0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ACS8509T

ACS8509T

  • 厂商:

    GENNUM(升特)

  • 封装:

  • 描述:

    IC SETS TIMER SONET SDH 100LQFP

  • 数据手册
  • 价格&库存
ACS8509T 数据手册
ACS8509 SETS Synchronous Equipment Timing Source for SONET or SDH Network Elements ADVANCED COMMUNICATIONS Description FINAL Features The ACS8509 is a highly integrated, single-chip solution for the Synchronous Equipment Timing Source (SETS) function in a SONET or SDH Network Element. The device generates SONET or SDH Equipment Clocks (SEC) and Frame Synchronization clocks. The ACS8509 is fully compliant with the required international specifications and standards. The device supports Free-run, Locked and Holdover modes. It also supports all three types of reference clock source: recovered line clock, PDH network, and node synchronization. The ACS8509 generates independent SEC and BITS/SSU clocks, an 8 kHz Frame Synchronization clock and a 2 kHz Multi-Frame Synchronization clock. Two ACS8509 devices can be used together in a Master/ Slave configuration mode allowing system protection against a single ACS8509 failure. A microprocessor port is incorporated, providing access to the configuration and status registers for device setup and monitoring. The ACS8509 includes a choice of edge alignment for 8 kHz input, as well as a low jitter n x E1/DS1 output mode. The User can choose between OCXO or TCXO to define the Stratum and/or Holdover performance required. Block Diagram DATASHEET ‹ Suitable for Stratum 3E*, 3, 4E, 4 and SONET Minimum Clock (SMC) or SONET/SDH Equipment Clock (SEC) applications ‹ Meets AT&T, ITU-T, ETSI and Telcordia specifications ‹ Accepts four individual input reference clocks ‹ Generates six output clocks ‹ Supports Free-run, Locked and Holdover modes of operation ‹ Robust input clock source quality monitoring on all inputs ‹ Automatic “hit-less” source switchover on loss of input ‹ Phase build-out for output clock phase continuity during input switchover and mode transitions ‹ Microprocessor interface - Intel, Motorola, Serial, Multiplexed, EPROM ‹ Programmable wander and jitter tracking attenuation 0.1 Hz to 20 Hz ‹ Support for Master/Slave device configuration alignment and hot/standby redundancy ‹ IEEE 1149.1 JTAG Boundary Scan ‹ Single +3.3 V operation, +5 V I/O compatible ‹ Operating temperature (ambient) -40°C to +85°C ‹ Available in 100 pin LQFP package. ‹ Lead (Pb)-free version available (ACS8509T), RoHS and WEEE compliant. Note...* Meets holdover requirements, lowest bandwidth 0.1 Hz. Figure 1 Block Diagram of the ACS8509 SETS Programmable Outputs: 01 (PECL (default)/LVDS) = T4 DPLL/Freq. Synthesis TOUT4 Selector 4 x TTL Programmable; 2 kHz 4 kHz N x 8 kHz 1.544/2.048 MHz 6.48 MHz 19.44 MHz 25.92 MHz 38.88 MHz 51.84 MHz 77.76 MHz Divider PFD Digital Loop Filter Programmable: 19.44 MHz (default), 51.84 MHz (OC-1), 77.76 MHz and 155.52 MHz (OC-3) DTO 02 (TTL/CMOS) = 6.48 MHz (default) 19.44 MHz and 25.92 MHz, and E1/DS1 multiples: 1 x, 2 x, 4 x, 8 x (1.544/2.048 MHz) Input Port Monitors and Selection Control 6x Output Ports 03 (TTL/CMOS) = 19.44 MHz (fixed) 04 (TTL/CMOS) = 1.544 MHz/2.048 MHz (E1/DS1) T0 DPLL/Freq. Synthesis 4 x SEC TOUT0 Selecor Divider PFD Digital Loop Filter T0 APLL (output) DTO Frequency Dividers FrSync (TTL/CMOS) = 8 kHz Frame Sync, Fixed 50:50 MSR MFrSync (TTL/CMOS) = 2 kHz Multiframe Sync, Fixed 50:50 MSR TCK TDI TMS TRST TDO IEEE 1149.1 JTAG Chip Clock Generator Priority Register Set Table Microprocessor Port OCXO or TCXO F85509 001BLOCKDIA 01 Revision 2.00/January 2006 © Semtech Corp. Page 1 www.semtech.com Table of Contents ADVANCED COMMUNICATIONS Table of Contents FINAL Section ACS8509 SETS DATASHEET Page Description ................................................................................................................................................................................................. 1 Block Diagram............................................................................................................................................................................................ 1 Features ..................................................................................................................................................................................................... 1 Table of Contents ...................................................................................................................................................................................... 2 Pin Diagram ............................................................................................................................................................................................... 4 Pin Description........................................................................................................................................................................................... 5 Functional Description .............................................................................................................................................................................. 8 Local Oscillator Clock.........................................................................................................................................................................8 Crystal Frequency Calibration.................................................................................................................................................. 8 Input Interfaces..................................................................................................................................................................................9 Over-Voltage Protection .....................................................................................................................................................................9 Input Reference Clock Ports .............................................................................................................................................................9 DivN Examples....................................................................................................................................................................... 10 Input Wander and Jitter Tolerance ................................................................................................................................................ 10 Frame Sync and Multi-Frame Sync Clocks (Part of TOUT0) ................................................................................................. 12 Output Clock Ports .......................................................................................................................................................................... 12 Low-speed Output Clock (TOUT4) .......................................................................................................................................... 12 High-speed Output Clock (Part of TOUT0) ............................................................................................................................. 12 Low Jitter Multiple E1/DS1 Outputs .................................................................................................................................... 13 Output Wander and Jitter ............................................................................................................................................................... 13 Phase Variation ............................................................................................................................................................................... 14 Phase Build-Out .............................................................................................................................................................................. 17 Microprocessor Interface ............................................................................................................................................................... 17 Motorola Mode ...................................................................................................................................................................... 