GS1560A/GS1561 HD-LINX® II Dual-Rate Deserializer
GS1560A/GS1561 Data Sheet Key Features • SMPTE 292M and SMPTE 259M-C compliant descrambling and NRZI → NRZ decoding (with bypass) DVB-ASI sync word detection and 8b/10b decoding auto-configuration for HD-SDI, SD-SDI and DVB-ASI serial loop-through cable driver output selectable as reclocked or non-reclocked (GS1560A only) dual serial digital input buffers with 2 x 1 mux integrated serial digital signal termination integrated reclocker automatic or manual rate selection / indication (HD/SD) descrambler bypass option user selectable additional processing features including: • • • • • • • • • • • • • CRC, TRS, ANC data checksum, line number and EDH CRC error detection and correction programmable ANC data detection illegal code remapping Description The GS1560A/GS1561 is a reclocking deserializer. When used in conjunction with the GS1524 Automatic Cable Equalizer and the GO1555/GO1525* Voltage Controlled Oscillator, a receive solution can be realized for HD-SD, SD-SDI and DVB-ASI applications. In addition to reclocking and deserializing the input data stream, the GS1560A/GS1561 performs NRZI-to-NRZ decoding, descrambling as per SMPTE 259M-C/292M, and word alignment when operating in SMPTE mode. When operating in DVB-ASI mode, the device will word align the data to K28.5 sync characters and 8b/10b decode the received stream. Two serial digital input buffers are provided with a 2x1 multiplexer to allow the device to select from one of two serial digital input signals. The integrated reclocker features a very wide Input Jitter Tolerance of ±0.3 UI (total 0.6 UI), a rapid asynchronous lock time, and full compliance with DVB-ASI data streams. The GS1560A includes an integrated cable driver is for serial input loop-through applications. It can be selected to output either buffered or reclocked data. The cable driver also features an output mute on loss of signal, high impedance mode, adjustable signal swing, and automatic dual slew-rate selection depending on HD/SD operational requirements. The GS1560A/GS1561 also includes a range of data processing functions such as error detection and correction, automatic standards detection, and EDH support. The device can also detect and extract SMPTE 352M payload identifier packets and independently identify the received video standard. This information is read from internal registers via the host interface port. Line-based CRC errors, line number errors, TRS errors, EDH CRC errors and ancillary data checksum errors can all be detected. Finally, the device can correct detected errors and insert new TRS ID words, line-based CRC words, ancillary data checksum words, EDH CRC words, and line numbers. Illegal code re-mapping is also available. All processing functions may be individually enabled or disabled via host interface control. The GS1560A/GS1561 is Pb-free and the encapsulation compound does not contain halogenated flame retardant. This component and all homogeneous subcomponents are RoHS compliant. *For new designs use GO1555
27360 - 10 January 2007 1 of 80 www.gennum.com
• • • • • • • • •
internal flywheel for noise immune H, V, F extraction FIFO load Pulse 20-bit / 10-bit CMOS parallel output data bus 148.5MHz / 74.25MHz / 27MHz / 13.5MHz parallel digital output automatic standards detection and indication Pb-free and RoHS Compliant 1.8V core power supply and 3.3V charge pump power supply 3.3V digital I/O supply JTAG test interface small footprint compatible with GS9060, GS1532, and GS9062
Applications • • • SMPTE 292M Serial Digital Interfaces SMPTE 259M-C Serial Digital Interfaces DVB-ASI Serial Digital Interfaces
GS1560A/GS1561 Data Sheet Functional Block Diagrams
IOPROC_EN/DIS SMPTE_BYPASS MASTER/SLAVE
CP_CAP VCO VCO LB_CONT LF VCO_VCC VCO_GND
FW_EN/DIS
20bit/10bit
DVB_ASI
LOCKED
RC_BYP
SD/HD
IP_SEL
PCLK
H
V
F
CD1 CD2
carrier_detect rclk_ctrl pll_lock LOCK detect
TERM 1 DDI_1 DDI_1 Reclocker TERM 2 DDI_2 DDI_2 S->P
smpte_sync_det asi_sync_det
SMPTE Descramble, Word alignment and flywheel CRC check Line number check TRS check CSUM check ANC data detection
DATA_ERROR CRC correct Line number correct TRS correct CSUM correct EDH check & correct Illegal code remap
DOUT[19:0] I/O Buffer & mux FIFO_LD
K28.5 sync detect, DVB-ASI word alignment and 8b/10b decode (o/p mute) pll_lock rclk_bypass
CANC YANC
SDO_EN/DIS SDO SDO Reset RSET HOST Interface / JTAG test
GS1560A Functional Block Diagram
27360 - 10 January 2007
RESET_TRST
CS_TMS SCLK_TCK SDIN_TDI SDOUT_TDO
JTAG/HOST
2 of 80
GS1560A/GS1561 Data Sheet
IOPROC_EN/DIS
SMPTE_BYPASS
MASTER/SLAVE
CP_CAP VCO VCO LB_CONT LF VCO_VCC VCO_GND
FW_EN/DIS
20bit/10bit
DVB_ASI
LOCKED
SD/HD
IP_SEL
PCLK
H
V
F
CD1 CD2
carrier_detect rclk_ctrl pll_lock LOCK detect
TERM 1 DDI_1 DDI_1 Reclocker TERM 2 DDI_2 DDI_2 S->P
Reset
smpte_sync_det asi_sync_det
SMPTE Descramble, Word alignment and flywheel CRC check Line number check TRS check CSUM check ANC data detection
DATA_ERROR CRC correct Line number correct TRS correct CSUM correct EDH check & correct Illegal code remap
DOUT[19:0] I/O Buffer & mux FIFO_LD
K28.5 sync detect, DVB-ASI word alignment and 8b/10b decode
CANC YANC
HOST Interface / JTAG test
GS1561 Functional Block Diagram
27360 - 10 January 2007
RESET_TRST
CS_TMS SCLK_TCK SDIN_TDI SDOUT_TDO
JTAG/HOST
3 of 80
GS1560A/GS1561 Data Sheet
Contents
Key Features .................................................................................................................1 Applications...................................................................................................................1 Description ....................................................................................................................1 Functional Block Diagrams ...........................................................................................2 1. Pin Out .....................................................................................................................6 1.1 Pin Assignment GS1560A ..............................................................................6 1.2 Pin Assignment GS1561.................................................................................7 1.3 Pin Descriptions ..............................................................................................8 2. Electrical Characteristics ........................................................................................19 2.1 Absolute Maximum Ratings ..........................................................................19 2.2 DC Electrical Characteristics ........................................................................19 2.3 AC Electrical Characteristics.........................................................................21 2.4 Solder Reflow Profiles...................................................................................24 2.5 Input/Output Circuits .....................................................................................25 2.6 Host Interface Map........................................................................................27 2.6.1 Host Interface Map (R/W Configurable Registers) .............................28 2.6.2 Host Interface Map (Read Only Registers) .........................................29 3. Detailed Description ...............................................................................................30 3.1 Functional Overview .....................................................................................30 3.2 Serial Digital Input .........................................................................................31 3.2.1 Input Signal Selection .........................................................................31 3.2.2 Carrier Detect Input ............................................................................31 3.2.3 Single Input Configuration ..................................................................31 3.3 Serial Digital Reclocker .................................................................................32 3.3.1 External VCO......................................................................................32 3.3.2 Loop Bandwidth ..................................................................................32 3.4 Serial Digital Loop-Through Output (GS1560A only) ....................................33 3.4.1 Output Swing ......................................................................................33 3.4.2 Reclocker Bypass Control ..................................................................34 3.4.3 Serial Digital Output Mute...................................................................34 3.5 Serial-To-Parallel Conversion .......................................................................35 3.6 Modes Of Operation......................................................................................35 3.6.1 Lock Detect.........................................................................................35 3.6.2 Master Mode.......................................................................................36 3.6.3 Slave Mode.........................................................................................37 3.7 SMPTE Functionality ....................................................................................38 3.7.1 SMPTE Descrambling and Word Alignment .......................................38 3.7.2 Internal Flywheel.................................................................................38 3.7.3 Switch Line Lock Handling..................................................................39 3.7.4 HVF Timing Signal Generation ...........................................................43
27360 - 10 January 2007
4 of 80
GS1560A/GS1561 Data Sheet
3.8 DVB-ASI Functionality ..................................................................................45 3.8.1 Transport Packet Format ....................................................................45 3.8.2 DVB-ASI 8b/10b Decoding and Word Alignment................................45 3.8.3 Status Signal Outputs .........................................................................46 3.9 Data Through Mode ......................................................................................46 3.10 Additional Processing Functions.................................................................46 3.10.1 FIFO Load Pulse...............................................................................47 3.10.2 Ancillary Data Detection and Indication ............................................48 3.10.3 SMPTE 352M Payload Identifier.......................................................52 3.10.4 Automatic Video Standard and Data Format Detection ....................52 3.10.5 Error Detection and Indication ..........................................................56 3.10.6 Error Correction and Insertion ..........................................................61 3.10.7 EDH Flag Detection ..........................................................................63 3.11 Parallel Data Outputs ..................................................................................65 3.11.1 Parallel Data Bus Buffers..................................................................65 3.11.2 Parallel Output in SMPTE Mode .......................................................66 3.11.3 Parallel Output in DVB-ASI Mode.....................................................66 3.11.4 Parallel Output in Data-Through Mode .............................................66 3.11.5 Parallel Output Clock (PCLK) ...........................................................67 3.12 GSPI Host Interface ....................................................................................68 3.12.1 Command Word Description.............................................................68 3.12.2 Data Read and Write Timing ............................................................69 3.12.3 Configuration and Status Registers ..................................................70 3.13 JTAG...........................................................................................................70 3.14 Device Power Up ........................................................................................72 3.15 Device Reset...............................................................................................72 4. Application Reference Design ................................................................................73 4.1 GS1560A Typical Application Circuit (Part A) ...............................................73 4.2 GS1560A Typical Application Circuit (Part B) ...............................................74 4.3 GS1561 Typical Application Circuit (Part A) .................................................75 4.4 GS1561 Typical Application Circuit (Part B) .................................................76 5. References & Relevant Standards.........................................................................77 6. Package & Ordering Information............................................................................78 6.1 Package Dimensions ....................................................................................78 6.2 Packaging Data.............................................................................................79 6.3 Ordering Information .....................................................................................79 7. Revision History .....................................................................................................79
27360 - 10 January 2007
5 of 80
GS1560A/GS1561 Data Sheet
1. Pin Out
1.1 Pin Assignment GS1560A
27360 - 10 January 2007
6 of 80
GS1560A/GS1561 Data Sheet
1.2 Pin Assignment GS1561
DOUT11 DOUT17 DOUT16 DOUT14 DOUT13 DOUT15 DOUT12 DOUT10 IO_GND IO_GND IO_VDD IO_VDD 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 DOUT9 DOUT8 DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 43 DOUT2 42
60
59
58
57
56
55
54
53
52
51 50
49
48
47
46
45
44
IO_VDD DOUT18 DOUT19 CORE_VDD
YANC CANC
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
IO_GND DOUT1 DOUT0 CORE_VDD H V F CORE_GND FIFO_LD
DATA_ERROR
FW_EN/DIS CORE_GND PCLK
RSV MASTER/SLAVE
SCLK_TCK SDIN_TDI SDOUT_TDO CS_TMS JTAG/HOST RESET_TRST
NC NC NC NC
LOCKED VCO VCO VCO_GND VCO_VCC LF CP_CAP LB_CONT CP_GND
DDI1
CD1
TERM1
DDI1
PDBUFF_GND
IP_SEL
20bit/10bit
DVB_ASI
IOPROC_EN/DIS
TERM2
DDI2
DDI2
CD2
SMPTE_BYPASS
CP_VDD
PD_VDD
BUFF_VDD
SD/HD
27360 - 10 January 2007
NC
NC
7 of 80
GS1560A/GS1561 Data Sheet
1.3 Pin Descriptions
Table 1-1: Pin Descriptions Pin Number
1 2 3 4 5
Name
CP_VDD PDBUFF_GND PD_VDD BUFF_VDD CD1
Timing
– – – – Non Synchronous
Type
Power Power Power Power Input
Description
Power supply connection for the charge pump. Connect to +3.3V DC analog. Ground connection for the phase detector and serial digital input buffers. Connect to analog GND. Power supply connection for the phase detector. Connect to +1.8V DC analog. Power supply connection for the serial digital input buffers. Connect to +1.8V DC analog. STATUS SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to indicate the presence of a serial digital input signal. Normally generated by a Gennum automatic cable equalizer. When LOW, the serial digital input signal received at the DDI1 and DDI1 pins is considered valid. When HIGH, the associated serial digital input signal is considered to be invalid. In this case, the LOCKED signal is set LOW and all parallel outputs are muted.
