SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
SX1255 RF Front-End Transceiver
Low Power Digital I and Q RF Multi-PHY Mode Transceiver
VBAT1
VR_ANA2 VR_DIG
0 to −30dB with 2dB steps
Single to diff
0 to −48dB with 6dB steps
RFIN
VBAT2 VR_ANA1
CT ΣΔ
Rx pre−filter
Power Distribution System
1b
CT ΣΔ
Rx pre−filter
I_RX
1b
RX
PLL
I_OUT
TX
PLL
ATT
N
2
32
32 I2S
Digital Bridge
2
2
Q_OUT
I_IN
ΣΔ
mux
Q_RX
Fractional frequency
synthesizer
mux
DIV 4
N
32
32
2
Q_IN
DIV 4
Fractional frequency
synthesizer
Gain DAC
DIO(2)
5b
1b
DIO(3)
RFOUT_P
Tx Filter
FIR−DAC
Tx Filter
FIR−DAC
I_TX
Driver
RFOUT_M
Q_TX
balun
XTA
XTB
The SX1255 is a highly integrated RF front-end to digital I
and Q modulator/demodulator Multi-PHY mode transceiver
capable of supporting multiple constant and non-constant
envelope modulation schemes. It is designed to operate
over the 400 - 510 MHz worldwide licensed and unlicensed
frequency bands. Its highly integrated architecture allows
for a minimum of external components whilst maintaining
maximum design flexibility. All major RF communication
parameters are programmable and most of them can be
dynamically set. The SX1255 offers support for both
narrow-band and wide-band communication modes without
the need to modify external components. The SX1255 is
optimized for low power consumption while offering the
provision for high RF output power and channelized
operation. TrueRF™ technology enables a low-cost
external component count whilst still satisfying ETSI, FCC
and ARIB and other regulations.
IEEE 802.15.4g SUN Multi-PHY Mode Smartgrid
Cognitive / Software Defined Radio (SDR)
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
CLK select
CLK IN
CLK OUT
NSS
MOSI
MISO SCK
RESET
KEY PRODUCT FEATURES
GENERAL DESCRIPTION
APPLICATIONS
DIO(0)
Registers and interface
XOSC
DIO(1)
1b
Fully flexible I and Q modulator and demodulator
Half or full-duplex operation
Bullet proof RX LNA
Analog TX and RX pre-filtering
Decimated I&Q signal under I2S industry format
Programmable tap TX FIR-DAC filter
Linear TX amplifier for both constant and non-constant
envelope modulation schemes
ORDERING INFORMATION
Part Number
Temperature Range
Qty. per Reel
Package
SX1255IWLTRT
-40; +85 C
3000
MLPQW-32
SX1255WS
-40; +85 C
1 Wafer
-
Page 1
Pb-free, Halogen Free
RoHS / WEEE compliant product
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
TABLE OF CONTENT
1.
2.
3.
General Description ................................................................................................................................................ 6
1.1.
Simplified Block Diagram ............................................................................................................................... 6
1.2.
Pin and Marking Diagram................................................................................................................................ 7
1.3.
Pin Description ................................................................................................................................................ 8
Electrical Characteristics......................................................................................................................................... 9
2.1.
ESD Notice...................................................................................................................................................... 9
2.2.
Absolute Maximum Ratings ............................................................................................................................ 9
2.3.
Operating Range............................................................................................................................................. 9
2.4.
Electrical Specifications ................................................................................................................................ 10
2.4.1.
Power Consumption............................................................................................................................... 10
2.4.2.
Frequency Synthesis.............................................................................................................................. 10
2.4.3.
Transmitter Front-End ............................................................................................................................ 11
2.4.4.
Receiver Front-End ................................................................................................................................ 11
2.4.5.
SPI Bus Digital Specification.................................................................................................................. 12
Chip Description.................................................................................................................................................... 13
3.1.
Power Supply Strategy.................................................................................................................................. 13
3.2.
Low Battery Detector..................................................................................................................................... 13
3.3.
Frequency Synthesizer ................................................................................................................................. 13
3.3.1.
Reference Oscillator............................................................................................................................... 13
3.3.2.
CLK_OUT Output................................................................................................................................... 14
3.3.3.
PLL Architecture..................................................................................................................................... 14
3.3.3.1. VCO................................................................................................................................................... 14
3.3.3.2. PLL Bandwidth .................................................................................................................................. 14
3.3.3.3. Carrier Frequency and Resolution .................................................................................................... 14
3.3.3.4. PLL Lock Time .................................................................................................................................. 15
3.3.3.5. Lock Detect Indicator......................................................................................................................... 15
3.4.
Transmitter Analog Front-End Description.................................................................................................... 15
3.4.1.
Architectural Description ........................................................................................................................ 15
3.4.2.
TX I / Q Channel Filters.......................................................................................................................... 15
3.4.3.
TX I / Q Up-Conversion Mixers .............................................................................................................. 16
3.4.4.
RF Amplifier ........................................................................................................................................... 16
3.5.
Transmitter Digital Baseband Description..................................................................................................... 17
3.5.1.
Digital-to-Analog Converters .................................................................................................................. 17
3.6. Receiver Analog Front-End Description ............................................................................................................19
3.6.1. Architectural Description ........................................................................................................................ 19
3.6.2.
LNA and Single to Differential Buffer ..................................................................................................... 19
3.6.3.
I /Q Downconversion Quadrature Mixer................................................................................................. 19
3.6.4.
Baseband Analog Filters and Amplifiers ................................................................................................ 19
3.7.
Receiver Digital Baseband............................................................................................................................ 20
3.7.1.
Architectural Block Diagram................................................................................................................... 20
3.7.2.
Analog-to-Digital Converters .................................................................................................................. 20
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 2
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
3.7.3.
3.8.
DATASHEET
Temperature Sensor .............................................................................................................................. 20
Loop-Back .................................................................................................................................................... 21
3.8.1.
Digital Loop-Back ................................................................................................................................... 21
3.8.2. RF Loop Back ............................................................................................................................................22
4.
Digital Interface ..................................................................................................................................................... 23
4.1.
General overview .......................................................................................................................................... 23
4.2.
Definition and operation of the SPI interface................................................................................................. 23
4.3.
Digital IO Pin Mapping .................................................................................................................................. 24
4.4.
I and Q interface............................................................................................................................................ 24
4.4.1.
General description ................................................................................................................................ 24
4.4.2.
Mode A................................................................................................................................................... 25
4.4.3.
Mode B................................................................................................................................................... 26
4.4.3.1. Introduction........................................................................................................................................ 26
4.4.3.2. Parameters........................................................................................................................................ 29
5.
Configuration and Status Registers ...................................................................................................................... 33
5.1.
6.
7.
8.
General Description ...................................................................................................................................... 33
Application Information ......................................................................................................................................... 37
6.1.
Crystal Resonator Specification .................................................................................................................... 37
6.2.
Reset of the Chip .......................................................................................................................................... 37
6.2.1.
POR ....................................................................................................................................................... 37
6.2.2.
Manual Reset ......................................................................................................................................... 38
6.3.
TX Noise Shaper........................................................................................................................................... 38
6.4.
Reference Design ......................................................................................................................................... 39
Packaging Information .......................................................................................................................................... 40
7.1.
Package Outline Drawing.............................................................................................................................. 40
7.2.
Recommended Land Pattern ........................................................................................................................ 40
7.3.
Thermal Impedance ...................................................................................................................................... 41
7.4.