17 Intel Mode.............................................................................................................................................................................. 17 Multiplexed Mode.................................................................................................................................................................. 17 Serial Mode............................................................................................................................................................................ 17 EPROM Mode......................................................................................................................................................................... 17 Register Set ..................................................................................................................................................................................... 18 Configuration Registers ........................................................................................................................................................ 18 Status Registers .................................................................................................................................................................... 18 Register Access............................................................................................................................................................................... 18 Interrupt Enable and Clear ............................................................................................................................................................. 18 Register Map ................................................................................................................................................................................... 18 Register Map Description............................................................................................................................................................... 23 Selection of Input Reference Clock Source................................................................................................................................... 36 Forced Control Selection....................................................................................................................................................... 36 Automatic Control Selection ................................................................................................................................................. 36 Ultra Fast Switching .............................................................................................................................................................. 37 Clock Quality Monitoring................................................................................................................................................................. 37 Activity Monitoring........................................................................................................................................................................... 38 Frequency Monitoring..................................................................................................................................................................... 39 Modes of Operation ........................................................................................................................................................................ 39 Free-run mode ....................................................................................................................................................................... 39 Pre-Locked mode .................................................................................................................................................................. 39 Locked mode ......................................................................................................................................................................... 39 Lost_Phase mode.................................................................................................................................................................. 40 Holdover mode ...................................................................................................................................................................... 40 Pre-Locked(2) mode.............................................................................................................................................................. 41 Revision 2.00/January 2006 © Semtech Corp. Page 2 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Section Page Protection Facility............................................................................................................................................................................ 41 Alignment of Priority Tables in Master and Slave ACS8509 .............................................................................................. 42 Alignment of the Selection of Reference Sources for TOUT4 Generation in the Master and Slave ACS8509 ................ 42 Alignment of the Phases of the 8 kHz and 2 kHz Clocks in both Master and Slave ACS8509 ....................................... 42 JTAG ................................................................................................................................................................................................. 43 PORB................................................................................................................................................................................................ 43 Electrical Specification ........................................................................................................................................................................... 45 Operating Conditions ...................................................................................................................................................................... 45 DC Characteristics .......................................................................................................................................................................... 45 Notes for Tables 24 to 30..................................................................................................................................................... 51 Input/Output Timing ....................................................................................................................................................................... 52 Motorola Mode ...................................................................................................................................................................... 53 Intel Mode.............................................................................................................................................................................. 55 Multiplexed Mode.................................................................................................................................................................. 57 Serial Mode............................................................................................................................................................................ 59 EPROM Mode......................................................................................................................................................................... 61 Package Information .............................................................................................................................................................................. 62 Thermal Conditions......................................................................................................................................................................... 63 Application Information .......................................................................................................................................................................... 64 References .............................................................................................................................................................................................. 65 Abbreviations .......................................................................................................................................................................................... 