0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
G1421F

G1421F

  • 厂商:

    GMT(致新科技)

  • 封装:

  • 描述:

    G1421F - 2W Stereo Audio Amplifier with No Headphone Coupling Capacitor Function - Global Mixed-mode...

  • 数据手册
  • 价格&库存
G1421F 数据手册
Global Mixed-mode Technology Inc. G1421 2W Stereo Audio Amplifier with No Headphone Coupling Capacitor Function Features Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V --1.8W/CH (typical) into a 4Ω Load --1.2W/CH (typical) into a 8Ω Load Eliminates Headphone Amplifier Output Coupling Capacitors Maximum Output Power Clamping Circuitry Integrated Bridge-Tied Load (BTL), Single-Ended (SE), and Stereo Headphone Amplifier (HP-IN) modes Supported Stereo Input MUX Mute and Shutdown Control Available Surface-Mount Power Package 24-Pin TSSOP-P General Description G1421 is a stereo audio power amplifier in 24pin TSSOP thermal pad package. It can drive 1.8W continuous RMS power into 4Ω load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1421 supports the Bridge-Tied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. In the HP-IN mode, it can support a DC value to the phone-jacket and drive the headphone without the audio amplifier outputs coupling capacitors. G1421 can mute the output when Mute-In is activated. For the low current consumption applications, the SHDN mode is supported to disable G1421 when it is idle. The current consumption can be further reduced to below 5µA. G1421 also supports two input paths, that means two different gain loops can be set in the same PCB and choosing either one by setting HP/ LINE pin. It enhances the hardware designing flexibility. G1421 also supports an extra function -- the maximum output power clamping function to protect the speakers or headphones from burned-out. Applications Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio Systems Ordering Information ORDER NUMBER G1421 Note: U: Tape & Reel (FD): Thermal Pad ORDER NUMBER (Pb free) G1421f TEMP. RANGE -40°C to +85°C PACKAGE TSSOP-24 (FD) Pin Configuration G1421 GND/HS TJ LOUT+ LLINEIN LHPIN LBYPASS LVDD SHUTDOWN MUTE OUT 1 2 3 4 5 6 7 8 9 24 23 22 21 20 19 18 17 16 15 14 13 GND/HS VOL ROUT+ ROUT+ RLINEIN RHPIN RBYPASS RVDD HP-IN HP/LINE ROUTSE/BTL GND/HS 14 Thermal Pad LOUT- 10 MUTE IN 11 GND/HS 12 Top View TSSOP-24 (FD) Bottom View Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation. Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 1 Global Mixed-mode Technology Inc. Absolute Maximum Ratings Supply Voltage, VDD……………………..………...…...6V Input Voltage, VI………………………-0.3V to VDD+0.3V Operating Ambient Temperature Range TA…….…………………………..….…….-40°C to +85°C Maximum Junction Temperature, TJ…..…………150°C Storage Temperature Range, TSTG….…-65°C to+150°C Reflow Temperature (soldering, 10sec)…………260°C Note: (1) (2) G1421 Power Dissipation (1) TA ≤ 25°C…………………………………………..2.7W TA ≤ 70°C…………………………………………..1.7W TA ≤ 85°C………………….……………………….1.4W Electrostatic Discharge, VESD Human body mode Lout- pin………………………..…………-8000 to 8000V Other pins………………………………...-3000 to 3000(2) : Recommended PCB Layout. : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses Electrical Characteristics DC Electrical Characteristics, TA=+25°C PARAMETER SYMBOL VDD =3.3V VDD = 5V CONDITION HP-IN HP-IN Stereo BTL VDD =3.3V Stereo SE Stereo BTL VDD = 5V Stereo SE VDD = 5V,Gain = 2 Stereo BTL VDD = 5V HP-IN Stereo SE VDD = 5V MIN ----------------------- TYP 5.5 6.5 7 3.5 8 4 5 8 6.5 4 2 MAX 11 14 13 8 16 10 50 16 14 10 5 UNIT Supply Current IDD mA DC Differential Output Voltage Supply Current in Mute Mode IDD in Shutdown VO(DIFF) IDD(MUTE) ISD mV mA µA (AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER SYMBOL CONDITION THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD =1% RL = 4Ω, Open Load f = 120Hz f = 1kHz MIN ----------------------------------------------- TYP 1.8 1.12 2 1.4 500 320 650 400 90 500 150 20 10 20 60 75 85 82 80 85 2 90 55 MAX ----------------------------------------------- UNIT W Output power (each channel) see Note P(OUT) mW Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage THD+N BOM PSRR m% kHz ° dB dB dB dB dB MΩ dB µV (rms) ZI Vn PO = 500mW, BTL Output noise voltage Note :Output power is measured at the output terminals of the IC at 1kHz. Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 2 Global Mixed-mode Technology Inc. (AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER SYMBOL CONDITION THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz G1421 TYP 0.8 0.5 1 0.6 230 140 290 180 43 270 100 20 10 20 60 75 85 80 80 85 2 90 55 MIN ----------------------------------------------- MAX ----------------------------------------------- UNIT W Output power (each channel) see Note P(OUT) mW Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage THD+N BOM PSRR m% kHz ° dB dB dB dB dB MΩ dB µV (rms) ZI Vn PO = 500mW, BTL Output noise voltage Note :Output power is measured at the output terminals of the IC at 1kHz. Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 3 Global Mixed-mode Technology Inc. Typical Characteristics Table of Graphs FIGURE G1421 THD +N Total Harmonic Distortion Plus Noise Output Noise Voltage Supply Ripple Rejection Ratio Crosstalk Closed loop Response Supply Current vs Output Power vs Frequency vs Frequency vs Frequency vs Frequency vs Frequency vs Supply Voltage vs Supply Voltage vs Load Resistance vs Output Power Vn IDD PO Output Power PD Power Dissipation 1,3,6,9,10,13,16,19,22,25,26,27,33,36,39 2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,28,29 30,31,32,34,35,37,38,40,41 42,43,44 45,46,47 48,49,50,51,52 53,54,55,56 57 58,59 60,61 62,63,64,65 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 5 Total Harmonic Distortion Plus Noise vs Output Frequency 20kHz 2 1 0.5 % 0.2 0.1 0 .05 2 1 Po=1.8W 1kHz % 0.5 0.2 0.1 20 Hz Po=1.5W 0 .02 0 .01 3m VDD=5V RL=3Ω BTL 20m 5 0m 1 00m W 20 0m 500 m 1 2 3 0 .05 VDD=5V RL=3Ω BTL A v=-2V/V 0 .02 0 .01 20 5m 10 m 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 1 Figure 2 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 5 Total Harmonic Distortion Plus Noise vs Output Frequency 2 1 0.5 % 0.2 0.1 0 .05 20kHz A v=-4V/V 2 1 A v=-2V/V 1kHz % 0.5 0.2 0.1 20 Hz 0 .02 0 .01 3m VDD=5V RL=4Ω BTL 20m 5 0m 1 00m W 20 0m 500 m 1 2 3 A v=-1V/V 0 .05 0 .02 0 .01 20 VDD=5V RL=4Ω BTL Po=1.5W 1k 2k 5k 10 k 20k 5m 10 m 50 10 0 2 00 5 00 Hz Figure 3 Figure 4 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 4 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 G1421 VDD=5V RL=8Ω BTL A v=-2V/V Total Harmonic Distortion Plus Noise vs Output Power 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=4Ω BTL A v=-2V/V Po=1.5W Po=0.25W % 2 1 0.5 20kHz 0.2 0.1 1kHz Po=0.75W 0 .05 0 .02 0 .01 20 0 .02 0 .01 3m 20Hz 5m 10m 20m 5 0m 1 00m W 20 0m 500 m 1 2 3 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 5 Figure 6 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=8Ω BTL A v=-2V/V Po=0.25W Po=1W 2 1 0.5 % 0.2 0.1 VDD=5V RL=8Ω BTL Po=1W A v=-2V/V A v=-4V/V Po=0.5W 0 .05 0 .02 0 .01 20 0 .02 0 .01 20 A v=-1V/V 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 7 Figure 8 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 5 Total Harmonic Distortion Plus Noise vs Output Power 20kHz 2 1 0.5 % 0.2 0.1 0 .05 2 1 20kHz 1kHz % 0.5 1kHz 0.2 0.1 0 .02 0 .01 1m VDD=3.3V RL=3Ω BTL 2m 5m 1 0m 20Hz 0 .05 VDD=3.3V RL=4Ω BTL 20Hz 0 .02 0 .01 1m 20 m W 50 m 10 0m 2 00 m 500 m 1 2m 5m 1 0m 20 m W 50 m 10 0m 2 00 m 500 m 1 Figure 9 Figure 10 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 5 