Pin Name REFCLKP REFCLKN OSC25MO I/O Standard Analogue Analogue Crystal Crystal/ Oscillator Pin# A1 B1 C1 Type I I O Description Reference clock signal Reference clock signal
OSC25MI
D1 U11 T10
I I
Connect to 25MHz crystal when using crystal as the reference clock source Connect to 25MHz crystal/oscillator when using crystal/oscillator as the reference clock source
Test clock/SMBus clock
TESTC/SMC LVCMOS2 TESTD/SMD LVCMOS2
SCC
LVCMOS2
R10
OPMODE[1:0] LVCMOS2
U10, R9
I/O Test data/SMBus data Configures clock input source When SCC=1, the chip clock sources from a pair of differential signals, REFCLKP and REFCLKN, I with a nominal frequency of 100 MHz. When SCC=0, the chip clock sources from a crystal at 25MHz. Operational Mode of the GL9714 00 4 lanes, 8 bit mode I 01 2 lanes, 16 bit mode 10 4 lanes, 10 bit mode 11 Internal use only No connection
NC
-
C3, C5, C6, C9, C11, C13, D6, D10, D11, D12, K17
Table 3.5 - Parameter of Buffer I/O
VIH VIL VOH VOL (Input High Voltage, (Input Low Voltage, (Output High Voltage, (Output Low Voltage, V) V) V) V)
Min Norm Max Min Norm Max Min Norm Max Min Norm Max
Buffer type
LVCMOS2 SSTL2
1.7 1.57
-
-
-
-
0.7 0.93
2.4 1.76
-
-
-
-
0.4 0.74
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 17
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 4 REGISTERS
There are some registers built-in the GL9714 for test purpose. These registers can be accessed through a serial bus interface using pin TESTC and TESTD. Registers at Offset 05h ~ 0Bh are for internal test only. Please be careful to leave them as default values.
4.1 Registers Base Address
Table 4.1 - Base Address for Registers
Mnemonic REVID XCVROPT LPBKTEST BCNPAT2 BCNPAT3 BT SLCDT Notation: R/W R/O W/O R/W1C R/W/C Offset 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh Description Revision ID and Auto-calibration Result Register Transceiver Option Register BIST and Beacon/Test Data Pattern Register, Part 1 Beacon/Test Data Pattern Register, Part 2 Beacon/Test Data Pattern Register, Part 3 For internal test only For internal test only For internal test only For internal test only For internal test only For internal test only For internal test only Buffer Test Register Serial Loopback and Comma Detect Test Register Default 8’bxxxx0xxx 8’hE9 8’h00 8’h03 8’hFF 8’h00 8’h00
Read / Write Read Only Write Only Read / Write “1” to Clear Read / Write and hardware automatic Clear
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 18
GL9714 PCI ExpressTM PIPE x4 PHY 4.2 Registers Descriptions
Offset 00h – REVID …………………………………………….………… Default value = 8’bxxxx0xxx REV3 R 7-4 REV[3:0] 3 BY1 2-0 RCAL[0:2] REV2 R REV1 R REV0 R BY1 R RCAL0 R RCAL1 R RCAL2 R
Chip revision code x1 package Calibration result of on-chip termination resistors
Offset 01h – XCVROPT ……………………………………………..…………. Default value = 8’hE9 SW1 R/W 7-6 SW[1:0]
SW0
DEM1 R/W
DEM0 R/W
BW0 R/W
BW1 R/W
RDEF R/W
FEVAL R/W
R/W
5-4 DEM[1:0]
3-2 BW[0:1]
1 RDEF 0 FEVAL
Swing control of transmitter output Output Swing (Differential, peak-to-peak) 00 0.6V 01 0.8V 10 1.0V 11 1.2V De-emphasis control of transmitter output Amount of De-emphasis 00 No de-emphasis 01 -1.6dB 10 -3.5dB 11 -6.0dB Bandwidth control of clock recovery circuit Relative Bandwidth 00 1 01 2 10 4 11 Reserved Disable calibration of on-chip termination resistors and leave the resistors to their default value Force calibration of on-chip termination resistors When RDEF=0, writing a one to this bit will make the resistors re-calibrated. This bit is auto-cleared and always read as zero.