6, 8 7 9
DDI1, DDI1 TERM1 DVB_ASI
Analog Analog Non Synchronous
Input Input Input / Output
Differential input pair for serial digital input 1. Termination for serial digital input 1. AC couple to EQ_GND. CONTROL SIGNAL INPUT / STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. This pin will be an input set by the application layer in slave mode, and will be an output set by the device in master mode. Master Mode (MASTER/SLAVE = HIGH) The DVB_ASI signal will be HIGH only when the device has locked to a DVB-ASI compliant data stream. It will be LOW otherwise. Slave Mode (MASTER/SLAVE = LOW) When set HIGH in conjunction with SD/HD = HIGH and SMPTE_BYPASS = LOW, the device will be configured to operate in DVB-ASI mode. When set LOW, the device will not support the decoding or word alignment of received DVB-ASI data.
10
IP_SEL
Non Synchronous
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to select DDI1 / DDI1 or DDI2 / DDI2 as the serial digital input signal, and CD1 or CD2 as the carrier detect input signal. When set HIGH, DDI1 / DDI1 is selected as the serial digital input and CD1 is selected as the carrier detect input signal. When set LOW, DDI2 / DDI2 serial digital input and CD2 carrier detect input signal is selected.
27360 - 10 January 2007
8 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
11
Name
SD/HD
Timing
Non Synchronous
Type
Input / Output
Description
CONTROL SIGNAL INPUT / STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. This pin will be an input set by the application layer in slave mode, and will be an output set by the device in master mode. Master Mode (MASTER/SLAVE = HIGH) The SD/HD signal will be LOW whenever the received serial digital signal is 1.485Gb/s or 1.485/1.001Gb/s. The SD/HD signal will be HIGH whenever the received serial digital signal is 270Mb/s. Slave Mode (MASTER/SLAVE = LOW) When set LOW, the device will be configured for the reception of 1.485Gb/s or 1.485/1.001Gb/s signals only and will not lock to any other serial digital signal. When set HIGH, the device will be configured for the reception of 270Mb/s signals only and will not lock to any other serial digital signal. NOTE: When in slave mode, reset the device after the SD/HD input has been initially configured, and after each subsequent SD/HD data rate change. NOTE: This pin has an internal pull-up resistor of 100K.
12
20bit/10bit
Non Synchronous
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to select the output data bus width in SMPTE or Data-Through modes. This signal is ignored in DVB-ASI mode. When set HIGH, the parallel output will be 20-bit demultiplexed data. When set LOW, the parallel outputs will be 10-bit multiplexed data.
13
IOPROC_EN/DIS
Non Synchronous
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to enable or disable I/O processing features. When set HIGH, the following I/O processing features of the device are enabled: • EDH CRC Error Correction (SD-only) • ANC Data Checksum Correction • Line-based CRC Error Correction (HD-only) • Line Number Error Correction (HD-only) • TRS Error Correction • Illegal Code Remapping To enable a subset of these features, keep IOPROC_EN/DIS HIGH and disable the individual feature(s) in the IOPROC_DISABLE register accessible via the host interface. When set LOW, the I/O processing features of the device are disabled, regardless of whether the features are enabled in the IOPROC_DISABLE register.
27360 - 10 January 2007
9 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
14
Name
CD2
Timing
Non Synchronous
Type
Input
Description
STATUS SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to indicate the presence of a serial digital input signal. Normally generated by a Gennum automatic cable equalizer. When LOW, the serial digital input signal received at the DDI2 and DDI2 pins is considered valid. When HIGH, the associated serial digital input signal is considered to be invalid. In this case, the LOCKED signal is set LOW and all parallel outputs are muted.
15, 17 16 18
DDI2, DDI2 TERM2 SMPTE_BYPASS
Analog Analog Non Synchronous
Input Input Input / Output
Differential input pair for serial digital input 2. Termination for serial digital input 2. AC couple to PDBUFF_GND. CONTROL SIGNAL INPUT / STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. This pin will be an input set by the application layer in slave mode, and will be an output set by the device in master mode. Master Mode (MASTER/SLAVE = HIGH) The SMPTE_BYPASS signal will be HIGH only when the device has locked to a SMPTE compliant data stream. It will be LOW otherwise. Slave Mode (MASTER/SLAVE = LOW) When set HIGH in conjunction with DVB_ASI = LOW, the device will be configured to operate in SMPTE mode. All I/O processing features may be enabled in this mode. When set LOW, the device will not support the descrambling, decoding or word alignment of received SMPTE data. No I/O processing features will be available.
19
RSET
Analog
Input
GS1560A Used to set the serial digital loop-through output signal amplitude. Connect to CD_VDD through 281Ω +/- 1% for 800mVp-p single-ended output swing.
NC
–
–
GS1561 No Connect.
20
CD_VDD
–
Power
GS1560A Power supply connection for the serial digital cable driver. Connect to +1.8V DC analog.
NC
–
–
GS1561 No Connect.
21
SDO_EN/DIS
Non Synchronous
Input
GS1560A CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to enable or disable the serial digital output loop-through stage. When set LOW, the serial digital output signals SDO and SDO are disabled and become high impedance. When set HIGH, the serial digital output signals SDO and SDO are enabled.
NC
–
–
GS1561 No Connect.
27360 - 10 January 2007
10 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
22
Name
CD_GND
Timing
–
Type
Power
Description
GS1560A Ground connection for the serial digital cable driver. Connect to analog GND.
NC
–
–
GS1561 No Connect.
23, 24
SDO, SDO
Analog
Output
GS1560A Serial digital loop-through output signal operating at 1.485Gb/s, 1.485/1.001Gb/s, or 270Mb/s. The slew rate of these outputs is automatically controlled to meet SMPTE 292M and 259M specifications according to the setting of the SD/HD pin.
NC
–
–
GS1561 No Connect.
25
RESET_TRST
Non Synchronous
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to reset the internal operating conditions to default settings and to reset the JTAG test sequence. Host Mode (JTAG/HOST = LOW) When asserted LOW, all functional blocks will be set to default conditions and all input and output signals become high impedance, including the serial digital outputs SDO and SDO. Must be set HIGH for normal device operation. NOTE: When in slave mode, reset the device after the SD/HD input has been initially configured, and after each subsequent SD/HD data rate change. JTAG Test Mode (JTAG/HOST = HIGH) When asserted LOW, all functional blocks will be set to default and the JTAG test sequence will be held in reset. When set HIGH, normal operation of the JTAG test sequence resumes.
26
JTAG/HOST
Non Synchronous
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to select JTAG Test Mode or Host Interface Mode. When set HIGH, CS_TMS, SDOUT_TDO, SDI_TDI and SCLK_TCK are configured for JTAG boundary scan testing. When set LOW, CS_TMS, SDOUT_TDO, SDI_TDI and SCLK_TCK are configured as GSPI pins for normal host interface operation.
27
CS_TMS
Synchronous with SCLK_TCK
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Chip Select / Test Mode Select Host Mode (JTAG/HOST = LOW) CS_TMS operates as the host interface chip select, CS, and is active LOW. JTAG Test Mode (JTAG/HOST = HIGH) CS_TMS operates as the JTAG test mode select, TMS, and is active HIGH. NOTE: If the host interface is not being used, tie this pin HIGH.
27360 - 10 January 2007
11 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
28
Name
SDOUT_TDO
Timing
Synchronous with SCLK_TCK
Type
Output
Description
CONTROL SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. Serial Data Output / Test Data Output Host Mode (JTAG/HOST = LOW) SDOUT_TDO operates as the host interface serial output, SDOUT, used to read status and configuration information from the internal registers of the device. JTAG Test Mode (JTAG/HOST = HIGH) SDOUT_TDO operates as the JTAG test data output, TDO.
29
SDIN_TDI
Synchronous with SCLK_TCK
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Serial Data In / Test Data Input Host Mode (JTAG/HOST = LOW) SDIN_TDI operates as the host interface serial input, SDIN, used to write address and configuration information to the internal registers of the device. JTAG Test Mode (JTAG/HOST = HIGH) SDIN_TDI operates as the JTAG test data input, TDI. NOTE: If the host interface is not being used, tie this pin HIGH.
