ACS8526 LC/P LITE
Line Card Protection Switch for PDH, SONET
or SDH Systems
ADVANCED COMMUNICATIONS
Description
FINAL
Features
The ACS8526 is a highly integrated single-chip solution
for protection switching between two SECs (SDH/SONET
Equipment Clocks) from Master and Slave SETS clock
cards, for line cards in a PDH, SONET or SDH Network
Element. The ACS8526 has fast activity monitors on the
inputs and will raise a flag on a pin if there is a loss of
activity on the currently selected input. The protection
switching between the input reference clock sources is
controlled by an external pin.
The ACS8526 has two SEC reference clock input ports,
configured for expected frequency by setting hardware
pins or by writing to registers via the serial interface.
The ACS8526 can perform frequency translation,
converting, for example, an 8 kHz SEC input clock from a
backplane into a 155.52 MHz clock for local line cards.
The ACS8526 generates two independent SEC clock
outputs, one on a PECL/LVDS port and one on a
TTL/CMOS port, at spot frequencies configured by
hardware pins, or by writing to registers via the serial
interface. The hardware selectable spot frequencies
range from 1.544 MHz up to 155.52 MHz, with further
options for N x E1/DS1 and 311.04 MHz via register
selection. The ACS8526 also provides an 8 kHz Frame
Sync output and 2 kHz Multi-Frame Sync output, both with
programmable pulse width and polarity.
Advanced configuration possibilities are available via the
serial port (which can be SPI compatible), however the
basic configuration of I/O frequencies and SONET/SDH
selection by hardware make the device suitable for
standalone operation, i.e., no need for a microprocessor.
Block Diagram
DATASHEET
Line card protection switch - partners Semtech SETS
devices for Stratum 3E/3/4E/4 PDH, SONET or SDH
applications
High performance DPLL/APLL solution
Output jitter compliant to STM-1
Two independent SEC inputs ports (TTL)
Four independent output ports:
Two clock ports: one PECL/LVDS, one TTL
Two Syncs (TTL): 8 kHz FrSync & 2 KHz MFrSync
TTL I/O ports: spot frequencies 2 kHz to 77.76 MHz
PECL/LVDS port: spot frequencies 2 kHz to 311 MHz
N x E1/DS1 mode
Programmable pulse width and polarity on Syncs
SONET/SDH frequency translation
Digital Holdover mode on input failure
Separate activity monitors and register alarms on
each input.
“Loss of activity” on selected input flagged on
dedicated pin
Source switch under external hardware control
PLL “Locked” and “Acquisition” bandwidth selectable
from 18, 35 or 70 Hz
Configurable via serial interface or hardware pins
Output clock phase continuity to GR-1244-CORE[13]
Single 3.3 V operation, 5 V I/O compatible
IEEE 1149.1 JTAG Boundary Scan is supported
Operating temperature (ambient) of -40 to +85°C
Available in LQFP 64 package
Lead (Pb)-free version available (ACS8526T), RoHS
and WEEE compliant.
Figure 1 Block Diagram of the ACS8526 LC/P LITE
LOS_ALARM
IP_FREQ
SONSDHB
MUX
2
2 x SEC TTL inputs
SEC1
SEC Inputs:
Programmable
Frequencies
N x 8 kHz
SEC2
1.544 MHz
2.048 MHz
6.48 MHz
19.44 MHz
SRCSW
25.92 MHz
38.88 MHz
TCK
51.84 MHz
TDI
77.76 MHz
TMS
TRST
TDO
Input
SEC Port
Selector
E1/DS1
Synthesis
Chip
Clock
Generator
TCXO or
XO
Revision 4.01/June 2006 © Semtech Corp.