Tape and Reel Specification ......................................................................................................................... 41
Revision History .................................................................................................................................................... 42
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 3
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
FIGURES
Figure 1
Block Diagram ..................................................................................................................................... 6
Figure 2
Pin Diagram ......................................................................................................................................... 7
Figure 3
Marking Diagram ................................................................................................................................. 7
Figure 4
TCXO Connection .............................................................................................................................. 13
Figure 5
SX1255 Transmitter Analog Front-End Block Diagram ..................................................................... 15
Figure 6
FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 32 ....................................... 17
Figure 7
FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 64 ....................................... 18
Figure 8
SX1255 Receiver Analog Front-End Block Diagram ......................................................................... 19
Figure 9
SX1255 Digital Receiver Baseband Block Diagram .......................................................................... 20
Figure 10
Temperature Sensor Response ........................................................................................................ 21
Figure 11
Digital and RF Loop-Back Paths ....................................................................................................... 22
Figure 12
SPI Timing Diagram (single access) .................................................................................................. 23
Figure 13
Tx timing diagram of I and Q interface in mode A (SX1255 master) ................................................. 25
Figure 14
Tx timing diagram of I and Q interface in mode A (SX1255 slave) .................................................... 26
Figure 15
The I2S interface block in its context (mux cells are included in PAD_CTL block) ........................... 27
Figure 16
Timing diagram of I and Q interfaces in mode B1 ............................................................................. 28
Figure 17
Timing diagram of I and Q interfaces in mode B2 ............................................................................. 29
Figure 18
POR Timing Diagram ......................................................................................................................... 37
Figure 19
Manual Reset Timing Diagram .......................................................................................................... 38
Figure 20
Example Digital Modulator Implementation ....................................................................................... 38
Figure 21
SX1255 Application Schematic .......................................................................................................... 39
Figure 22
Package Outline Drawing .................................................................................................................. 40
Figure 23
Recommended Land Pattern ............................................................................................................ 40
Figure 24
Tape and Reel Specification .............................................................................................................. 41
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 4
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
TABLES
Table 1
SX1255 Pinout ..................................................................................................................................... 8
Table 2
Absolute Maximum Ratings ................................................................................................................. 9
Table 3
Operating Ranges ............................................................................................................................... 9
Table 4
Power Consumption Specification ..................................................................................................... 10
Table 5
Frequency Synthesizer Specification ................................................................................................ 10
Table 6
TX Front-End Specifications .............................................................................................................. 11
Table 7
RX Front-End Specification ............................................................................................................... 11
Table 8
SPI Digital Specification .................................................................................................................... 12
Table 9
TX Analog Filter Single Sideband Bandwidth .................................................................................... 16
Table 10
TX DAC Single Sideband Bandwidth ................................................................................................ 17
Table 11
DIO Mapping ..................................................................................................................................... 24
Table 12
Mapping of IO pins related to the I and Q transfer ............................................................................. 25
Table 13
Sampling rates 1st set ....................................................................................................................... 30
Table 14
Sampling rates 2nd set ...................................................................................................................... 30
Table 15
Number of bits per sample for the 1st set and B1 mode ................................................................... 30
Table 16
Number of bits per sample for the 2nd set and B1 mode .................................................................. 31
Table 17
Number of bits per sample for the 2nd set and B2 mode .................................................................. 32
Table 18
Number of bits per sample for the 1st set and B2 mode ................................................................... 32
Table 19
Crystal Resonator Specification ........................................................................................................ 37
Table 20
Datasheet Revision History ............................................................................................................... 42
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 5
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
1. General Description
The SX1255 is a single-chip Zero-IF RF-to-digital front-end transceiver integrated circuit ideally suited for today's high
performance multi-PHY mode or SDR ISM band RF applications. The SX1255 has a maximum signal bandwidth of 500
kHz in both transmission and reception and is intended as a high performance, low-cost RF-to-digital converter and
provides a generic RF front-end that allows several constant and non-constant envelope modulation schemes to be
handled, such as the MR-FSK, MR-OFDM and MR-O-QPSK applications in the 400 - 510 MHz licensed and unlicensed
frequency bands.
The SX1255's advanced features set greatly simplifies system design whilst the high level of integration reduces the
external BOM to an optional RF power amplifier, and a handful of passive decoupling and matching components. A simple
4-wire 1-bit digital serial or I2S like interface are provided for the baseband I and Q data streams to the baseband
processor.
The SX1255 can operate in both half and full-duplex mode and is compliant with ETSI, FCC and ARIB regulatory
requirements. It is available in a MLPQ-W 5 x 5 mm 32 lead package.
1.1. Simplified Block Diagram
VBAT1
VR_ANA2 VR_DIG
0 to −30dB with 2dB steps
Single to diff
0 to −48dB with 6dB steps
RFIN
VBAT2 VR_ANA1
CT ΣΔ
Rx pre−filter
Power Distribution System
1b
CT ΣΔ
Rx pre−filter
I_RX
1b
RX
PLL
I_OUT
TX
PLL
ATT
N
2
Digital Bridge
2
mux
Q_RX
Fractional frequency
synthesizer
ΣΔ
32
32 I2S
mux
DIV 4
2
Q_OUT
I_IN
N
32
32
2
Q_IN
DIV 4
Fractional frequency
synthesizer
Gain DAC
DIO(2)
5b
1b
DIO(3)
RFOUT_P
FIR−DAC
Tx Filter
I_TX
Driver
Tx Filter
RFOUT_M
DIO(1)
1b
FIR−DAC
Q_TX
balun
DIO(0)
Registers and interface
XOSC
XTA
XTB
CLK select
CLK IN
CLK OUT
NSS
MOSI
MISO SCK
RESET
Figure 1. Block Diagram
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 6
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
1.2. Pin and Marking Diagram
The following diagrams illustrate the pin arrangement of the MLPQ-W package (top view) and the IC marking description.
Figure 2. Pin Diagram
Figure 3. Marking Diagram
Note:
yyww refers to the date code
xxxxxx refers to the lot number
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 7
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
1.3. Pin Description
Table 1
SX1255 Pinout
Number
Name
Type
0
Ground
-
Exposed ground pad
1
VR_PA
-
Regulated supply for TX amplifier
2
VBAT1
-
VBAT Supply voltage
3
VR_ANA1
-
Regulated supply for analog TX circuit
4
GND
-
Ground
5
VR_DIG
-
Regulated supply for digital circuit
6
XTA
I/O
7
GND
-
8
XTB
I/O
Crystal pad / input for external clock
9
Reset
I/O
Reset
10
CLK_OUT
O
36 MHz digital clock output
11
CLK_IN
I
36 MHz digital clock input (SX1255 used in slave TX mode)
12
Q_IN
I
Digital baseband data input for I (inphase) channel DAC
13
I_IN
I
Digital baseband data input for Q (quadrature) channel DAC
14
Q_OUT
O
Digital baseband data output from I (inphase) channel ADC
15
I_OUT
O
Digital baseband data output from Q (quadrature) channel ADC
16
VBAT2
-
VBAT supply voltage
17
SCK
I
SPI clock
18
MISO
O
Master In Slave Output SPI output
19
MOSI
I
Master Out Slave Input SPI input
20
NSS
I
SPI chip select
21
DIO0
O
Digital I/O, software configured
22
DIO1
O
Digital I/O, software configured
23
DIO2
O
Digital I/O, software configured
24
DIO3
O
Digital I/O, software configured
25
VR_ANA2
-
Regulated supply for analog RX circuit
26
GND
-
Ground
27
RF_IN
I
RX LNA input
28
GND
-
Ground
29
RF_ON
O
Differential TX Output, negative node
30
RF_OP
O
Differential TX Output, positive node
31
GND
-
Ground
32
VBAT3
-
VBAT supply for TX amplifier
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Description
Crystal pad
Ground
Page 8
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
2. Electrical Characteristics
2.1. ESD Notice
The SX1255 is a high performance radio frequency device.
Class 2 of the JEDEC standard JESD22-A114-C (Human Body Model) on all pins
Class III of the JEDEC standard JESD22-C101-C (Charged Device Model) on all pins
2.2. Absolute Maximum Ratings
Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for
extended periods may affect device reliability.
Table 2
Absolute Maximum Ratings
Symbol
Description
Min
Max
Units
VDDmr
Maximum Supply Voltage
-0.5
3.9
V
Tmr
Maximum Temperature
-55
115
°C
Tj
Maximum Junction Temperature
-
125
°C
Pmr
Maximum RF Input Level
-
+6
dBm
2.3. Operating Range
Operating ranges define the limits for functional operation and parametric characteristics of the device as described in this
section. Functionality outside these limits is not implied.
Table 3
Operating Ranges
Symbol
Description
Min
Max
Units
VDDop
Operational Supply Voltage
2.7
3.6
V
Top
Operational Temperature
-40
+85
°C
Clop
Load Capacitance on Digital Ports
-
25
pF
ML
RF Input Level
-
0
dBm
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 9
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
2.4. Electrical Specifications
The table below gives the electrical specifications of the transceiver under the following conditions:
supply Voltage = 3.3 V, temperature = 25 °C, fXOSC = 36 MHz, fRF = 434 MHz, Output power = -5 dBm (100 ohm differential
transmission), TXBWANA = 250 kHz, RXBWANA = 250 kHz, mode A, external baseband RX filter = 150 kHz, unless
otherwise specified.
Note: RF performance depends on assembly. Electrical specifications listed below are obtained with the QFN package
described in section 7 “Packaging Information”.