30
SCLK_TCK
Non Synchronous
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Serial Data Clock / Test Clock. Host Mode (JTAG/HOST = LOW) SCLK_TCK operates as the host interface burst clock, SCLK. Command and data read/write words are clocked into the device synchronously with this clock. JTAG Test Mode (JTAG/HOST = HIGH) SCLK_TCK operates as the JTAG test clock, TCK. NOTE: If the host interface is not being used, tie this pin HIGH.
31
DATA_ERROR
Synchronous with PCLK
Output
STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. The DATA_ERROR signal will be LOW when an error within the received data stream has been detected by the device. This pin is a logical 'OR'ing of all detectable errors listed in the internal ERROR_STATUS register. Once an error is detected, DATA_ERROR will remain LOW until the start of the next video frame / field, or until the ERROR_STATUS register is read via the host interface. The DATA_ERROR signal will be HIGH when the received data stream has been detected without error. NOTE: It is possible to program which error conditions are monitored by the device by setting appropriate bits of the ERROR_MASK register HIGH. All error conditions are detected by default.
32
FIFO_LD
Synchronous with PCLK
Output
CONTROL SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. Used as a control signal for external FIFO(s). Normally HIGH but will go LOW for one PCLK period at SAV.
33, 68
CORE_GND
–
Power
Ground connection for the digital core logic. Connect to digital GND.
27360 - 10 January 2007
12 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
34
Name
F
Timing
Synchronous with PCLK
Type
Output
Description
STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. Used to indicate the ODD / EVEN field of the video signal. The F signal will be HIGH for the entire period of field 2 as indicated by the F bit in the received TRS signals. The F signal will be LOW for all lines in field 1 and for all lines in progressive scan systems.
35
V
Synchronous with PCLK
Output
STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. Used to indicate the portion of the video field / frame that is used for vertical blanking. The V signal will be HIGH for the entire vertical blanking period as indicated by the V bit in the received TRS signals. The V signal will be LOW for all lines outside of the vertical blanking interval.
36
H
Synchronous with PCLK
Output
STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. Used to indicate the portion of the video line containing active video data. H signal timing is configurable via the H_CONFIG bit of the IOPROC_DISABLE register accessible via the host interface. Active Line Blanking (H_CONFIG = 0h) The H signal will be HIGH for the entire horizontal blanking period, including the EAV and SAV TRS words, and LOW otherwise. This is the default setting. TRS Based Blanking (H_CONFIG = 1h) The H signal will be HIGH for the entire horizontal blanking period as indicated by the H bit in the received TRS ID words, and LOW otherwise.
37, 64
CORE_VDD
–
Power
Power supply connection for the digital core logic. Connect to +1.8V DC digital.
27360 - 10 January 2007
13 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
38, 39, 42-48, 50
Name
DOUT[0:9]
Timing
Synchronous with PCLK
Type
Output
Description
PARALLEL DATA BUS Signal levels are LVCMOS/LVTTL compatible. DOUT9 is the MSB and DOUT0 is the LSB. HD 20-bit mode SD/HD = LOW 20bit/10bit = HIGH Chroma data output in SMPTE mode SMPTE_BYPASS =HIGH DVB_ASI = LOW Data output in Data-Through mode SMPTE_BYPASS = LOW DVB_ASI = LOW HD 10-bit mode SD/HD = LOW 20bit/10bit = LOW SD 20-bit mode SD/HD = HIGH 20bit/10bit = HIGH Forced LOW in all modes.
Chroma data output in SMPTE mode SMPTE_BYPASS = HIGH DVB_ASI = LOW Data output in Data-Through mode SMPTE_BYPASS = LOW DVB_ASI = LOW Forced LOW in DVB-ASI mode SMPTE_BYPASS = LOW DVB_ASI = HIGH
SD 10-bit mode SD/HD = HIGH 20bit/10bit = LOW 40, 49, 60 41, 53, 61 IO_GND IO_VDD – – Power Power
Forced LOW in all modes.
Ground connection for digital I/O buffers. Connect to digital GND. Power supply connection for digital I/O buffers. Connect to +3.3V DC digital.
27360 - 10 January 2007
14 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
51, 52, 54-59, 62, 63
Name
DOUT[19:10]
Timing
Synchronous with PCLK
Type
Output
Description
PARALLEL DATA BUS Signal levels are LVCMOS/LVTTL compatible. DOUT19 is the MSB and DOUT10 is the LSB. HD 20-bit mode SD/HD = LOW 20bit/10bit = HIGH Luma data output in SMPTE mode SMPTE_BYPASS = HIGH DVB_ASI = LOW Data output in Data-Through mode SMPTE_BYPASS = LOW DVB_ASI = LOW HD 10-bit mode SD/HD = LOW 20bit/10bit = LOW Multiplexed Luma and Chroma data output in SMPTE mode SMPTE_BYPASS = HIGH DVB_ASI = LOW Data output in Data-Through mode SMPTE_BYPASS = LOW DVB_ASI = LOW SD 20-bit mode SD/HD = HIGH 20bit/10bit = HIGH Luma data output in SMPTE mode SMPTE_BYPASS = HIGH DVB_ASI = LOW Data output in Data-Through mode SMPTE_BYPASS = LOW DVB_ASI = LOW DVB-ASI data in DVB-ASI mode SMPTE_BYPASS = LOW DVB_ASI = HIGH SD 10-bit mode SD/HD = HIGH 20bit/10bit = LOW Multiplexed Luma and Chroma data output in SMPTE mode SMPTE_BYPASS = HIGH DVB_ASI = LOW Data input in data through mode SMPTE_BYPASS = LOW DVB_ASI = LOW DVB-ASI data in DVB-ASI mode SMPTE_BYPASS = LOW DVB_ASI = HIGH
65
YANC
Synchronous with PCLK
Output
STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. Used to indicate the presence of ancillary data in the video stream. HD Mode (SD/HD = LOW) The YANC signal will be HIGH when the device has detected VANC or HANC data in the luma video stream and LOW otherwise. SD Mode (SD/HD = LOW) For 20-bit demultiplexed data (20bit/10bit = HIGH), the YANC signal will be HIGH when VANC or HANC data is detected in the luma video stream and LOW otherwise. For 10-bit multiplexed data (20bit/10bit = LOW), the YANC signal will be HIGH when VANC or HANC data is detected anywhere in the data stream and LOW otherwise.
27360 - 10 January 2007
15 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
66
Name
CANC
Timing
Synchronous with PCLK
Type
Output
Description
STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. Used to indicate the presence of ancillary data in the video stream. HD Mode (SD/HD = LOW) The CANC signal will be HIGH when the device has detected VANC or HANC data in the chroma video stream and LOW otherwise. SD Mode (SD/HD = LOW) For 20-bit demultiplexed data (20bit/10bit = HIGH), the CANC signal will be HIGH when VANC or HANC data is detected in the chroma video stream and LOW otherwise. For 10-bit multiplexed data (20bit/10bit = LOW), the CANC signal will be HIGH when VANC or HANC data is detected anywhere in the data stream and LOW otherwise.
67
FW_EN/DIS
Non Synchronous
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to enable or disable the noise immune flywheel of the device. When set HIGH, the internal flywheel is enabled. This flywheel is used in the extraction and generation of TRS timing signals, in automatic video standards detection, and in manual switch line lock handling. When set LOW, the internal flywheel is disabled and TRS correction and insertion is unavailable.
69
PCLK
–
Output
PARALLEL DATA BUS CLOCK Signal levels are LVCMOS/LVTTL compatible. HD 20-bit mode HD 10-bit mode SD 20-bit mode SD 10-bit mode PCLK = 74.25MHz or 74.25/1.001MHz PCLK = 148.5MHz or 148.5/1.001MHz PCLK = 13.5MHz PCLK = 27MHz
27360 - 10 January 2007
16 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
70
Name
RC_BYP
Timing
Non Synchronous
Type
Input /Output
Description
GS1560A CONTROL SIGNAL INPUT / STATUS SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible. This pin will be an input set by the application layer in slave mode, and will be an output set by the device in master mode. Master Mode (MASTER/SLAVE = HIGH) The RC_BYP signal will be HIGH only when the device has successfully locked to a SMPTE or DVB-ASI compliant input data stream. In this case, the serial digital loop-through output will be a reclocked version of the input. The RC_BYP signal will be LOW whenever the input does not conform to a SMPTE or DVB-ASI compliant data stream. In this case, the serial digital loop-through output will be a buffered version of the input. Slave Mode (MASTER/SLAVE = LOW) When set HIGH, the serial digital output will be a reclocked version of the input signal regardless of whether the device is in SMPTE, DVB-ASI or Data-Through mode. When set LOW, the serial digital output will be a buffered version of the input signal in all modes.
RSV
–
–
GS1561 Connect to CORE_VDD through 2.2kΩ.
71
MASTER/SLAVE
Non Synchronous
Input
CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to determine the input / output selection for the DVB_ASI, SD/HD, RC_BYP and SMPTE_BYPASS pins. When set HIGH, the GS1560A is set to operate in master mode where DVB_ASI, SD/HD, RC_BYP (GS1560A only) and SMPTE_BYPASS become status signal output pins set by the device. In this mode, the GS1560A will automatically detect, reclock, deserialize and process SD SMPTE, HD SMPTE, or DVB-ASI input data. When set LOW, the GS1560A is set to operate in slave mode where DVB_ASI, SD/HD, RC_BYP (GS1560A only) and SMPTE_BYPASS become control signal input pins. In this mode, the application layer must set these external device pins for the correct reception of either SMPTE or DVB-ASI data. Slave mode also supports the reclocking and deserializing of data not conforming to SMPTE or DVB-ASI streams.
72
LOCKED
Synchronous with PCLK
Output
STATUS SIGNAL OUTPUT Signal levels are LVCMOS / LVTTL compatible. The LOCKED signal will be HIGH whenever the device has correctly received and locked to SMPTE compliant data in SMPTE mode or DVB-ASI compliant data in DVB-ASI mode. It will be LOW otherwise.