65 Trademark Acknowledgements ............................................................................................................................................................. 66 Revision Status/History ......................................................................................................................................................................... 67 Ordering Information .............................................................................................................................................................................. 68 Disclaimers...................................................................................................................................................................................... 68 Contacts........................................................................................................................................................................................... 68 Revision 2.00/January 2006 © Semtech Corp. Page 3 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Pin Diagram FINAL DATASHEET 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 SONSDHB MSTSLVB IC IC IC O4 IC IC DGND VDD O3 IC O2 DGND VDD VDD DGND AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 Figure 2 ACS8509 Pin Diagram Synchronous Equipment Timing Source for SONET or SDH Network Elements AGND TRST IC NC AGND VA1+ TMS INTREQ TCK REFCLK DGND VD+ VD+ DGND DGND VD+ NC IC VA2+ AGND TDO IC TDI DGND DGND ACS8509 SONET/SDH SETS 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 RDY PORB ALE RDB WRB CSB A0 A1 A2 A3 A4 A5 A6 DGND VDD UPSEL0 UPSEL1 UPSEL2 IC SEC4 IC SEC3 IC IC SEC2 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NC IC IC DGND FrSync MFrSync GND_DIFF VDD_DIFF IC IC O1POS O1NEG GND_DIFF VDD_DIFF IC IC IC IC VDD5 SYNC2K IC IC SEC1 DGND VDD 1 2 3 4 5 6 7 8 9 10 11 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Revision 2.00/January 2006 © Semtech Corp. Page 4 F8509D_002PINDIAG_01 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Pin Description FINAL DATASHEET Table 1 Power Pins Pin Number Symbol I/O Type Description 12, 13, 16 VD+ P - Supply Voltage: Digital supply to gates in analog section, +3.3 Volts ±10%. 33, 39 VDD_DIFF P - Supply Voltage: Digital supply for differential ports, +3.3 Volts ±10%. 44 VDD5 P - Digital Supply for +5 Volts Tolerance to Input Pins. Connect to +5 Volts (±10%) for clamping to +5 Volts. Connect to VDD for clamping to +3.3 Volts. Leave floating for no clamping, input pins tolerant up to +5.5 Volts. 50, 61, 85, 86 91 VDD P - Supply Voltage: Digital supply to logic, +3.3 Volts ±10%. 6 VA1+ P - Supply Voltage: Analog supply to clock multiplying PLL, +3.3 Volts ±10%. 19 VA2+ P - Supply Voltage: Analog supply to output PLLs, +3.3 Volts ±10%. 11, 14, 15, 24, 25, 29, 49, 62, 84, 87,92 DGND P - Supply Ground: Digital ground for logic 32, 38 GND_DIFF P - Supply Ground: Digital ground for differential ports. 1, 5, 20 AGND P - Supply Ground: Analog grounds. Note...I = Input, O = Output, P = Power, TTLU = TTL input with pull-up resistor, TTLD = TTL input with pull-down resistor. Table 2 Not Connected or Internally Connected Pins Pin Number 4, 17, 26 Symbol NC 3, 18, 22, 27, IC 28, 34, 35, 40, 41, 42, 43, 46, 47, 52, 53, 55, 57, 89, 93, 94, 96, 97, 98 I/O Type Description NC - Not connected: Leave to Float IC - Internally Connected: Leave to Float. I/O Type Table 3 Other Pins Pin Number Symbol Description 2 TRST I TTLD JTAG Control Reset Input: TRST = 1 to enable JTAG Boundary Scan mode. TRST = 0 for Boundary Scan stand-by mode, still allowing correct device operation. If not used connect to GND or leave floating. 7 TMS I TTLU JTAG Test Mode Select: Boundary Scan enable. Sampled on rising edge of TCK. If not used connect to VDD or leave floating. Revision 2.00/January 2006 © Semtech Corp. Page 5 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Table 3 Other Pins (cont...) Pin Number Symbol I/O Type Description 8 INTREQ O TTL/CMOS 9 TCK I TTLD JTAG Clock: Boundary Scan clock input. If not used connect to GND or leave floating. This pin may require a capacitor placed between the pin and the nearest GND, to reduce noise pickup. A value of 10 pF should be adequate, but the value is dependent on PCB layout. 10 REFCLK I TTL Reference Clock: 12.800 MHz (refer to “Local Oscillator Clock” on page 8). 21 TDO O TTL/CMOS JTAG Output: Serial test data output. Updated on falling edge of TCK. If not used leave floating. 23 TDI I TTLU 30 FrSync O TTL/CMOS Output Reference: 8 kHz Frame Sync output (square wave). 31 MFrSync O TTL/CMOS Output Reference: 2 kHz Multi-Frame Sync output (square wave). 36, 37 O1POS, O1NEG O PECL/LVDS Output Reference O1: Programmable, default 19.44 MHz. Also 51.84 MHz, 77.76 MHz, 155.52 MHz. MHz, default type PECL. 45 SYNC2K I TTLD Synchronize 2 kHz: Connect to 2 kHz Multi-Frame Sync output of partner ACS8509 in redundancy system. 48 SEC1 I TTLD Input Reference SEC1: Programmable, default 19.44 MHz (Default Priority 7). 51 SEC2 I TTLD Input Reference SEC2 : Programmable, default 19.44 MHz (Default Priority 8). 54 SEC3 I TTLD Input Reference SEC3: Programmable, default (Master mode) 1.544/2.048 MHz, default (Slave mode) 6.48 MHz. (Default Priority 11). 56 SEC4 I TTLD Input Reference SEC4 (Priority 13): Programmable, default 1.544/2.048 MHz (Default Priority 13). 58 - 60 UPSEL(2:0) I TTLD Microprocessor Select: Configures the interface for a particular microprocessor type at reset. 63 - 69 A(6:0) I TTLD Microprocessor Interface Address: Address bus for the microprocessor interface registers. A(0) is SDI in Serial mode - output in EPROM mode only. 70 CSB I TTLU Chip Select (Active Low): This pin is asserted Low by the microprocessor to enable the microprocessor interface - output in EPROM mode only. 71 WRB I TTLU Write (Active Low): This pin is asserted Low by the microprocessor to initiate a write cycle. In Motorola mode, WRB = 1 for Read. 72 RDB I TTLU Read (Active Low): This pin is asserted Low by the microprocessor to initiate a read cycle. 73 ALE I TTLD Address Latch Enable: This pin becomes the address latch enable from the microprocessor. When this pin transitions from High to Low, the address bus inputs are latched into the internal registers. ALE = SCLK in Serial mode. 74 PORB I TTLU Power-On Reset: Master reset. If PORB is forced Low, all internal states are reset back to default values. Revision 2.00/January 2006 © Semtech Corp. Interrupt Request: Active High software Interrupt output. JTAG Input: Serial test data Input. Sampled on rising edge of TCK. If not used connect to VDD or leave floating. Page 6 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Table 3 Other Pins (cont...) Pin Number Symbol I/O Type Description Ready/Data Acknowledge: This pin is asserted High to indicate the device has completed a read or write operation. 75 RDY O TTL/CMOS 76 - 83 AD(7:0) IO TTLD 88 O2 O TTL/CMOS Output Reference 2: Default 6.48 MHz. Also Dig1 (1.544 MHz/2.048 MHz and 2, 4, 8 x), 19.44 MHz, 25.92 MHz 90 O3 O TTL/CMOS Output Reference 3: 19.44 MHz - fixed. 95 O4 O TTL/CMOS Output Reference 4: 1.544/2.048 MHz, (T4 BITS). 99 MSTSLVB I TTLU Master/Slave Select: Sets the initial power-up state (or state after a PORB) of the Master/Slave selection register, Reg. 34, Bit 1. The register state can be changed after power up by software. 