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 19
GL9714 PCI ExpressTM PIPE x4 PHY
Offset 02h – LPBKTEST …………………………………………..…………. Default value = 8’h00 BIST0 R/W 7-5 BIST[0:2]
BIST1
BIST2 R/W
---
BCN19 R/W
BCN18 R/W
BCN17 R/W
BCN16 R/W
R/W
4 RESERVED 3-0 BCN[19:16]
Select of built-in test pattern Bit Pattern 00x BIST disabled 100 0000000000 0000000000 010 1111111111 1111111111 110 0101010101 0101010101 101 0011111010 1010101010 1100000101 0101010101 011 0011111010 10100*01010 1100000101 01011*10101 111 PRBS pattern It should be noted that the expected pattern while BIST[0:2]=011 is the same as BIST[0:2]=101. But when coming out of the transmitter, the two bits with “*” in BIST[0:2]=011 are different from BIST[0:2]=101. As a result, even when there is no bit error, there will be bit errors intentionally introduced to verify the BIST circuit is functional. Data pattern for beacon and TXTEST
Offset 03h – BCNPAT2 ………………………………………………….……. Default value = 8’h03 BCN15 R/W 7-0 BCN[15:8] BCN14 R/W BCN13 R/W BCN12 R/W BCN11 R/W BCN10 R/W BCN9 R/W BCN8 R/W
Data pattern for beacon and TXTEST
Offset 04h – BCNPAT3 ………………………………………………….……. Default value = 8’hFF BCN7 R/W 7-0 BCN[7:0] BCN6 R/W BCN5 R/W BCN4 R/W BCN3 R/W BCN2 R/W BCN1 R/W BCN0 R/W
Data pattern for beacon and TXTEST
Offset 0Ch – BT ……………...…………………………………………...……. Default value = 8’h00 --7-6 RESERVED 5 DDR 3 TXTEST 1 SKPDEL 0 SKPADD --DDR R/W
--
TXTEST R/W
---
SKPDEL R/W
SKPADD R/W
--
Enable DDR at PIPE interface and make PCLK = 125MHz @ 8/10-bit mode Enable transmitter test with data pattern BCN[19:0], which are programmed in REG02h, 03h and 04h Enable SKP deleting test of SKP ordered sets Enable SKP adding test of SKP ordered sets Page 20
©2004-2007 Genesys Logic Inc. - All rights reserved.
GL9714 PCI ExpressTM PIPE x4 PHY
Offset 0Dh – SLCDT ………...…………………………………………...……. Default value = 8’h00 SLPBKA R/W 7 6 5 4 3 2 1 0 SLPBKA SLPBKB SLPBKC SLPBKD FENCDA FENCDB FENCDC FENCDD
SLPBKB
SLPBKC R/W
SLPBKD R/W
FENCDA R/W
FENCDB R/W
FENCDC R/W
FENCDD R/W
R/W
Enable serial loopback of lane A Enable serial loopback of lane B Enable serial loopback of lane C Enable serial loopback of lane D Force comma detect of lane A Force comma detect of lane B Force comma detect of lane C Force comma detect of lane D
Offset 14h – SECNTA ………...…………………………………………...……. Default value = 8’h00 SECNTA7 R 7-0 SECNTA6 R SECNTA5 R SECNTA4 R SECNTA3 R SECNTA2 R SECNTA1 R SECNTA0 R
SECNTA[7:0]
Error count of SLPBKA.
Offset 15h – SECNTB ………...…………………………………………...……. Default value = 8’h00 SECNTB7 R 7-0 SECNTB6 R SECNTB5 R SECNTB4 R SECNTB3 R SECNTB2 R SECNTB1 R SECNTB0 R
SECNTB[7:0]
Error count of SLPBKB.
Offset 16h – SECNTC ………...…………………………………………...……. Default value = 8’h00 SECNTC7 R 7-0 SECNTC6 R SECNTC5 R SECNTC4 R SECNTC3 R SECNTC2 R SECNTC1 R SECNTC0 R
SECNTC[7:0]
Error count of SLPBKC.
Offset 17h – SECNTD ………...…………………………………………...……. Default value = 8’h00 SECNTD7 SECNTD6 SECNTD5 SECNTD4 SECNTD3 SECNTD2 SECNTD1 SECNTD0 R 7-0 R R R R R R R
SECNTD[7:0]
Error count of SLPBKD.
PS: Please write “0” to the unused bits when programming a register.
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 21
GL9714 PCI ExpressTM PIPE x4 PHY 4.3 SMBus Protocol
GL9714 registers are programmed by System Management Bus (SMBus). Fig. 4.1 shows the SMBus topology. The VDD power is 2.5V +/- 10% and the pull up resistor is 1K . Both SMBCLK and SMBDAT lines are bi-directional, connected to 2.5V supply voltage through a pull-up resistor. The operating frequency is 10~100KHz and the SMBus address of GL9714 is 7’h2C.
Figure 4.1 – SMBus Topology of GL9714
SMBus uses fixed voltage levels to define the logic “ZERO” and logic “ONE” on the bus respectively. The data on SMBDAT must be stable during the “HIGH” period of the clock. Data can change state only when SMBCLK is low. Fig. 4.2 illustrates the relationships.
Figure 4.2 – Data Validity
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 22
GL9714 PCI ExpressTM PIPE x4 PHY
Two unique bus situations define a message START and STOP condition. 1. A HIGH to Low transition of the SMBDAT line while SMBCLK is HIGH indicates a message START condition. 2. A LOW to HIGH transition of the SMBDAT line while SMBCLK is HIGH defines a message STOP condition.
Figure 4.3 – START and STOP Condition
Every byte consists of 8 bits. Each byte transferred on the bus must be followed by an acknowledge bit. Bytes are transferred with the most significant bit (MSB) first. Fig. 4.4 illustrates the positioning of acknowledge (ACK) and not acknowledge (NACK) pulses relative to other data.
Figure 4.4 – ACK and NACK Signaling of SMBus
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 23
GL9714 PCI ExpressTM PIPE x4 PHY
Below is a key to the protocol diagrams.