73, 74
VCO, VCO
Analog
Input
Differential inputs for the external VCO reference signal. For single ended devices such as the GO1555/GO1525*, VCO should be AC coupled to VCO_GND. VCO is nominally 1.485GHz. *For new designs use GO1555
27360 - 10 January 2007
17 of 80
GS1560A/GS1561 Data Sheet
Table 1-1: Pin Descriptions (Continued) Pin Number
75
Name
VCO_GND
Timing
–
Type
Output Power
Description
Ground reference for the external voltage controlled oscillator. Connect to pins 2, 4, 6, and 8 of the GO1555/GO1525*. This pin is an output. Should be isolated from all other grounds. *For new designs use GO1555
76
VCO_VCC
–
Output Power
Power supply for the external voltage controlled oscillator. Connect to pin 7 of the GO1555/GO1525*. This pin is an output. Should be isolated from all other power supplies. *For new designs use GO1555
77 78 79 80
LF CP_CAP LB_CONT CP_GND
Analog Analog Analog –
Output Input Input Power
Control voltage to external voltage controlled oscillator. Nominally +1.25V DC. PLL lock time constant capacitor connection. Normally connected to VCO_GND through 2.2nF. Control voltage to set the loop bandwidth of the integrated reclocker. Normally connected to VCO_GND through 40kΩ. Ground connection for the charge pump. Connect to analog GND.
27360 - 10 January 2007
18 of 80
GS1560A/GS1561 Data Sheet
2. Electrical Characteristics
2.1 Absolute Maximum Ratings
Parameter
Supply Voltage Core Supply Voltage I/O Input Voltage Range (any input) Ambient Operating Temperature Storage Temperature Lead Temperature (soldering, 10 sec) ESD Protection On All Pins (see Note 2) NOTES: 1. See reflow solder profile (Solder Reflow Profiles on page 24) 2. HBM, per JESDA-114B
Value/Units
-0.3V to +2.1V -0.3V to +4.6V -2.0V to + 5.25V -20°C < TA < 85°C -40°C < TSTG < 125°C 230°C 1kV
2.2 DC Electrical Characteristics
Table 2-1: DC Electrical Characteristics
TA = 0°C to 70°C, unless otherwise specified.
Parameter
Symbol
Conditions
Min
Typ
Max
Units
Test Levels
Notes
System
Operation Temperature Range Digital Core Supply Voltage Digital I/O Supply Voltage Charge Pump Supply Voltage Phase Detector Supply Voltage Input Buffer Supply Voltage Cable Driver Supply Voltage External VCO Supply Voltage Output TA CORE_VDD IO_VDD CP_VDD PD_VDD BUFF_VDD CD_VDD VCO_VCC – – – – – – – – 0 1.65 3.0 3.0 1.65 1.65 1.71 2.25 – 1.8 3.3 3.3 1.8 1.8 1.8 2.50 70 1.95 3.6 3.6 1.95 1.95 1.89 2.75 °C V V V V V V V – 1 1 1 1 1 1 1 1 1 1 1 1 1 1 –
27360 - 10 January 2007
19 of 80
GS1560A/GS1561 Data Sheet
Table 2-1: DC Electrical Characteristics (Continued)
TA = 0°C to 70°C, unless otherwise specified.
Parameter
+1.8V Supply Current GS1560A +1.8V Supply Current GS1561 +3.3V Supply Current Total Device Power GS1560A Total Device Power GS1561
Symbol
I1V8
Conditions
–
Min
–
Typ
–
Max
245
Units
mA
Test Levels
1
Notes
4
I1V8
–
–
–
200
mA
1
–
I3V3 PD
– –
– –
– –
55 625
mA mW
1 5
5 4, 5
PD
–
–
–
545
mW
5
5
Digital I/O
Input Logic LOW Input Logic HIGH Output Logic LOW Output Logic HIGH VIL VIH VOL VOH – – 8mA 8mA – 2.1 – IO_VDD - 0.4 – – 0.2 – 0.8 – 0.4 – V V V V 1 1 1 1 – – – –
Input
Input Bias Voltage RSET Voltage (GS1560A only) VB VRSET – RSET=281Ω – 0.54 1.45 0.6 – 0.66 V V 6 1 2 3
Output (GS1560A only)
Output Common Mode Voltage VCMOUT 75Ω load, RSET=281Ω, SD and HD TEST LEVELS 1. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges. 2. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated test. 3. Production test at room temperature and nominal supply voltage. 4. QA sample test. 5. Calculated result based on Level 1, 2, or 3. 6. Not tested. Guaranteed by design simulations. 7. Not tested. Based on characterization of nominal parts. 8. Not tested. Based on existing design/characterization data of similar product. 9. Indirect test. NOTES 1. 2. 3. 4. 5. All DC and AC electrical parameters within specification. Input common mode is set by internal biasing resistors. Set by the value of the RSET resistor. (GS1560A only) Loop-through enabled. (GS1560A only) Measured in 20-bit mode. 0.8 1.0 1.2 V 1 –
27360 - 10 January 2007
20 of 80
GS1560A/GS1561 Data Sheet
2.3 AC Electrical Characteristics
Table 2-2: AC Electrical Characteristics
TA = 0°C to 70°C, unless otherwise shown
Parameter System
Serial Digital Input Jitter Tolerance Master Mode Asynchronous Lock Time
Symbol
Conditions
Min
Typ
Max
Units
Test Levels
Notes
IJT
Nominal loop bandwidth No data to HD HD to SD HD to DVB-ASI No data to SD SD to HD SD to DVB-ASI No data to DVB-ASI DVB-ASI to SD DVB-ASI to HD
0.6 – – – – – – – – – – – – – – – 1
– – – – – – – – – – – – – 21 21 11 –
– 468 260 135 340 256 173 65 227 215 240 197 68 – – – –
UI us us us us us us us us us us us us PCLK PCLK PCLK ms
1 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6 6 6 7
1 2 2 2 2 2 2 2 2 2 2 2 2 – – – 6
Slave Mode Asynchronous Lock Time
No data to HD No data to SD No data to DVB-ASI
Device Latency
10-bit SD 20-bit HD DVB-ASI
Reset Pulse Width
treset
–
Serial Digital Differential Input
Serial Input Data Rate DRDDI – – 1.485, 1.485/1.001, 270 Serial Digital Input Signal Swing ∆VDDI Differential with internal 100Ω input termination 200 600 1000 – Gb/s Gb/s Mb/s mVp-p 1 – 1 –
27360 - 10 January 2007
21 of 80
GS1560A/GS1561 Data Sheet
Table 2-2: AC Electrical Characteristics (Continued)
TA = 0°C to 70°C, unless otherwise shown
Parameter
Symbol
Conditions
Min
Typ
Max
Units
Test Levels
Notes
Serial Digital Output (GS1560A only)
Serial Output Data Rate DRSDO – – 1.485, 1.485/1.001, 270 Serial Output Swing ∆VSDO RSET = 281Ω Load = 75Ω VDD = 1.8V Serial Output Rise Time 20% ~ 80% trSDO ORL compensation using recommended circuit — HD signal ORL compensation using recommended circuit — SD signal Serial Output Fall Time 20% ~ 80% tfSDO ORL compensation using recommended circuit — HD signal ORL compensation using recommended circuit — SD signal Serial Output Intrinsic Jitter tIJ Pseudorandom and pathological HD signal Pseudorandom and pathological SD signal Serial Output Duty Cycle Distortion DCDSDO HD (1.485Gb/s) SD (270Mb/s) – 200 260 ps 1 – 720 800 880 – Gb/s Gb/s Mb/s mVp-p 1 – 1 –
400
550
1500
ps
1
–
–
235
260
ps
1
–
400
550
1500
ps
1
–
–
90
125
ps
1
3
–
270
350
ps
1
3
– –
10 20
– –
ps ps
6,7 6,7
4 4
Parallel Output
Parallel Clock Frequency Parallel Clock Duty Cycle Output Data Hold Time fPCLK DCPCLK tOH – – 20-bit HD 10-bit SD, 50% PCLK Duty Cycle Output Data Delay Time tOD 20-bit HD 10-bit SD, 50% PCLK Duty Cycle Output Data Rise/Fall Time tr/tf – 13.5 40 1.0 19.5 – – – – 50 – – – – – 148.5 60 – – 4.5 22.8 1.5 MHz % ns ns ns ns ns 1 1 1 1 1 1 6,7 – – 5 5 5 5 5
27360 - 10 January 2007
22 of 80
GS1560A/GS1561 Data Sheet
Table 2-2: AC Electrical Characteristics (Continued)
TA = 0°C to 70°C, unless otherwise shown
Parameter GSPI
GSPI Input Clock Frequency GSPI Input Clock Duty Cycle GSPI Input Data Setup Time GSPI Input Data Hold Time GSPI Output Data Hold Time GSPI Output Data Delay Time TEST LEVELS
Symbol
Conditions
Min
Typ
Max
Units
Test Levels
Notes
fSCLK DCSCLK – – – –
– – – – – – 1. 2. 3. 4.
– 40 0 – 2.10 – NOTES
– 50 – – – –
6.6 60 – 1.43 – 7.27
MHz % ns ns ns ns
1 6,7 6,7 6,7 6,7 6,7
– – – – – –
1. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges. 2. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated test. 3. Production test at room temperature and nominal supply voltage. 4. QA sample test. 5. Calculated result based on Level 1, 2, or 3. 6. Not tested. Guaranteed by design simulations. 7. Not tested. Based on characterization of nominal parts. 8. Not tested. Based on existing design/characterization data of similar product. 9. Indirect test.
6MHz sinewave modulation. HD = 1080i, SD = 525i Serial Digital Output Reclocked (RC_BYP = HIGH). Serial Duty Cycle Distortion is defined here to be the difference between the width of a ‘1’ bit, and the width of a ‘0’ bit. (GS1560A only) 5. With 15pF load. (GS1560A only) 6. See Device Reset on page 72, Figure 3-16. (GS1560A only)
27360 - 10 January 2007
23 of 80
GS1560A/GS1561 Data Sheet
2.4 Solder Reflow Profiles
The device is manufactured with Matte-Sn terminations and is compatible with both standard eutectic and Pb-free solder reflow profiles. The recommended standard eutectic reflow profile is shown in Figure 2-1. MSL qualification was performed using the maximum Pb-free reflow profile shown in Figure 2-2.
Temperature 60-150 sec.
10-20 sec. 230˚C 220˚C 3 ˚C/sec max 183˚C 6˚C/sec max 150˚C
100˚C
25˚C Time 120 sec. max 6 min. max
Figure 2-1: Standard Eutectic Solder Reflow Profile
Temperature 60-150 sec.