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 5 G1421 Total Harmonic Distortion Plus Noise vs Output Frequency VDD=3.3V RL=4Ω BTL A v=-2V/V 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=4Ω BTL Po=0.65W A v=-4V/V A v=-2V/V 2 1 0.5 % 0.2 0.1 Po=0.7W Po=0.1W Po=0.35W A v=-1V/V 0 .05 0 .02 0 .01 20 0 .02 0 .01 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 11 Figure 12 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 20kHz VDD=3.3V RL=8Ω BTL 2 1 0.5 VDD=3.3V RL=8Ω BTL Po=0.4W A v=-2V/V A v=-4V/V 1kHz % 0.2 0.1 0 .05 20Hz 0 .02 0 .01 1m 0 .02 0 .01 20 A v=-1V/V 2m 5m 1 0m 20 m W 50 m 10 0m 2 00 m 500 m 1 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 13 Figure 14 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Power 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=8Ω BTL A v=-2V/V 2 VDD=5V RL=4Ω SE 20kHz Po=0.4W 1 0.5 Po=0.1W % 0.2 1kHz 0.1 0 .05 Po=0.25W 0 .02 0 .01 20 100Hz 0 .02 0 .01 1m 20k 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 2m 5m 1 0m 20 m W 50 m 10 0m 2 00 m 500 m 1 Figure 15 Figure 16 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 6 Global Mixed-mode Technology Inc. G1421 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=4Ω SE Po=0.5W A v=-2V/V A v=-4V/V 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=4Ω SE A v=-2V/V Po=0.4W Po=0.1W A v=-1V/V Po=0.25W 0 .02 0 .01 20 0 .02 0 .01 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 17 Figure 18 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=8Ω SE 20kHz % 2 1 0.5 VDD=5V RL=8Ω SE Po=0.25W A v=-2V/V 0.2 0.1 1kHz 100Hz 2m 5m 1 0m 20 m W 50 m 10 0m 2 00 m 500 m 1 0 .05 A v=-4V/V A v=-1V/V 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .02 0 .01 1m 0 .02 0 .01 20 Figure 19 Figure 20 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Power 5 2 1 0.5 0.2 % 0.1 0 .05 0 .02 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=8Ω SE A v=-2 Po=0.05W VDD=5V RL=32Ω SE 20kHz 20Hz Po=0.1W Po=0.25W 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .01 0.0 05 0.0 02 0.0 01 1m 0 .02 0 .01 20 1kHz 2m 5m 10 m W 20 m 50m 10 0m 2 00m Figure 21 Figure 22 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 7 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 2 1 0.5 0.2 % 0.1 0 .05 0 .02 0 .01 0.0 05 0.0 02 0.0 01 20 % 10 G1421 Total Harmonic Distortion Plus Noise vs Output Frequency VDD=5V RL=32Ω SE Po=75mW 5 2 1 VDD=5V RL=32Ω SE Po=25mW A v=-4V/V 0.5 0.2 0.1 0 .05 0 .02 0 .01 0.0 05 A v=-2V/V Po=50mW A v=-1V/V 0.0 02 0.0 01 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 50 10 0 2 00 5 00 Hz 1k 2k Po=75mW 5k 10 k 20k Figure 23 Figure 24 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Power 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=4Ω HP-IN A v=-2V/V 20kHz 1kHz 2 1 0.5 % 0.2 0.1 0 .05 20kHz VDD=5V RL=8Ω HP-IN A v=-2V/V 1kHz 0 .02 0 .01 1m 100Hz 2m 5m 1 0m 20 m W 50m 10 0m 2 00 m 5 00 m 1 0 .02 0 .01 1m 100Hz 2m 5m 1 0m 20 m W 50m 10 0m 2 00 m 5 00 m 1 Figure 25 Figure 26 Total Harmonic Distortion Plus Noise vs Output Power 10 5 2 1 0.5 0.2 % 0.1 0 .05 0 .02 0 .01 0 .05 0.0 05 0.0 02 0.0 01 1m % 10 Total Harmonic Distortion Plus Noise vs Output Power 5 VDD=5V RL=32Ω HP-IN A v=-2V/V 2 1 0.5 20kHz VDD=5V RL=4Ω HP-IN Po=0.5W A v=-4V/V 1kHz 0.2 0.1 A v=-2V/V 100Hz 0 .02 0 .01 20 A v=-1V/V 2m 5m 10m 2 0m W 50 m 1 00m 2 00m 5 00 m 50 100 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 27 Figure 28 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 8 Global Mixed-mode Technology Inc. G1421 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=4Ω HP-IN A v=-2V/V Po=0.25W 2 1 0.5 % VDD=5V RL=8Ω HP-IN Po=0.25W A v=-4V/V A v=-2V/V Po=0.1W 0.2 0.1 0 .05 0 .02 0 .01 20 Po=0.4W 50 100 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .02 0 .01 20 A v=-1V/V 50 100 