S Sr Rd Wr x ` A P
Start Condition Repeated Start Condition Read (bit value of 1) Write (bit value of 0) Shown under a field indicates that that field is required to have the value of ‘x’ Acknowledge (this bit position may be ‘0’ for an ACK or ‘1’ for a NACK) Stop Condition Master-to-GL9714 GL9714-to-Master
Figure 4.5 – SMBus Packet Protocol Diagram Element Key
The first byte of a Write Byte access is the command code. The next one byte is the data to be written. In this example the master asserts GL9714’s address followed by the write bit. GL9714 acknowledges and the master delivers the command code. GL9714 again acknowledges before the master sends the data byte. GL9714 acknowledges the data byte, and the entire transaction is finished with a STOP condition.
Figure 4.6 – Write Byte Protocol
Reading data is slightly more complicated than writing data. First the host must write a command to GL9714. Then it must follow that command with a repeated START condition to denote a read from GL9714’s address. GL9714 then returns one byte of data. Note that there is no STOP condition before the repeated START condition, and that a NACK signified the end of the read transfer.
Figure 4.7 – Read Byte Protocol
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 24
GL9714 PCI ExpressTM PIPE x4 PHY
GL9714 requires a minimum time (16us) to reach the steady state after power on. So the master must start programming at least 16us later after power on.
Figure 4.8 – The Minimum Wait Time from Power on to Programming Registers
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 25
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 5 BLOCK DIAGRAM
5.1 Simplified Diagram
PHY/MAC Interface
PCS Quad SerDes
Operational
TXPA TXNA RXPA RXNA TXPB TXNB RXPB RXNB
TXPC TXNC RXPC RXNC TXPD TXND RXPD RXND
Registers
Configuration
Test Bus
Controller
PLL
REFCLKP REFCLKN
Figure 5.1 - Simplified Diagram
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 26
GL9714 PCI ExpressTM PIPE x4 PHY 5.2 Transmitter Data Path Per Lane
Data x16 or x8 PCLK Optional 16, 8-bit
x8
TXCMP 8b 10b Encoding
TXDK0,TXDK1
250 MHz
Loopback path from receiver
x10
From PLL
Parallel to Serial Conversion
2.5 GHz
TXIDLE Transmitter Differential Driver
TXDET/LPBK
TXP
TXN
Figure 5.2 - Transmitter Data Path per Lane
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 27
GL9714 PCI ExpressTM PIPE x4 PHY 5.3 Receiver Data Path Per Lane
RXP RXN
Differential Recieiver 2.5 GHz
RXIDLE
Clock Recovery Circuit
Data Recovery Circuit (DRC)
RXPLR
Serial to Paralle
K28.5 Detection
RXVLD
x10
Recovered Symbol Clock
Elastic Buffer
Buffer Overflow/Underflow SKP Added/Removed Decode Error
Receiver Status
RXSTS
x10
Disparity Error
250 MHz
8b 10b Decoder RXDK x8
Loopback path to transmitter
Optional 8, 16-bit PCL Data x16 or x8
Figure 5.3 - Receiver Data Path per Lane
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 28
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 6 FUNCTION DESCRIPTION
6.1 Clock and Reset
The clock source of the GL9714 comes externally from either the 100 MHz differential clock pair or the 25MHz
crystal, which is selectable by pin SCC. The GL9714 uses the clock source with its PLL to generate the 2.5 GHz bit rate for transmitting and receiving. The GL9714 also drives a clock output for the synchronization of MAC interface. Since the MAC interface can be configured to 8-bit and 16-bit mode, the clock, PCLK, runs at 250 MHz for 8-bit mode and 125 MHz for 16-bit mode. The MAC should use the rising edge of the clock to send and receive parallel data. To initialize the GL9714, the MAC should assert the reset of the GL9714 to low. While the reset is asserted, the MAC should also make TXDET/LPBK deasserted, TXIDLEx asserted, TXCMPx deasserted, RXPLRx deasserted and PD[1:0] = P1. When the GL9714 senses it reset asserted, it will drive its PHYSTS high immediately. After the reset deasserted, the GL9714 requires typically 16.7us for internal PLL stable and then transitions its PHYSTS to low. When MAC deasserts the reset, it should monitor the state of PHYSTS to make sure the GL9714 is ready for normal operation.
6.2 Receiver Detection
The receiver detection can only be performed while the GL9714 is in P1 state. To instruct the GL9714 to enter a receiver detection sequence, the MAC asserts TXDET/LPBK and hold it asserted until the GL9714 asserts PHYSTS for response. While finishing the receiver detection, the GL9714 will assert PHYSTS and present a appropriate value to RXSTSx[2:0] to signal a detection completion. When the MAC detects PHYSTS asserted, it knows the detection result from RXSTSx[2:0] and can deassert TXDET/LPBK.
6.3 Beacon Transmitting and Detection
Beacon transmitting is required for the GL9714 in P2 state to wake up the receiver in the other side of the link. When the GL9714 is in P2 state, the MAC can deassert TXIDLEx to instruct the GL9714 to repeatedly transmit a beacon. For the beacon receiving side, if the GL9714 receives a beacon, it will transition RXIDLEx to low to indicate an exit from electrical idle. When the GL9714 is in P2 state and MAC senses the RXIDLEx transitioned from high to low, it knows a beacon has been detected.