2.4.1. Power Consumption
Table 4
Power Consumption Specification
Symbol
Description
IDDSL
Supply Current in Sleep Mode
IDDST
Supply Current in Standby Mode
IDDRX
Supply Current in Receive Mode
IDDTX
Supply Current in Transmit Mode
Conditions
Crystal oscillator enabled
RFOutput Power = -5 dBm
Min
Typ
Max
Units
-
0.2
1
uA
-
1.15
1.5
mA
-
18
25
mA
-
60
90
mA
2.4.2. Frequency Synthesis
Table 5
Frequency Synthesizer Specification
Symbol
Description
Conditions
Min
Typ
Max
Units
FR
Synthesizer Frequency Range
Programmable
400
-
510
MHz
FXOSC
Crystal Oscillator Frequency
See Section 5
32
36
36.864
MHz
TS_OS
Crystal Oscillator Wake-up Time
From sleep mode
-
300
500
us
TS_FS
RX Frequency Synthesizer
Wake-up Time
Crystal Oscillator Enabled
-
50
150
us
FSTEP
Frequency Synthesizer Step Size
FSTEP = FXOSC / 220
30.5
34.3
35.16
Hz
TS_HOP_RX
RX Frequency Synthesizer Hop Time
(to within 10 kHz of target frequency)
200 kHz step
400 kHz step
1.2 MHz step
25 MHz step
-
20
20
30
50
-
us
us
us
us
TS_HOP_TX
RX Frequency Synthesizer Hop Time
(to within 10 kHz of target frequency)
200 kHz step
400 kHz step
1.2 MHz step
25 MHz step
-
20
20
30
50
-
us
us
us
us
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 10
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
2.4.3. Transmitter Front-End
Table 6
TX Front-End Specifications
Symbol
Description
Conditions
Min
Typ
Max
Units
FCLK_IN
External Clock Frequency for TX
Synthesizer or DAC input clock
SX1255 slave mode
32
-
36.864
MHz
TS_TR
Transmitter Wake-up Time
Frequency synthesizer enabled
-
120
-
us
TXPmax
TX Maximum Output Power
Saturated Power
+4
+7
-
dBm
TXP1dB
TX 1 dB Compression Point
Peak Value
+2
+5
-
dBm
TXOIP3
TX Output IP3
-5 dBm average output power
+13
+16
-
dBm
PHN
Transmitter Phase Noise
10 kHz offset from carrier
100 kHz offset from carrier
1 MHz offset from carrier
-
-110
-108
-128
-
dBc/Hz
dBc/Hz
dBc/Hz
PHNF
Transmitter Output Noise Floor
10 MHz offset from carrier
-128
-135
-
dBc/Hz
PHNID
Transmitter Integrated DSB Phase
Noise
Integrated bandwidth from
500 Hz to 125 kHz
-
0.2
1.5
°RMS
TXGM
Transmitter IQ Gain Mismatch
-
0.5
1
dB
TXPM
Transmitter IQ Phase Mismatch
-
1
3
°
TXBWANA
Transmitter Analog Prefilter BW (DSB) Programmable in 31 steps
420
-
1700
kHz
TXBWANAPrc
Transmitter Analog Prefilter BW
precision
-30
-
+30
%
TXBWDIFG
Transmitter FIR-DAC Taps
Programmable
24
-
64
-
TXLO
TX LO Leakage (Before DC offset
Calibration)
ADC rms input: -10 dBFS
-
-8
-
dBc
TXEVM
Transmitter Error Vector Magnitude
tbd
dB
2.4.4. Receiver Front-End
Table 7
RX Front-End Specification
Symbol
Description
Conditions
Min
Typ
Max
Units
FCLK_IN
External Clock Frequency for RX ADC SX1255 slave mode
32
-
36.864
MHz
CLK_INJ
External Clock Jitter Specification
External clock. White noise
-
-
0.01
%
RXNF
Receiver Noise Figure
Maximum LNA Gain
Maximum LNA Gain -6dB
Minimum LNA Gain
-
4.5
6.5
38
7
9
40
dB
-
70
-
dB
-28
-21
+10
-23
-16
+20
-
dBm
RXGR
RX Gain Range
Adjustable in 2 dB steps
IIP3
3rd Order Input Intercept Point
Unwanted tones are 2 MHz and 3.8
MHz above the LO
Maximum LNA Gain
Maximum LNA Gain -6dB
Minimum LNA Gain
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 11
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
Table 7
DATASHEET
RX Front-End Specification
Symbol
Description
RXGM
Conditions
Min
Typ
Max
Units
Receiver IQ Gain Mismatch
-
0.5
1
dB
RXPM
Receiver IQ Phase Mismatch
-
0.5
3
°
RXBWANA
Receiver Analog Prefilter BW (SSB)
Programmable
500
-
1500
kHz
TS_RE
Receiver Wake-up Time
Frequency synthesizer enabled
-
tbd
-
ms
Min
Typ
Max
Units
2.4.5. SPI Bus Digital Specification
Table 8
SPI Digital Specification
Symbol
Description
VIH
Digital Input High Level
0.8
-
-
VDD
VIL
Digital Input Low Level
-
-
0.2
VDD
VOH
Digital Output High Level
Imax = 1 mA
0.9
-
-
VDD
VOL
Digital Output Low Level
Imax = -1 mA
-
-
0.1
VDD
FSCK
SCK Frequency
-
-
10
MHz
tch
SCK High Time
50
-
-
ns
tcl
SCK Low Time
50
-
-
ns
trise
SCK Rise Time
-
5
-
ns
tfall
SCK Fall Time
-
5
-
ns
tsetup
MOSI Set-up Time
From MOSI change to SCK
rising edge
30
-
-
ns
thold
MOSI Hold Time
From SCK rising edge to MOSI
change
60
-
-
ns
tnsetup
NSS Set-up Time
From NSS falling edge to SCK
rising edge
30
-
-
ns
tnhold
NSS Hold Time
From SCK falling edge to NSS
rising edge
100
-
-
ns
tnhigh
NSS High Time Between SPI Access
20
-
-
ns
tdata
Data Hold and Set-up Time
250
-
-
ns
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Conditions
Page 12
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
3. Chip Description
This section describes the architecture of the SX1255 Multi-PHY mode transceiver.
3.1. Power Supply Strategy
The SX1255 employs an advanced power distribution scheme (PDS), which provides stable operating characteristics over
the full temperature and voltage range of operation.
The SX1255 can be powered from any low-noise voltage source via pins VBAT1, VBAT2 and VBAT3. Decoupling
capacitors should be connected, as suggested in the reference design, on VR_PA, VR_DIG, VR_ANA1 and VR_ANA2 pins
to ensure a correct operation of the built-in voltage regulators.
3.2. Low Battery Detector
A low battery detector is also included allowing the generation of an interrupt signal in response to passing a
programmable threshold adjustable through the register RegLowBat. The interrupt signal can be mapped to the DIO0 pin,
through the programmation of RegDioMapping.
3.3. Frequency Synthesizer
The SX1255 incorporates two separate state of the art fractional-N PLLs for the TX and RX circuit blocks
3.3.1. Reference Oscillator
The crystal oscillator is the main timing reference of the SX1255. It provides the reference source for the transmit and
receive frequency synthesizers and as a clock for digital processing.
The XO startup time, TS_OSC, depends on the actual XTAL being connected on pins XTA and XTB. When using the builtin sequencer, the SX1255 optimizes the startup time and automatically triggers the PLL when the XO signal is stable. To
manually control the startup time, the user should monitor the signal CLK_OUT which will only be made available on the
output buffer when a stable XO oscillation is achieved.
An external crystal controlled source, such as a clipped-sinewave TCXO, clock can be used to replace the crystal
oscillator, This external source should be provided on XTB (pin 8) and XTA (pin 6) should be left open, as illustrated in
Figure 4, below.
XTA
GND
XTB
VCC
OP
VCC
GND
CD
Figure 4. TCXO Connection
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 13
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
The peak-peak amplitude of the input signal must never exceed 1.8 V. Please consult your TCXO supplier for an
appropriate value of decoupling capacitor, CD. Due to the low jitter requirements required by the receiver digital block it is
recommended that only a crystal controlled external frequency source is used.
3.3.2. CLK_OUT Output
For master mode operation the SX1255 provides a system clock output made available at pin CLK_OUT.
3.3.3. PLL Architecture
The SX1255 incorporates two fourth-order type fractional-N sigma-delta PLLs. The PLLs include integrated VCO and
programmable bandwidth loop filter, removing the need for any external components. The PLLs are autocalibrating and are
capable of fast switching and settling times.