100 SONSDHB I TTLD SONET or SDH Frequency Select: Sets the initial power-up state (or state after a PORB) of the SONET/SDH frequency selection registers, Reg. 34, Bit 2 and Reg. 38, Bit 5 and Bit 6. When set Low, SDH rates are selected (2.048 MHz etc.) and when set High, SONET rates are selected (1.544 MHz etc.) The register states can be changed after power-up by software. Revision 2.00/January 2006 © Semtech Corp. Address/Data: Multiplexed data/address bus depending on the microprocessor mode selection. AD(0) is SDO in Serial mode. Page 7 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Functional Description FINAL The ACS8509 is a highly integrated, single-chip solution for the SETS function in a SONET/SDH Network Element, for the generation of SEC and frame synchronization pulses. In Free-run mode, the ACS8509 generates a stable, low noise clock signal from an internal oscillator. In Locked mode, the ACS8509 selects the most appropriate input reference source and generates a stable, low-noise clock signal locked to the selected reference. Parameter In all modes, the frequency accuracy, jitter and drift performance of the clock meet the requirements of ITU G.812[10], G.813[11], G.823[13], and Telcordia GR-1244CORE[19]. The ACS8509 supports all three types of reference clock source: recovered line clock (TIN1), PDH network synchronization timing (TIN2) and node synchronization (TIN3). The ACS8509 generates independent TOUT0 and TOUT4 clocks, an 8 kHz Frame Synchronization clock and a 2 kHz Multi-Frame Synchronization clock. The ACS8509 has a high tolerance to input jitter and wander. The jitter/wander transfer is programmable (0.1 Hz up to 20 Hz cut-off points). The ACS8509 supports protection. Two ACS8509 devices can be configured to provide protection against a single ACS8509 failure. The protection maintains alignment of the two ACS8509 devices (Master and Slave) and ensures that both ACS8509 devices maintain the same priority table, choose the same reference input and generate the TOUT0 clock, the 8 kHz Frame Synchronization clock and the 2 kHz Multi-Frame Synchronization clock with the same phase. The ACS8509 includes a microprocessor port, providing access to the configuration and status registers for device setup and monitoring. The Master system clock on the ACS8509 should be provided by an external clock oscillator of frequency Revision 2.00/January 2006 © Semtech Corp. 12.80 MHz. The clock specification is important for meeting the ITU/ETSI and Telcordia performance requirements for Holdover mode. ITU and ETSI specifications permit a combined drift characteristic, at constant temperature, of all non-temperature related parameters, of up to 10 ppb per day. The same specifications allow a drift of 1 ppm over a temperature range of 0 to +70°C. Table 4 ITU and ETSI Specification In Holdover mode, the ACS8509 generates a stable, lownoise clock signal from the internal oscillator, adjusted to match the last known good frequency of the last selected reference source. Local Oscillator Clock DATASHEET Value Tolerance ±4.6 ppm over 20 year lifetime Drift (Frequency Drift over supply voltage range of +2.7 V to +3.3 V) ±0.05 ppm/15 seconds @ constant temp. ±0.01 ppm/day @ constant temp. ±1 ppm over temp. range 0 to +70°C Telcordia specifications are somewhat tighter, requiring a non-temperature-related drift of less than 40 ppb per day and a drift of 280 ppb over the temperature range 0 to +50°C. Table 5 Telcordia GR-1244 CORE Specification Parameter Value Tolerance ±4.6 ppm over 20 year lifetime Drift (Frequency Drift over supply voltage range of +2.7 V to +3.3 V) ±0.05 ppm/15 seconds @ constant temp. ±0.04 ppm/15 seconds @ constant temp. ±0.28 ppm/over temp. range 0 to +50°C Please contact Semtech for information on crystal oscillator suppliers. Crystal Frequency Calibration The absolute crystal frequency accuracy is less important than the stability since any frequency offset can be compensated by adjustment of register values in the IC. This allows for calibration and compensation of any crystal frequency variation away from its nominal value. ± 50 ppm adjustment would be sufficient to cope with most crystals, in fact the range is an order of magnitude larger due to the use of two 8-bit register locations. The setting of the conf_nominal_frequency register allows for this adjustment. An increase in the register value increases the output frequencies by 0.02 ppm for each LSB step. The default value (in decimal) is 39321. Page 8 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL The minimum being 0 and the maximum 65535, gives a -700 ppm to +500 ppm adjustment range of the output frequencies. For example, if the crystal was oscillating at 12.8 MHz + 5 ppm, then the calibration value in the register to give a -5 ppm adjustment in output frequencies to compensate for the crystal inaccuracy, would be: 39321 - (5 / 0.02) = 39071 (decimal) frequency being 77.76 MHz. The actual spot frequencies supported are: • 2 kHz, • 4 kHz, • 8 kHz (and N x 8 kHz), • 1.544 MHz (SONET)/2.048 MHz (SDH), • 6.48 MHz, Input Interfaces • 19.44 MHz, The ACS8509 supports up to four input reference clock sources from input types TIN1, TIN2 and TIN3 using TTL/ CMOS I/O technologies. These interface technologies support +3.3 V and +5 V operation. • 25.92 MHz, • 38.88 MHz, • 51.84 MHz, • 77.76 MHz. Over-Voltage Protection The ACS8509 may require Over-Voltage Protection on input reference clock ports according to ITU Recommendation K.41. Semtech protection devices are recommended for this purpose (see separate Semtech data book). Input Reference Clock Ports Table 6 gives details of the input reference ports, showing the input technologies and the range of frequencies supported on each port; the default spot frequencies and default priorities assigned to each port on power-up or by reset are also shown. Note that SDH and SONET networks use different default frequencies; the network type is pinselectable using the SONSDHB pin). Specific frequencies and priorities are set by configuration. Although each input port is shown as belonging to one of the types, TIN1, TIN2 or TIN3, they are fully interchangeable as long as the selected speed is within the maximum operating speed of the input port technology. SDH and SONET networks use different default frequencies; the network type is selectable using the config_mode register 34 Hex, bit 2. For SONET, config_mode register 34 Hex, bit 2 = 1, for SDH config_mode register 34 Hex, bit 2 = 0. On power-up or by reset, the default will be set by the state of the SONSDHB pin (pin 100). Specific frequencies and priorities are set by configuration. TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot Revision 2.00/January 2006 © Semtech Corp. DATASHEET The frequency selection is programmed via the cnfg_ref_source_frequency register. The internal DPLL will normally lock to the selected input at the frequency of the input, e.g. 19.44 MHz will lock the DPLL phase comparisons at 19.44 MHz. It is, however, possible to utilize an internal pre-divider to the DPLL to divide the input frequency before it is used for phase comparisons in the DPLL. This pre-divider can be used in one of 2 ways: 1. Any of the supported spot frequencies can be divided to 8 kHz by setting the lock8K bit (bit 6) in the appropriate cnfg_ref_source_frequency register location. For good jitter tolerance for all frequencies and for operation at 19.44 MHz and above, use lock8K. It is possible to choose which edge of the 8 kHz input to lock to, by setting the appropriate bit of the cnfg_control1 register. 2. Any multiple of 8 kHz between 1544 kHz to 100 MHz can be supported by using the DivN feature (bit 7 of the cnfg_ref_source_frequency register). Any reference input can be set to use DivN independently of the frequencies and configurations of the other inputs. Any reference input with the DivN bit set in the cnfg_ref_source_frequency register will employ the internal pre-divider prior to the DPLL locking. The cnfg_freq_divn register contains the divider ratio N where the reference input will get divided by (N+1) where 0 100s Reference sources are flagged as valid when active, in-band and have no phase alarm set. (4) valid standby ref & [main ref invalid or (higher-priority ref valid & in revertive mode) or out of lock > 100s] All sources are continuously checked for activity and frequency Pre-locked wait for up to 100s (state 110) Only the main source is checked for phase. A phase lock alarm is only raised on a reference when that reference has lost phase whilst being used as the main reference. The micro-processor can reset the phase lock alarm. (5) selected ref phase locked A source is considered to have phase locked when it has been continuously in phase lock for between 1 and 2 seconds. Locked keep ref (state 100) (6) no valid standby ref & main ref invalid (10) selected source phase locked (8) phase regained (9) valid standby ref within 100s & [main ref invalid or (higher priority ref valid & in revertive mode)] Pre-locked2 wait for up to 100s (state 101) (12) valid standby ref & (main ref invalid or out of lock >100s) (15) valid standby ref & [main ref invalid or (higher-priority ref valid & in revertive mode) or out of lock >100s] Revision 2.00/January 2006 © Semtech Corp. (7) phase lost on main ref (11) no valid standby ref & Lost-phase (main ref invalid wait for up to 100s or out of lock >100s) (state 111) Holdover select ref (state 010) (13) no valid standby ref & (main ref invalid or out of lock >100s) (14) all refs evaluated & at least one ref valid