APLL2
Digital Feedback
APLL3
IEEE
1149.1
JTAG
SEC Outputs:
01 (LVDS/PECL)
DPLL2
DPLL1
Priority Register Set
Table
F8526D_001BLOCKDIA_03
Page 1
MUX
1
Output
Port
Frequency
Selection
02 (TTL)
Sync Outputs:
MFrSync 2 kHz (TTL)
APLL 1
FrSync 8 kHz (TTL)
SPI Compatible
Serial Interface
Port
OP_FREQ1
OP_FREQ2
Output Frequencies/MHz
01 Output:
02 Output:
19.44
1.544
25.92
2.048
34.368 (E3) 3.088
38.88
19.44
44.736 (DS3) 25.92
51.84
34.368 (E3)
77.76
38.88
155.52
44.736 (DS3)
51.84
77.76
www.semtech.com
Table of Contents
ADVANCED COMMUNICATIONS
Table of Contents
FINAL
Section
ACS8526 LC/P LITE
DATASHEET
Page
Description ................................................................................................................................................................................................. 1
Block Diagram............................................................................................................................................................................................ 1
Features ..................................................................................................................................................................................................... 1
Table of Contents ...................................................................................................................................................................................... 2
Pin Diagram ............................................................................................................................................................................................... 3
Pin Description........................................................................................................................................................................................... 4
Introduction................................................................................................................................................................................................ 6
General Description................................................................................................................................................................................... 6
Inputs ..................................................................................................................................................................................................6
Preconfiguring Inputs - Expected Input Frequency ................................................................................................................ 7
Preconfiguring Inputs- SONET/SDH ........................................................................................................................................ 7
Input Locking Frequency Modes ............................................................................................................................................. 7
Selection of Input SECs .....................................................................................................................................................................8
Initialization .............................................................................................................................................................................. 8
SEC Selection - SRCSW pin...................................................................................................................................................... 8
Output Clock Phase Continuity on Source Switchover .......................................................................................................... 8
Activity Monitors.................................................................................................................................................................................9
SEC Activity Monitors ............................................................................................................................................................... 9
Fast Activity Monitor.............................................................................................................................................................. 10
Phase Locked Loops (PLLs) ........................................................................................................................................................... 10
PLL Overview ......................................................................................................................................................................... 10
PLL Architecture .................................................................................................................................................................... 11
PLL Operational Controls ...................................................................................................................................................... 14
DPLL Feature Summary ........................................................................................................................................................ 16
Outputs ............................................................................................................................................................................................ 17
Output Frequency Selection by Hardware ........................................................................................................................... 17
Output Frequency Selection by Register Programming...................................................................................................... 17
Power-On Reset............................................................................................................................................................................... 25
Local Oscillator Clock...................................................................................................................................................................... 27
Crystal Frequency Calibration............................................................................................................................................... 27
Status Reporting ............................................................................................................................................................................. 27
Loss of Input Signal - LOS Flag ............................................................................................................................................. 27
Status Information ................................................................................................................................................................ 27
Serial Interface................................................................................................................................................................................ 27
Register Map........................................................................................................................................................................................... 30
Register Organization ..................................................................................................................................................................... 30
Multi-word Registers ............................................................................................................................................................. 30
Register Access ..................................................................................................................................................................... 30
Flags ....................................................................................................................................................................................... 30
Defaults.................................................................................................................................................................................. 30
Register Descriptions ............................................................................................................................................................................. 32
Electrical Specifications ......................................................................................................................................................................... 61
JTAG ................................................................................................................................................................................................. 61
Over-voltage Protection .................................................................................................................................................................. 61
ESD Protection ................................................................................................................................................................................ 61
Latchup Protection.......................................................................................................................................................................... 61
Maximum Ratings ........................................................................................................................................................................... 62
Operating Conditions ...................................................................................................................................................................... 62
Jitter Performance .......................................................................................................................................................................... 65
Input/Output Timing ....................................................................................................................................................................... 67
Package Information .............................................................................................................................................................................. 68
Thermal Conditions......................................................................................................................................................................... 69
Application Information .......................................................................................................................................................................... 70
References .............................................................................................................................................................................................. 71
Abbreviations .......................................................................................................................................................................................... 71
Notes ....................................................................................................................................................................................................... 72
Trademark Acknowledgements ............................................................................................................................................................. 72
Revision Status/History ......................................................................................................................................................................... 73
Ordering Information .............................................................................................................................................................................. 74
Disclaimers...................................................................................................................................................................................... 74
Contacts........................................................................................................................................................................................... 74
Revision 4.01/June 2006 © Semtech Corp.