3.3.3.1. VCO
Both TX and RX VCOs operate at twice the RF frequency, with the oscillators centered at 1.9 GHz. This reduces any LO
leakage in receive mode, to improve the quadrature precision of the receiver, and to reduce the pulling effects on the VCO
during transmission.
The VCO calibration is fully automated, calibration times are fully transparent to the end-user as the processing time is
included in the TS_TR and TS_RE specifications.
3.3.3.2. PLL Bandwidth
The bandwidth of the PLL loop filters are independently configurable via the configuration registers TxPllBw and RxPllBw
for the modulation schemes supported, as well as fast channel switching and lock times to support FHSS and frequency
agile applications, such as AFA.
3.3.3.3. Carrier Frequency and Resolution
Both the TX and RX embed a 20-bit sigma-delta modulator and the frequency resolution, constant over the entire
frequency range, is calculated using the following formula:
F XOSC
F STEP = --------------20
2
The RX and RX carrier frequencies are programmed through registers RegFrfRx and RegFrfTx, split across register
addresses 0x01 to 0x03 and 0x04 to 0x06, respectively, and are calculated by:
F RF = F STEP × Frfxx ( 23, 0 )
where: Frfxx is the integer value of the RegFrfRx or RegFrfTx as defined above.
Note: As stated above, the Frfxx settings are split across 3 bytes for both the transmitter and receiver frequency
synthesizers. A change in the center frequency will only be taken into account when the least significant byte FrfxxLsb in
RegFrfxxLsb is written and when exiting SLEEP mode
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 14
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
3.3.3.4. PLL Lock Time
RX and TX PLL lock times are a function of a number of technical factors, such as synthesized frequency, frequency step,
etc. The SX1255 includes an auto-sequencer that manages the start-up sequence of the PLL.
3.3.3.5. Lock Detect Indicator
A lock indication signal for both RX and TX PLLs can be accessed via DIO pins, and is toggled high when the PLL reaches
its locking range. Please refer to Figure 11 to map this interrupt to the desired DIO pins.
3.4. Transmitter Analog Front-End Description
The analog front-end of the SX1255 transmitter stage comprises the TX frequency synthesizer, I and Q channel filters, the
I / Q mixer and RF amplifier blocks.
3.4.1. Architectural Description
The block diagram of the transmitter front-end block is illustrated below.
TX Fractional-N
Frequency Synthesizer
RF Loop-Back
(To RX)
Div by 2
4
Differential
I-Channel Filter
I-Channel
DAC
RF_OP
Driver
RF_ON
Differential
I/Q
Mixer
Q-Channel
DAC
Differential
Q-Channel Filter
Figure 5. SX1255 Transmitter Analog Front-End Block Diagram
3.4.2. TX I / Q Channel Filters
Differential analog I and Q signals input to the TX Front-End from the TX FIR DAC are filtered by I and Q channel filters.
These filters smooth the reconstructed analog waveforms and remove quantization noise generated by the I and Q
channel TX FIR DACs. The filters are unity gain third-order low pass Butterworth types with programmable bandwidth
configured via TxAnaBw.
The 3 dB BW of the analog TX filter BW can be calculated from:
17.15
BW 3dB = -----------------------------------------------------------------( 41 – RegTxBwAna ( 4, 0 ) )
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 15
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
The analog filter bandwidth should be set to greater than the signal bandwidth so as to reduce any group delay variations.
The range of programmable TX analog filter bandwidths is tabulated below in Table 9.
Table 9
TX Analog Filter Single Sideband Bandwidth
TxAnaBw
(Dec)
TxAnaBw
(Bin)
SSB Filter
BW
(kHz)
TxAnaBw
(Dec)
TxAnaBw
(Bin)
SSB Filter
BW
(kHz)
0
00000
209
16
10000
343
1
00001
214
17
10001
357
2
00010
220
18
10010
373
3
00011
226
19
10011
390
4
00100
232
20
10100
408
5
00101
238
21
10101
429
6
00110
245
22
10110
451
7
00111
252
23
10111
476
8
01000
260
24
11000
504
9
01001
268
25
11001
536
10
01010
277
26
11010
572
11
01011
286
27
11011
613
12
01100
296
28
11100
660
13
01101
306
29
11101
715
14
01110
318
30
11110
780
15
01111
330
31
11111
858
3.4.3. TX I / Q Up-Conversion Mixers
The TX I / Q mixer block mixes the baseband analog I and Q signals with that from the PLL frequency synthesizer and up
converts to the RF carrier frequency. The mixer block includes a highly linear I/ Q mixer stage with programmable gain
configurable via configuration register RegTxGain. The modulated RF signal is input to the TX RF amplifier stage.
3.4.4. RF Amplifier
The TX amplifier receives the input signal from the TX mixer and provides two differential outputs. The first output provides
the RF_OP and RF_ON signals in TX mode. The second output is used to provide an internal differential signal to the
receiver during RX gain calibration. The amplifier provides good linear performance required to meet the peak to average
power level variation of OFDM.
The peak output power is +5 dBm, which allows for an average output power of greater than -5 dBm with 10 dB back-off.
The Output signal is intended to be amplified through a suitable external RF power amplifier to the maximum permissible
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 16
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
level allowed by relevant regulatory standards. The optimum load impedance presented RF amplifier is 100 ohms
differential.
3.5. Transmitter Digital Baseband Description
The transmitter digital baseband section contains separate I and Q channel digital-to-analog convertors.
3.5.1. Digital-to-Analog Converters
The TX DAC is the first block of the SX1255 transmitter. It accepts the 1-bit I and Q noise shaped 32 to 36 Msample/
second or I2S datastream from the baseand processor and converts into two analog differential signals. Each TX DAC
provides 8-bits of resolution in a 500 kHz bandwidth which corresponds to maximum RF transmitted double sideband
bandwidth of 1 MHz.
A programmable Finite Impulse Response (FIR) filter allows the removal of the digital modulator noise from the external
baseband processor. The number of taps implemented by the FIR-DAC and subsequent single-side DAC bandwidth is
controlled by the parameter TxDacBw.
Table 10 TX DAC Single Sideband Bandwidth
TxDacBw (Dec)
TxDacBw (Bin)
No. DAC-FIR Taps
0
000
24
1
001
32
2
010
40
3
011
48
4
100
56
5
101
64
SSB Filter BW (kHz)
450
290
Examples of the FIR DAC normalized magnitude response are illustrated below.
Figure 6. FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 32
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 17
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
Figure 7. FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 64
The DAC 3dB bandwidth is proportional to the sampling frequency fs and inversely proportional to the number of taps N. In
the case where fS = 32MHz with N = 32 the 3 dB bandwidth is typically 450 kHz. Reducing the bandwidth may be useful to
reduce the quantisation noise contribution when the signal bandwidth request is lower, as is illustrated in the case where N
= 64, resulting in a 3 dB bandwidth of approximately 290 kHz.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 18
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
3.6. Receiver Analog Front-End Description
The SX1255 Receiver Front-End is based upon a Zero-IF architecture, ideally suited to handle multiple complex
modulation schemes. The RX chain incorporates a programmable gain LNA and single to differential buffer, I / Q mixer,
separate I and Q channel analog low-pass filters and programmable baseband amplifiers. The amplified differential analog
I and Q outputs are input to two 5th order continuous-time Sigma-Delta Analog to Digital Converters (ADC) for further
signal processing in the digital domain.
3.6.1. Architectural Description
The block diagram of the receiver front-end block is illustrated below.
LNA
I-Channel
Pre-Filter
Singleto
Differential
Balun
I-Channel
Baseband
Amplifier
I-Channel
CT ΣΔ
ADC
RF_IN
Differential
I/Q
Mixer
Q-Channel
CT ΣΔ
ADC
Q-Channel
Pre-Filter
RF LoopBack
(From TX)
Q-Channel
Baseband
Amplifier
Div by 4
TX Fractional-N
FrequencySynthesizer
Figure 8. SX1255 Receiver Analog Front-End Block Diagram
3.6.2. LNA and Single to Differential Buffer
The LNA uses a common-gate topology, which allows for a flat characteristic over the whole frequency range. It is
designed to have an input impedance of 50 Ohms or 200 Ohms (as selected with bit LnaZin in RegRxAnaGain). A single to
differential buffer is implemented to improve the second order linearity of the receiver.
The LNA gain, including the single-to-differential buffer, is programmable over a 48 dB dynamic range, and gain control can
be enabled via an external AGC function.
3.6.3. I /Q Downconversion Quadrature Mixer
The mixer is inserted between output of the RF buffer stage and the input of the I and Q channel analog low-pass filter
stages.This block is designed to downconvert the spectrum of the input RF signal to base-band and offers both high IIP2
and IIP3 responses.