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 29 Figure 30 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 2 1 0.5 % 0.2 0.1 0 .05 VDD=5V RL=8Ω HP-IN A v=-2V/V Po=0.1W 0.5 0.2 % 0.1 0 .05 0 .02 VDD=5V RL=32Ω HP-IN A v=-2V/V Po=25mW Po=50mW Po=0.05W Po=0.25W 50 100 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .01 0.0 05 0.0 02 0.0 01 20 0 .02 0 .01 20 Po=70mW 50 100 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 31 Figure 32 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=4Ω ,SE A v=-2 20kHz 2 1 0.5 % VDD=3.3V RL=4Ω SE Po=0.2W A v=-4V/V 1kHz 0.2 0.1 0 .05 A v=-2V/V 0 .02 0 .01 1m 100Hz 2m 5m 1 0m 20 m W 50 m 10 0m 2 00 m 500 m 1 A v=-1V/V 0 .02 0 .01 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 33 Figure 34 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 9 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency 10 G1421 Total Harmonic Distortion Plus Noise vs Output Power 10 5 RR 5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=4Ω SE A v=-2 Po=50mW 2 1 0.5 % VDD=3.3V RL=8Ω ,SE A v=-2 20kHz Po=100mW 0.2 0.1 0 .05 1kHz 0 .02 0 .01 20 Po=150mW 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .02 0 .01 1m 100Hz 2m 5m 10 m W 20 m 50m 10 0m 2 00m Figure 35 Figure 36 Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 10 5 Total Harmonic Distortion Plus Noise vs Output Frequency VDD=3.3V RL=8Ω SE Po=25mW 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=8Ω SE Po=100mW 2 1 0.5 % 0.2 A v=-4V/V Po=50mW A v=-2V/V 0.1 0 .05 0 .02 0 .01 20 A v=-1V/V 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 0 .02 0 .01 20 Po=100mW 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 37 Figure 38 Total Harmonic Distortion Plus Noise vs Output Power 10 5 10 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 0.5 2 1 0.5 % 0.2 0.1 0 .05 VDD=3.3V RL=32Ω SE 1kHz VDD=3.3V RL=32Ω SE Po=30mW A v=-2V/V A v=-4V/V 20kHz % 0.2 0.1 0 .05 0 .02 0 .01 0.0 05 20Hz A v=-1V/V 0 .02 0 .01 1m 0.0 02 0.0 01 20 2m 5m 1 0m W 2 0m 50 m 1 00m 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 39 Figure 40 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 10 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 2 1 0.5 0.2 % 0.1 0 .05 0 .02 0 .01 0.0 05 0.0 02 0.0 01 20 V 10 0u G1421 Output Noise Voltage vs Frequency BW=22Hz to 20kHz VDD=3.3V RL=32Ω SE Po=10mW 9 0u 8 0u 7 0u 6 0u 5 0u 4 0u VDD=5V RL=4Ω Vo BTL 3 0u Po=20mW 2 0u Vo SE Po=30mW 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k 1 0u 20 50 10 0 2 00 5 00 Hz 1k 2k 5k 10 k 20k Figure 41 Figure 42 Output Noise Voltage vs Frequency 10 0u 9 0u 8 0u 7 0u 6 0u 5 0u 4 0u V 10 0u 9 0u 8 0u 7 0u 6 0u Output Noise Voltage vs Frequency VDD=3.3V RL=4Ω BW=22Hz to 20kHz BW=22Hz to 20kHz A - Weighted Filter VDD=5V HP-IN RL=4Ω 5 0u 4 0u V Vo BTL 3 0u 3 0u 2 0u 2 0u Vo SE 1 0u 20 50 1 00 2 00 5 00 Hz 1k 2k 5k 10k 20k 1 0u 20 50 1 00 2 00 5 00 Hz 1k 2k 5k 10k 20k Figure 43 Figure 44 Supply Ripple Rejection Ratio vs Frequency +0 -10 -20 -30 -40 d B -50 -60 -70 -80 -90 -1 00 20 d B Supply Ripple Rejection Ratio vs Frequency +0 T T T T VDD=5V RL=4Ω CB=4.7uF -10 -20 -30 -40 -50 -60 -70 -80 -90 -1 00 20 VDD=5V HP-IN RL=4Ω CB=4.7uF BTL SE 50 1 00 2 00 5 00 Hz 1k 2k 5k 10k 20k 50 1 00 2 00 5 00 Hz 1k 2k 5k 10k 20k Figure 45 Figure 46 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 11 Global Mixed-mode Technology Inc. Supply Ripple Rejection Ratio vs Frequency +0 -10 -20 -30 -40 d B -50 -60 -70 -80 -90 -1 00 20 G1421 Crosstalk vs Frequency T -20 VDD=3.3V RL=4Ω CB=4.7uF -25 -30 -35 -40 -45 -50 -55 d B -60 -65 -70 -75 -80 -85 VDD=5V Po=1.5W RL=4Ω BTL BTL L to R SE 50 1 00 2 00 5 00 Hz 1k 2k 5k 10k 20k -90 -95 -100 20 R to L 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 47 Figure 48 Crosstalk vs Frequency -20 -25 -30 -35 -40 -45 -50 -55 d B -60 -65 -70 -75 -80 -85 -90 -95 -100 20 50 100 200 500 Hz 1k 2k 5k 10k 20k d B -30 Crosstalk vs Frequency -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 VDD=3.3V Po=0.75W RL=4Ω BTL VDD=5V Po=75mW RL=32Ω SE L to R R to L R to L -90 -95 -1 00 20 50 10 0 20 0 50 0 Hz 1k 2k L to R 5k 10 k 20k Figure 49 Figure 50 Crosstalk vs Frequency -30 -35 -40 -45 -50 -55 -60 d B -65 -70 -75 -80 -85 -90 -95 -1 00 20 50 10 0 20 0 50 0 Hz 1k 2k -2 0 Crosstalk vs Frequency -2 5 -3 0 -3 5 -4 0 -4 5 -5 0 -5 5 VDD=3.3V Po=35mW RL=32Ω SE d B VDD=5V Po=75mW RL=32Ω HP-IN R to L R to L -6 0 -6 5 -7 0 -7 5 -8 0 -8 5 L to R L to R 5k 10 k 20k -9 0 -9 5 -10 0 20 50 100 20 0 50 0 Hz 1k 2k 5k 10 k 20 k Figure 51 Figure 52 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 12 Global Mixed-mode Technology Inc. G1421 Closed Loop Response Closed Loop Response Figure 53 Figure 54 Closed Loop Response Closed Loop Response Figure 55 Figure 56 Supply Current vs Supply Voltage 10 9 8 7 6 5 4 3 2 1 0 3 4 5 Supply Voltage (V) 6 0 2.5 Stereo SE Po-Output Power (W) Supply Current(mA) Stereo BTL 2 2.5 Output Power vs Supply Voltage THD+N=1% BTL Each Channel RL=4Ω 1.5 RL=3Ω 1 RL=8Ω 0.5 3.5 4.5 Supply Voltage (V) 5.5 6.5 Figure 57 Figure 58 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 13 Global Mixed-mode Technology Inc. Output Power vs Supply Voltage 0.7 0.6 Po-Output Power(W) 0.5 0.4 0.3 0.2 0.1 0 2.5 3.5 4.5 Supply Voltage(V) 5.5 6.5 RL=4Ω THD+N=1% SE Each Channel RL=8Ω 2 1.8 1.6 Po-Output Power(W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 4 8 12 16 20 24 VDD=3.3V VDD=5V G1421 THD+N=1% BTL Each Channel Output Power vs Load Resistance RL=32Ω 28 32 Load Resistance(Ω) Figure 59 Figure 60 Output Power vs Load Resistance 0.7 0.6 Po-Output Power(W) 0.5 VDD=5V 0.4 0.3 0.2 0.1 0 0 4 8 12 16 20 24 28 32 Load Resistance( Ω) THD+N=1% SE Each Channel 1.8 1.6 Power Dissipation(W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 Power Dissipation vs Output Power RL=3Ω RL=4Ω VDD=5V BTL Each Channel RL=8Ω VDD=3.3V 0.5 1 1.5 Po-Output Pow er(W) 2 2.5 Figure 61 Figure 62 Power Dissipation vs Output Power 0.8 0.7 Power Dissipation(W) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.25 0.5 Output Pow er(W) 0.75 1 RL=8Ω VDD=3.3V BTL Each Channel RL=4Ω Power Dissipation(W) RL=3Ω 0.35 0.3 0.25 0.2 Power Dissipation vs Output Power RL=4Ω RL=8Ω 0.15 0.1 0.05 0 0 0.2 0.4 Output Pow er(W) 0.6 0.8 RL=32Ω VDD=5V SE Each Channel Figure 63 Figure 64 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 14 Global Mixed-mode Technology Inc. G1421 TSSOP-24 (FD) Power Dissipation vs Output Power 0.16 0.14 Power Dissipation (W) 0.12 0.1 0.08 0.06 0.04 0.02 0 0 0.05 0.1 0.15 0.2 0.25 0.3 Output Pow er (W) RL=32Ω RL=8Ω RL=4Ω VDD=3.3V SE Each Channel Recommended Minimum Footprint Figure 65 Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 15 Global Mixed-mode Technology Inc. Pin Description PIN 1,12,13,24 2 G1421 NAME GND/HS TJ I/O O FUNCTION Ground connection for circuitry, directly connected to thermal pad. Source a current inversely to the junction temperature. This pin should be left unconnected during normal operation. For more information, see the junction temperature measurement section of this document. Left channel + output in BTL mode, + output in SE mode. Left channel line input, selected when HP/ pin is held low. Left channel headphone input, selected when HP/pin is held high. Connect to voltage divider for left channel internal mid-supply bias. Supply voltage input for left channel and for primary bias circuits. Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD = 5µA. Follows MUTE IN pin, provides buffered output. Left channel - output in BTL mode, high impedance state in SE mode. Supply VDD/2 to the phone jacket in HP-IN mode. Mute control signal input, hold low for normal operation, hold high to mute. Mode control signal input, hold low for BTL mode, hold high for SE mode. Right channel - output in BTL mode, high impedance state in SE mode. MUX control input, hold high to select headphone inputs (5,20), hold low to select line inputs (4,21). This pin can activate the HP-IN mode to supplied the VDD/2 at LOUT- onto the phone jacket. So the DC blocking capacitors can be removed in HP-IN type (like SE mode except no DC blocking capacitors). Hold high to activate this function. If this function is not used, it should be strongly tied to low. Supply voltage input for right channel. Connect to voltage divider for right channel internal mid-supply bias. Right channel headphone input, selected when HP/pin is held high. Right channel line input, selected when HP/pin is held low. Right channel + output in BTL mode, + output in SE mode. The output power can be clamped by setting a low bound voltage to this pin. The high bound voltage will be generated internally. The output voltage will be clamped between high/low bound voltages. Then the output power is limited. It is weakly pull-low internally, let this pin floating or tied to GND can deactivate this function. Recommend connecting the Thermal Pad to the GND for excellent power dissipation. 3 4 5 6 7 8 9 10 11 14 15 16 17 LOUT+ LLINE IN LHP IN LBYPASS LVDD SHUTDOWN MUTE OUT LOUTMUTE IN SE/ ROUTHP/ HP-IN O I I I I O O I I O I 18 19 20 21 22 23 RVDD RBYPASS RHP IN RLINE IN ROUT+ VOL I I I O I Thermal Pad Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 16 Global Mixed-mode Technology Inc. Block Diagram 20k G1421 21 20 RLINE IN RHPIN RIGHT MUX _ ROUT+ ROUT- 22 15 19 RBYPASS + RVDD 18 11 9 8 23 MUTEIN MUTEOUT SHUTDOW N VOL HP-IN 17 16 14 2 BIAS C IRCU ITS MODES CON TROL CIRCU ITS HP/LINE SE/BTL TJ LVDD 7 6 LBYPASS + LOUTLOUT+ 10 3 5 4 LHPIN LLINE IN LEFT MUX _ 20k Parameter Measurement Information 11 8 23 MUTEIN SHUTDOWN VOL HP-IN HP/LINE SE/BTL 17 16 14 LVDD 6 CB 4.7µF CI AC source RI 5 4 LHPIN LLINEIN LEFT LEFT MUX LBYPASS 7 RL 4/8/32ohm + _ LOUTLOUT+ 10 3 RF BTL Mode Test Circuit Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 17 Global Mixed-mode Technology Inc. Parameter Measurement Information (Continued) G1421 11 8 23 MUTEIN SHUTDOWN VOL HP-IN HP/LINE SE/BTL 17 16 VDD 14 LVDD 6 CB 4.7µF CI AC source RI 5 4 LHPIN LLINEIN LEFT LEFT MUX LBYPASS 7 + _ LOUTLOUT+ 10 3 RL 32ohm RF SE Mode Test Circuit VDD 11 8 23 MUTEIN SHUTDOWN VOL HP-IN HP/LINE SE/BTL 17 16 14 LVDD 6 CB 4.7µF CI AC source RI 5 4 LHPIN LLINEIN LEFT MUX LBYPASS 7 + _ LOUTLOUT+ 10 3 RL 32ohm RF HP-IN Mode (Non-DC Blocking Cap) Test Circuit Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 18 Global Mixed-mode Technology Inc. Application Circuits With DC blocking Capacitors Application G1421 GND/HS TJ LOUT+ CIR RFL 20KΩ CFR AUDIO SOURCE 1µF RIR 10KΩ 1 2 3 4 5 6 19 8 9 10 11 12 24 23 22 21 20 7 GND/HS VOL VOL ROUT+ RLINEIN RHPIN LVDD RVDD HP-IN HP/LINE ROUTR CSR 4.7µF 4.7µF RIL 10KΩ CIL RFL 1µF AUDIO SOURCE 20KΩ CFL LLINEIN LHPIN LBYPASS RBYPASS 4.7µF G1421 18 17 16 15 14 13 R 100KΩ SHUTDWON MUTE OUT LOUTMUTE IN GND/HS COUTR 220µF SE/BTL GND/HS 100KΩ 1KΩ 1 3 4 2 0.1µF COUTR 220µF 1KΩ PHONOJACK Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 19 Global Mixed-mode Technology Inc. Application Circuits (Continued) No DC Blocking Capacitors Application G1421 GND/HS TJ LOUT+ CIR RFR 20KΩ CFR AUDIO SOURCE 1µF 10KΩ RIR 1 2 3 4 5 6 19 8 9 10 11 12 24 23 22 21 20 7 GND/HS VOL ROUT+ RLINEIN RHPIN LVDD RVDD HP-IN HP/LINE ROUTSE/BTL GND/HS 1 2 3 4 5 LLINEIN RIL 10KΩ CIL 1µF AUDIO SOURCE RFL 20KΩ CFL LHPIN LBYPASS CBL 4.7µF RC 4.7Ω CC 0.1µF RBYPASS SHUTDWON MUTE OUT LOUTMUTE IN G1421 18 17 16 15 14 13 4.7µF 4.7µF RC 4.7Ω CC 0.1µF GND/HS PHONOJACK Logical Truth