20-40 sec. 2 60˚C 2 50˚C 3 ˚C/sec max 2 17˚C 6˚C/sec max
2 00˚C
1 50˚C
25˚C
Tim e 60-180 sec. max 8 min. max
Figure 2-2: Maximum Pb-free Solder Reflow Profile (Pb-free package)
27360 - 10 January 2007
24 of 80
GS1560A/GS1561 Data Sheet
2.5 Input/Output Circuits
All resistors in ohms, all capacitors in farads, unless otherwise shown.
DDI VDD 50 45K TERM 150K 50
DDI
Figure 2-3: Serial Digital Input
VCO VDD 25 1.5K
5K 25
VCO
Figure 2-4: VCO Input
LB_CONT
865mV
7.2K
Figure 2-5: PLL Loop Bandwidth Control
27360 - 10 January 2007
25 of 80
GS1560A/GS1561 Data Sheet
SDO
SDO
Figure 2-6: Serial Digital Output (GS1560A only)
LF
CP_CAP 300
Figure 2-7: VCO Control Output & PLL Lock Time Capacitor
27360 - 10 January 2007
26 of 80
GS1560A/GS1561 Data Sheet
2.6 Host Interface Map
15 Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used VFO4-b7 VFO2-b7 Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used VFO4-b6 VFO2-b6 Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used VFO4-b5 VFO2-b5 Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used VFO4-b4 VFO2-b4 Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used b11 b11 VFO4-b3 VFO2-b3 14 Not Used 13 Not Used 12 Not Used 11 Not Used
REGISTER NAME ERROR_MASK
ADDRESS 01Ah
FF_LINE_END_F1 FF_LINE_START_F1 FF_LINE_END_F0 FF_LINE_START_F0 AP_LINE_END_F1 AP_LINE_START_F1 AP_LINE_END_F0 AP_LINE_START_F0 RASTER_STRUCTURE4 RASTER_STRUCTURE3 RASTER_STRUCTURE2 RASTER_STRUCTURE1 VIDEO_FORMAT_OUT_B VIDEO_FORMAT_OUT_A
10 VD_STD_ ERR_MASK Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used b10 b10 b10 b10 VFO4-b2 VFO2-b2
9 FF_CRC_ ERR_MASK b9 b9 b9 b9 b9 b9 b9 b9 b9 b9 b9 b9 VFO4-b1 VFO2-b1
8 AP_CRC_ ERR_MASK b8 b8 b8 b8 b8 b8 b8 b8 b8 b8 b8 b8 VFO4-b0 VFO2-b0
7 LOCK_ERR_ MASK b7 b7 b7 b7 b7 b7 b7 b7 b7 b7 b7 b7 VFO3-b7 VFO1-b7
6 CCS_ERR_ MASK b6 b6 b6 b6 b6 b6 b6 b6 b6 b6 b6 b6 VFO3-b6 VFO1-b6
5 YCS_ERR_ MASK b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 VFO3-b5 VFO1-b5
4 CCRC_ERR_ MASK b4 b4 b4 b4 b4 b4 b4 b4 b4 b4 b4 b4 VFO3-b4 VFO1-b4
3 YCRC_ERR_ MASK b3 b3 b3 b3 b3 b3 b3 b3 b3 b3 b3 b3 VFO3-b3 VFO1-b3
2 LNUM_ERR_ MASK b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 VFO3-b2 VFO1-b2
1 SAV_ERR_ MASK b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 VFO3-b1 VFO1-b1
0 EAV_ERR_ MASK b0 b0 b0 b0 b0 b0 b0 b0 b0 b0 b0 b0 VFO3-b0 VFO1-b0
ANC_TYPE5 ANC_TYPE4 ANC_TYPE3 ANC_TYPE2 ANC_TYPE1 VIDEO_STANDARD Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used ANC-UES ANC-IDA ANC-IDH ANC-EDA ANC-EDH FF-UES FF-IDH LOCK_ERR Not Used
019h 018h 017h 016h 015h 014h 013h 012h 011h 010h 00Fh 00Eh 00Dh 00Ch 00Bh 00Ah 009h 008h 007h 006h 005h 004h b15 b15 b15 b15 b15 Not Used b14 b14 b14 b14 b14 VDS-b4 b13 b13 b13 b13 b13 VDS-b3 b12 b12 b12 b12 b12 VDS-b2 b11 b11 b11 b11 b11 VDS-b1 b10 b10 b10 b10 b10 VDS-b0 b9 b9 b9 b9 b9 INT_PROG b7 b7 b7 b7 b7 CDF-b3 b6 b6 b6 b6 b6 CDF-b2 FF-EDA CCS_ERR Not Used b5 b5 b5 b5 b5 CDF-b1 FF-EDH YCS_ERR ILLEGAL_ REMAP b4 b4 b4 b4 b4 CDF-b0 AP-UES CCRC_ERR EDH_CRC_ INS b3 b3 b3 b3 b3 YDF-b3 AP-IDA YCRC_ERR ANC_CSUM_ INS b8 b8 b8 b8 b8 STD_ LOCK FF-IDA
b2 b2 b2 b2 b2 YDF-b2 AP-IDH LNUM_ERR CRC_INS
b1 b1 b1 b1 b1 YDF-b1 AP-EDA SAV_ERR LNUM_ INS
b0 b0 b0 b0 b0 YDF-b0 AP-EDH EAV_ERR TRS_INS
EDH_FLAG
ERROR_STATUS
003h 002h 001h VD_STD_ ERR Not Used FF_CRC_ ERR Not Used
IOPROC_DISABLE
000h
AP_CRC_ ERR H_CONFIG
27360 - 10 January 2007
27 of 80
GS1560A/GS1561 Data Sheet
2.6.1 Host Interface Map (R/W Configurable Registers)
15 14 13 12 11 10 VD_STD_ ERR_MASK
REGISTER NAME ERROR_MASK
ADDRESS 01Ah
FF_LINE_END_F1 FF_LINE_START_F1 FF_LINE_END_F0 FF_LINE_START_F0 AP_LINE_END_F1 AP_LINE_START_F1 AP_LINE_END_F0 AP_LINE_START_F0
9 FF_CRC_ ERR_MASK b9 b9 b9 b9 b9 b9 b9 b9
8 AP_CRC_ ERR_MASK b8 b8 b8 b8 b8 b8 b8 b8
7 LOCK_ERR_ MASK b7 b7 b7 b7 b7 b7 b7 b7
6 CCS_ERR_ MASK b6 b6 b6 b6 b6 b6 b6 b6
5 YCS_ERR_ MASK b5 b5 b5 b5 b5 b5 b5 b5
4 CCRC_ERR_ MASK b4 b4 b4 b4 b4 b4 b4 b4
3 YCRC_ERR_ MASK b3 b3 b3 b3 b3 b3 b3 b3
2 LNUM_ERR_ MASK b2 b2 b2 b2 b2 b2 b2 b2
1 SAV_ERR_ MASK b1 b1 b1 b1 b1 b1 b1 b1
0 EAV_ERR_ MASK b0 b0 b0 b0 b0 b0 b0 b0
ANC_TYPE5 ANC_TYPE4 ANC_TYPE3 ANC_TYPE2 ANC_TYPE1
b15 b15 b15 b15 b15
b14 b14 b14 b14 b14
b13 b13 b13 b13 b13
b12 b12 b12 b12 b12
b11 b11 b11 b11 b11
b10 b10 b10 b10 b10
b9 b9 b9 b9 b9
b8 b8 b8 b8 b8
b7 b7 b7 b7 b7
b6 b6 b6 b6 b6
b5 b5 b5 b5 b5
b4 b4 b4 b4 b4
b3 b3 b3 b3 b3
b2 b2 b2 b2 b2
b1 b1 b1 b1 b1
b0 b0 b0 b0 b0
IOPROC_DISABLE
019h 018h 017h 016h 015h 014h 013h 012h 011h 010h 00Fh 00Eh 00Dh 00Ch 00Bh 00Ah 009h 008h 007h 006h 005h 004h 003h 002h 001h 000h H_CONFIG ILLEGAL_ REMAP EDH_CRC_ NS ANC_CSUM_ INS
CRC_INS
LNUM_ INS
TRS_INS
27360 - 10 January 2007
28 of 80
GS1560A/GS1561 Data Sheet
2.6.2 Host Interface Map (Read Only Registers)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
REGISTER NAME
RASTER_STRUCTURE4 RASTER_STRUCTURE3 RASTER_STRUCTURE2 RASTER_STRUCTURE1 VIDEO_FORMAT_OUT_B VIDEO_FORMAT_OUT_A VFO4-b7 VFO2-b7 VFO4-b6 VFO2-b6 VFO4-b5 VFO2-b5 VFO4-b4 VFO2-b4 b11 b11 VFO4-b3 VFO2-b3
b10 b10 b10 b10 VFO4-b2 VFO2-b2
b9 b9 b9 b9 VFO4-b1 VFO2-b1
b8 b8 b8 b8 VFO4-b0 VFO2-b0
b7 b7 b7 b7 VFO3-b7 VFO1-b7
b6 b6 b6 b6 VFO3-b6 VFO1-b6
b5 b5 b5 b5 VFO3-b5 VFO1-b5
b4 b4 b4 b4 VFO3-b4 VFO1-b4
b3 b3 b3 b3 VFO3-b3 VFO1-b3
b2 b2 b2 b2 VFO3-b2 VFO1-b2
b1 b1 b1 b1 VFO3-b1 VFO1-b1
b0 b0 b0 b0 VFO3-b0 VFO1-b0
VIDEO_STANDARD ANC-UES VD_STD_ ERR FF_CRC_ ERR ANC-IDA ANC-IDH ANC-EDA ANC-EDH FF-UES
ADDRESS 01Ah 019h 018h 017h 016h 015h 014h 013h 012h 011h 010h 00Fh 00Eh 00Dh 00Ch 00Bh 00Ah 009h 008h 007h 006h 005h 004h VDS-b4 VDS-b3 VDS-b2 VDS-b1 VDS-b0 INT_PROG CDF-b3 FF-IDH LOCK_ERR CDF-b2 FF-EDA CCS_ERR CDF-b1 FF-EDH YCS_ERR CDF-b0 AP-UES CCRC_ERR YDF-b3 AP-IDA YCRC_ERR YDF-b2 AP-IDH STD_ LOCK FF-IDA AP_CRC_ ERR
YDF-b1 AP-EDA LNUM_ERR SAV_ERR
YDF-b0 AP-EDH EAV_ERR
EDH_FLAG
ERROR_STATUS
003h 002h 001h
000h
27360 - 10 January 2007
29 of 80
GS1560A/GS1561 Data Sheet
3. Detailed Description
3.1 Functional Overview
The GS1560A/GS1561 is a dual-rate reclocking deserializer. An integrated serial digital loop-through output is also included on the GS1560A only. When used in conjunction with the multi-rate GS1524 Adaptive Cable Equalizer and the external GO1555/GO1525* Voltage Controlled Oscillator, a receive solution at 1.485Gb/s, 1.485/1.001Gb/s or 270Mb/s is realized. The device has two basic modes of operation which determine precisely how SMPTE or DVB-ASI compliant input data streams are reclocked and processed. In master mode, (MASTER/SLAVE = HIGH), the GS1560A/GS1561 will automatically detect, reclock, deserialize and process SD SMPTE 259M-C, HD SMPTE 292M, or DVB-ASI input data. In slave mode, (MASTER/SLAVE = LOW), the application layer must set external device pins for the correct reception of either SMPTE or DVB-ASI data. Slave mode also supports the reclocking and deserializing of data not conforming to SMPTE or DVB-ASI streams. The GS1560A includes an integrated cable driver is for serial input loop-through applications. It can be selected to output either buffered or reclocked data. The cable driver also features an output mute on loss of signal, high impedance mode, adjustable signal swing, and automatic dual slew-rate selection depending on HD/SD operational requirements. In the digital signal processing core, several data processing functions are implemented including error detection and correction and automatic video standards detection. These features are all enabled by default, but may be individually disabled via internal registers accessible through the GSPI host interface. Finally, the GS1560A/GS1561 contains a JTAG interface for boundary scan test implementations. *For new designs use GO1555
27360 - 10 January 2007
30 of 80
GS1560A/GS1561 Data Sheet
3.2 Serial Digital Input
The GS1560A/GS1561 contains two current mode differential serial digital input buffers, allowing the device to be connected to two SMPTE 259M-C or 292M compliant input signals. Both input buffers have internal 50Ω termination resistors which are connected to ground via the TERM1 and TERM2 pins. The input common mode level is set by internal biasing resistors such that the serial digital input signals must be AC coupled into the device. Gennum recommends using a capacitor value of 4.7uF to accommodate pathological signals. The input buffers use a separate power supply of +1.8V DC supplied via the BUFF_VDD and PDBUFF_GND pins.