3.6.4. Baseband Analog Filters and Amplifiers
The differential I and Q baseband mixer signals are pre-filtered by a programmable 1st order low-pass pre-filter and input
to programmable linear baseband amplifiers. The single sideband 3 dB bandwidth of the pre-filters can be programmed
between 500 kHz and 1500 kHz. This additional pre-filtering improves the selectivity of the receiver for complex modulation
schemes, such as OFDM.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 19
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
The amplifier stage gain offers 32 dB of programmable gain, in 2 dB steps, from -24 dB to +6 dB via configuration register
RegRxAnaGain while the analog filter bandwidth is programmed via the two least significant bits of configuration register
RegRxBw.
3.7. Receiver Digital Baseband
The receiver digital baseband section contains separate I and Q channel continuous time Sigma-Delta analog-to-digital
converters to digitize and filter the analog bit stream.
3.7.1. Architectural Block Diagram
The block diagram of the receiver digital baseband is illustrated below.
I-Channel
Baseband
Amplifier
I(t) 1-bit
serial stream
I-Channel
CT ΣΔ
ADC
Q-Channel
CT ΣΔ
ADC
SX1255
SX1257
Q(t) 1-bit
serial stream
LOGIC
Q-Channel
Baseband
Amplifier
DSP
CLK_IN
or
CLK_OUT
DSP
INTERFACE
Figure 9. SX1255 Digital Receiver Baseband Block Diagram
3.7.2. Analog-to-Digital Converters
The receiver digital baseband consists of separate I and Q channel 5th order continuous-time sigma-delta modulator
analog -to-digital converters which sample and digitize the analog baseband I and Q signals output at the analog baseband
amplifiers.
The ADC output allows for 13-bits of resolution after decimation and filtering by the external baseband processor within a
500 kHz maximum bandwidth, corresponding to a maximum RF received double sideband bandwidth of 1 MHz.
The ADC output is one bit per channel quadrature bit stream at 32 to 36 MSamples/s or I2S data-stream.
3.7.3. Temperature Sensor
The receiver ADC can be used to perform a temperature measurement by digitizing the sensor response. The response of
the sensor is -1C / Lsb. Since a CMOS temperature sensor is not accurate by nature, the sensor should be calibrated at
ambient temperature for a precise reading.
It takes less than 100 us for the SX1255 to evaluate the temperature (from setting RxAdcTemp = “1”). The AdcTemp value
can be read at Q_OUT. Since there is no on-chip decimation or averaging it is recommended that data on Q_OUT is
externally processed, for example using a simple FFT.
The temperature measurement should be performed with the SX1255 in StandbyEnable Mode (RegMode = 0x01).
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 20
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
RxAdcTemp
-1°C/Lsb
RxAdcTemp(t)
RxAdcTemp(t-1)
Returns 150d (typ.)
Needs calibration
-40°C
t t+1
Ambient
+85°C
Figure 10. Temperature Sensor Response
3.8. Loop-Back
The SX1255 provides mechanisms to both monitor and externally calibrate both the RF transmission path and the I and Q
bit streams generated by the external baseband processor.
3.8.1. Digital Loop-Back
The digital loop-back enables the connection of the input and output I and Q baseband bit streams prior to processing by
the SX1255.
This loop back path enables the validation of the transmitter and receiver baseband processing paths.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 21
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
3.8.2. RF Loop Back
The RF loop-back path connects the balanced RF output signal of the transmitter driver stage to the output of the
differential mixer of the receiver. This path provides a mechanism for the external baseband processor to implement a
calibration for the following:
- Receiver I, Q gain mismatch
- Receiver I and Q phase imbalance
- Transmitter I, Q gain mismatch
- Transmitter I and Q phase imbalance
- Transmitter DC offset
Figure 11. Digital and RF Loop-Back Paths
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 22
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
4. Digital Interface
4.1. General overview
The SX1255 has several operating modes, configuration parameters and internal status indicators. All these operating
modes, configuration parameters and status information are stored in internal registers that may be accessed by the
external micro-controller via the serial SPI interface.
4.2. Definition and operation of the SPI interface
The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to CPOL
= 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implemented.
Three access modes to the registers are provided:
SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and
a read byte is received for the read access. The NSS pin goes low at the begin of the frame and goes high after the data
byte.
BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally
between each data byte. This mode is available for both read and write accesses. The NSS pin goes low at the
beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.
Figure 12 below shows a typical SPI single access to a register.
Figure 12. SPI Timing Diagram (single access)
MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the
rising edge of SCK. MISO is generated by the slave on the falling edge of SCK.
A transfer always starts by the NSS pin going low. MISO is high impedance when NSS is high.
The first byte is the address byte. It is made of:
wnr bit, which is 1 for write access and 0 for read access
7 bits of address, MSB first
The second byte is a data byte, either sent on MOSI by the master in case of a write access, or received by the master on
MISO in case of read access. The data byte is transmitted MSB first.
Succeeding bytes may be sent on MOSI (for write access) or received on MISO (for read access) without rising NSS and
re-sending the address. The address is then automatically incremented at each new byte received (BURST mode).
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 23
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
The frame ends when NSS goes high. The next frame must start with an address byte. The SINGLE access mode is
actually a special case of BURST mode with only 1 data byte transferred.
During the write accesses, the byte transferred from the slave to the master on the MISO line is the value of the written
register before the write operation.
4.3. Digital IO Pin Mapping
Four general purpose IO pins are available on the SX1255 and their configuration is controlled through the
RegDioMapping configuration register.
Mode
Diox
Mapping
DIO3
DIO2
DIO1
DIO0
Sleep
00
-
-
-
-
01
-
-
-
-
10
-
-
-
-
11
-
-
-
00
-
xosc_ready
-
-
01
-
-
-
-
10
-
-
-
-
11
-
-
-
-
00
pll_lock_rx
-
-
pll_lock_rx
01
-
-
-
pll_lock_rx
10
-
-
-
pll_lock_rx
11
-
-
-
Low Bat
00
pll_lock_tx
-
pll_lock_tx
-
01
-
-
-
-
10
-
-
-
-
11
-
-
-
-
Standby
RX
TX
Table 11
DIO Mapping
4.4. I and Q interface
4.4.1. General description
There are two main ways of transferring the I and Q signals between the SX1255 and the external digital circuit.
In mode A, the I and Q signals are directly the outputs of the sigma-delta modulator in Rx, and the inputs of the FIR-DAC in
Tx. This mode is the one which is implemented in the SX1255 circuit.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 24
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
In mode B, the I and Q signals are pre- and post-processed by the internal digital bridge. In Rx the I and Q signals are
decimated inside the chip and in Tx the I and Q signals are interpolated and ΣΔ modulated internally. In this mode the
signals are transferred via an I2S-like protocol working in two possible configurations.
The table below gives the mapping of the pins as a function of the selected mode.
Pins
Mode A
Mode B1
Mode B2
10) CLK_OUT
CLK_OUT
CLK_OUT
CLK_OUT
11) CLK_IN
CLK_IN
Not used
Not used
12) Q_IN
Q_IN
Q_IN
Not used
13) I_IN
I_IN
I_IN
IQ_IN
14) Q_OUT
Q_OUT
Q_OUT
Not used
15) I_OUT
I_OUT
I_OUT
IQ_OUT
23) DIO2
Not used
WS
WS
Table 12 . Mapping of IO pins related to the I and Q transfer
4.4.2. Mode A
The convention of the I and Q interface for the Rx link in mode A is that the data is delivered on a rising edge of the internal
clock, available on CLK_OUT.
For the Tx link, the Tx DACs can be used either with the internal clock, available on CLK_OUT for data synchronization
(SX1255 master) or with an input clock CLK_IN (SX1255 slave).
The figure below provides the timing diagram for the Tx link in mode A, in the case SX1255 is master:
CLK_OUT
I/Q
tsetup
thold
data stable
data stable
Figure 13. Tx timing diagram of I and Q interface in mode A (SX1255 master)
To relax the constraints on the setup and hold time, when SX1255 is used as master, it is recommended to use the falling
edge of the clock (CLK_OUT) to provide the I&Q bitstreems to the chip. The circuit will sample the data on the next falling
edge of the clock.
tsetup_min = 14 ns
thold_min = 0 ns
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 25
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
The figure below provides the timing diagram for the Tx link in mode A, in the case SX1255 is slave:
CLK_IN
thold
tsetup
I/Q
data stable
data stable
Figure 14. Tx timing diagram of I and Q interface in mode A (SX1255 slave)
In the case SX1255 is slave, CLK_IN is provided externally. The I/Q bitstreems should be provided on the rising edge of
the CLK_IN clock and the circuit will sample the data on the falling edge of the clock.
tsetup_min = 0 ns
thold_min = 6 ns
4.4.3. Mode B
4.4.3.1. Introduction
In mode B, the I and Q signals are pre- and post-processed by the internal digital bridge. An I2S based interface provides
an easy way to transfer parallel I/Q data between the SX1255 and an external baseband chip.