Page 44 F8530D_018AutoModeContStateDia_02 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Electrical Specification FINAL DATASHEET Maximum Ratings Important Note: The “Absolute Maximum Ratings”are stress ratings only, and functional operation of the device at conditions other than those indicated in the “Operating Conditions” sections of this specification are not implied. Exposure to the absolute maximum ratings for an extended period may reduce the reliability or useful lifetime of the product. Table 16 Absolute Maximum Ratings Parameter Symbol Minimum Maximum Units Power Supply (dc voltage) VDD, VD+, VA1+, VA2+, VDD_DIFF VDD -0.5 3.6 V Input Voltage (non-supply pins) VIN - 5.5 V VOUT - 5.5 V TA -40 +85 o TSTOR -50 +150 o Output Voltage (non-supply pins) Ambient Operating Temperature Range Storage Temperature C C Operating Conditions Table 17 Operating Conditions Parameter Symbol Minimum Typical Maximum Units Power Supply (dc voltage) VDD, VD+, VA1+, VA2+, VDD_DIFF VDD 3.0 3.3 3.6 V Power Supply (dc voltage) VDD5 VDD5 3.0 3.3/5.0 5.5 V Ambient Temperature Range TA -40 - +85 o Supply Current (Typical - one 19 MHz output) IDD - 130 222 mA Total Power Dissipation PTOT - 430 800 mW C DC Characteristics Table 18 DC Characteristics: TTL Input Port Across all operating conditions, unless otherwise stated Parameter Symbol Minimum Typical Maximum Units VIN High VIH 2.0 - - V VIN Low VIL - - 0.8 V Input Current IIN - - 10 µA Revision 2.00/January 2006 © Semtech Corp. Page 45 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Table 19 DC Characteristics: TTL Input Port with Internal Pull-up Across all operating conditions, unless otherwise stated Parameter Symbol Minimum Typical Maximum Units VIN High VIH 2 - - V VIN Low VIL - - 0.8 V Pull-up Resistor PU 30 - 80 kΩ Input Current IIN - - 120 µΑ Table 20 DC Characteristics: TTL Input Port with Internal Pull-down Across all operating conditions, unless otherwise stated Parameter Symbol Minimum Typical Maximum Units VIN High VIH 2.0 - - V VIN Low VIL - - 0.8 V Pull-down Resistor PD 30 - 80 kΩ Input Current IIN - - 120 µA Symbol Minimum Typical Maximum Units VOUT Low (lOL = 4 mA) VOL 0 - 0.4 V VOUT High (lOH = 4 mA) VOH 2.4 - - V ID - - 4 mA Symbol Minimum Typical Maximum Units PECL Output Low Voltage (Note (ii)) VOLPECL VDD-2.10 - VDD-1.62 V PECL Output High Voltage (Note (ii)) VOHPECL VDD-1.25 - VDD-0.88 V PECL Output Differential Voltage (Note (i)) VODPECL 580 - 900 mV Table 21 DC Characteristics: TTL Output Port Across all operating conditions, unless otherwise stated Parameter Drive Current Table 22 DC Characteristics: PECL Output Port Across all operating conditions, unless otherwise stated Parameter Notes: (i) Assuming a differential input voltage of at least 100 mV. (ii) With 50 Ω load on each pin to VDD -2 V, i.e. 82 Ω to GND and 130 Ω to VDD. Revision 2.00/January 2006 © Semtech Corp. Page 46 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Figure 11 Recommended Line Termination for PECL Output Port VDD ZO = 50Ω O1POS ZO = 50Ω O1NEG 130 Ω 82 Ω Frequencies: 19.44 MHz 51.84 MHz 77.76 MHz 155.52 MHz 130 Ω 82 Ω ZO = Transmission line Impedance VDD = +3.3 V F8509D_024PECL_02 GND Table 23 DC Characteristics: LVDS Output Port Across all operating conditions, unless otherwise stated Parameter Symbol Minimum Typical Maximum Units LVDS Output High Voltage (Note (i)) VOHLVDS - - 1.585 V LVDS Output Low Voltage (Note (i)) VOLLVDS 0.885 - - V LVDS Differential Output Voltage VODLVDS 250 - 450 mV LVDS Change in Magnitude of Differential Output Voltage for complementary States (Note (i)) VDOSLVDS - - 25 mV LVDS Output Offset Voltage Temperature = 25oC (Note (i)) VOSLVDS 1.125 - 1.275 V Note: (i) With 100 Ω load between the differential outputs. Figure 12 Recommended Line Termination for LVDS Output Port 01POS 01NEG ZO = 50Ω ZO = 50Ω 100 Ω ZO = Transmission line Impedance Revision 2.00/January 2006 © Semtech Corp. Page 47 Frequencies: 19.44 MHz 51.84 MHZ 77.76 MHz 155.52 MHz F8509D_025LVDS_01 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Jitter Performance FINAL DATASHEET Table 24 DC Characteristics: Output Jitter Generation (Test Definition G.813) Across all operating conditions unless otherwise stated Output jitter generation measured over 60 seconds interval, UIp-p max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. Test Definition Filter used UI Spec UI Measurement on ACS8509 G813[11] for 155 MHz option 1 500 Hz to 1.3 MHz UIp-p = 0.5 0.058 (Note (ii)) G813[11] 65 kHz to 1.3 MHz UIp-p = 0.1 0.048 (Note (iii) 0.048 (Note (ii)) for 155 MHz option 1 0.053 (Note (iv)) 0.053 (Note (v)) 0.058 (Note (vi)) 0.053 (Note (vii)) G813 [11] for 155 MHz option 2 12 kHz to 1.3 MHz UIp-p = 0.1 0.053 (Note (ii)) 0.058 (Note (iii)) 0.057 (Note (viii)) 0.055 (Note (ix)) 0.057 (Note (x)) 0.057 (Note (xi)) 0.057 (Note (xii)) 0.053 (Note (xiii)) G813[11] and G812[10] for 2.048 MHz option 1 20 Hz to 100 kHz UIp-p = 0.05 0.046 (Note (xiv)) Table 25 DC Characteristics: Output Jitter Generation (Test Definition G812) Across all operating conditions unless otherwise stated Output jitter generation measured over 60 seconds interval, UIp-p max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. Test Definition Filter used UI Spec UI Measurement on ACS8509 G812[10] for 1.544 MHz 10 Hz to 40 kHz G812[10] 500 Hz to 1.3 MHz UIp-p = 0.5 0.058 (Note (xv)) 65 Hz to 1.3 MHz 0.048 (Note (xv)) for 155.52 MHz electrical G812[10] for 2.048 MHz Revision 2.00/January 2006 © Semtech Corp. UIp-p = 0.05 UIp-p = 0.075 Page 48 0.036 (Note (xiv)) www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Table 26 DC Characteristics: Output Jitter Generation (Test Definition ETS-300-462-3) Across all operating conditions unless otherwise stated Output jitter generation measured over 60 seconds interval, UIp-p max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. Test Definition Filter used UI Spec UI Measurement on ACS8509 ETS-300-462-3[3] for 2.048 MHz SEC 20 Hz to 100 kHz UIp-p = 0.5 0.046 (Note (xiv)) ETS-300-462-3[3] for 2.048 MHz SEC (Filter spec 49 Hz to 100 kHz) 20 Hz to 100 kHz UIp-p = 0.2 0.046 (Note (xiv)) ETS-300-462-3[3] for 2.048 MHz SSU 20 Hz to 100 kHz UIp-p = 0.05 0.046 (Note (xiv)) ETS-300-462-3[3] for 155.52 MHz 500 Hz to 1.3 MHz UIp-p = 0.5 0.058 (Note (xv)) ETS-300-462-3[3] for 155.52 MHz 65 kHz to 1.3 MHz UIp-p = 0.1 0.048 (Note (xv)) Table 27 DC Characteristics: Output Jitter Generation (Test Definition GR-253-CORE) Across all operating conditions unless otherwise stated Output jitter generation measured over 60 seconds interval, UIp-p max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. Test Definition Filter used UI Spec UI Measurement on ACS8509 GR-253-CORE[17] net i/f, 51.84 MHz 100 Hz to 0.4 MHz UIp-p = 1.5 0.022 (Note (xv)) GR-253-CORE[17] net i/f, 51.84 MHz (Filter spec 20 kHz to 400 Hz) 18 kHz to 0.4 MHz UIp-p = 0.15 0.019 (Note (xv)) GR-253-CORE[17] net i/f, 155.52 MHz 500 Hz to 1.3 MHz UIp-p = 1.5 0.058 (Note (xv)) GR-253-CORE[17] net i/f, 155.52 MHz 65 kHz to 1.3 MHz UIp-p = 0.15 0.048 (Note (xv)) GR-253-CORE[17] cat II elect i/f, 155.52 MHz 12 kHz to 400 kHz UIp-p = 0.1 0.057 (Note (xv)) UIrms= 0.1 0.006 (Note (xv)) 12 kHz to 1.3 MHz UIp-p = 0.1 0.017 (Note (xv)) GR-253-CORE[17] cat II elect i/f, 51.84 MHz GR-253-CORE[17] DS1 i/f, 1.544 MHz Revision 2.00/January 2006 © Semtech Corp. 10_Hz to 40 kHz UIrms= 0.01 0.003 (Note (xv)) UIp-p = 0.1 0.036 (Note (xiv)) UIrms= 0.01 0.0055 (Note (xiv)) Page 49 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Table 28 DC Characteristics: Output Jitter Generation (Test Definition AT&T 62411) Across all operating conditions unless otherwise stated Output jitter generation measured over 60 seconds interval, UIp-p max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. Test Definition Filter used UI Spec UI Measurement on ACS8509 AT&T 62411[2] for 1.544 MHz (Filter spec 10 Hz to 8 kHz) 10 Hz to 40 kHz UIrms = 0.02 0.0055 (Note (xiv)) AT&T 62411[2] for 1.544 MHz 10 Hz to 40 kHz UIrms = 0.025 0.0055 (Note (xiv)) 10 Hz to 40 kHz UIrms = 0.025 0.0055 (Note (xiv)) Broadband UIrms = 0.05 0.0055 (Note (xiv)) AT&T 62411 [2] for 1.544 MHz AT&T 62411[2] for 1.544 MHz Table 29 DC Characteristics: Output Jitter Generation (Test Definition G.742) Across all operating conditions unless otherwise stated Output jitter generation measured over 60 seconds interval, UIp-p max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. Test Definition Filter