0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
G1420F31U

G1420F31U

  • 厂商:

    GMT(致新科技)

  • 封装:

  • 描述:

    G1420F31U - 2W Stereo Audio Amplifier - Global Mixed-mode Technology Inc

  • 数据手册
  • 价格&库存
G1420F31U 数据手册
Global Mixed-mode Technology Inc. G1420 2W Stereo Audio Amplifier Features Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V --1.8W/CH (typical) into a 4Ω Load --1.2W/CH (typical) into a 8Ω Load Bridge-Tied Load (BTL), Single-Ended (SE) Stereo Input MUX Mute and Shutdown Control Available Surface-Mount Power Package 24-Pin TSSOP-P General Description G1420 is a stereo audio power amplifier in 24pin TSSOP thermal pad package. It can drive 1.8W continuous RMS power into 4Ω load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1420 supports the Bridge-Tied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. G1420 can mute the output when Mute-In is activated. For the low current consumption applications, the SHDN mode is supported to disable G1420 when it is idle. The current consumption can be further reduced to below 5µA. G1420 also supports two input paths, that means two different gain loops can be set in the same PCB and choosing either one by setting HP/ LINE pin. It enhances the hardware designing flexibility. Applications Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio Systems Ordering Information ORDER NUMBER G1420F31U Note: F3: TSSOP-24 (FD) U: Tape & Reel ORDER NUMBER (Pb free) G1420F31Uf TEMP. RANGE -40°C to +85°C PACKAGE TSSOP-24 (FD) Pin Configuration G1420 GND/HS TJ LOUT+ LLINEIN LHPIN LBYPASS LVDD SHUTDOWN MUTE OUT 1 2 3 4 5 6 7 8 9 24 23 22 21 20 19 18 17 16 15 14 13 GND/HS NC ROUT+ ROUT+ RLINEIN RHPIN RBYPASS RVDD NC HP/LINE ROUTSE/BTL GND/HS 14 Thermal Pad LOUT- 10 MUTE IN 11 GND/HS 12 Top View TSSOP-24 (FD) Bottom View Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation. Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 1 Global Mixed-mode Technology Inc. Absolute Maximum Ratings Supply Voltage, VCC…………………..…..…….……...6V Operating Ambient Temperature Range TA…….…………………………….……….40°C to +85°C Maximum Junction Temperature, TJ…….…….…150°C Storage Temperature Range, TSTG……-65°C to+150°C Reflow Temperature (soldering, 10sec)…………260°C G1420 Power Dissipation (1) TA ≤ 25°C…………………………………………..2.7W TA ≤ 70°C…………………………………………..1.7W TA ≤ 85°C………………….……………………….1.4W Electrostatic Discharge, VESD Human body mode..…………………….-3000 to 3000(2) Note: (1) (2) : Recommended PCB Layout : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses Electrical Characteristics DC Electrical Characteristics, TA=+25°C PARAMETER Supply Current SYMBOL IDD VDD = 5V CONDITIONS VDD =3.3V Stereo BTL Stereo SE Stereo BTL MIN --------------- TYP 7 3.5 8 4 5 8 4 2 MAX 13 8 16 10 50 16 10 5 UNIT mA DC Differential Output Voltage Supply Current in Mute Mode IDD in Shutdown VO(DIFF) IDD(MUTE) ISD Stereo SE VDD = 5V,Gain = 2 Stereo BTL Stereo SE mV mA µA VDD = 5V VDD = 5V (AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER SYMBOL CONDITIONS THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω Output power (each channel) see Note P(OUT) THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω Total harmonic distortion plus noise THD+N PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD = 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz MIN ----------------------------------------------- TYP 1.8 1.12 2 1.4 500 320 650 400 90 500 150 20 10 20 60 75 85 82 80 85 2 90 55 MAX ----------------------------------------------- UNIT W mW m% Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage BOM PSRR kHz ° dB dB dB dB dB MΩ dB µV (rms) ZI PO = 500mW, BTL Vn Output noise voltage Note :Output power is measured at the output terminals of the IC at 1kHz. Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 2 Global Mixed-mode Technology Inc. (AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER SYMBOL CONDITIONS THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz G1420 MIN ----------------------------------------------- TYP 0.8 0.5 1 0.6 230 140 290 180 43 270 100 20 10 20 60 75 85 80 80 85 2 90 55 MAX ----------------------------------------------- UNIT W Output power (each channel) see Note P(OUT) mW Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage THD+N BOM PSRR m% kHz ° dB dB dB dB dB MΩ dB µV (rms) ZI Vn PO = 500mW, BTL Output noise voltage Note :Output power is measured at the output terminals of the IC at 1kHz. Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 3 Global Mixed-mode Technology Inc. Typical Characteristics THD +N Total Harmonic Distortion Plus Noise Output Noise Voltage Vn Supply Ripple Rejection Ratio Crosstalk Closed Loop Response Supply Current Output Power Power Dissipation vs Output Power vs Frequency vs Frequency vs Frequency vs Frequency vs Frequency vs Supply Voltage vs Load Resistance vs Load Resistance vs Output Power G1420 FIGURE Table of Graphs 1,3,6,9,10,13,16,19,22,25,28,31 2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33 34,35 36,37 38,39,40,41 42,43,44,45 46 47,48 49,50 51,52,53,54 IDD PO PD Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 5 Total Harmonic Distortion Plus Noise vs Output Frequency 20kHz 2 1 0.5 % 0.2 0.1 0 .05 2 1 Po=1.8W 1kHz % 0.5 0.2 0.1 20 Hz Po=1.5W 0 .02 0 .01 3m VDD=5V RL=3Ω BTL 20m 5 0m 1 00m W 20 0m 500 m 1 2 3 0 .05 VDD=5V RL=3Ω BTL A v=-2V/V 0 .02 0 .01 20 5m 10m 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 1 Figure 2 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 5 Total Harmonic Distortion Plus Noise vs Output Frequency A v=-4V/V 2 1 2 1 0.5 % 0.2 0.1 0 .05 20kHz A v=-2V/V 1kHz % 0.5 0.2 0.1 20 Hz 0 .02 0 .01 3m VDD=5V RL=4Ω BTL 20m 5 0m 1 00m W 20 0m 500 m 1 2 3 A v=-1V/V 0 .05 0 .02 0 .01 20 VDD=5V RL=4Ω BTL Po=1.5W 1k 2k 5k 10 k 20k 5m 10m 50 10 0 2 00 5 00 Hz Figure 3 Figure 4 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 4 Global Mixed-mode Technology Inc. G1420 Total Harmonic Distortion Plus Noise vs Output Power VDD=5V RL=8Ω BTL A v=-2V/V Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=4Ω BTL A v=-2V/V 5 Po=1.5W Po=0.25W % 2 1 0.5 20kHz 0.2 1kHz Po=0.75W 0.1 0 .05 0 .02 0 .01 20 0 .02 0 .01 3m 20Hz 5m 10m 20m 5 0m 1 00m W 20 0m 500 m 1 2 3 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 5 Figure 6 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=8Ω BTL A v=-2V/V Po=0.25W Po=1W 2 1 0.5 % 0.2 0.1 VDD=5V RL=8Ω BTL Po=1W A v=-2V/V A v=-4V/V Po=0.5W 0 .05 0 .02 0 .01 20 0 .02 0 .01 20 Av=-1V/V 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 7 Figure 8 