In Rx mode, the serial I/Q data coming from the RF front-end (I_RX/Q_RX) is decimated in the digital bridge to generate
parallel I/Q signals at a sampling rate depending on the programmed decimator factor. The I2S interface block is able then
to convert this parallel I/Q data (buses i_in_bridge[31:0] / q_in_bridge[31:0]) into one or two I2S serial bitstream(s) and
send it to an external baseband signal along with the other I2S signals as defined by the standard.
Similarly, in Tx mode the FIR-DACs are fed by two serial I/Q bitstreems coming from the digital bridge (I_TX/Q_TX). The
I2S interface is able to convert the I2S serial data coming from an external baseband chip into parallel I/Q signals (buses
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 26
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
i_out_bridge[31:0]/q_out_bridge[31:0]). Then these parallels signals are interpolated and ΣΔ modulated before being fed to
the FIR_DACs. The figure below shows the I2S interface in its context in mode B:
Q_RX
iism_sd_i_out
I_OUT
mux
i_in_bridge[31:0]
N
mux
I_RX
ADC
q_in_bridge[31:0]
N
iism_sd_q_out
RX BRIDGE
in_rdy
iism_ws
CLK_XTAL
out_rdy
TX BRIDGE
mux
I_TX
DAC
mux
Q_TX
DAC
I2S INTERFACE
I_IN
ΣΔ
N
ΣΔ
N
i_out_bridge[31:0]
iism_sd_i_in
q_out_bridge[31:0]
iism_sd_q_in
Q_OUT
mux
ADC
DIO2
EXTERNAL
BASEBAND
CHIP
Q_IN
mux
iism_sck_out
CLK_XTAL
mux
CLK_OUT
CLK_IN
XTAL
Figure 15. The I2S interface block in its context (mux cells are included in PAD_CTL block)
In B mode, the I2S interface is master of the I2S bus. The block generates the usual I2S signal, the clock CLK_OUT, the
word select WS (available on DIO2 pin) and one or two serial data. It also samples the serial data coming from the external
chip.
Mode B1 is an extension of the I2S format, where the I and Q serial data are not multiplexed on the same line but put or
accepted on 2 pins I_OUT/Q_OUT or I_IN/Q_IN respectively in I2S transmitter mode or in I2S receiver mode. In mode B1,
the WS frequency corresponds to half of the sampling rate of the parallel I/Q signals.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 27
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
The figure below shows the timing diagram in B1 mode for samples of 8 bits wide, as an example, actually the number of
bits is variable, as explained later on in this document.
CLK_OUT
WS
I_OUT or
I_IN
In-1[1]
In-1[0]
In[7]
In[6]
In[1]
In[0]
In+1[7]
In+1[6]
Qn+1[7]
Qn+1[6]
Nth sample of I
Q_OUT or
Q_IN
Qn-1[1]
Qn-1[0]
Qn[7]
Qn[6]
Qn[1]
Qn[0]
Nth sample of Q
Figure 16. Timing diagram of I and Q interfaces in mode B1
Mode B2 is purely I2S compatible and the I/Q serial data is multiplexed on the I_OUT pin (Tx mode) or pin I_IN (Rx mode).
Serial data with WS polarity set to “0” corresponds to I signal while WS polarity set to “1” corresponds to Q signal.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 28
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
The figure below shows an example of timing diagram in B2 mode:
CLK_OUT
WS
IQ_OUT or
IQ_IN
Qn-1[1]
Qn-1[0]
In[7]
In[1]
In[6]
In[0]
Qn[6]
Qn[7]
Nth sample of I
Figure 17. Timing diagram of I and Q interfaces in mode B2
In B mode the WS is one CLK_OUT clock period ahead of time.
The digital bridge and the I2S interface are automatically started in Tx and Rx mode as soon as the corresponding modes
are activated. Disabled control bits are available in test mode.
The full duplex run is possible, but the user must be aware that in this case input and output I2S frames have the same
format, hence the decimator and interpolation factors must be identical.
4.4.3.2. Parameters
Two main parameters are programmable:
- the decimation/interpolation factor
- the frequency of the output clock CLK_OUT.
The decimation/interpolation factor is programmable on 2 sets of 14 values.The ratios are defined as follows:
m
R = MANT ⋅ 3 ⋅ 2
n
where MANT is 8 for the 1st set and 9 for the 2nd set, m can be 0 or 1, and n is an integer between 0 and 6.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 29
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
The ratios available and the corresponding sampling rates are given in the tables below for 32MHz, 36.864MHz and
Sampling Rates vs
Decimation /
Interpolation factor
[MS/s]
8
16
24
32
48
64
96
128
192
256
384
512
768
1536
32MHz xtal
4
2
1.333
1
0.667
0.5
0.333
0.25
0.167
0.125
0.083
0.063
0.042
0.021
36.864MHz xtal
4.608
2.304
1.536
1.152
0.768
0.576
0.384
0.288
0.192
0.144
0.096
0.072
0.048
0.024
36
54
72
108
144
216
288
432
576
864
0.167
0.125
0.083
0.063
0.042
Table 13 Sampling rates 1st set
36MHz crystals.
Sampling Rates
vs Decimation /
Interpolation factor
[MS/s]
36MHz xtal
9
4
18
2
27
1.333
1
0.667
0.5
0.333
0.25
1728
0.021
Table 14 Sampling rates 2nd set
Other frequencies between 32 and 36.9 MHz can be used with any decimation factor.
The frequency of the output clock CLK_OUT is equal to the crystal frequency divided by a ratio programmable on several
values which are 1, 2, 4, 8, 12, 16, 24, 32 and 48. In IISM test mode, any integer between 1 and 64 can be selected.
The number of bits per sample depends on the decimation/interpolation factor (2 sets of 14 values) as well as the
frequency of the CLK_OUT clock (9 possibilities) and the type of B mode. The allowed number of bits is between 8 and 32.
In IISM test mode, any number of bits between 4 and 32 can be selected. Less than 4 bits is not possible for
implementation reason
In B2 mode, there is a new I/Q sample every period of WS. In B1 mode, there are two I/Q samples every WS period, and
the WS frequency is reduced by a factor of 2. This mode allows to allocate twice more bits per I/Q sample.
Only a limited number of parameters combination generate valid I2S frames. Therefore the valid combination are clearly
documented and the other ones aborts the I2S interface. The tables below illustrate this statement. Depending on the
XTAL/CLK_OUT divider and the decimation/interpolation factor, the number of bits per samples are computed for the 2
predefined sets. Combination with a number of bits higher than 32 and lower than 8 are disabled in functional mode (“NA”)
and an error bit is set.