6.4 Receiver Status Report
Add and Remove a SKP The GL9714 implements an elastic buffer to compensate the clock rate difference between the recovery clock and its transmit clock. While receiving a SKP ordered-set, compliant to PCI Express Base specification REV. 1.0a, the GL9714 can insert or remove one SKP symbol in the SKP ordered-set to avoid the buffer overrun or underrun. Whenever adding or removing a SKP symbol, the GL9714 will signal PHYSTS and corresponding RXSTS[2:0] to MAC. SKP Ordered-Set Received RXSTS Code
Add a SKP Remove a SKP
Receiver Detected Detected Result
001b 010b
RXSTS code
Receiver not present Receiver present
000b 011b
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 29
GL9714 PCI ExpressTM PIPE x4 PHY
8B/10B Decode Error When the GL9714 decodes the received 10-bit symbol and detects an error code which does not correspond to any valid data, it will replace the code with an EDB symbol, assert PHYSTS and encode RXSTSx[2:0] with the values of decode error status, 3’b100. Elastic Buffer Overrun and Underrun When the overrun or underrun of the elastic buffer occurs, the GL9714 will assert PHYSTS and encode RXSTSx[2:0] with the values of decode error status. Elastic Buffer RXSTS Code
Overrun Underrun
101b 110b
In the case of elastic buffer overrun, the GL9714 drops the symbol. For the elastic buffer underrun, the GL9714 inserts the EDB symbol. The PHYSTS and RXSTSx[2:0] are presented on the MAC interface during the clock cycle where GL9714 drops or inserts the symbol.
Disparity Errors To report a disparity error detected, the GL9714 asserts PHYSTS and encodes RXSTSx[2:0] with the values of decode error status, 3’b111.
6.5 Loopback
The GL9714 supports a Loopback mode to re-transmit its received data. When the MAC sets the GL9714 in P0 state and asserts TXDET/LPBK, the GL9714 enters a Loopback. In Loopback, the GL9714 transmits data from it received data instead of MAC interface. Meanwhile, it presents the received data on the MAC interface as normal operation. When set into Loopback mode and acting as a Loopback slave according to the PCI Express Base Specification Rev. 1.0a, the GL9714 received data from the Loopback master. If the master intends to end the Loopback, it sends an electrical idle ordered-set to the GL9714. When the MAC detects the electrical idle ordered-set, it de-asserts TXDET/LPBK and asserts TXIDLE to instruct the GL9714 to stop Loopback. The MAC should take care the GL9714 has retransmit at least three bytes of the electrical idle before it makes the GL9714’s transmitter into electrical idle.
6.6 Polarity Inversion
The GL9714 supports lane polarity inversion. While pin RXPLRx asserted, the GL9714 inverts its received data on the MAC interface.
6.7 Setting Negative Disparity
To set the running disparity to negative, the MAC asserts TXCMPx for one PCLK cycle that matches with the data that is to be transmitted where running disparity is negative.
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 30
GL9714 PCI ExpressTM PIPE x4 PHY 6.8 Behavior Summary
PD[1:0] TXDET/LPBK TXIDLEx Behavior
GL9714 is transmitting data from MAC interface normally.
0
P0
0 1 0 1 0 1 0 1 1 0 1
0 1 1
GL9714 is not transmitting and is in electrical idle. GL9714 enters Loopback mode. Illegal Illegal GL9714 is not transmitting and is in electrical idle. Illegal GL9714 is idle. GL9714 performs a receiver detection. GL9714 transmits a beacon. GL9714 is idle.
P0S
X X X
P1
0 1
P2
X X
6.9 Power Saving Support
The GL9714 supports four power states including P0, P0s, P1 and P2 and can be controlled to perform Active State Power Management on a PCI Express link. P0 is the normal operational state where data and control packets can be transmitted and received. When directed from P0 to a lower power state, the GL9714 can immediately take appropriate power saving actions. The power saving scheme of the GL9714 for various power down states is listed in the table below.
PD[1:0] P0 P0s P1
Transmitter
Receiver
PLL
PCLK Output
On High-impedance Electrical Idle High-impedance Electrical Idle High-impedance Electrical Idle
(Capable of transmitting
On On Off but exit from Electrical Idle is detectable Off but exit from Electrical Idle is detectable
On On On
On On On
P2
Off
Off
a Beacon)
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 31
GL9714 PCI ExpressTM PIPE x4 PHY 6.10 Operation Mode and Multi-Functional Pins
There are four modes for GL9714 operation which is selected by pin OPMODE[1:0].