Page 2
www.semtech.com
ACS8526 LC/P LITE
ADVANCED COMMUNICATIONS
Pin Diagram
FINAL
DATASHEET
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
SONSDHB
O1_FREQ2
IC9
IC8
IC7
NC2
AGND4
VA3+
O2
NC1
VDD3
DGND6
SDO
TDI
TDO
TCK
Figure 2 ACS8526 Pin Diagram
AGND1
IC1
AGND2
VA1+
LOS_ALARM
REFCLK
DGND1
VD1+
VD2+
DGND2
DGND3
VD3+
SRCSW
VA2+
AGND3
IC2
ACS8526
LC/P LITE
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PORB
SCLK
O1_FREQ1
O1_FREQ0
CSB
SDI
CLKE
TMS
DGND5
VDD2
O2_FREQ1
TRST
O2_FREQ2
O2_FREQ0
IP_FREQ2
IP_FREQ1
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
FrSync
MFrSync
O1POS
O1NEG
GND_DIFF
VDD_DIFF
IC3
IC4
IC5
IC6
VDD5V
IP_FREQ0
SEC1
SEC2
DGND4
VDD1
1
2
3
4
5
6
7
8
9
10
11
1
12
13
14
15
16
F8526D_002PINDIAG_01
Revision 4.01/June 2006 © Semtech Corp.
Page 3
www.semtech.com
ACS8526 LC/P LITE
ADVANCED COMMUNICATIONS
Pin Description
FINAL
DATASHEET
Table 1 Power Pins
Pin Number
Symbol
I/O
Type
Description
8, 9,
12
VD1+, VD2+,
VD3+
P
-
Supply Voltage: Digital supply to gates in analog section, +3.3 Volts ±10%.
22
VDD_DIFF
P
-
Supply Voltage: Digital supply for differential output pins 19 and 20, +3.3 Volts
±10%.
27
VDD5V
P
-
Digital Supply for +5 Volts tolerance to input pins. Connect to +5 Volts (±10%) for
clamping to +5 Volts. Connect to VDD for clamping to +3.3 Volts. Leave floating
for no clamping, input pins tolerant up to +5.5 Volts.
32, 39,
54
VDD1, VDD2,
VDD3,
P
-
Supply Voltage: Digital supply to logic, +3.3 Volts ±10%.
4
VA1+
P
-
Supply Voltage: Analog supply to clock multiplying PLL, +3.3 Volts ±10%.
14, 57
VA2+, VA3+
P
-
Supply Voltage: Analog supply to output PLLs APLL2 and APLL1, +3.3 Volts
±10%.
15, 58
AGND3, AGND4
-
Supply Ground: Analog ground for output PLLs APLL2 and APLL1.
7, 10,
11
DGND1, DGND2,
DGND3
P
-
Supply Ground: Digital ground for components in PLLs.
31, 40,
53
DGND4, DGND5,
DGND6
P
-
Supply Ground: Digital ground for logic.
21
GND_DIFF
P
-
Supply Ground: Digital ground for differential output pins 19 and 20.
1, 3
AGND1, AGND2
P
-
Supply Ground: Analog grounds.
Note...I = Input, O = Output, P = Power, TTLU = TTL input with pull-up resistor, TTLD = TTL input with pull-down resistor.
Table 2 Internally Connected
Pin Number
Symbol
I/O
Type
Description
2, 16, 23, 24,
25, 26, 60,
61, 62
IC1, IC2, IC3, IC4,
IC5, IC6, IC7,
IC8 IC9
-
-
Internally Connected: Leave to float.
55, 59
NC1, NC2
-
-
Not Connected: Leave to float.
I/O
Type
Table 3 Other Pins
Pin Number
Symbol
Description
5
LOS_ALARM
O
TTL/CMOS
6
REFCLK
I
TTL
Reference Clock: 12.800 MHz (refer to section headed Local Oscillator Clock).
13
SRCSW
I
TTLD
Source Switching: Controls switchover between SEC1 and SEC2 inputs as the
selected reference. SRCSW must be held High on power-up or reset, and for a
further 251 ms after PORB has gone High. See “Initialization” on page 8.
17
FrSync
O
TTL/CMOS
Revision 4.01/June 2006 © Semtech Corp.
LOS_Alarm: Flag to indicate loss of activity of currently selected reference
source.
Output Reference: 8 kHz Frame Sync output.