used UI Spec UI Measurement on ACS8509 G-742[8] for 2.048 MHz DC to 100 kHz UIp-p = 0.25 0.047 (Note (xiv)) G-742[8] for 2.048 MHz (Filter spec 18 kHz to 100 kHz) 20 Hz to 100 kHz UIp-p = 0.05 0.046 (Note (xiv)) G-742[8] for 2.048 MHz 20 Hz to 100 kHz UIp-p = 0.05 0.046 (Note (xiv)) Table 30 DC Characteristics: Output Jitter Generation (Test Definition GR-499-CORE) Across all operating conditions unless otherwise stated Output jitter generation measured over 60 seconds interval, UIp-p max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. Test Definition Filter used UI Spec UI Measurement on ACS8509 GR-499-CORE[18] & G824[14] for 1.544 MHz 10 Hz to 40 kHz UIp-p = 5.0 0.036 (Note (xiv)) GR-499-CORE[18] & G824[14] for 1.544 MHz (Filter spec 8 kHz to 40 kHz) 10 Hz to 40 kHz UIp-p = 0.1 0.036 (Note (xiv)) GR-499-CORE[18] for 1.544 MHz >10 Hz UIp-p = 0.05 0.036 (Note (xiv)) Revision 2.00/January 2006 © Semtech Corp. Page 50 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Notes for Tables 24 to 30 Notes: (i) Filter used is that defined by test definition unless otherwise stated (ii) 5 Hz bandwidth, 19.44 MHz direct lock. (iii) 5 Hz bandwidth, 8 kHz lock. (iv) 20 Hz bandwidth, 19.44 MHz direct lock. (v) 20 Hz bandwidth, 8 kHz lock. (vi) 10 Hz bandwidth, 19.44 MHz direct lock. (vii) 10 Hz bandwidth, 8 kHz lock. (viii) 2.5 Hz bandwidth, 19.44 MHz direct lock. (ix) 2.5 Hz bandwidth, 8 kHz lock. (x) 1.2 Hz bandwidth, 19.44 MHz direct lock. (xi) 1.2 Hz bandwidth, 8 kHz lock. (xii) 0.6 Hz bandwidth, 19.44 MHz direct lock. (xiii) 0.6 Hz bandwidth, 8 kHz lock. (xiv) 5 Hz bandwidth, 8 kHz lock, 2.048 MHz input. (xv) 5 Hz bandwidth, 8 kHz lock, 19.44 MHz input. Figure 13 JTAG Timing tCYC TCK tSUR tHT TMS TDI tDOD TDO F8110D_022JTAGTiming_01 Table 31 JTAG Timing (for use with Figure 13) Parameter Symbol Minimum Typical Maximum Units Cycle Time tCYC 50 - - ns TMS/TDI to TCK rising edge time tSUR 3 - - ns TCK rising to TMS/TDI hold time tHT 23 - - ns tDOD - - 5 ns TCK falling to TDO valid Revision 2.00/January 2006 © Semtech Corp. Page 51 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Input/Output Timing FINAL DATASHEET Figure 14 Input/Output Timing with Phase Build-out Off Revision 2.00/January 2006 © Semtech Corp. Page 52 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Motorola Mode In MOTOROLA mode, the device is configured to interface with a microprocessor using a 680x0 type bus as parallel data + address. Figure 15 and Figure 16 show the timing diagrams of read and write accesses for this mode. Figure 15 Read Access Timing in MOTOROLA Mode tpw1 CSB tsu2 WRB th2 X X th1 tsu1 A X address X td1 AD Z data td2 RDY (DTACK) td3 tpw2 th3 Z td4 Z Z F8110D_007ReadAccMotor_01 Table 32 Read Access Timing in MOTOROLA Mode (for use with Figure 15) Symbol Note: Parameter MIN TYP MAX tsu1 Setup A valid to CSBfalling edge 0 ns - - tsu2 Setup WRB valid to CSBfalling edge 0 ns - - td1 Delay CSBfalling edge to AD valid - - 177 ns td2 Delay CSBfalling edge to DTACKrising edge - - 13 ns td3 Delay CSBrising edge to AD high-Z - - 0 ns td4 Delay CSBrising edge to RDY high-Z - - 7 ns - - 310 ns - 472 ns ns(i) tpw1 CSB Low time tpw2 RDY High time th1 Hold A valid after CSBrising edge 0 ns - - th2 Hold WRB valid after CSBrising edge 0 ns - - th3 Hold CSB Low after RDYfalling edge 0 ns - - tp Time between consecutive accesses (CSBrising edge to CSBfalling edge) 320 ns - - 485 (i) Timing with RDY. If RDY not used, tpw1 becomes 178 ns. Revision 2.00/January 2006 © Semtech Corp. Page 53 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Figure 16 Write Access Timing in MOTOROLA Mode tpw1 CSB tsu2 WRB th2 X X th1 tsu1 A X address X tsu3 AD data X td2 RDY (DTACK) th4 tpw2 th3 X td4 Z Z F8110D_008WriteAccMotor_01 Table 33 Write Access Timing in MOTOROLA Mode (for use with Figure 16) Symbol Note: Parameter MIN TYP MAX tsu1 Setup A valid to CSBfalling edge 0 ns - - tsu2 Setup WRB valid to CSBfalling edge 0 ns - - tsu3 Setup AD valid before CSBrising edge 3 ns - - td2 Delay CSBfalling edge to RDYrising edge - - 13 ns td4 Delay CSBrising edge to RDY High-Z - - 7 ns tpw1 CSB Low time 485 ns(i) - - tpw2 RDY High time 310 ns - 472 ns th1 Hold A valid after CSBrising edge 3 ns - - th2 Hold WRB Low after CSBrising edge 0 ns - - th3 Hold CSB Low after RDYfalling edge 0 ns - - th4 Hold AD valid after CSBrising edge 4 ns - - tp Time between consecutive accesses (CSBrising edge to CSBfalling edge) 320 ns - - (i) Timing with RDY. If RDY not used, tpw1 becomes 178 ns. Revision 2.00/January 2006 © Semtech Corp. Page 54 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Intel Mode In Intel mode, the device is configured to interface with a microprocessor using a 80x86 type bus as parallel data + address. Figure 17 and Figure 18 show the timing diagrams of read and write accesses for this mode. Figure 17 Read Access Timing in INTEL Mode CSB WRB tpw1 tsu2 th2 RDB th1 tsu1 A address td1 td4 Z data AD td3 td2 tpw2 th3 td5 Z RDY F8110D_009ReadAccIntel_01 Table 34 Read Access Timing in INTEL Mode (for use with Figure 17) Symbol Note: Parameter MIN TYP MAX tsu1 Setup A valid to CSBfalling edge 0 ns - - tsu2 Setup CSBfalling edge to RDBfalling edge 0 ns - - td1 Delay RDBfalling edge to AD valid - - 177 ns td2 Delay CSBfalling edge to RDY active - - 13 ns td3 Delay RDBfalling edge to RDYfalling edge - - 14 ns td4 Delay RDBrising edge to AD high-Z - - 10 ns td5 Delay CSBrising edge to RDY high-Z - - 9 ns - - 310 ns - 472 ns (i) tpw1 RDB Low time 486 ns tpw2 RDY Low time th1 Hold A valid after RDBrising edge 0 ns - - th2 Hold CSB Low after RDBrising edge 0 ns - - th3 Hold RDB Low after RDYrising edge 0 ns - - tp Time between consecutive accesses (RDBrising edge to RDBfalling edge, or RDBrising edge to WRBfalling edge) 320 ns - - (i) Timing with RDY. If RDY not used, tpw1 becomes 180 ns. Revision 2.00/January 2006 © Semtech Corp. Page 55 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Figure 18 Write Access Timing in INTEL Mode CSB tpw1 tsu2 th2 WRB RDB tsu1 th1 address A tsu3 th4 data AD td3 td2 RDY tpw2 th3 td5 Z Z F8110D_010WriteAccIntel_01 Table 35 Write Access Timing in INTEL Mode (for use with Figure 18) Symbol Parameter MIN TYP MAX tsu1 Setup A valid to CSBfalling edge 0 ns - - tsu2 Setup CSBfalling edge to WRBfalling edge 0 ns - - tsu3 Setup AD valid before WRBrising edge 3 ns - - td2 Delay CSBfalling edge to RDY active - - 13 ns td3 Delay WRBfalling edge to RDYfalling edge - - 14 ns td5 Delay CSBrising edge to RDY high-Z - - 9 ns tpw1 WRB Low time 486 ns(i) - - tpw2 RDY Low time 310 ns - 472 ns - - ns(ii) th1 Hold A valid after WRBrising edge th2 Hold CSB Low after WRBrising edge 0 ns - - th3 Hold WRB Low after RDYrising edge 0 ns - - th4 Hold AD valid after WRBrising edge 4 ns - - tp Time between consecutive accesses (WRBrising edge to WRBfalling edge, or WRBrising edge to RDBfalling edge) 320 ns - - 170 Notes: (i) Timing with RDY. If RDY not used, tpw1 becomes 180 ns. (ii) Timing if th2 is greater than 170 ns, otherwise 5 ns after CSB rising edge. Revision 2.00/January 2006 © Semtech Corp. Page 56 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Multiplexed Mode In MULTIPLEXED mode, the device is configured to interface with a microprocessor using a multiplexed address/data bus. Figures 19 and 20 show the timing diagrams of read and write accesses. Figure 19 Read Access Timing in MULTIPLEXED Mode tpw3 tp1 ALE tsu1 th1 CSB tsu2 WRB tpw1 th2 RDB td1 address AD X td2 RDY td4 data td3 tpw2 X th3 td5 Z Z F8110D_011ReadAccMultiplex_01 Table 36 Read Access Timing in MULTIPLEXED Mode (for use with Figure 19) Symbol Note: Parameter MIN TYP MAX tsu1 Setup AD address valid to ALEfalling edge 2 ns - - tsu2 Setup CSBfalling edge to RDBfalling edge 0 ns - - td1 Delay RDBfalling edge to AD data valid - - 177 ns td2 Delay CSBfalling edge to RDY active - - 13 ns td3 Delay RDBfalling edge to RDYfalling edge - - 15 ns td4 Delay RDBrising edge to AD data high-Z - - 9 ns td5 Delay CSBrising edge to RDY high-Z - - 10 ns - - ns(i) tpw1 RDB Low time tpw2 RDY Low time 310 ns - 472 ns tpw3 ALE High time 2 ns - - th1 Hold AD address valid after ALEfalling edge 3 ns - - th2 Hold CSB Low after RDBrising edge 0 ns - - th3 Hold RDB Low after RDYrising edge 0 ns - - tp1 Time between ALEfalling edge and RDBfalling edge 0 ns - - tp2 Time between consecutive accesses (RDBrising edge to ALErising edge) 320 ns - - 487 (i) Timing with RDY. If RDY not used, tpw1 becomes 180 ns. Revision 