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 5 Total Harmonic Distortion Plus Noise vs Output Power 20kHz 2 1 0.5 % 0.2 0.1 0 .05 2 1 20kHz 1kHz % 0.5 1kHz 0.2 0.1 0 .02 0 .01 1m VDD=3.3V RL=3Ω BTL 2m 5m 1 0m 20Hz 0 .05 0 .02 0 .01 1m VDD=3.3V RL=4Ω BTL 2m 5m 1 0m 20Hz 20 m W 50 m 10 0m 2 00 m 500 m 1 20 m W 50 m 10 0m 2 00 m 500 m 1 Figure 9 Figure 10 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 5 Global Mixed-mode Technology Inc. G1420 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=4Ω BTL Po=0.65W A v=-4V/V A v=-2V/V 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=4Ω BTL A v=-2V/V Po=0.7W Po=0.1W Po=0.35W A v=-1V/V 0 .02 0 .01 20 0 .02 0 .01 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10k 20k 50 100 2 00 5 00 Hz 1k 2k 5k 10k 20k Figure 11 Figure 12 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 20kHz VDD=3.3V RL=8Ω BTL 2 1 0.5 VDD=3.3V RL=8Ω BTL Po=0.4W A v=-2V/V A v=-4V/V 1kHz % 0.2 0.1 0.05 20Hz 0 .02 0 .01 1m 0.02 0.01 20 A v=-1V/V 2m 5m 10m 20 m W 50 m 10 0m 2 00m 500 m 1 50 10 0 200 500 Hz 1k 2k 5k 10 k 20k Figure 13 Figure 14 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Power 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=8Ω BTL A v=-2V/V 2 VDD=5V RL=4Ω SE 20kHz Po=0.4W 1 0.5 Po=0.1W % 0.2 0.1 0.05 1kHz Po=0.25W 0 .02 0 .01 20 100Hz 0.02 0.01 1m 20k 50 10 0 2 00 5 00 Hz 1k 2k 5k 10k 2m 5m 1 0m 20m W 50 m 10 0m 2 00 m 500 m 1 Figure 15 Figure 16 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 6 Global Mixed-mode Technology Inc. G1420 Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=4Ω SE Po=0.5W 5 A v=-4V/V 2 1 0.5 VDD=5V RL=4Ω SE A v=-2V/V Po=0.4W A v=-2V/V % 0.2 0.1 0 .05 Po=0.1W A v=-1V/V Po=0.25W 0 .02 0 .01 20 0 .02 0 .01 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 17 Figure 18 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=8Ω SE 20kHz % 2 1 0.5 VDD=5V RL=8Ω SE Po=0.25W A v=-2V/V 0.2 0.1 1kHz 100Hz 2m 5m 1 0m 20 m W 50 m 10 0m 2 00 m 500 m 1 A v=-4V/V 0 .05 0 .02 0 .01 1m 0 .02 0 .01 20 A v=-1V/V 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 19 Figure 20 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Power 5 2 1 0.5 0.2 % 0.1 0 .05 0 .02 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=8Ω SE A v=-2 Po=0.05W VDD=5V RL=32Ω SE 20kHz 20Hz Po=0.1W Po=0.25W 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .01 0.0 05 0.0 02 0.0 01 1m 0 .02 0 .01 20 1kHz 2m 5m 10 m W 20 m 50m 10 0m 2 00m Figure 21 Figure 22 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 7 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 2 1 0.5 0.2 % 0.1 0 .05 0 .02 0 .01 0.0 05 0.0 02 0.0 01 20 % 10 G1420 Total Harmonic Distortion Plus Noise vs Output Frequency VDD=5V RL=32Ω SE Po=75mW 5 2 1 VDD=5V RL=32Ω SE Po=25mW Av=-4V/V 0.5 0.2 0.1 0 .05 0 .02 0 .01 0.0 05 A v=-2V/V Po=50mW A v=-1V/V 0.0 02 0.0 01 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 50 10 0 2 00 5 00 Hz 1k Po=75mW 2k 5k 10 k 20k Figure 23 Figure 24 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=4Ω ,SE A v=-2 20kHz 2 1 0.5 % VDD=3.3V RL=4Ω SE Po=0.2W A v=-4V/V 1kHz 0.2 0.1 0 .05 A v=-2V/V 0 .02 0 .01 1m 100Hz 2m 5m 1 0m 20 m W 50 m 10 0m 2 00 m 500 m 1 0 .02 0 .01 20 A v=-1V/V 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 25 Figure 26 Total Harmonic