Page 4
www.semtech.com
ACS8526 LC/P LITE
ADVANCED COMMUNICATIONS
FINAL
DATASHEET
Table 3 Other Pins (cont...)
Pin Number
Symbol
I/O
Type
Description
18
MFrSync
O
TTL/CMOS
Output Reference: 2 kHz Multi-Frame Sync output.
19,
20
O1POS,
O1NEG
O
LVDS/PECL
Output Reference 1: Differential output., default LVDS.
28
IP_FREQ0
I
TTLD
Input Reference Frequency Select: Frequency select for input SEC1 and SEC2.
29
SEC1
I
TTLD
Input Reference 1: Primary input.
30
SEC2
I
TTLD
Input Reference 2: Secondary input.
33
IP_FREQ1
I
TTLD
Input Reference Frequency Select: Frequency select for input SEC1 and SEC2.
34
IP_FREQ2
I
TTLD
Input Reference Frequency Select: Frequency select for input SEC1 and SEC2.
35
O2_FREQ0
I
TTLD
Output O2 Frequency Select: Frequency select for output O2.
36
O2_FREQ2
I
TTLD
Output O2 Frequency Select: Frequency select for output O2.
37
TRST
I
TTLD
JTAG Control Reset Input: TRST = 1 to enable JTAG Boundary Scan mode.
TRST = 0 for normal device operation (JTAG logic transparent). NC if not used.
38
O2_FREQ1
I
TTLD
Output O2 Frequency Select: Frequency select for output O2.
41
TMS
I
TTLD
JTAG Test Mode Select: Boundary Scan enable. Sampled on rising edge of TCK.
NC if not used.
42
CLKE
I
TTLD
SCLK Edge Select: SCLK active edge select, CLKE = 1, selects falling edge of
SCLK to be active.
43
SDI
I
TTLD
Interface Address: SPI compatible Serial Data Input.
44
CSB
I
TTLU
Chip Select (Active Low): This pin is asserted Low by the external device
(microprocessor) to enable the Serial interface.
45
O1_FREQ0
I
TTLU
Output O1 Frequency Select: Frequency select for output O1.
Output O1 Frequency Select: Frequency select for output O1.
46
O1_FREQ1
I
TTLU
47
SCLK
I
TTLD
Serial Data Clock: The Low to High transition on this input latches the data on the
SDI input into the internal registers. The active clock edge (defined by CLKE)
latches the data out of the internal registers onto the SDO output.
48
PORB
I
TTLU
Power-On Reset: Master reset. If PORB is forced Low, all internal states are reset
back to default values.
49
TCK
I
TTLD
JTAG Clock: Boundary Scan clock input.
50
TDO
O
TTL/CMOS
51
TDI
I
TTLD
JTAG Input: Serial test data Input. Sampled on rising edge of TCK. NC if not used.
52
SDO
O
TTLD
Interface Address: SPI compatible Serial Data Output.
56
O2
O
TTL/CMOS
Output Reference: Programmable, default 19.44 MHz.
63
O1_FREQ2
I
TTLU
Output O1 Frequency Select: Frequency select for output O1.
64
SONSDHB
I
TTLD
SONET or SDH frequency select: Sets the initial power-up state (or state after a
PORB) of the SONET/SDH frequency selection registers, Reg. 34, Bit 2 and
Reg. 38, Bit 5, Bit 6 and Reg. 64 Bit 4. The register states can be changed after
power-up by software. When set Low, SDH rates are selected (2.048 MHz etc.)
and when set High, SONET rates are selected (1.544 MHz etc.) The register
states can be changed after power-up by software.
Revision 4.01/June 2006 © Semtech Corp.
JTAG Output: Serial test data output. Updated on falling edge of TCK.
Page 5
www.semtech.com
ACS8526 LC/P LITE
ADVANCED COMMUNICATIONS
Introduction
FINAL
The ACS8526 is a highly integrated, single-chip solution
for protection switching of two SEC inputs from, for
example, Master and Slave SETS clock cards sources, for
Line Cards in a SONET or SDH Network Element. The
ACS8526 has fast activity monitors on the SEC clock
inputs.
The ACS8526 can be used as a standalone part without
the serial interface where all input and output frequencies
are set by external control using the IP_FREQ and
OP_FREQ pins. These pins determine the default
power-up or reset state of internal registers, that in turn
determine the I/O frequencies.