Mode [1] [0] Description
1 2 3 4
0 0 1 1
0 1 0 1
4 lanes, 8 bit mode 2 lanes, 16 bit mode 4 lanes, 10 bit mode For scan test only
Mode 1: The GL9714 is configured into an x4 lane, 8-bit parallel bus and acts as a 4-lane PCI Express PHY. The parallel bus is synchronous with PCLK at 250 MHz. By transitioning both TXCMPx and TXIDLEx to high for individual lane, the GL9714 in this mode is able to behave as an x1 or x2 PHY. Mode 2: The GL9714 acts as a 2-lane PHY with a 16-bit parallel interface at 125 MHz. In this mode, only lane B and lane C are activated. Again, by disabling either lane using TXCMPx and TXIDLEx, the GL9714 can be configured into an x1 PHY with16-bit parallel bus. Mode 3: The GL9714 is configured as a quad SerDes with 10-bit parallel bus. Mode 4: For scan test only
Table 6.1 - Pin Functions
Pin Number Mode 1 Mode 2 Mode 3
T14 C17 C16 E14 D15 D14 E16 C14 D13 N16 L15 N17 M15 M16 K14 L16 L17 R4 T3 R5 U2 P6 T4 R6 U4 H3
PCLK(O) TXDA7(I) TXDA6(I) TXDA5(I) TXDA4(I) TXDA3(I) TXDA2(I) TXDA1(I) TXDA0(I) TXDB7(I) TXDB6(I) TXDB5(I) TXDB4(I) TXDB3(I) TXDB2(I) TXDB1(I) TXDB0(I) TXDC7(I) TXDC6(I) TXDC5(I) TXDC4(I) TXDC3(I) TXDC2(I) TXDC1(I) TXDC0(I) TXDD7(I)
PCLK(O) TXDB15(I) TXDB14(I) TXDB13(I) TXDB12(I) TXDB11(I) TXDB10(I) TXDB9(I) TXDB8(I) TXDB7(I) TXDB6(I) TXDB5(I) TXDB4(I) TXDB3(I) TXDB2(I) TXDB1(I) TXDB0(I) TXDC15(I) TXDC14(I) TXDC13(I) TXDC12(I) TXDC11(I) TXDC10(I) TXDC9(I) TXDC8(I) TXDC7(I)
TBC(O) TDA7(I) TDA6(I) TDA5(I) TDA4(I) TDA3(I) TDA2(I) TDA1(I) TDA0(I) TDB7(I) TDB6(I) TDB5(I) TDB4(I) TDB3(I) TDB2(I) TDB1(I) TDB0(I) TDC7(I) TDC6(I) TDC5(I) TDC4(I) TDC3(I) TDC2(I) TDC1(I) TDC0(I) TDD7(I)
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 32
GL9714 PCI ExpressTM PIPE x4 PHY
H2 J3 H1 J4 J1 K3 K2 E15 K16 P7 L3 R14 R12 U8 T7 F15 L14 R3 G1 U15 U13 T9 R8 H16 J16 H14 G17 H15 G16 G15 F16 P13 U16 P14 R15 N14 T16 P15 R16 M2 N3 N1 M4 R1 P3 TXDD6(I) TXDD5(I) TXDD4(I) TXDD3(I) TXDD2(I) TXDD1(I) TXDD0(I) TXDKA(I) TXDKB(I) TXDKC(I) TXDKD(I) TXIDLEA(I) TXIDLEB(I) TXIDLEC(I) TXIDLED(I) TXCMPA(I) TXCMPB(I) TXCMPC(I) TXCMPD(I) RXPLRA(I) RXPLRB(I) RXPLRC(I) RXPLRD(I) RXDA7(O) RXDA6(O) RXDA5(O) RXDA4(O) RXDA3(O) RXDA2(O) RXDA1(O) RXDA0(O) RXDB7(O) RXDB6(O) RXDB5(O) RXDB4(O) RXDB3(O) RXDB2(O) RXDB1(O) RXDB0(O) RXDC7(O) RXDC6(O) RXDC5(O) RXDC4(O) RXDC3(O) RXDC2(O) TXDC6(I) TXDC5(I) TXDC4(I) TXDC3(I) TXDC2(I) TXDC1(I) TXDC0(I) TXDKB1(I) TXDKB0(I) TXDKC1(I) TXDKC0(I) TXIDLEB(I) TXIDLEC(I) TDD6(I) TDD5(I) TDD4(I) TDD3(I) TDD2(I) TDD1(I) TDD0(I) TDA8(I) TDB8(I) TDC8(I) TDD8(I) TXIDLEA(I) TXIDLEB(I) TXIDLEC(I) TXIDLED(I) TDA9(I) TDB9(I) TDC9(I) TDD9(I) RXPLRA(I) RXPLRB(I) RXPLRC(I) RXPLRD(I) RDA7(O) RDA6(O) RDA5(O) RDA4(O) RDA3(O) RDA2(O) RDA1(O) RDA0(O) RDB7(O) RDB6(O) RDB5(O) RDB4(O) RDB3(O) RDB2(O) RDB1(O) RDB0(O) RDC7(O) RDC6(O) RDC5(O) RDC4(O) RDC3(O) RDC2(O) Page 33
TXCMPB(I) TXCMPC(I)
RXPLRB(I) RXPLRC(I) RXDB15(O) RXDB14(O) RXDB13(O) RXDB12(O) RXDB11(O) RXDB10(O) RXDB9(O) RXDB8(O) RXDB7(O) RXDB6(O) RXDB5(O) RXDB4(O) RXDB3(O) RXDB2(O) RXDB1(O) RXDB0(O) RXDC15(O) RXDC14(O) RXDC13(O) RXDC12(O) RXDC11(O) RXDC10(O)
©2004-2007 Genesys Logic Inc. - All rights reserved.