2.00/January 2006 © Semtech Corp. Page 57 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Figure 20 Write Access Timing in MULTIPLEXED Mode tpw3 tp1 ALE tsu1 th1 CSB tsu2 th2 tpw1 WRB RDB tsu3 address AD X td2 RDY th4 data td3 tpw2 X th3 td5 Z Z F8110D_012WriteAccMultiplex_01 Table 37 Write Access Timing in MULTIPLEXED Mode (For use with Figure 20) Symbol Note: Parameter MIN TYP MAX tsu1 Set up AD address valid to ALEfalling edge 2 ns - - tsu2 Set up CSBfalling edge to WRBfalling edge 0 ns - - tsu3 Set up AD data valid to WRBrising edge 3 ns - - td2 Delay CSBfalling edge to RDY active - - 13 ns td3 Delay WRBfalling edge to RDYfalling edge - - 15 ns td5 Delay CSBrising edge to RDY high-Z - - 9 ns tpw1 WRB Low time 487 ns(i) - - tpw2 RDY Low time 310 ns - 472 ns tpw3 ALE High time 2 ns - - th1 Hold AD address valid after ALEfalling edge 3 ns - - th2 Hold CSB Low after WRBrising edge 0 ns - - th3 Hold WRB Low after RDYrising edge 0 ns - - th4 AD data hold valid after WRBrising edge 4 ns - - tp1 Time between ALEfalling edge and WRBfalling edge 0 ns - - tp2 Time between consecutive accesses (WRBrising edge to ALErising edge) 320 ns - - (i) Timing with RDY. If RDY not used, tpw1 becomes 180 ns. Revision 2.00/January 2006 © Semtech Corp. Page 58 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Serial Mode In Serial mode, the device is configured to interface with a serial microprocessor bus. The combined minimum High and Low times for SCLK define the maximum clock rate. For Write access this is 2.77 MHz (360 ns). For Read access the maximum SCLK rate is slightly slower and is affected by the setting of CLKE, being either 2.0 MHz (500 ns) or 1 MHz (1 us). This mismatch in rates is caused by the sampling technique used to detect the end of the address field in Read mode. It takes up to 3 cycles of an internal 6.40 MHz clock to start the Read process following receipt of the final address bit. This is 468 ns. The Read data is then decoded and clocked out onto SDO directly using SCLK. With CLKE=1, the falling edge of SCLK is used to clock out the SDO. With CLKE=0, the rising edge of SCLK is used to clock out the SDO. A minimum period of 500 ns (468 capture plus 32 decode) is required between the final address bit and clocking it out onto SDO. This means that to guarantee the correct operation of the Serial interface, with CLKE=0, SCLK has a maximum clock rate of 2 MHz. With CLKE=1, SCLK has a maximum clock rate of 1 MHz. SCLK is not required to run between accesses (i.e., when CSB = 1). The following Figures show the timing diagrams for Write and Read access for this mode. Figure 21 Read Access Timing in SERIAL Mode CLKE = 0; SDO data is clocked out on the rising edge of SCLK CSB tsu2 tpw2 th2 ALE=SCLK th1 tsu1 _ A(0) = SDI R/W tpw1 A0 A1 A2 A3 A4 A5 A6 td1 AD(0)=SDO Output not driven, pulled low by internal resistor td2 D0 D1 D2 D3 D4 D5 D6 D7 CLKE = 1; SDO data is clocked out on the falling edge of SCLK CSB th2 ALE=SCLK _ A(0)=SDI R/W A0 A1 A2 A3 A4 A5 A6 td1 AD(0)=SDO Output not driven, pulled low by internal resistor td2 D0 D1 D2 D3 D4 D5 D6 D7 F8530D_013ReadAccSerial_01 Revision 2.00/January 2006 © Semtech Corp. Page 59 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Table 38 Read Access Timing in SERIAL Mode (For use with Figure 21) Symbol Parameter MIN TYP MAX 0 ns - - 160 ns - - tsu1 Setup SDI valid to SCLKrising edge tsu2 Setup CSBfalling edge to SCLKrising edge td1 Delay SCLKrising edge (SCLKfalling edge for CLKE = 1) to SDO valid - - 17 ns td2 Delay CSBrising edge to SDO high-Z - - 10 ns tpw1 SCLK Low time CLKE = 0 CLKE = 1 - - 250 ns 500 ns tpw2 SCLK High time CLKE = 0 CLKE = 1 - - 250 ns 500 ns th1 Hold SDI valid after SCLKrising edge 170 ns - - th2 Hold CSB Low after SCLKrising edge, for CLKE = 0 Hold CSB Low after SCLKfalling edge, for CLKE = 1 5 ns - - tp Time between consecutive accesses (CSBrising edge to CSBfalling edge) 160 ns - - Figure 22 Write Access Timing in SERIAL Mode CSB tsu2 tpw2 th2 ALE=SCLK th1 tsu1 _ A(0)=SDI AD(0)=SDO R/W tpw1 A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7 Output not driven, pulled low by internal resistor F8110D 014W it A S i l 02 Table 39 Write Access Timing in SERIAL Mode (For use with Figure 22) Symbol Parameter MIN TYP MAX 0 ns - - tsu1 Setup SDI valid to SCLKrising edge tsu2 Setup CSBfalling edge to SCLKrising edge 160 ns - - tpw1 SCLK Low time 180 ns - - tpw2 SCLK High time 180 ns - - th1 Hold SDI valid after SCLKrising edge 170 ns - - th2 Hold CSB Low after SCLKrising edge 5 ns - - tp Time between consecutive accesses (CSBrising edge to CSBfalling edge) 160 ns - - Revision 2.00/January 2006 © Semtech Corp. Page 60 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET EPROM Mode This mode is suitable for use with an EPROM, in which configuration data is stored (one-way communication - status information will not be accessible). A state machine internal to the ACS8509 device will perform numerous EPROM read operations to read the data out of the EPROM. In EPROM Mode, the ACS8509 takes control of the bus as Master and reads the device set-up from an AMD AM27C64 type EPROM at lowest speed (250ns) after device set-up (system reset). The EPROM access state machine in the up interface sequences the accesses. Figure 23 shows the access timing of the device in EPROM mode. Further information can be found in the AMD AM27C64 datasheet. Figure 23 Access Timing in EPROM mode CSB (=OEB) address A tacc AD Z Z data F8110D_015ReadAccEEPROM_01 Table 40 Access Timing in EPROM mode (For use with Figure 23) Symbol tacc Parameter Delay CSBfalling edge or A change to AD valid Revision 2.00/January 2006 © Semtech Corp. Page 61 MIN TYP MAX - - 920 ns www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Package Information FINAL DATASHEET Figure 24 LQFP Package D 2 D1 1 3 AN2 AN3 1 Section A-A R1 S E 1 2 R2 B AN1 E1 A A B 3 AN4 L 4 L1 5 1 2 3 b Section B-B 7 e A A2 c c1 7 7 Seating plane A1 6 b1 7 b 8 Notes 1 The top package body may be smaller than the bottom package body by as much as 0.15 mm. 2 To be determined at seating plane. 3 Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch. 4 Details of pin 1 identifier are optional but will be located within the zone indicated. 5 Exact shape of corners can vary. 6 A1 is defined as the distance from the seating plane to the lowest point of the package body. 7 These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 8 Shows plating. Table 41 100 Pin LQFP Package Dimension Data (for use with Figure 24) 100 LQFP Package Dimensions in mm D/E D1/ E1 Min. - - Nom. Max. e AN1 AN2 AN3 AN4 - 11o 11o 0o 0o 16.00 14.00 1.50 0.10 1.40 0.50 12o 12o - 3.5o - 13o 13o - 7o - - - A A1 A2 1.40 0.05 1.35 1.60 0.15 1.45 Revision 2.00/January 2006 © Semtech Corp. - Page 62 R1 R2 L 0.08 0.08 0.45 - L1 - 0.60 1.00 (ref) 0.20 0.75 - S b b1 c c1 0.20 0.17 0.17 0.09 0.09 - 0.22 0.20 - - - 0.27 0.23 0.20 0.16 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Thermal Conditions FINAL DATASHEET The device is rated for full temperature range when this package is used with a 4 layer or more PCB. Copper coverage must exceed 50%. All pins must be soldered to the PCB. Maximum operating temperature must be reduced when the device is used with a PCB with less than these requirements. Figure 25 Typical 100 Pin LQFP Footprint Width = 0.3 mm Pitch = 0.5 mm 18.3 mm 17.0 mm (1) 14.6 mm 1.85 mm F8509D_004QFNFootprint100_01 Notes: (i) (1) Solderable to this limit. (ii) Square package - dimensions apply in both X and Y directions. (iii) Typical example. The user is responsible for ensuring compatibility with PCB manufacturing process, etc. Revision 2.00/January 2006 © Semtech Corp. Page 63 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Application Information FINAL DATASHEET Figure 26 Simplified Application Schematic VDD IC2 VDD5v P1 VDD2 EZ1086CT-3.3 3 5v VDD3 2 VIN VOUT 1 0v VDDA GND (+) (+) term_connect 100uF C2 Power supply and ground connections to 'star' connect back to these decoupling capacitors at the regulator and only connect together at this point C7 100nF C4 100nF 10uF_TANT C3 AGND DGND3 ZD1 BZV90C-5.6v Optional EPROM interface selection Optional Processor/EPROM interface type selection DGND2 DGND Decoupling capacitor, C21 should be placed close to the xtal pins that are being decoupled RDY RDB CSB ALE WRB Int CC parts are easily cut links that can also take SM capacitors or Ohm resistor links. All tcxo options to be placed as close as possible