If more detailed control is required, then the registers
within the device can be re-configured, after an
initialization period, by writes through the serial interface.
The SRCSW pin is used to select one of the two SEC inputs
to lock to. The SRCSW pin must remain High for at least
251 ms following power-up or reset (251 ms after the
PORB signal has gone High). SRCSW Low following a
power-up or reset is not supported.
The ACS8526 has two SEC inputs from which it can
generate independent clocks on outputs 01 and 02 with
a total of 53 possible output frequencies. In addition,
there are two Sync outputs; 8 kHz Frame Synchronization
(FrSync) signal and a 2 kHz Multi-Frame Synchronization
(MFrSync) signal.
Initially the ACS8526 generates a stable, low-noise clock
signal at a frequency to the same accuracy as the external
oscillator, or it can be made more accurate via software
calibration to within ±0.02 ppm. The device always
attempts to lock to one of its inputs (according to the
value on the SRCSW pin). Once locked to a reference the
accuracy of the output clock is determined directly by the
accuracy of the input reference. In the absence of any
input references the device simply maintains its most
recent frequency in a Digital Holdover mode. However, as
soon as the DPLL detects an input presence, it will
attempt to lock to it and will not “qualify” it first. As soon
as the DPLL detects a failure on the input, the DPLL
freezes its operating frequency and raises the LOS alarm
on device pin LOS_ALARM.
The overall PLL loop bandwidth, damping, pull-in range
and frequency accuracy are all determined by digital
parameters that provide a consistent level of
performance. An Analog PLL (APLL) takes the signal from
the DPLL output and provides a lower jitter output. The
Revision 4.01/June 2006 © Semtech Corp.
DATASHEET
APLL bandwidth is set four orders of magnitude higher
than the DPLL bandwidth. This ensures that the overall
system performance still maintains the advantage of
consistent behavior provided by the digital approach. The
DPLLs are clocked by the external oscillator module (TCXO
or XO) so that prior to initial lock (with no input reference)
or in Digital Holdover, the frequency stability is only
determined by the stability of the external oscillator
module. This gives the key advantage of confining all
temperature critical components to one well defined and
pre-calibrated oscillator module, whose performance can
be chosen to match the application. All performance
parameters of the DPLLs are programmable without the
need to understand detailed PLL equations. Bandwidth,
damping factor and lock range can all be configured
under software control.
The hardware set-up configures a subset of the registers
in the register block, with the remainder adopting their
default settings. If hardware set-up alone is insufficient
for configuring, controlling and monitoring the device for a
particular application, then access to the full set of
registers for these purposes is provided by an SPI
compatible serial interface port.
Each register (8-bit wide data field) is identified by and
referred to by its hexadecimal address and name, e.g.
Reg. 7D cnfg_LOS_alarm. The “Register Map” on page 30
summarizes the content of all of the registers, and each
register is individually described in the subsequent
Register Tables, organized in order of ascending Address
(hexadecimal), in the “Register Descriptions” from
page 32 onwards.
An Evaluation board and intuitive GUI-based software
package is available for device introduction. This has its
own documentation “ACS8526-EVB”.
General Description
The following description refers to the Block Diagram
(Figure 1 on page 1).
Inputs
The ACS8526 SETS device has two TTL/CMOS compatible
SEC input ports. They are 3 V and 5 V compatible (with
clamping if required by connecting the VDD5V pin). Refer
to the “Electrical Specifications” on page 61 for more
information on electrical compatibility.
Page 6
www.semtech.com
ACS8526 LC/P LITE
ADVANCED COMMUNICATIONS
FINAL
Input frequencies supported range from 2 kHz to
155.52 MHz. Common E1, DS1, OC-3 and sub-divisions
are supported as spot frequencies that the DPLLs will
directly lock to. Any input frequency, up to 100 MHz, that
is a multiple of 8 kHz can also be locked to via an inbuilt
programmable divider.
In addition to the SEC inputs, there are four configuration
pins IP_FREQ [2:0] and SONSDHB used to configure the
input to expect a particular input frequency (same value
applies to both inputs), and a control pin SRCSW for
switching between SEC1 and SEC2 as the selected input
reference to which the device tries to lock.