GL9714 PCI ExpressTM PIPE x4 PHY
P2 N4 C2 F4 E4 E3 D3 F3 E2 G4 E17 N15 T1 E1 P12 P11 U7 U6 D17 G14 F14 T17 M14 P17 P4 R2 P5 G3 F2 H4 U5 T13 T12 T8 P8 RXDC1(O) RXDC0(O) RXDD7(O) RXDD6(O) RXDD5(O) RXDD4(O) RXDD3(O) RXDD2(O) RXDD1(O) RXDD0(O) RXDKA(O) RXDKB(O) RXDKC(O) RXDKD(O) RXVLDA(O) RXVLDB(O) RXVLDC(O) RXVLDD(O) RXSTSA2(O) RXSTSA1(O) RXSTSA0(O) RXSTSB2(O) RXSTSB1(O) RXSTSB0(O) RXSTSC2(O) RXSTSC1(O) RXSTSC0(O) RXSTSD2(O) RXSTSD1(O) RXSTSD0(O) PHYSTS(O) RXIDLEA(O) RXIDLEB(O) RXIDLEC(O) RXIDLED(O) RXDC9(O) RXDC8(O) RXDC7(O) RXDC6(O) RXDC5(O) RXDC4(O) RXDC3(O) RXDC2(O) RXDC1(O) RXDC0(O) RXDKB1(O) RXDKB0(O) RXDKC1(O) RXDKC0(O) RXVLDB(O) RXVLDC(O) RDC1(O) RDC0(O) RDD7(O) RDD6(O) RDD5(O) RDD4(O) RDD3(O) RDD2(O) RDD1(O) RDD0(O) RDA8(O) RDB8(O) RDC8(O) RDD8(O) RXVLDA(O) RXVLDB(O) RXVLDC(O) RXVLDD(O) RBCA(O) RXPRSNTA(O) RDA9(O) RBCB(O) RXPRSNTB(O) RDB9(O) RBCC(O) RXPRSNTC(O) RDC9(O) RBCD(O) RXPRSNTD(O) RDD9(O) PHYSTS(O) RXIDLEA(O) RXIDLEB(O) RXIDLEC(O) RXIDLED(O)
RXSTSB2(O) RXSTSB1(O) RXSTSB0(O) RXSTSC2(O) RXSTSC1(O) RXSTSC0(O)
PHYSTS(O) RXIDLEB(O) RXIDLEC(O)
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 34
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 7 ELECTRICAL CHARACTERISTICS
7.1 DC Electrical Characteristics
Table 7.1 - DC Electrical Characteristics
Symbol Parameter Min Typ Max Unit
VDD25 VDD18 VDD12 VDDTXA VDDTXB VDDTXC VDDTXD VDDRXA VDDRXB VDDRXC VDDRXD VDDPLL
PHY Interface Voltage Core Voltage Reference Voltage for PHY Interface Voltage for Transmitters
2.375 1.71 1.1875 1.71
2.5 1.8 1.25 1.8
2.625 1.89 1.3125 1.89
V V V V
Voltage for Receivers Voltage for PLL
1.71 1.71
1.8 1.8
1.89 1.89
V V
7.2 Transmit and Receive Latency Time
Table 7.2 - Transmit and Receive Latency Time
Symbol Parameter Min Typ Max Unit
TTX-LAT
TRX-LAT
Transmit Latency, time for data moving from MAC interface (PCLK rising edge) to TX serial lines (the first bit of 10-bit symbol) Receive Latency, time for data moving from RX serial lines (the first bit of 10-bit symbol) to MAC interface (PCLK rising edge)
25
-
30
ns
48
-
54
ns
7.3 Transition Time of Power State
Table 7.3 – Transition Time of Power State
Symbol Parameter Min Typ Max Unit
TP0S-P0
TP1-P0
TP2-P1
TP0-P0S TP0-P1
Time for PHY to return to P0, after having been in P0s. Time is measured when PD[1:0] are set to P0 until the PHY asserts PHYSTS Time for PHY to return to P0, after having been in P1. Time is measured when PD[1:0] are set to P0 until the PHY asserts PHYSTS Time for PHY to return to P0, after having been in P2. Time is measured when PD[1:0] are set to P0 until the PHY asserts PHYSTS Time for PHY to return to P0s, after having been in P0. Time is measured when PD[1:0] are set to P0 until the PHY asserts PHYSTS Time for PHY to return to P1, after having been
52
-
74
ns
52
-
74
ns
16
-
17
µs
52 52
-
74 74
ns ns Page 35
©2004-2007 Genesys Logic Inc. - All rights reserved.