Distortion Plus Noise vs Output Frequency 10 Total Harmonic Distortion Plus Noise vs Output Power 10 5 RR 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=4Ω SE A v=-2 Po=50mW 2 1 0.5 % VDD=3.3V RL=8Ω ,SE A v=-2 20kHz Po=100mW 0.2 0.1 0 .05 1kHz 0 .02 0 .01 20 Po=150mW 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .02 0 .01 1m 100Hz 2m 5m 10 m W 20 m 50m 10 0m 2 00m Figure 27 Figure 28 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 8 Global Mixed-mode Technology Inc. G1420 Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=8Ω SE Po=100mW 2 1 0.5 % 0.2 VDD=3.3V RL=8Ω SE Po=25mW Po=50mW A v=-4V/V A v=-2V/V 0.1 0 .05 0 .02 0 .01 20 A v=-1V/V 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .02 0 .01 20 Po=100mW 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 29 Figure 30 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=32Ω SE 20kHz 1kHz 1 0.5 0.2 % 0.1 0 .05 0 .02 VDD=3.3V RL=32Ω SE Po=30mW A v=-2V/V A v=-4V/V 20Hz 0 .01 0.0 05 A v=-1V/V 0 .02 0 .01 1m 0.0 02 0.0 01 20 2m 5m 1 0m W 2 0m 50 m 1 00m 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 31 Figure 32 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 2 1 0.5 0.2 % 0.1 0 .05 0 .02 0 .01 0.0 05 0.0 02 0.0 01 20 V Output Noise Voltage vs Frequency 10 0u 9 0u 8 0u 7 0u 6 0u VDD=3.3V RL=32Ω SE Po=10mW VDD=5V RL=4Ω BW=22Hz to 20kHz 5 0u 4 0u Vo BTL 3 0u Po=20mW 2 0u Vo SE Po=30mW 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 1 0u 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 33 Figure 34 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 9 Global Mixed-mode Technology Inc. G1420 Output Noise Voltage vs Frequency 10 0u 9 0u 8 0u 7 0u 6 0u 5 0u 4 0u V d B Supply Ripple Rejection Ratio vs Frequency +0 VDD=3.3V RL=4Ω T BW=22Hz to 20kHz -10 -20 -30 -40 -50 -60 Vo BTL VDD=5V RL=4Ω CB=4.7uF 3 0u BTL 2 0u Vo SE -70 -80 -90 SE 1 0u 20 50 1 00 2 00 5 00 Hz 1k 2k 5k 10k 20k -1 00 20 50 1 00 2 00 5 00 Hz 1k 2k 5k 10k 20k Figure 35 Figure 36 Supply Ripple Rejection Ratio vs Frequency +0 -10 -20 -30 -40 d B -50 -60 -70 -80 -90 -1 00 20 Crosstale vs Frequency -20 -25 T VDD=3.3V RL=4Ω CB=4.7uF -30 -35 -40 -45 -50 -55 d B -60 -65 -70 -75 -80 -85 VDD=5V Po=1.5W RL=4Ω BTL BTL L to R SE 50 1 00 2 00 5 00 Hz 1k 2k 5k 10k 20k -90 -95 -100 20 R to L 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 37 Figure 38 Crosstale vs Frequency -20 -25 -30 -35 -40 -45 -50 -55 d B -60 -65 -70 -75 -80 -85 -90 -95 -100 20 50 100 200 500 Hz 1k 2k 5k 10k 20k d B -30 Crosstale vs Frequency -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 VDD=3.3V Po=0.75W RL=4Ω BTL VDD=5V Po=75mW RL=32Ω SE L to R R to L R to L -90 -95 -1 00 20 50 10 0 20 0 50 0 Hz 1k 2k L to R 5k 10 k 20k Figure 39 Figure 40 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 10 Global Mixed-mode Technology Inc. G1420 Closed Loop Response Crosstale vs Frequency -30 -35 -40 -45 -50 -55 -60 d B -65 -70 -75 -80 -85 -90 -95 -1 00 20 50 10 0 20 0 50 0 Hz 1k 2k 5k VDD=3.3V Po=35mW RL=32Ω SE R to L L to R 10 k 20k Figure 41 Figure 42 Closed Loop Response Closed Loop Response Figure 43 Figure 44 Closed Loop Response 10 9 8 Supply Current(mA) 7 6 5 4 3 2 1 0 3 Supply Current vs Supply Voltage Stereo BTL Stereo SE 4 5 Supply Voltage (V) 6 Figure 45 Figure 46 