The register programming approach provides a greater
range of frequencies than the hardware selection
method: more spot frequencies, plus frequencies derived
using DivN Mode up to 100 MHz (TTL technology limit).
Table 4 Hardware Configuration for Selecting Expected
Input Frequency on SEC1 and SEC2
IP_FREQ Pins
Preconfiguring Inputs - Expected Input Frequency
The inputs SEC1 and SEC2 must be preconfigured to
expect a particular input frequency.
The expected input frequencies can be selected from a
range of spot frequencies by either:
z
z
Hardware selection: configuring the hardware pins
IP_FREQ [2:0] and SONSDHB, which are read on reset
Register programming: writing to the
cnfg_ref_source_frequency and cnfg_input_mode
registers.
Hardware Selection of Expected I/P Frequency
2
1
0
0
0
0
0
0
1
0
1
0
SONSDHB
Pin
Input frequency
X
8 kHz
0
2.048 MHz
1
1.544 MHz
0
X
6.48 MHz
1
1
X
19.44 MHz
1
0
0
X
25.92 MHz
1
0
1
X
38.88 MHz
1
1
0
X
51.84 MHz
1
1
1
X
77.76 MHz
Preconfiguring Inputs- SONET/SDH
The combined pin states of IP_FREQ [2:0] and SONSDHB
represent a 4-bit word which addresses a particular
frequency value as given in Table 4.
The frequency selected by the hardware configuration is
always applied to both inputs on Power-up or Reset, so
both will be preconfigured to expect the same frequency.
If SEC1 and SEC2 are required to expect different
frequencies, then these inputs must be subsequently
reconfigured by programming the appropriate registers.
Register Programming of Expected I/P Frequency
The expected input frequencies can be programmed by
writing to the cnfg_ref_source_frequency registers
(Reg. 22 and 23) and ip_sonsdhb (Bit 2 of
cnfg_input_mode,Reg. 34), via the serial interface. This
must not be done until after the end of the initialization
period (see “Initialization” on page 8).
Note...Any subsequent reset will cause these registers to be
overwritten by values that equate to the single hardware
selected frequency on the pins at the time of reset, i.e both
inputs will be configured to expect the same input frequency.
After a reset and initialization period, any change of state on
Revision 4.01/June 2006 © Semtech Corp.
DATASHEET
IP_FREQ [2:0] or SONSDHB will have no effect on the device
configuration, as these are only read during the reset period.
The cnfg_input_mode register bit ip_sonsdhb is used to
select SDH or SONET mode for the entire device and its
setting affects parameters other than just the expected
input frequency selection, e.g. output frequency. To set
the device for use in a SONET network, set ip_sonsdhb =
1. For SDH, set ip_sonsdhb = 0.
Input Locking Frequency Modes
Each input port has to be configured to receive the
expected input frequency. To achieve this, three input
locking frequency modes are provided: Direct Lock,
Lock8K and DivN.
Direct Lock Mode
In Direct Lock mode, DPLL1 can lock to the selected input
at the spot frequency of the input, for example 19.44 MHz
performs the DPLL phase comparisons at 19.44 MHz.
In Lock8K and DivN modes an internal divider is used
prior to DPLL1 to divide the input frequency before it is
used for phase comparisons.
Page 7
www.semtech.com
ACS8526 LC/P LITE
ADVANCED COMMUNICATIONS
FINAL
Lock8K mode automatically sets the divider parameters
to divide the input frequency down to 8 kHz. Lock8K can
only be used on the supported spot frequencies. See
divn_SEC1 and 2 descriptions (Bit 7 of Reg. 22 and 23,
cnfg_ref_source_frequency). Lock8k mode is enabled by
setting the Lock8k bit (Bit 6) in the appropriate
cnfg_ref_source_frequency register. Using lower
frequencies for phase comparisons in the DPLL results in
a greater tolerance to input jitter. It is possible to choose
which edge of the input reference clock to lock to, by
setting 8K Edge Polarity, (Bit 2 of Reg. 03, test_register1).
DivN Mode
In DivN mode, the divider parameters are set manually by
configuration (Bit 7 of the cnfg_ref_source_frequency
register), but must be set so that the frequency after
division is exactly 8 kHz.