CLK_OUT/XTAL
1
2
4
8
12
16
24
32
48
8
8
NA
NA
NA
NA
NA
NA
NA
NA
16
16
8
NA
NA
NA
NA
NA
NA
NA
Decimation/
interpolation factor
Table 15 Number of bits per sample for the 1st set and B1 mode
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 30
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
CLK_OUT/XTAL
DATASHEET
1
2
4
8
12
16
24
32
48
24
12
NA
NA
NA
NA
NA
NA
NA
32
32
16
8
NA
NA
NA
NA
NA
NA
48
NA
24
12
NA
NA
NA
NA
NA
NA
64
NA
32
16
8
NA
NA
NA
NA
NA
96
NA
NA
24
12
8
NA
NA
NA
NA
128
NA
NA
32
16
NA
8
NA
NA
NA
192
NA
NA
NA
24
16
12
8
NA
NA
256
NA
NA
NA
32
NA
16
NA
8
NA
384
NA
NA
NA
NA
32
24
16
12
8
512
NA
NA
NA
NA
NA
32
NA
16
NA
768
NA
NA
NA
NA
NA
NA
32
24
16
1536
NA
NA
NA
NA
NA
NA
NA
NA
32
Decimation/
interpolation factor
24
Table 15 Number of bits per sample for the 1st set and B1 mode
CLK_OUT/XTAL
1
2
4
8
12
16
24
32
48
Decimation/
interpolation factor
9
9
NA
NA
NA
NA
NA
NA
NA
NA
18
18
9
NA
NA
NA
NA
NA
NA
NA
27
27
NA
NA
NA
NA
NA
NA
NA
NA
36
NA
18
9
NA
NA
NA
NA
NA
NA
54
NA
27
NA
NA
NA
NA
NA
NA
NA
72
NA
NA
18
9
NA
NA
NA
NA
NA
108
NA
NA
27
NA
9
NA
NA
NA
NA
144
NA
NA
NA
18
12
9
NA
NA
NA
216
NA
NA
NA
27
18
NA
9
NA
NA
288
NA
NA
NA
NA
24
18
12
9
NA
432
NA
NA
NA
NA
NA
27
18
NA
9
576
NA
NA
NA
NA
NA
NA
24
18
12
864
NA
NA
NA
NA
NA
NA
NA
27
18
1728
NA
NA
NA
NA
NA
NA
NA
NA
NA
Table 16 Number of bits per sample for the 2nd set and B1 mode
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 31
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
CLK_OUT/XTAL
DATASHEET
1
2
4
8
12
16
24
32
48
NA
NA
NA
NA
NA
NA
NA
NA
NA
16
8
NA
NA
NA
NA
NA
NA
NA
NA
24
12
NA
NA
NA
NA
NA
NA
NA
NA
32
16
8
NA
NA
NA
NA
NA
NA
NA
48
24
12
NA
NA
NA
NA
NA
NA
NA
64
32
16
8
NA
NA
NA
NA
NA
NA
96
NA
24
12
NA
NA
NA
NA
NA
NA
128
NA
32
16
8
NA
NA
NA
NA
NA
192
NA
NA
24
12
8
NA
NA
NA
NA
256
NA
NA
32
16
NA
8
NA
NA
NA
384
NA
NA
NA
24
16
12
8
NA
NA
512
NA
NA
NA
32
NA
16
NA
8
NA
768
NA
NA
NA
NA
32
24
16
12
8
1536
NA
NA
NA
NA
NA
NA
32
24
16
Decimation/
interpolation factor
8
Table 17 Number of bits per sample for the 1st set and B2 mode
CLK_OUT/XTAL
1
2
4
8
12
16
24
32
48
9
NA
NA
NA
NA
NA
NA
NA
NA
NA
18
9
NA
NA
NA
NA
NA
NA
NA
NA
27
NA
NA
NA
NA
NA
NA
NA
NA
NA
36
18
9
NA
NA
NA
NA
NA
NA
NA
54
27
NA
NA
NA
NA
NA
NA
NA
NA
72
NA
18
9
NA
NA
NA
NA
NA
NA
Decimation/
interpolation factor
108
NA
27
NA
NA
NA
NA
NA
NA
NA
144
NA
NA
18
9
NA
NA
NA
NA
NA
216
NA
NA
27
NA
9
NA
NA
NA
NA
288
NA
NA
NA
18
12
9
NA
NA
NA
432
NA
NA
NA
27
18
NA
9
NA
NA
576
NA
NA
NA
NA
24
18
12
9
NA
864
NA
NA
NA
NA
NA
27
18
NA
9
1728
NA
NA
NA
NA
NA
NA
NA
27
18
Table 18 Number of bits per sample for the 2nd set and B2 mode
The parallel I/Q data bus is expected to be 32-bits wide. Hence, if the number of bits per frame is lower, the I/Q data is
truncated, either MSBs or the LSBs are taken, according to a configuration bit, iism_trunc_mode.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 32
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
5. Configuration and Status Registers
5.1. General Description
Notes
- Reset values are automatically refreshed at Power on Reset
- DEFAULT values are the Semtech recommended register values, optimizing the device operation
- Registers for which the DEFAULT value differs from the RESET values are denoted by a * in the tables of this
section
Address
Bits
Name
Mode Reset
Description
General registers
MODE
(0x00)
7-4
-
r
0x00
unused
3
driver_enable
rw
0x00
enables the PA driver
2
tx enable
rw
0x00
enables the complete TX part of the frontend (except the PA)
1
rx_enable
rw
0x00
enables the complete RX part of the frontend
0
ref_enable
rw
0x01
enables the PDS & XOSC
FRFH_RX
(0x01)
7-0
freq_rf_rx(23:16)
rw
0xC0 MSB of RF RX carrier frequency
FRFM_RX
(0x02)
7-0
freq_rf_rx(15:8)
rw
0xE3 MSB of RF RX carrier frequency
FRFL_RX
(0x03)
7-0
freq_rf_rx(7:0)
rw
0x8E LSB of RF RX carrier frequency
F(XOSC) ⋅ freq_rf_rx
f RF_RX = ----------------------------------------------------20
2
Resolution is 34.3323 Hz if F(XOSC) = 36 MHz. Default value
is 0xC0E38E = 434 MHz. The RX RF frequency is taken into
account internally only when:
- FRFL_RX is written
- leaving SLEEP mode (ref_enable 0 1 transition)
FRFH_TX
(0x04)
7-0
freq_rf_tx(23:16)
rw
0xC0 MSB of RF TX carrier frequency
FRFM_TX
(0x05)
7-0
freq_rf_tx(15:8)
rw
0xE3 MSB of RF TX carrier frequency
FRFL_TX
(0x06)
7-0
freq_rf_tx(7:0)
rw
0x8E LSB of RF TX carrier frequency
F(XOSC) ⋅ freq_rf_txf RF_TX = ---------------------------------------------------20
2
Resolution is 34.3323 Hz if F(XOSC) = 36 MHz. Default value
is 0xC0E38E = 434 MHz. The TX RF frequency is taken into
account internally only when:
- FRFL_TX is written
- leaving SLEEP mode (ref_enable 0 1 transition)
VERSION
(0x07)
7-0
chip_version(7:0)
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
r
0x11
Version code of the chip. Bits 7-4 give the fill revision number,
bits 3-0 give the metal mask revision number.
Current value is V1A
Page 33
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
Address
Bits
Name
DATASHEET
Mode Reset
Description
Transmitter registers
TXFE1
(0x08)
TXFE2
(0x09)
TXFE3
(0x0A)
TXFE4
(0x0B)
7
unused
r
0x00
6-4
tx_dac_gain(2:0)
rw
0x02
3-0
tx_mixer_gain(3:0)
rw
0x0E Mixer gain, steps of about 2 dB:
*
Actual gain ≅ -37.5 dB + 2.tx_mixer_gain(3:0)
7-6
-
r
0x00
unused
5-3
tx_mixer_tank_cap(2:0)
rw
0x04
Capacitance in parallel with the mixer tank:
Cap = 128 * tx_mixer_tank_cap(2:0) [fF]
2-0
tx_mixer_tank_res(2:0)
rw
0x04
*
Resistance in parallel with the mixer tank:
000 -> 0.95 kΩ
100 -> 2.18 kΩ
001 -> 1.11 kΩ
101 -> 3.24 kΩ
010 -> 1.32 kΩ
110 -> 6.00 kΩ
011 -> 1.65 kΩ
111 -> none => about 64 kΩ
7
-
r
0x00
unused
6-5
tx_pll_bw
rw
0x03
Tx PLL bandwidth
PLL BW = (rx_pll_bw + 1)*75 KHz
4-0
tx_filter_bw(4:0)
rw
0x00
Tx analog filter bandwidth DSB:
BW3dB = 17.15 / (41 - tx_filter_bw(4:0)) MHz
7-3
-
rw
0x00
unused
2-0
tx_dac_bw(2:0)
rw
0x02
Number of taps of FIR-DAC:
Actual number of taps = 24 + 8.tx_dac_bw(2:0) (max = 64)
DAC gain, steps of 3 dB:
000 => Max gain - 9 dB
001 => Max gain - 6 dB
010 => Max gain - 3 dB
011 => Max gain, 0 dBFS -> rail-to-rail signal
100 and higher: test modes not recommended:
100 => Max gain - 9 dB with test Vref voltage
101 => Max gain - 6 dB with test Vref voltage
110 => Max gain - 3 dB with test Vref voltage
111 => Max gain, 0 dBFS with test Vref voltage
Receiver registers
RXFE1
(0x0C)
7-5
rx_lna_gain(2:0)
rw
0x01
LNA gain setting:
000 not used
001 G1 = highest gain low power – 0 dB
010 G2 = highest gain low power – 6 dB
011 G3 = highest gain low power – 12 dB
100 G4 = highest gain low power – 24 dB
101 G5 = highest gain low power – 36 dB
110 G6 = highest gain low power – 48 dB
111 not used
4-1
rx_pga_gain(3:0)
rw
0x0F
PGA gain setting:
Gain=lowest gain + 2dB * rx_pga_gain
0
rx_zin_200
rw
0x01
change of input impedance
0: 50 ohm
1: 200 ohm
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 34
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
Address
Bits
Name
RXFE2
(0x0D)
7:5
rx_adc_bw(2:0)
rw
0x07
4:2
rx_adc_trim(2:0)
rw
0x05* Rx ΣΔ ADC Trimming for 36MHz crystal
1-0
rx_pga_bw(1:0)
rw
0x01
7:3
unused
r
0x00
2:1
rx_pll_bw(1:0)
rw
0x03
Rx PLL bandwidth
PLL BW = (rx_pll_bw + 1)*75 KHz
0
rx_adc_temp
rw
0x00
Sets the Rx ADC into temperature measurement mode.