GL9714 PCI ExpressTM PIPE x4 PHY
in P0. Time is measured when PD[1:0] are set to P0 until the PHY asserts PHYSTS Time for PHY to return to P2, after having been in P0. Time is measured when PD[1:0] are set to P0 until the PHY asserts PHYSTS
TP0-P2
16
-
17
µs
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 36
GL9714 PCI ExpressTM PIPE x4 PHY 7.4 Power Consumption Power Consumption with 2-Lanes and 4-Lanes Operation
Table 7.4 – Typical Power Consumption with 2-Lanes, 4-Lanes, and 1.2V Differential Peak to Peak Output Voltage
Current at 2.5V (mA) Current at Analogue 1.8V (mA) Current at Current at Operation Power Condition State Power Operation Mode Consumption (mW)
Digital 1.8V Reference Voltage (mA) 1.25V (mA)
184
285
128
0
All on PLL on
P0
8-bit @250MHz PCLK, 4-Lanes 8-bit @250MHz PCLK, 4-Lanes
1203.4
14
207
89
0
TX idle RX on PLL on
P0s
567.8
14
174
48
0
TX idle RX idle PLL off
P1
8-bit @250MHz PCLK, 4-Lanes
434.6
9
146
10
0
TX idle RX idle
P2
8-bit @3.13MHz PCLK, 4-Lanes 16-bit @125MHz PCLK, 2-Lanes 16-bit @125MHz PCLK, 2-Lanes
303.3
107
161
81
0
All on PLL on
P0
703.1
17
117
65
0
TX idle RX on PLL on
P0s
370.1
17
101
45
0
TX idle RX idle PLL off
P1
16-bit @125MHz PCLK, 2-Lanes
305.3
9
74
9
0
TX idle RX idle
P2
16-bit @1.56MHz PCLK, 2-Lanes
171.9
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 37
GL9714 PCI ExpressTM PIPE x4 PHY Power Consumption with Single-Lane Operation
Table 7.5 – Typical Power Consumption with Single-Lane and 1.2V Differential Peak to Peak Output Voltage
Current at 2.5V (mA) Current at Analogue 1.8V (mA) Current at Current at Operation Power Condition State Power Operation Mode Consumption (mW)
Digital 1.8V Reference Voltage (mA) 1.25V (mA)
51
90
65
0
All on PLL on
P0
8-bit @250MHz PCLK 8-bit @250MHz PCLK
406.5
10
72
56
0
TX idle RX on PLL on
P0s
255.4
10
65
45
0
TX idle RX idle PLL off
P1
8-bit @250MHz PCLK
223
6
37
7
0
TX idle RX idle
P2
8-bit @3.13MHz PCLK 16-bit @125MHz PCLK 16-bit @125MHz PCLK
94.2
59
90
57
0
All on PLL on
P0
412.1
12
71
49
0
TX idle RX on PLL on
P0s
246
12
64
38
0
TX idle RX idle PLL off
P1
16-bit @1.56MHz PCLK
213.6
6
36
6
0
TX idle RX idle
P2
16-bit @125MHz PCLK
90.6
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 38
GL9714 PCI ExpressTM PIPE x4 PHY 7.5 Differential Transmitter and Receiver Serial Output Transmitter Serial Output
Table 7.6 – Transmitter Serial Output
Symbol Parameter Min Typ Max Unit
UI VTX-DIFFp-p VTX-DE-RATIO TTX-EYE TTX-EYE-MEDIAN-to-MAX-JITTER TTX-RISE, TTX-FALL VTX-CM-ACp VTX-CM-DC-ACTIVE-IDLE-DELTA VTX-CM-DC-LINE-DELTA VTX-IDLE-DIFFp VTX-RCV-DETECT VTX-DC-CM ITX-SHORT TTX-IDLE-MIN TTX-IDLE-SET-TO-IDLE
Unit interval Differential peak to peak output voltage De-emphasized differential output voltage (Ratio) Minimum TX eye width Maximum time between the jitter median and maximum deviation from the median D+/D- TX output rise/fall time RMS AC peak common mode output voltage Absolute delta of DC common mode voltage during L0 and electrical idle Absolute delta of DC common mode voltage between D+ and DElectrical idle differential peak output voltage The amount of voltage change allowed during receiver detection The TX DC common mode voltage TX short circuit current limit Minimum time spent in electrical idle Maximum time to transition to a valid electrical idle after sending an electrical idle ordered set Maximum time to transition to valid TX specifications after leaving an electrical idle condition Differential return loss Common mode return loss DC differential TX impedance Lane-to-lane output skew AC coupling capacitor Crosslink random timeout
399.88 0.8 -3.0 0.7 0.125 0 0 0 0 50 -
400 -3.5 -
400.12 1.2 -4.0 0.15 20 100 25 20 600 3.6 90 20
ps V dB UI UI UI mV mV mV mV mV V mA UI UI
TTX-IDLE-TO-DIFF-DATA RLTX-DIFF RLTX-CM ZTX-DIFF-DC LTX-SKEW CTX Tcrosslink
12 6 80 75 0
100 -
20 120 500 + 2UI 200 1
UI dB dB
nF ms
©2004-2007 Genesys Logic Inc. - All rights reserved.
Ω
ps Page 39
GL9714 PCI ExpressTM PIPE x4 PHY Receiver Serial Output
Table 7.7 – Receiver Serial Output
Symbol Parameter Min Typ Max Unit
UI VRX-DIFFp-p TRX-EYE
Unit interval Differential input peak to peak voltage
399.88 0.175 0.4 15 6 80 40 200k 65 -
400 100 50 -
400.12 1.2 0.3 150 120 60 175 10 20
ps V UI UI mV dB dB
Minimum receiver eye width Maximum time between the jitter TRX-EYE-MEDIAN-to-MAX-JITTER median and maximum deviation from the median VRX-CM-ACp AC peak common mode input voltage RLRX-DIFF RLRX-CM ZRX-DIFF-DC ZRX-DC ZRX-HIGH-IMP-DC VRX-IDLE-DET-DIFFp-p TRX-IDLE-DET-DIFF-ENTERTIME LRX-SKEW Differential return loss Common mode return loss DC differential input impedance DC input impedance Powered down DC input impedance Electrical idle detect threshold Unexpected electrical idle enter detect threshold integration time Total skew
mV ms ns
7.6 Recommended Operating Conditions
Table 7.8 – Temperature Range
Symbol Parameter Min Typ Max Unit
TJUNCTOIN Junction operating temperature range TA TSTG Operating ambient temperature range Storage temperature range
0 0 -40
-
125 75 150
Table 7.9 – Thermal Characteristics
Symbol Parameter Min Typ Max
Unit
-
33.2 28.7 27.5 0.39
-
ΨJT
θJC
-
12.3
-
©2004-2007 Genesys Logic Inc. - All rights reserved.