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 11 Global Mixed-mode Technology Inc. G1420 Output Power vs Supply Voltage THD+N=1% SE Each Channel RL=8Ω Output Power vs Supply Voltage 2.5 THD+N=1% BTL Each Channel 0.7 0.6 Po-Output Power(W) RL=4Ω 0.5 0.4 0.3 0.2 0.1 0 2.5 3.5 4.5 Supply Voltage (V) 5.5 6.5 2.5 2 Po-Output Power (W) 1.5 RL=3Ω RL=8Ω 0.5 RL=4Ω RL=32Ω 1 0 3.5 4.5 Supply Voltage(V) 5.5 6.5 Figure 47 Figure 48 Output Power vs Load Resistance 2 1.8 1.6 Po-Output Power(W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 4 8 12 16 20 24 28 32 Load Resistance( Ω) VDD=3.3V VDD=5V THD+N=1% BTL Each Channel 0.7 0.6 Po-Output Power(W) 0.5 0.4 0.3 0.2 0.1 0 0 4 Output Power vs Load Resistance VDD=5V THD+N=1% SE Each Channel VDD=3.3V 8 12 16 20 24 Load Resistance( Ω) 28 32 Figure 49 Figure 50 Power Dissipation vs Output Power 1.8 1.6 Power Dissipation(W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 Po-Output Pow er(W) 2 2.5 RL=8Ω RL=4Ω VDD=5V BTL Each Channel RL=3Ω 0.8 0.7 Power Dissipation(W) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 Power Dissipation vs Output Power RL=3Ω RL=4Ω RL=8Ω VDD=3.3V BTL Each Channel 0.25 0.5 Output Pow er(W) 0.75 1 Figure 51 Figure 52 Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 12 Global Mixed-mode Technology Inc. G1420 Power Dissipation vs Output Power Power Dissipation vs Output Power 0.35 0.3 Power Dissipation(W) 0.25 0.2 0.15 0.1 0.05 0 0 0.2 0.4 Output Pow er(W) 0.6 0.8 RL=32Ω RL=8Ω VDD=5V SE Each Channel RL=4Ω Power Dissipation(W) 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0 RL=4Ω RL=8Ω VDD=3.3V SE Each Channel RL=32Ω 0.05 0.1 0.15 0.2 Output Pow er (W) 0.25 0.3 Figure 53 Figure 54 Recommended Minimum Footprint TSSOP-24 (FD) Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 13 Global Mixed-mode Technology Inc. Pin Description PIN 1,12,13,24 2 G1420 NAME GND/HS TJ I/O O FUNCTION Ground connection for circuitry, directly connected to thermal pad. Source a current inversely to the junction temperature. This pin should be left unconnected during normal operation. For more information, see the junction temperature measurement section of this document. Left channel + output in BTL mode, + output in SE mode. Left channel line input, selected when HP/ pin is held low. Left channel headphone input, selected when HP/pin is held high. Connect to voltage divider for left channel internal mid-supply bias. Supply voltage input for left channel and for primary bias circuits. Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD = 5µA. Follows MUTE IN pin, provides buffered output. Left channel - output in BTL mode, high impedance state in SE mode. Mute control signal input, hold low for normal operation, hold high to mute. 3 4 5 6 7 8 9 10 11 14 LOUT+ LLINE IN LHP IN LBYPASS LVDD SHUTDOWN MUTE OUT LOUTMUTE IN SE/ BTL O I I I I O O I I O I Mode control signal input, hold low for BTL mode, hold high for SE mode. Right channel - output in BTL mode, high impedance state in SE mode. MUX control input, hold high to select headphone inputs (5,20), hold low to select line inputs (4,21). Supply voltage input for right channel. Connect to voltage divider for right channel internal mid-supply bias. Right channel headphone input, selected when HP/pin is held high. Right channel line input, selected when HP/pin is held low. Right channel + output in BTL mode, + output in SE mode. Recommend connecting the Thermal Pad to the GND for excellent power dissipation. 