3.2.1 Input Signal Selection
A 2x1 input multiplexer is provided to allow the application layer to select between the two serial digital input streams using a single external pin. When IP_SEL is set HIGH, serial digital input 1 (DDI1 / DDI1) is selected as the input to the GS1560A/GS1561's reclocker stage. When IP_SEL is set LOW, serial digital input 2 (DDI2 / DDI2) is selected.
3.2.2 Carrier Detect Input
For each of the differential inputs, an associated carrier detect input signal is included, (CD1 and CD2). These signals are generated by Gennum's family of automatic cable equalizers. When LOW, CDx indicates that a valid serial digital data stream is being delivered to the GS1560A/GS1561 by the equalizer. When HIGH, the serial digital input to the device should be considered invalid. If no equalizer precedes the device, the application layer should set CD1 and CD2 accordingly. NOTE: If the GS1524 Automatic Cable Equalizer is used, the MUTE/CD output signal from that device must be translated to TTL levels before passing to the GS1560A/GS1561 CDx inputs. See GS1560A Typical Application Circuit (Part A) on page 73 for a recommended transistor network that will set the correct voltage levels. A 2x1 input multiplexer is also provided for these signals. The internal carrier_detect signal is determined by the setting of the IP_SEL pin and is used by the lock detect block of the GS1560A/GS1561 to determine the lock status of the device, (see Lock Detect on page 35).
3.2.3 Single Input Configuration
If the application requires a single differential input, the second set of inputs may be left unconnected. Tie the associated carrier detect pin HIGH, and leave the termination pin unconnected.
27360 - 10 January 2007
31 of 80
GS1560A/GS1561 Data Sheet
3.3 Serial Digital Reclocker
The output of the 2x1 serial digital input multiplexer passes to the GS1560A/GS1561's internal reclocker stage. The function of this block is to lock to the input data stream, extract a clean clock, and retime the serial digital data to remove high frequency jitter. The reclocker was designed with a 'hexabang' phase and frequency detector. That is, the PFD used can identify six 'degrees' of phase / frequency misalignment between the input data stream and the clock signal provided by the VCO, and correspondingly signal the charge pump to produce six different control voltages. This results in fast and accurate locking of the PLL to the data stream. In master mode, the operating center frequency of the reclocker is toggled between 270Mb/s and 1.485Gb/s by the lock detect block, (see Lock Detect on page 35). In slave mode, however, the center frequency is determined entirely by the SD/HD input control signal set by the application layer. If lock is achieved, the reclocker provides an internal pll_lock signal to the lock detect block of the device.
3.3.1 External VCO
The GS1560A/GS1561 requires the external GO1555/GO1525* Voltage Controlled Oscillator as part of the reclocker's phase-locked loop. This external VCO implementation was chosen to ensure high quality reclocking. Power for the external VCO is generated entirely by the GS1560A/GS1561 from an integrated voltage regulator. The internal regulator uses +3.3V DC supplied via the CP_VDD / CP_GND pins to provide +2.5V DC on the VCO_VCC / VCO_GND pins. The control voltage to the VCO is output from the GS1560A/GS1561 on the LF pin and requires 4.7kΩ pull-up and pull-down resistors to ensure correct operation. The GO1555/GO1525* produces a 1.485GHz reference signal for the reclocker, input on the VCO pin of the GS1560A/GS1561. Both LF and VCO signals should be referenced to the supplied VCO_GND as shown in the recommended application circuit of GS1560A Typical Application Circuit (Part A) on page 73. *For new designs use GO1555
3.3.2 Loop Bandwidth
The loop bandwidth of the integrated reclocker is nominally 1.4MHz, but may be increased or decreased via the LB_CONT pin. It is recommended that this pin be connected to VCO_GND through 39.2kΩ to maximize the input jitter tolerance of the device.
27360 - 10 January 2007
32 of 80
GS1560A/GS1561 Data Sheet
3.4 Serial Digital Loop-Through Output (GS1560A only)
The GS1560A contains an integrated current mode differential serial digital cable driver with automatic slew rate control. When enabled, this serial digital output provides an active loop-through of the input signal. To enable the loop-through output, SDO_EN/DIS must be set HIGH by the application layer. Setting the SDO_EN/DIS signal LOW will cause the SDO and SDO output pins to become high impedance, resulting in reduced device power consumption. With suitable external return loss matching circuitry, the GS1560A's loop-through outputs will provide a minimum output return loss of -15dB at SD rates. Gennum recommends using the GS1528 SDI Dual Slew-Rate Cable Driver to meet output return loss specifications at HD rates. The integrated cable driver uses a separate power supply of +1.8V DC supplied via the CD_VDD and CD_GND pins.
3.4.1 Output Swing
Nominally, the voltage swing of the serial digital loop-through output is 800mVp-p single-ended into a 75Ω load. This is set externally by connecting the RSET pin to CD_VDD through 281Ω. The loop-through output swing may be decreased by increasing the value of the RSET resistor. The relationship is approximated by the curve shown in Figure 3-1. Alternatively, the serial digital output can drive 800mVp-p into a 50Ω load. Since the output swing is reduced by a factor of approximately one third when the smaller load is used, the RSET resistor must be 187Ω to obtain 800mVp-p.
1000 900 800 ∆VSDO(mVp-p) 700 600 500 400 300
250
300
350
400
450
500
550
600
650
700
750
RSET(Ω)
Figure 3-1: Serial Digital Loop-Through Output Swing
27360 - 10 January 2007
33 of 80
GS1560A/GS1561 Data Sheet
3.4.2 Reclocker Bypass Control
The serial digital loop-through output may be either a buffered version of the serial digital input signal, or a reclocked version of that signal. When operating in slave mode, the application layer may choose the reclocked output by setting RC_BYP to logic HIGH. If RC_BYP is set LOW, the data stream will bypass the internal reclocker and the serial digital output will be a buffered version of the input. When operating in master mode, the device will assert the RC_BYP pin HIGH only when it has successfully locked to a SMPTE or DVB-ASI input data stream, (see Lock Detect on page 35). In this case, the serial digital loop-through output will be a reclocked version of the input.
3.4.3 Serial Digital Output Mute
The GS1560A will automatically mute the serial digital loop-through output in both master and slave modes when the internal carrier_detect signal indicates an invalid serial input. The loop-through output will also be muted in slave mode when SDO/SDO is selected as reclocked, (RC_BYP = HIGH), but the lock detect block has failed to lock to the data stream, (LOCKED = LOW). Table 3-1 summarizes the possible states of the serial digital loop-through output data stream.
Table 3-1: Serial Digital Loop-Through Output Status SLAVE MODE RC_BYP (INPUT)
HIGH LOW HIGH X
SDO
RECLOCKED BUFFERED MUTED MUTED
CD
LOW LOW LOW HIGH
LOCKED
HIGH X LOW LOW*
MASTER MODE RC_BYP (OUTPUT)
HIGH LOW LOW
SDO
RECLOCKED BUFFERED MUTED
CD
LOW LOW HIGH
LOCKED
HIGH LOW LOW*
*NOTE: LOCKED = HIGH if and only if CD = LOW
27360 - 10 January 2007
34 of 80
GS1560A/GS1561 Data Sheet
3.5 Serial-To-Parallel Conversion
The retimed data and phase-locked clock signals from the reclocker are fed to the serial-to-parallel converter. The function of this block is to extract 10-bit or 20-bit parallel data words from the reclocked serial data stream and present them to the SMPTE and DVB-ASI word alignment blocks simultaneously.
3.6 Modes Of Operation
The GS1560A/GS1561 has two basic modes of operation which determine how the lock detect block controls the integrated reclocker. Master mode is enabled when the application layer sets the MASTER/SLAVE pin HIGH, and slave mode is enabled when MASTER/SLAVE is set LOW.