W/ ℃
W/ ℃
Thermal characterization parameter from junction-to-top center (JEDEC JESD51-2 still air, maximum reflow temperature for SMT is 255 ~260 ) Thermal resistance from junction to case (JEDEC JESD51-2 still air, maximum reflow temperature for SMT is 255 ~260 )
W/ ℃ W/ ℃ W/ ℃
θJA (0 m/s) Thermal resistance from junction to ambient PS: “(x m/s)” means the air flow velocity θJA (1 m/s) (JEDEC JESD51-6 moving air, maximum reflow θJA (2 m/s) temperature for SMT is 255 ~260 )
Ω Ω Ω
℃ ℃ ℃
Page 40
℃ ℃ ℃
℃ ℃ ℃
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 8 PIPE TIMING CHARACTERISTICS
8.1 Input Setup, Hold Time and Output Timing
Figure 8.1 – Definition of Input Setup and Hold Time
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 41
GL9714 PCI ExpressTM PIPE x4 PHY
Figure 8.2 – Definition of Output Timing
Table 8.1 – Input Setup, Hold Time and Output Timing for 8-bit SDR Mode
Symbol Parameter Min Typ Max Unit
TCYCLE Duty-H TIS TIH TCO TOH
PCLK cycle time Duty cycle for PCLK high Input setup time requirement Input hold time requirement Clock to output delay Output hold time
2 2 1 1
3.99 35 0.8 1 1
4 -
4.01 50 3.2 -
ns % ns ns ns ns
Note:
1. Based on data rise time=1.9ns, fall time=1.3ns, and the slew rate is based on 20%~80% measuring. 2. The test load is 10 pf. 3. All setup, hold and Tco numbers include PCLK jitter and SSO, which is about +/- 250ps.
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 42
GL9714 PCI ExpressTM PIPE x4 PHY
Table 8.2 – Input Setup, Hold Time and Output Timing for 8-bit DDR Mode
Symbol Parameter Min Typ Max Unit
TCYCLE Duty-H TIS TIH TCO TOH
PCLK cycle time Duty cycle for PCLK high Input setup time Input hold time Clock to output delay Output hold time
7.98 48 0.5 0.8
8 1.5 1
8.02 50 1.4 1.6 -
ns % ns ns ns ns
Note:
This table is based on design target, correlation data will be posted later.
Table 8.3 – Input Setup, Hold Time and Output Timing for 16-bit Mode
Symbol Parameter Min Typ Max Unit
TCYCLE Duty-H TIS TIH TCO TOH
PCLK cycle time Duty cycle for PCLK high Input setup time Input hold time Clock to output delay Output hold time
7.98 48 0.5 4.3
8 5.3 4.7
8.02 50 1.4 5.6 -
ns % ns ns ns ns
Note:
This table is based on design target, correlation data will be posted later.
Table 8.4 – Input Setup, Hold Time and Output Timing for 10-bit SDR Mode
Symbol Parameter Min Typ Max Unit
TCYCLE Duty-H TIS TIH TCO TOH
PCLK cycle time Duty cycle for PCLK high Input setup time Input hold time Clock to output delay Output hold time
3.99 35 1 3.4
4 4 3.7
4.01 50 1 4.2 -
ns % ns ns ns ns
Note:
This table is based on design target, correlation data will be posted later.
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 43
GL9714 PCI ExpressTM PIPE x4 PHY
Table 8.5 – Input Setup, Hold Time and Output Timing for 10-bit DDR Mode
Symbol Parameter Min Typ Max Unit
TCYCLE Duty-H TIS TIH TCO TOH
PCLK cycle time Duty cycle for PCLK high Input setup time Input hold time Clock to output delay Output hold time
7.98 48 0.5 3.5
8 4.1 3.7
8.02 50 1.4 4.3 -
ns % ns ns ns ns
Note:
This table is based on design target, correlation data will be posted later.
8.2 Reference Timing Information
Table 8.6 – Reference Timing Information
Symbol Parameter Min Typ Max Unit
TRECDET TPHYSTS-RESET TRESET
Time for receiver detection Timing from de-asserting RST_N to the falling edge of PHYSTS Reset Assertion Time to GL9714
10
10 16.7 -
-
us us us
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 44
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 9 PACKAGE DIMENSION
Figure 9.1 - GL9714 233 Pin LFBGA Package
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 45
GL9714 PCI ExpressTM PIPE x4 PHY
CHAPTER 10 ORDERING INFORMATION
Table 10.1 - Ordering Information
Part Number Package Green Version Status
GL9714-TgGxx
233-pin LFBGA
Green Package
xx
Engineering Sample
©2004-2007 Genesys Logic Inc. - All rights reserved.
Page 46