15 16 17,23 18 19 20 21 22 Thermal Pad ROUTHP/ LINE NC RVDD RBYPASS RHP IN RLINE IN ROUT+ I I I O Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 14 Global Mixed-mode Technology Inc. Block Diagram 20k G1420 21 20 RLINEIN RHPIN RIGHT MUX _ ROUT+ ROUT- 22 15 19 RBYPASS + RVDD 18 11 9 8 MUTEIN MUTEOUT SHUTDOWN BIAS CIRCUITS MODES CONTROL CIRCUITS HP/LINE SE/BTL TJ 16 14 2 LVDD 7 6 LBYPASS + LOUTLOUT+ 10 3 5 4 LHPIN LLINEIN LEFT MUX _ 20k Parameter Measurement Information 11 8 MUTEIN SHUTDOWN HP/LINE SE/BTL 16 14 LVDD 6 CB 4.7µF CI AC source RI 5 4 LHPIN LLINEIN LEFT LEFT MUX LBYPASS 7 RL 4/8/32ohm + _ LOUTLOUT+ 10 3 RF BTL Mode Test Circuit Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 15 Global Mixed-mode Technology Inc. Parameter Measurement Information (Continued) G1420 11 8 MUTEIN SHUTDOWN HP/LINE SE/BTL 16 14 VDD LVDD 6 CB 4.7µF CI AC source RI 5 4 LHPIN LLINEIN LEFT LEFT MUX LBYPASS 7 + _ LOUTLOUT+ 10 3 RL 32ohm RF SE Mode Test Circuit Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 16 Global Mixed-mode Technology Inc. Application Circuits G1420 GND/HS TJ LOUT+ RFL 20KΩ CIR CFR AUDIO SOURCE 1µF RIR 10KΩ 1 2 3 4 5 6 19 8 9 10 11 12 24 23 22 21 20 7 GND/HS GND/HS NC ROUT+ RLINEIN RHPIN LVDD RVDD NC HP/LINE ROUTR CSR 4.7µF RIL 10KΩ CIL RFL 1µF AUDIO SOURCE 20KΩ CFL LLINEIN LHPIN LBYPASS RBYPASS 4.7µF G1420 18 17 16 15 14 13 R 100KΩ 4.7µF SHUTDWON MUTE OUT LOUTMUTE IN GND/HS COUTR 220µF SE/BTL 100KΩ 1KΩ 1 3 4 2 GND/HS 0.1µF PHONOJACK COUTR 220µF 1KΩ Logical Truth Table INPUTS Mute In HP/ LINE X X X Low High Low High ---High High Low Low Low Low SE/ BTL X Low High Low Low High High Shutdown High ------Low Low Low Low OUTPUT Mute Out ---High High Low Low Low Low Input X X X L/R Line L/R HP L/R Line L/R HP AMPLIFIER STATES L/R Out+ L/R Out---VDD/2 VDD/2 BTL Output BTL Output SE Output SE Output ---VDD/2 ---BTL Output BTL Output ------- Mode Mute Mute Mute BTL BTL SE SE Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 17 Global Mixed-mode Technology Inc. Application Information Input MUX Operation There are two input signal paths – HP & Line. With the prompt setting, G1420 allows the setting of different gains for BTL and SE modes. Generally, speakers typically require approximately a factor of 10 more gain for similar volume listening levels as compared with headphones. SE Gain(HP) = -(RF(HP)/RI(HP)) -2(RF(LINE)/RI(LINE)) fc -3 dB G1420 BTL Gain(LINE) = To achieve headphones and speakers listening parity, (RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)/ RI(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by the applications. When the optimum distortion performance into the headphones (clear sound) is important, gain of –1 ((RF(HP) / RI(HP)) = 1) is suggested. Figure B Bridged-Tied Load Mode Operation G1420 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure C shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors. VDD Single Ended Mode Operation G1420 can drive clean, low distortion SE output power into headphone loads (generally 16Ω or 32Ω) as in Figure A. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure B. fC=1/(2πRLCC) For example, a 68uF capacitor with 32Ω headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation. VDD VDD Vo(PP) Vo(PP) RL 2xVo(PP) -Vo(PP) CC RL Vo(PP) VDD Figure A Figure C Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 18 Global Mixed-mode Technology Inc. MUTE and SHUTDOWN Mode Operations G1420 implements the mute and shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 8) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1420 enters an extra low current consumption state, IDD is smaller than 5µA. If pulling mute-in pin (pin 11) high, it will force the activated linear amplifier to supply the VDD/2 dc voltage on the output to mute the AC performance. In mute mode operation, the current consumption will be a little different between BTL, SE. (SE < BTL) Typically, the supply current is about 2.5mA in BTL mute operation. Shutdown and Mute-In pins should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. Optimizing DEPOP Operation G1420 VDD 100 kΩ 50 kΩ Bypass Bypass 100 kΩ Figure D Junction Temperature Measurement Circuitry has been implemented in G1420 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)). Where 100kΩ is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. De-popping circuitry of G1420 is shown on Figure D. The PNP transistor limits the voltage drop across the 50kΩ by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit. Characterizing a PCB layout with respect to thermal impedance is very difficult, as it is usually impossible to know the junction temperature of the IC. G1420 TJ (pin 2) sources a current inversely proportional to the junction temperature. Typically TJ sources–120µA for a 5V supply at 25°C. And the slope is approximately 0.22µA/°C. As the resistors have a tolerance of ±20%, these values should be calibrated on each device. When the temperature sensing function is not used, TJ pin can be left floating or tied to VDD to reduce the current consumption. Temperature sensing circuit is shown on Figure E. VDD R R 5R TJ Figure E Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 19 Global Mixed-mode Technology Inc. Package Information D 24 D1 E1 E C G1420 L E2 1 Note 5 θ A2 A1 e b A TSSOP-24 (FD) Package NOTE: 1. Package body sizes exclude mold flash protrusions or gate burrs 2. Tolerance ±0.1mm unless otherwise specified 3. Coplanarity : 0.1mm 4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. 5. Die pad exposure size is according to lead frame design. 6. Follow JEDEC MO-153 SYMBOLS A A1 A2 b C D D1 E E1 E2 e L θ MIN ----0.00 0.80 0.19 0.20 7.7 4.4 4.30 2.7 0.45 0º DIMENSION IN MM NOM --------1.00 --------7.8 ----6.40 BSC 4.40 ----0.65 BSC 0.60 ----- MAX 1.20 0.15 1.05 0.30 ----7.9 4.9 4.50 3.2 0.75 8º MIN ----0.000 0.031 0.007 0.008 0.303 0.173 0.169 0.106 0.018 0º DIMENSION IN INCH NOM --------0.039 --------0.307 ----0.252 BSC 0.173 ----0.026 BSC 0.024 ----- MAX 0.047 0.006 0.041 0.012 ----0.311 0.193 0.177 0.126 0.030 8º Taping Specification PACKAGE TSSOP-24 (FD) Feed F eed Direction T ypical T S SO P Package O rientation Q’TY/REEL 2,500 ea GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications. Ver: 1.5 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 20
G1420F31U 价格&库存

很抱歉,暂时无法提供与“G1420F31U”相匹配的价格&库存,您可以联系我们找货

免费人工找货