3.6.1 Lock Detect
The lock detect block controls the center frequency of the integrated reclocker to ensure lock to the received serial digital data stream is achieved, and indicates via the LOCKED output pin that the device has detected the appropriate sync words. In Data Through mode, the detection for appropriate sync words is turned off. The LOCKED pin is an indication of analog lock. Lock detection is a continuous process, which begins at device power up or after a system reset, and continues until the device is powered down or held in reset. The lock detection algorithm first determines if a valid serial digital input signal has been presented to the device by sampling the internal carrier_detect signal. As described in Carrier Detect Input on page 31, this signal will be LOW when a good serial digital input signal has been detected. If the carrier_detect signal is HIGH, the serial data into the device is considered invalid, and the VCO frequency will be set to the center of the pull range. The LOCKED pin will be LOW and all outputs of the device except for the PCLK output will be muted. Instead, the PCLK output frequency will operate within +/-3% of the rates shown in Table 3-16 of Parallel Output Clock (PCLK) on page 67. NOTE: When the device is operating in DVB-ASI slave mode only, the parallel outputs will not mute when the carrier_detect signal is HIGH. The LOCKED signal will function normally. If a valid input signal has been detected, and the device is in master mode, the lock algorithm will enter a hunt phase where four attempts are made to detect the presence of either SMPTE TRS sync words or DVB-ASI sync words. At each attempt, the center frequency of the reclocker will be toggled between 270Mb/s and 1.485Gb/s. Assuming that a valid SMPTE or DVB-ASI signal has been applied to the device, asynchronous lock times will be as listed in Table 2-2: AC Electrical Characteristics.
27360 - 10 January 2007
35 of 80
GS1560A/GS1561 Data Sheet In slave mode, the application layer fixes the center frequency of the reclocker such that the lock algorithm will attempt to lock within the single data rate determined by the setting of the SD/HD pin. Asynchronous lock times are also listed in the Table 2-2: AC Electrical Characteristics. NOTE: The PCLK output will continue to operate during the lock detection process. The frequency may toggle between 148MHz and 27MHz when the 20bit/10bit pin is set LOW, or between 74MHz and 13.5MHz when 20bit/10bit is set HIGH. For SMPTE and DVB-ASI inputs, the lock detect block will only assert the LOCKED output signal HIGH if (1) the reclocker has locked to the input data stream as indicated by the internal pll_lock signal, and (2) TRS or DVB-ASI sync words have been correctly identified. If after four attempts lock has not been achieved, the lock detection algorithm will enter into PLL lock mode. In this mode, the reclocker will attempt to lock to the input data stream without detecting SMPTE TRS or DVB-ASI sync words. This unassisted process can take up to 10ms to achieve lock. When reclocker lock as indicated by the internal pll_lock signal is achieved in this mode, one of the following will occur: 1. In slave mode, data will be passed directly to the parallel outputs without any further processing taking place and the LOCKED signal will be asserted HIGH if and only if the SMPTE_BYPASS and DVB_ASI input pins are set LOW; or 2. In master mode, the LOCKED signal will be asserted LOW, the parallel outputs will be latched to logic LOW, and the SMPTE_BYPASS and DVB_ASI output signals will also be set LOW.
3.6.2 Master Mode
Recall that the GS1560A/GS1561 is said to be in master mode when the MASTER/SLAVE input signal is set HIGH. In this case, the following four device pins become output status signals: • • • • SMPTE_BYPASS DVB_ASI SD/HD RC_BYP (GS1560A only)
The combined setting of these pins will indicate whether the device has locked to valid SMPTE or DVB-ASI data at SD or HD rates. Table 3-2 shows the possible combinations.
27360 - 10 January 2007
36 of 80
GS1560A/GS1561 Data Sheet
3.6.3 Slave Mode
The GS1560A/GS1561 is said to be in slave mode when the MASTER/SLAVE input signal is set LOW. In this case, the four device pins listed in Master Mode on page 36 become input control signals. It is required that the application layer set the first three inputs to reflect the appropriate input data format (SMPTE_BYPASS, DVB_ASI, and SD/HD). If just one of these three is configured incorrectly, the device will not lock to the input data stream, and the DATA_ERROR pin will be set LOW. The fourth input signal, RC_BYP (GS1560A only), allows the application layer to determine whether the serial digital loop-through output will be a reclocked or buffered version of the input, Reclocker Bypass Control on page 34. Table 3-3 shows the required settings for various input formats.
Table 3-2: Master Mode Output Status Signals PIN SETTINGS FORMAT SMPTE_BYPASS DVB_ASI SD/HD RC_BYP (GS1560A only)
HIGH HIGH HIGH LOW
HD SMPTE SD SMPTE DVB-ASI NOT SMPTE OR DVB-ASI*
HIGH HIGH LOW LOW
LOW LOW HIGH LOW
LOW HIGH HIGH HIGH OR LOW
*NOTE: When the device locks to the data stream in PLL lock mode, the parallel outputs will be latched LOW, and the serial loop-through output (GS1560A only) will be a buffered version of the input.
Table 3-3: Slave Mode Input Control Signals PIN SETTINGS FORMAT
HD SMPTE SD SMPTE DVB-ASI NOT SMPTE OR DVB-ASI*
SMPTE_BYPASS
HIGH HIGH LOW LOW
DVB_ASI
LOW LOW HIGH LOW
SD/HD
LOW HIGH HIGH HIGH OR LOW
*NOTE: See Data Through Mode on page 46 for a complete description of Data Through mode.
27360 - 10 January 2007
37 of 80
GS1560A/GS1561 Data Sheet
3.7 SMPTE Functionality
The GS1560A/GS1561 is said to be in SMPTE mode once the device has detected SMPTE TRS sync words and locked to the input data stream as described in Lock Detect on page 35. The device will remain in SMPTE mode until such time that SMPTE TRS sync words fail to be detected. The lock detect block may also drop out of SMPTE mode under the following conditions: • • • • RESET_TRST is asserted LOW CDx is HIGH SMPTE_BYPASS is asserted LOW in slave mode DVB_ASI is asserted HIGH in slave mode
TRS word detection is a continuous process and both 8-bit and 10-bit TRS words will be identified by the device in both SD and HD modes. In master mode, the GS1560A/GS1561 sets the SMPTE_BYPASS pin HIGH and the DVB_ASI pin LOW to indicate that it has locked to a SMPTE input data stream. When operating in slave mode, the application layer must assert the DVB_ASI pin LOW and the SMPTE_BYPASS pin HIGH in order to enable SMPTE operation.
3.7.1 SMPTE Descrambling and Word Alignment
After serial-to-parallel conversion, the internal 10-bit or 20-bit data bus is fed to the SMPTE descramble and word alignment block. The function of this block is to carry out NRZI-to-NRZ decoding, descrambling according to SMPTE 259M or 292M, and word alignment of the data to the TRS sync words. Word alignment occurs when two consecutive valid TRS words (SAV and EAV inclusive) with the same bit alignment have been detected. In normal operation, re-synchronization of the word alignment process will only take place when two consecutive identical TRS word positions have been detected. When automatic or manual switch line lock handling is 'actioned', (see Switch Line Lock Handling on page 39), word alignment re-synchronization will occur on the next received TRS code word.
3.7.2 Internal Flywheel
The GS1560A/GS1561 has an internal flywheel which is used in the generation of internal / external timing signals, in the detection and correction of certain error conditions and in automatic video standards detection. It is only operational in SMPTE mode. The flywheel consists of a number of counters and comparators operating at video pixel and video line rates. These counters maintain information about the total line length, active line length, total number of lines per field / frame, and total active lines per field / frame for the received video stream.
27360 - 10 January 2007
38 of 80
GS1560A/GS1561 Data Sheet The flywheel 'learns' the video standard by timing the horizontal and vertical reference information contained in the TRS ID words of the received video stream. Full synchronization of the flywheel to the received video standard therefore requires one complete video frame. Once synchronization has been achieved, the flywheel will continue to monitor the received TRS timing information to maintain synchronization. The FW_EN/DIS input pin controls the synchronization mechanism of the flywheel. When this input signal is LOW, the flywheel will re-synchronize all pixel and line based counters on every received TRS ID word. When FW_EN/DIS is held HIGH, re-synchronization of the pixel and line based counters will only take place when a consistent synchronization error has been detected. Two consecutive video lines with identical TRS timing different to the current flywheel timing must occur to initiate re-synchronization of the counters. This provides a measure of noise immunity to internal and external timing signal generation. The flywheel will be disabled should the LOCKED signal or the RESET_TRST signal be LOW. A LOW to HIGH transition on either signal will cause the flywheel to re-acquire synchronization on the next received TRS word, regardless of the setting of the FW_EN/DIS pin.
3.7.3 Switch Line Lock Handling
The principal of switch line lock handling is that the switching of synchronous video sources will only disturb the horizontal timing and alignment of the stream, whereas the vertical timing remains in synchronization. To account for the horizontal disturbance caused by a synchronous switch, it is necessary to re-synchronize the flywheel immediately after the switch has taken place. Rapid re-synchronization of the GS1560A/GS1561 to the new video standard can be achieved by controlling the flywheel using the FW_EN/DIS pin. At every PCLK cycle the device samples the FW_EN/DIS pin. When a logic LOW to HIGH transition at this pin is detected anywhere within the active line, the flywheel will re-synchronize immediately to the next TRS word. This is shown in Figure 3-2. To ensure switch line lock handling, the FW_EN/DIS signal should be LOW for a minimum of one PCLK cycle (maximum one video line) anywhere within the active portion of the line on which the switch has taken place.
27360 - 10 January 2007
39 of 80
GS1560A/GS1561 Data Sheet
Switch point Video source 1
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV EAV
ACTIVE PICTURE ANC
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
Video source 2
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV EAV
ACTIVE PICTURE ANC
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
switch video source 1 to 2 DATA IN
EAV ANC SAV ACTIVE PICTURE EAV ANC SAV ACTIVE PICTURE ANC EAV ANC SAV ACTIVE PICTURE EAV ANC SAV
DATA OUT Flywheel TRS position FW_EN/DIS
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
ACTIVE PICTURE ANC
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
Flywheel re-synch
Switch point Video source 1
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV EAV
ACTIVE PICTURE ANC
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
Video source 2
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV EAV
ACTIVE PICTURE ANC
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
switch video source 2 to 1 DATA IN
EAV ANC SAV ACTIVE PICTURE EAV ANC SAV ACTIVE PICTURE EAV ANC SAV ACTIVE PICTURE EAV ANC SAV
DATA OUT Flywheel TRS position FW_EN/DIS
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
ACTIVE PICTURE
EAV
ANC
SAV
Flywheel re-synch
Figure 3-2: Switch Line Locking
The ability to manually re-synchronize the flywheel is also important when switching asynchronous sources or to implement other non-standardized video switching functions. The GS1560A/GS1561 also implements automatic switch line lock handling. By utilizing the synchronous switch points defined by SMPTE RP168 for all major video standards with the automatic video standards detect function, the device automatically re-synchronizes the flywheel at the switch point. This function will occur regardless of the setting of the FW_EN/DIS pin.