Table INPUTS HP-IN X X X High Low Low Low Low High High SE/ BTL X Low High X Low Low High High X X HP/ LINE X X X X Low High Low High Low High Mute In Shutdown ---High High High Low Low Low Low Low Low High ---------Low Low Low Low Low Low OUTPUT Mute Out ---High High High Low Low Low Low Low Low Input X X X X L/R Line L/R HP L/R Line L/R HP L/R Line L/R HP AMPLIFIER STATES L/R Out+ L Out- R Out---VDD/2 VDD/2 VDD/2 BTL Output BTL Output SE Output SE Output SE Output SE Output ---VDD/2 ---VDD/2 BTL Output BTL Output ------VDD/2 VDD/2 ---VDD/2 ------BTL Output BTL Output ------------- Mode Mute Mute Mute Mute BTL BTL SE SE HP-IN HP-IN Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 20 Global Mixed-mode Technology Inc. Application Information Input MUX Operation There are two input signal paths – HP & Line. With the prompt setting, G1421 allows the setting of different gains for BTL and SE modes. Generally, speakers typically require approximately a factor of 10 more gain for similar volume listening levels as compared with headphones. SE Gain(HP) = -(RF(HP)/RI(HP)) -2(RF(LINE)/RI(LINE)) fc -3 dB G1421 BTL Gain(LINE) = To achieve headphones and speakers listening parity, (RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)/ RI(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by the applications. When the optimum distortion performance into the headphones (clear sound) is important, gain of –1 ((RF(HP) / RI(HP)) = 1) is suggested. Figure B Bridged-Tied Load Mode Operation G1421 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure C shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors. VDD Single Ended Mode Operation G1421 can drive clean, low distortion SE output power into headphone loads (generally 16Ω or 32Ω) as in Figure A. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure B. fC=1/(2πRLCC) For example, a 68uF capacitor with 32Ω headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation. VDD VDD Vo(PP) Vo(PP) RL 2xVo(PP) -Vo(PP) CC RL Vo(PP) VDD Figure A Figure C Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 21 Global Mixed-mode Technology Inc. HP-IN Mode Operation An internal weakly pull-up circuit is connected to HP-IN control pin (pin 17). When this pin is left unconnected or tied to VDD, HP-IN mode is activated, ignoring SE/ BTL setting. In normal SE/ BTL mode operations, this HP-IN pin should be tied to GND. In HP-IN mode, the linear amplifiers of LOUT+ (pin 3) /ROUT+ (pin 22) are still alive, the linear amplifier of ROUT- (pin 15) is deactivated, the linear amplifier of LOUT- (pin 10) supplies VDD/2 on this pin to cancel the dc offsets. (Please refer to Logical Truth Table and No DC CAP Application Circuit for detailed operation.) If connected VDD/2 on the LOUT- (pin 10) to the phone jacket, the dc offset can be eliminated without using coupling capacitors in headphone applications. By using HP-IN mode, cost and PCB space can be further minimized than traditional headphone applications with coupling capacitors. The HP-IN configuration is shown on Figure D. G1421 MUTE and SHUTDOWN Mode Operations G1421 implements the mute and shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 8) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1421 enters an extra low current consumption state, IDD is smaller than 5µA. If pulling mute-in pin (pin 11) high, it will force the activated linear amplifier to supply the VDD/2 dc voltage on the output to mute the AC performance. In mute mode operation, the current consumption will be a little different between BTL, SE and HP-IN modes. (SE < HP-IN < BTL) Typically, the supply current is about 2.5mA in BTL mute operation. Shutdown and Mute-In pins should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. Maximum Power Clampping Function