RXFE3
(0x0E)
Mode Reset
Description
RX ΣΔ ADC bandwidth configuration
For BW>400kHz SSB use 0x07
For 200kHz< BW mode B1
10 -> mode B2
11 -> not used
3-0
iism_clk_div[3:0]
rw
0x00
XTAL/CLK_OUT division factor
0000 -> 1
0001 -> 2
0010 -> 4
0011 -> 8
0100 -> 12
0101 -> 16
0110 -> 24
0111 -> 32
1000 -> 48 higher values not used
7
int_dec_mantisse
rw
0x00
interpolation/decimation factor = mant * 3^m * 2^n
0 -> 1st set; mant=8
1 -> 2nd set; mant=9
6
int_dec_m_parameter
rw
0x00
interpolation/decimation factor = mant * 3^m * 2^n
m value
5-3
int_dec_n_parameter
rw
0x00
interpolation/decimation factor = mant * 3^m * 2^n
n value (accepted values 0 to 6)
2
IISM_truncation
rw
0x00
IISM truncation mode in Rx and Tx
0 -> MSB is truncated, alignement on LSB
1 -> LSB is truncated, alignement on MSB
1
IISM_status_flag
r
0x00
IISM error status bit when selected factors force IISM off
0 -> no error
1 -> error, IISM off
0
unused
r
0x00
IISM
(0x12)
DIG_BRIDGE
(0x13)
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Mode Reset
Description
Page 36
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
6. Application Information
6.1. Crystal Resonator Specification
The specification for the crystal resonator of the reference oscillator circuit block is tabulated below in Table 19.
Table 19 Crystal Resonator Specification
Symbol
Description
Min
Typ
Max
Units
FXOSC
XTAL Frequency
32
-
36.864
MHz
RS
XTAL Series Resistance
-
30
140
Ω
C0
XTAL Shunt Capacitance
-
2.8
7
pF
CLOAD
External Foot Capacitance
8
16
22
pF
Notes
Conditions
On each pin XTA and XTB
- The initial frequency tolerance, temperature stability and aging performance should be chosen in accordance
with the target operating temperature range and the receiver bandwidth selected
- The loading capacitance should be applied externally, and adapted to the actual Cload specification of the XTAL
6.2. Reset of the Chip
A power-on reset of the SX1255 is automatically triggered at power up. Additionally, a manual reset can be issued by
controlling the RESET pin (pin 9).
6.2.1. POR
If the application requires the disconnection of VDD from the SX1255, despite the extremely low Sleep Mode current, the
user should wait for 10 ms from of the end of the POR cycle before commencing communications over the SPI bus. Pin 9
(RESET) should be left floating during the POR sequence.
VDD
Pin 9
(Output)
Undefined
Wait for 10 ms
SX1255
SX1257 is ready from
this point on
Figure 18. POR Timing Diagram
Please note that xosc_ready on DIO2 can be used to detect that the chip is ready.
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 37
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
6.2.2. Manual Reset
A manual reset of the SX1255 is possible even for applications in which VDD cannot be physically disconnected. Pin 9
should be pulled high for a hundred microseconds, and then released. The user should then wait for 5 ms before using the
chip.
VDD
Pin 9
(Input)
High-Z
“1”
High-Z
> 100 us
Wait for 5 ms
SX1255
SX1257 is ready from
this point on
Figure 19. Manual Reset Timing Diagram
Please note that whilst pin 9 is driven high, an over current consumption of 10 mA may be observed on VDD
6.3. TX Noise Shaper
In order to generate a single TX bit-stream, th 8-bit I and Q signal should be processed by an external third order sigmadelta modulator (implemented within the baseband processor). The noise shaper should be stable for input signals lower
than -3dBFS and compatible with SX1255 noise requirements. It is advised that the integrator outputs are saturated to
avoid any wraparound of the 2’s-complement digital word.
A representative block diagram of a single-bit feed-forward modulator is illustrated below.
Figure 20. Example Digital Modulator Implementation
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 38
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
6.4. Reference Design
Please contact your Semtech representative for evaluation tools, reference designs and design assistance. Note that all
schematics shown in this section are full schematics, listing ALL required components, including those required for power
supply decoupling.
Figure 21. SX1255 Application Schematic
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 39
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
7. Packaging Information
7.1. Package Outline Drawing
A
D
B
DIM
PIN 1
INDICATOR
(LASER MARK)
A
A1
A2
b
D
D1
E
E1
e
L
N
aaa
bbb
E
A2
A
SEATING
PLANE
aaa C
DIMENSIONS
MILLIMETERS
INCHES
MIN NOM MAX MIN NOM MAX
.028 .030 .031
- .002
.000
- (.008) .008 .010 .012
.193 .197 .201
.118 .122 .126
.193 .197 .201
.118 .122 .126
.020 BSC
.012 .016 .020
32
.003
.004
0.70 0.75 0.80
- 0.05
0.00
- (0.20) 0.18 0.25 0.30
4.90 5.00 5.10
3.00 3.10 3.20
4.90 5.00 5.10
3.00 3.10 3.20
0.50 BSC
0.30 0.40 0.50
32
0.08
0.10
C
A1
D1
LxN
E/2
E1
2
1
N
bxN
e
bbb
C A B
D/2
NOTES:
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
Figure 22. Package Outline Drawing
7.2. Recommended Land Pattern
H
(C)
DIMENSIONS
Z
K
G
Y
X
DIM
C
G
H
K
P
X
Y
Z
INCHES
(.193)
.161
.130
.130
.020
.012
.031
.224
MILLIMETERS
(4.90)
4.10
3.30
3.30
0.50
0.30
0.80
5.70
P
NOTES:
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR
COMPANY'S MANUFACTURING GUIDELINES ARE MET.
3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR
FUNCTIONAL PERFORMANCE OF THE DEVICE.
4. SQUARE PACKAGE-DIMENSIONS APPLY IN BOTH X AND Y DIRECTIONS.
Figure 23. Recommended Land Pattern
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 40
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
7.3. Thermal Impedance
The thermal impedance of this package is: Theta ja = 23.8° C/W typ., calculated from a package in still air, on a 4-layer
FR4 PCB, as per the Jedec standard.
7.4. Tape and Reel Specification
Figure 24. Tape and Reel Specification
Carrier Tape (mm)
Reel (mm)
Tape Width
(W)
Pocket
Pitch
(P)
AO / B O
KO
Reel Size
12 +/- 0.30
8 +/- 0.20
5.25
+/- 0.20
1.10
+/- 0.10
330.2
Note
Reel Width Min. Trailer
Length
(mm)
12.4
400
Min.
Leader
Length
(mm)
QTY per
Reel
400
3000
Single sprocket holes
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 41
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
8. Revision History
Table 20 Datasheet Revision History
Revision
Date
1.0
February 2013
2.0
May 2013
3.0
October 2013
Comment
First Datasheet revision
Updated specifications after part characterization
Add wafer sale part number
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 42
www.semtech.com
SX1255
WIRELESS & SENSING PRODUCTS
DATASHEET
© Semtech 2013
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable
and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication
thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes
no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper
installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to
parameters beyond the specified maximum ratings or operation outside the specified range.
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN
LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF
SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S
OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall
indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs damages and attorney fees which could arise.
Contact information
Semtech Corporation
Wireless & Sensing Products Division
200 Flynn Road, Camarillo, CA 93012
Phone: (805) 498-2111 Fax: (805) 498-3804
E-mail: sales@semtech.com
support_rf@semtech.com
Internet: http://www.semtech.com
SX1255 - Rev. 3.0
October 2013 ©2013 Semtech Corporation
Page 43
www.semtech.com