27360 - 10 January 2007
40 of 80
GS1560A/GS1561 Data Sheet The switch line is defined as follows: • • • • • • • For 525 line interlaced systems: re-sync takes place at the end of lines 10 & 273. For 525 line progressive systems: re-sync takes place at the end of line 10. For 625 line interlaced systems: re-sync takes place at the end of lines 6 & 319. For 625 line progressive systems: re-sync takes place at the end of line 6. For 750 line progressive systems: re-sync takes place at the end of line 7. For 1125 line interlaced systems: re-sync takes place at the end of lines 7 & 568. For 1125 line progressive systems: re-sync takes place at the end of line 7.
A full list of all major video standards and switching lines is shown in Table 3-4. NOTE 1: The flywheel timing will define the line count such that the line numbers shown in Table 3-4 may not correspond directly to the digital line counts. NOTE 2: Unless indicated by SMPTE 352M payload identifier packets, the GS1560A/GS1561 will not distinguish between 50/60 frames PsF and 25/30 frames interlaced for the 1125 line video systems; 24 PsF will be identified.
Table 3-4: Switch Line Position for Digital Systems System
HD-SDTI
Video Format
1920x1080 (PsF) 1920x1080 (2:1) 1280x720 (1:1)
Sampling
4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2
Signal Standard
274M 274M 296M BT.656 125M 296M 296M 296M 296M 296M 274M + RP211 274M + RP211 274M + RP211 274M + RP211 274M + RP211
Parallel Interface
274M + 348M 274M + 348M 296M + 348M BT.656 + 305M 125M + 305M 296M 296M 296M 296M 296M 274M + RP211 274M + RP211 274M + RP211 274M + RP211 274M + RP211
Serial Interface
292M 292M 292M 259M 259M 296M 296M 296M 296M 296M 292M 292M 292M 292M 292M
Switch Line No.
7 7, 569 7 6, 319 10, 273 7 7 7 7 7 7 7 7 7, 569 7, 569
SDTI
720x576/50 (2:1) 720x483/59.94 (2:1)
750
1280x720/60 (1:1) 1280x720/50 (1:1) 1280x720/30 (1:1) 1280x720/25 (1:1) 1280x720/24 (1:1)
1125
1920x1080/30 (PsF) 1920x1080/25 (PsF) 1920x1080/24 (PsF) 1920x1080/60 (2:1) 1920x1080/50 (2:1)
27360 - 10 January 2007
41 of 80
GS1560A/GS1561 Data Sheet
Table 3-4: Switch Line Position for Digital Systems (Continued) System
525
Video Format
960x483/59.94 (2:1) 960x483/59.94 (2:1) 720x483/59.94 (2:1) 720x483/59.94 (2:1) 720x483/59.94 (2:1) 720x483/59.94 (2:1) 720x483/59.94 (2:1) 720x483/59.94 (2:1) 720x483/59.94 (1:1) 720x483/59.94 (1:1) 720x483/59.94 (1:1) 720x483/59.94 (1:1) 720x483/59.94 (1:1)
Sampling
4:2:2 4:2:2 4:4:4:4 4:4:4:4 4:4:4:4 4:4:4:4 4:2:2 4:2:2 4:2:2 4:2:2 4:2:2 4:2:0 4:2:0 4:2:2 4:2:2 4:2:2 4:2:0 4:2:0 4:2:2 4:2:2 4:4:4:4 4:4:4:4 4:4:4:4 4:4:4:4 4:2:2 4:2:2
Signal Standard
267M 267M 267M 267M 267M 267M 125M 125M 293M 293M 293M 293M 293M BT.1358 BT.1358 BT.1358 BT.1358 BT.1358 BT.601 BT.601 BT.799 BT.799 BT.799 BT.799 BT.601 BT.601
Parallel Interface
349M 267M 349M 347M RP174 RP175 349M 125M 349M 347M 293M 349M 293M 349M 347M BT.1358 349M BT.1358 349M BT.656 349M 347M BT.799 BT.799 349M 125M
Serial Interface
292M 259M 292M 344M 344M RP175 292M 259M 292M 344M 294M 292M 294M 292M 344M BT.1362 292M BT.1362 292M 259M 292M 344M 344M – 292M 259M
Switch Line No.
10, 273 10, 273 10, 273 10, 273 10, 273 10, 273 10, 273 10, 273 10 10 10 10 10 6 6 6 6 6 6, 319 6, 319 6, 319 6, 319 6, 319 6, 319 6, 319 6, 319
625
720x576/50 (1:1) 720x576/50 (1:1) 720x576/50 (1:1) 720x576/50 (1:1) 720x576/50 (1:1) 960x576/50 (2:1) 960x576/50 (2:1) 720x576/50 (2:1) 720x576/50 (2:1) 720x576/50 (2:1) 720x576/50 (2:1) 720x576/50 (2:1) 720x576/50 (2:1)
27360 - 10 January 2007
42 of 80
GS1560A/GS1561 Data Sheet
3.7.4 HVF Timing Signal Generation
The GS1560A/GS1561 extracts critical timing parameters from either the received TRS signals (FW_EN/DIS = LOW), or from the internal flywheel-timing generator (FW_EN/DIS = HIGH). Horizontal blanking period (H), vertical blanking period (V), and even / odd field (F) timing are all extracted and presented to the application layer via the H:V:F status output pins. The H signal timing is configurable via the H_CONFIG bit of the internal IOPROC_DISABLE register as either active line based blanking, or TRS based blanking, (see Error Correction and Insertion on page 61). Active line based blanking is enabled when the H_CONFIG bit is set LOW. In this mode, the H output is HIGH for the entire horizontal blanking period, including the EAV and SAV TRS words. This is the default H timing used by the device. When H_CONFIG is set HIGH, TRS based blanking is enabled. In this case, the H output will be HIGH for the entire horizontal blanking period as indicated by the H bit in the received TRS ID words. The timing of these signals is shown in Figure 3-3.
27360 - 10 January 2007
43 of 80
GS1560A/GS1561 Data Sheet
PCLK LUMA DATA OUT 3FF 000 000 XYZ (eav) XYZ (eav) 3FF 000 000 XYZ (sav) XYZ (sav)
CHROMA DATA OUT
3FF
000
000
3FF
000
000
H V F
H:V:F TIMING - HD 20-BIT OUTPUT MODE
PCLK MULTIPLEXED Y/Cr/Cb DATA OUT H V F 3FF 3FF 000 000 000 000 XYZ (eav) XYZ (eav)
H:V:F TIMING AT EAV - HD 10-BIT OUTPUT MODE
PCLK MULTIPLEXED Y/Cr/Cb DATA OUT H V F 3FF 3FF 000 000 000 000 XYZ (sav) XYZ (sav)
H;V:F TIMING AT SAV - HD 10-BIT OUTPUT MODE
PCLK CHROMA DATA OUT 3FF 000 3FF 000
LUMA DATA OUT H V F H_CONFIG = HIGH
000
XYZ (eav)
000
XYZ (SAV)
H SIGNAL TIMING: H_CONFIG = LOW
H:V:F TIMING - SD 20-BIT OUTPUT MODE
PCLK MULTIPLEXED Y/Cr/Cb DATA OUT H V F 3FF 000 000 XYZ (eav) 3FF 000 000 XYZ (sav)
H:V:F TIMING - SD 10-BIT OUTPUT MODE
Figure 3-3: H, V, F Timing
27360 - 10 January 2007
44 of 80
GS1560A/GS1561 Data Sheet
3.8 DVB-ASI Functionality
The GS9060 conforms to DVB-ASI standard EN 50083-9:1998. The GS1560A/GS1561 is said to be in DVB-ASI mode once the device has detected 32 consecutive DVB-ASI words without a single word or disparity error being generated. The device will remain in DVB-ASI mode until 32 consecutive DVB-ASI word or disparity errors are detected, or until SMPTE TRS ID words have been detected. The lock detect block may also drop out of DVB-ASI mode under the following conditions: • • • • RESET_TRST is asserted LOW CDx is HIGH SMPTE_BYPASS is asserted HIGH in slave mode DVB_ASI is asserted LOW in slave mode
K28.5 sync patterns in the received DVB-ASI data stream will be detected by the device in either inverted or non-inverted form. In master mode, the GS1560A/GS1561 sets the SMPTE_BYPASS pin LOW and the DVB_ASI pin HIGH to indicate that it has locked to a DVB-ASI input data stream. When operating in slave mode, the application layer must set the SD/HD pin HIGH, in addition to setting SMPTE_BYPASS LOW and DVB_ASI HIGH, in order to enable DVB-ASI operation.
3.8.1 Transport Packet Format
Transport packet structure shall conform to the specifications of EN/ISO/IEC 13818-1 and ETS 300 429 for Transport Stream Packets. The packet length can be 188 or 204 bytes.
3.8.2 DVB-ASI 8b/10b Decoding and Word Alignment
After serial-to-parallel conversion, the internal 10-bit data bus is fed to the DVB-ASI 8b/10b decode and word alignment block. The function of this block is to word align the data to the K28.5 sync characters, and 8b/10b decode and bit-swap the data to achieve bit alignment with the data outputs. The extracted 8-bit data will be presented to DOUT[17:10], bypassing all internal SMPTE mode data processing. NOTE: When operating in DVB-ASI mode, DOUT[9:0] are forced LOW.
27360 - 10 January 2007
45 of 80
GS1560A/GS1561 Data Sheet
3.8.3 Status Signal Outputs
In DVB-ASI mode, the DOUT19 and DOUT18 pins will be configured as DVB-ASI status signals SYNCOUT and WORDERR respectively. SYNCOUT will be HIGH whenever a K28.5 sync character is present on the output. This output may be used to drive the write enable signal of an external FIFO, thus providing a means of removing the K28.5 sync characters from the data stream. Parallel DVB-ASI data may then be clocked out of the FIFO at some rate less than 27MHz. See Figure 3-4. WORDERR will be high whenever the device has detected a running disparity error or illegal code word.
DDI DDI GS1560A / GS1561
AOUT ~ HOUT
8 8
TS FE FF WORDERR
FIFO WORDERR PCLK = 27MHz SYNCOUT
CLK_IN WE CLK_OUT READ_CLK