The DivN function is defined as:
DivN = “Divide by N+ 1”, i.e. it is the dividing factor used
for the division of the input frequency, and has a value of
(N+1) where N is an integer from 1 to 12499 inclusive.
Therefore, in DivN mode the input frequency can be
divided by any integer value between 2 to 12499.
Consequently, any input frequency which is a multiple of
8 kHz, between 8 kHz to 125 MHz, can be supported by
using DivN mode.
Note...Both reference inputs can be set to use DivN
independently of the frequency and configuration of the other
input. However only one value of N is allowed, so if both inputs
have DivN selected, they must be running at the same
frequency.
DivN Examples
(a) To lock to 2.000 MHz:
(i)
Set the cnfg_ref_source_frequency register to
10XX0000 (binary) to enable DivN, and set the
frequency to 8 kHz - the frequency required after
division. (XX = “Leaky Bucket” ID for this input).
(ii) To achieve 8 kHz, the 2 MHz input must be
divided by 250. So, if DivN = 250 = (N + 1)
then N must be set to 249. This is done by writing
F9 hex (249 decimal) to the DivN register pair
Reg. 46/47.
(b) To lock to 10.000 MHz:
(i)
The cnfg_ref_source_frequency register is set to
10XX0000 (binary) to set the DivN and the
Revision 4.01/June 2006 © Semtech Corp.
DATASHEET
frequency to 8 kHz, the post-division frequency.
(XX = “Leaky Bucket” ID for this input).
Lock8K Mode
(ii) To achieve 8 kHz, the 10 MHz input must be
divided by 1,250. So, if DivN, = 250 = (N+1)
then N must be set to 1,249. This is done by
writing 4E1 hex (1,249 decimal) to the DivN
register pair Reg. 46/47.
Selection of Input SECs
Initialization
Switching between inputs SEC1 and SEC2 is triggered
directly from a dedicated pin (SRCSW), though for the
device to operate properly, the device must first be
initialized by holding the pin High during reset and for at
least a further 251 ms after PORB has gone High (250 ms
allowance for the internal reset to be removed plus 1 ms
allowance for APLLs to start-up and become stable). A
simple external circuit to set SCRSW high for the required
period is shown in the “Simplified Application Schematic”
on page 70. If SCRSW is held Low at any time during the
251 ms initialization period, this will result in incorrect
device operation.
SEC Selection - SRCSW pin
After the ACS8526 has been initialized (see previous
“Initialization” section), then the value of SRCSW pin
directly selects either SEC1 (SRCSW High) or SEC2
(SRCSW Low). The default frequency tolerance of SEC1
and SEC2 is ±80 ppm (Reg. 41 and Reg. 42) with respect
to the local (calibrated) oscillator clock. These registers
can be subsequently set by external software, if required.
After initialization, the output clocks are stable and the
device will operate as a simple switch, with the DPLL
trying to lock on to the selected reference source.
Output Clock Phase Continuity on Source
Switchover
A phase offset between SEC inputs will be seen as a
phase shift on the output on source switchover equal to
the input phase offset.
Note...The ACS8526 has no Phase Build-out function to
accommodate this. If this function is required, it is available on
the AS8525 LC/P device.
The rate of change of phase on the output, during the time
between input switchover and the output settling to a
steady state, is dependent on factors of: input frequency,
Page 8
www.semtech.com
ACS8526 LC/P LITE
ADVANCED COMMUNICATIONS
FINAL
input phase change, DPLL bandwidth, DPLL frequency
limit, and phase detector capture range. The ACS8526
always complies with GR-1244-CORE[13] spec for Stratum
3 (max rate of phase change of 81 ns/1.326 ms), for
input frequencies at 6.48 MHz or higher, with the default
1UI phase detector capture range.
For inputs at a lower frequency than 6.48 MHz (e.g. 8 kHz)
with the DPLL frequency limit set to greater than ±30 ppm
(note default is ±80 ppm), then to ensure compliance with
GR-1244-CORE[13] at DPLL bandwidth settings of 18, 35
or 70 Hz, the input phase difference between the Master
and Slave inputs to the line card PLL should be limited to
less than 600, 330 ns or 190 ns respectively.
Alternatively, the DPLL frequency range should be set