to IC1, with short output track. O2 VDD O3 C29 C9 VDD 100nF 100nF O4 DGND DGND VDDA AGND R1 X1 C10 100nF 10R 2 vdd output 1 VDD3 gnd2 5 C11 100nF C21 4 optn VDDA R6 DGND3 10R C12 100nF 3 gnd1 Vectron AGND AGND TRST IC NC AGND VA1+ TMS INTREQ TCK REFCLK DGND VD+ VD+ DGND DGND VD+ NC IC VA2+ AGND TDO IC TDI DGND DGND RDY PORB ALE RDB WRB CSB A0 A1 A2 A3 A4 A5 A6 DGND VDD UPSEL0 UPSEL1 UPSEL2 IC SEC4 IC SEC3 IC IC SEC2 IC1 ACS8509 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 C8 1nF DGND VDD 100nF C13 DGND Optional UPSEL0 Processor UPSEL1 interface type UPSEL2 selection 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DGND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 NC IC IC DGND FrSync MFrSync GND_DIFF VDD_DIFF IC IC O1POS O1NEG GND_DIFF VDD_DIFF IC IC IC IC VDD5 SYNC2K IC IC SEC1 DGND VDD txco 12.8MHz AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 DGND VDD VDD DGND O2 IC O3 VDD DGND IC IC O4 IC IC IC MSTSLVB SONSDHB VDD 100nF All decoupling capacitors, C29, C9, C13, C14, C15, C6, C5, C12, C11, C10,C32 should be placed close to the IC1 pins that are being decoupled 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 DGND VDD DGND2 C14 100nF DGND VDD2 C15 C32 100nF 100nF DGND2 FrSync MFrSync VDD2 O1 DGND2 SYNC2K SEC2 SEC1 SEC3 SEC4 DGND F8509D_031EvalBdSchem_01 Revision 2.00/January 2006 © Semtech Corp. Page 64 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Abbreviations APLL BITS DFS DPLL DS1 DTO E1 I/O LOF LOS LQFP LVDS MTIE NE OCXO PBO PDH PECL PFD PLL POR ppb ppm p-p R/W rms RO RoHS SDH SEC SETS SONET SSF SSU STM TDEV TCXO UI WEEE FINAL References Analogue Phase Locked Loop Building Integrated Timing Supply Digital Frequency Synthesis Digital Phase Locked Loop 1544 kb/s interface rate Discrete Time Oscillator 2048 kb/s interface rate Input - Output Loss of Frame Alignment Loss Of Signal Low profile Quad Flat Pack Low Voltage Differential Signal Maximum Time Interval Error Network Element Oven Controlled Crystal Oscillator Phase Build-out Plesiochronous Digital Hierarchy Positive Emitter Coupled Logic Phase and Frequency Detector Phase Locked Loop Power-On Reset parts per billion parts per million peak-to-peak Read/Write root-mean-square Read Only Restrictive Use of Certain Hazardous Substances (directive) Synchronous Digital Hierarchy SDH/SONET Equipment Clock Synchronous Equipment Timing source Synchronous Optical Network Synchronization Signal Failure Synchronization Supply Unit Synchronous Transport Module Time Deviation Temperature Compensated Crystal Oscillator Unit Interval Waste Electrical and Electronic Equipment (directive) Revision 2.00/January 2006 © Semtech Corp. DATASHEET [1] ANSI T1.101-1999 (1999) Synchronization Interface Standard [2] AT & T 62411 (12/1990) ACCUNET® T1.5 Service description and Interface Specification [3] ETSI ETS 300 462-3, (01/1997) Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 3: The control of jitter and wander within synchronization networks [4] ETSI ETS 300 462-5 (09/1996) Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 5: Timing characteristics of slave clocks suitable for operation in Synchronous Digital Hierarchy (SDH) equipment [5] IEEE 1149.1 (1990) Standard Test Access Port and Boundary-Scan Architecture [6] ITU-T G.703 (10/1998) Physical/electrical characteristics of hierarchical digital interfaces [7] ITU-T G.736 (03/1993) Characteristics of a synchronous digital multiplex equipment operating at 2048 kbit/s [8] ITU-T G.742 (1988) Second order digital multiplex equipment operating at 8448 kbit/s, and using positive justification [9] ITU-T G.783 (10/2000) Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks [10] ITU-T G.812 (06/1998) Timing requirements of slave clocks suitable for use as node clocks in synchronization networks [11] ITU-T G.813 (08/1996) Timing characteristics of SDH equipment slave clocks (SEC) [12] ITU-T G.822 (11/1988) Controlled slip rate objectives on an international digital connection [13] ITU-T G.823 (03/2000) The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy Page 65 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS FINAL DATASHEET Trademark Acknowledgements [14] ITU-T G.824 (03/2000) The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy Semtech and the Semtech S logo are registered trademarks of Semtech Corporation. [15] ITU-T G.825 (03/2000) The control of jitter and wander within digital networks which are based on the Synchronous Digital Hierarchy (SDH) ACCUNET® is a registered trademark of AT & T. [16] ITU-T K.41 (05/1998) Resistibility of internal interfaces of telecommunication centres to surge overvoltages AMD is a registered trademark of Advanced Micro Devices, Inc. Vectron is a registered trademark of Vectron International. [17] Telcordia GR-253-CORE, Issue 3 (09/ 2000) Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria ICT Flexacom is a registered trademark of ICT Electronics. [18] Telcordia GR-499-CORE, Issue 2 (12/1998) Transport Systems Generic Requirements (TSGR) Common requirements Motorola is a registered trademark of Motorola, Inc. Intel is a registered trademark of the Intel Corporation. Telcordia is a registered trademark of Telcordia Technologies. [19] Telcordia GR-1244-CORE, Issue 2 (12/2000) Clocks for the Synchronized Network: Common Generic Criteria Revision 2.00/January 2006 © Semtech Corp. Page 66 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Revision Status/History FINAL The Revision Status of the datasheet, as shown in the center of the datasheet header bar, may be DRAFT, PRELIMINARY, or FINAL, and refers to the status of the Device (not the datasheet) within the design cycle. DRAFT status is used when the design is being realized but is not yet physically available, and the datasheet content reflects the intention of the design. The datasheet is raised to PRELIMINARY status when initial prototype devices are physically available, and the datasheet content more accurately represents the realization of the design. The datasheet is only raised to FINAL status after DATASHEET the device has been fully characterized, and the datasheet content updated with measured, rather than simulated parameter values. This is a FINAL release (Revision 2.00) of the ACS8509 datasheet. Changes made for this document revision are given in Table 42, together with a brief summary of previous revisions. For specific changes between earlier revisions, refer (where available) to those earlier revisions. Always use the current version of the datasheet. Table 42 Revision History Revision Reference Description of Changes 1.00 September 2004 All pages New draft. 2.00 January 2006 Updated to FINAL and updated to reflect availability of lead(Pb)-free packaged part. All pages Revision 2.00/January 2006 © Semtech Corp. Page 67 www.semtech.com ACS8509 SETS ADVANCED COMMUNICATIONS Ordering Information FINAL DATASHEET Table 43 Parts List Part Number Description ACS8509 SETS Synchronous Equipment Timing Source for SONET or SDH Network Elements. ACS8509T Lead (Pb) -free packaged version of ACS8509; RoHS and WEEE compliant. Disclaimers Life support- This product is not designed or intended for use in life support equipment, devices or systems, or other critical applications. This product is not authorized or warranted by Semtech for such use. Right to change- Semtech Corporation reserves the right to make changes, without notice, to this product. Customers are advised to obtain the latest version of the relevant information before placing orders. Compliance to relevant standards- Operation of this device is subject to the User’s implementation and design practices. It is the responsibility of the User to ensure equipment using this device is compliant to any relevant standards. Contacts For Additional Information, contact the following: Semtech Corporation Advanced Communications Products E-mail: sales@semtech.com acsupport@semtech.com Internet: http://www.semtech.com USA: 200 Flynn Road, Camarillo, CA 93012-8790 Tel: +1 805 498 2111, Fax: +1 805 498 3804 FAR EAST: 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, R.O.C. Tel: +886 2 2748 3380 Fax: +886 2 2748 3390 EUROPE: Semtech Ltd., Units 2 and 3, Park Court, Premier Way, Abbey Park Industrial Estate, Romsey, Hampshire, SO51 9DN Tel: +44 (0)1794 527 600 Fax: +44 (0)1794 527 601 ISO9001 CERTIFIED Revision 2.00/January 2006 © Semtech Corp. Page 68 www.semtech.com
ACS8509T 价格&库存

很抱歉,暂时无法提供与“ACS8509T”相匹配的价格&库存,您可以联系我们找货

免费人工找货