G1421 supports the maximum output power clamping function to avoid damaging the speaker when the amplifier output a power beyond the speaker tolerance. The Vol pin (pin 23) is weakly pull-low internally. If inputting a non-zero voltage (low boundary voltage) to the Vol pin, G1421 will generate a high boundary voltage which the difference between the VDD/2 and the high boundary voltage is the same as the difference between the VDD/2 and the low boundary voltage. ( i.e. VOH – VDD/2 = VDD/2 – VOL ) Then the outputs of linear amplifiers will be effectively limited between the high/low boundary voltage, the maximum output power is clamped. By setting the voltage of Vol, the maximum output power can be well controlled. When the maximum power clamping function is not used, the Vol pin should be floated or tied to GND. VDD VDD Vo(PP)+VDD/2 RL VDD/2 VDD/2 Vo(PP) Figure D Short circuit protection is implemented on LOUT(pin10) to avoid the short-circuit damage caused by the sleeve of the phone jack connected to ground accidentally during the module assembling. When short-circuit is detected, the linear amplifier of LOUT(pin 10) will turn off for a period. After this period, it activates again. If the short circuit condition still exists, it will be turned off again. With this protection, the damage caused by larger dc short circuit current (from VDD/2 to GND) can be avoided. Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 22 Global Mixed-mode Technology Inc. Optimizing DEPOP Operation G1421 Junction Temperature Measurement Circuitry has been implemented in G1421 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)). Where 100kΩ is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. De-popping circuitry of G1421 is shown on Figure E. The PNP transistor limits the voltage drop across the 50kΩ by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit. VDD 100 kΩ 50 kΩ Bypass Bypass 100 kΩ Characterizing a PCB layout with respect to thermal impedance is very difficult, as it is usually impossible to know the junction temperature of the IC. G1421 TJ (pin 2) sources a current inversely proportional to the junction temperature. Typically TJ sources–120µA for a 5V supply at 25°C. And the slope is approximately 0.22µA/°C. As the resistors have a tolerance of ±20%, these values should be calibrated on each device. When the temperature sensing function is not used, TJ pin can be left floating or tied to VDD to reduce the current consumption. Temperature sensing circuit is shown on Figure F. VDD R R 5R TJ Figure F Figure E Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 23 Global Mixed-mode Technology Inc. Package Information D 24 D1 E1 E C G1421 L E2 1 Note 5 θ A2 A1 e b A TSSOP-24(FD) Package NOTE: 1. Package body sizes exclude mold flash protrusions or gate burrs 2. Tolerance ±0.1mm unless otherwise specified 3. Coplanarity : 0.1mm 4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. 5. Die pad exposure size is according to lead frame design. 6. Follow JEDEC MO-153 SYMBOLS A A1 A2 b C D D1 E E1 E2 e L θ MIN ----0.00 0.80 0.19 0.20 7.7 4.4 4.30 2.7 0.45 0º DIMENSION IN MM NOM --------1.00 --------7.8 ----6.40 BSC 4.40 ----0.65 BSC 0.60 ----- MAX 1.20 0.15 1.05 0.30 ----7.9 4.9 4.50 3.2 0.75 8º MIN ----0.000 0.031 0.007 0.008 0.303 0.173 0.169 0.106 0.018 0º DIMENSION IN INCH NOM --------0.039 --------0.307 ----0.252 BSC 0.173 ----0.026 BSC 0.024 ----- MAX 0.047 0.006 0.041 0.012 ----0.311 0.193 0.177 0.126 0.030 8º Taping Specification PACKAGE TSSOP-24 (FD) Q’TY/REEL 2,500 ea Feed F eed Direction Typical TSSOP Package Orientation GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications. Ver: 1.6 Aug 04, 2005 TEL: 886-3-5788833 http://www.gmt.com.tw 24
G1421F 价格&库存

很抱歉,暂时无法提供与“G1421F”相匹配的价格&库存,您可以联系我们找货

免费人工找货