0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
G1430

G1430

  • 厂商:

    GMT(致新科技)

  • 封装:

  • 描述:

    G1430 - 2W Stereo Audio Amplifier - Global Mixed-mode Technology Inc

  • 数据手册
  • 价格&库存
G1430 数据手册
Global Mixed-mode Technology Inc. G1430 2W Stereo Audio Amplifier Features Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V --1.8W/CH (typical) into a 4Ω Load --1.2W/CH (typical) into a 8Ω Load Bridge-Tied Load (BTL), Single-Ended (SE) Shutdown Control Available Dual Inline Package 16 pin (DIP16) General Description G1430 is a stereo audio power amplifier in 16pin Dual Inline Package. It can drive 1.8W continuous RMS power into 4Ω load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1430 supports the Bridge-Tied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. For the low current consumption applications, the SHDN mode is supported to disable G1430 when it is idle. The current consumption can be further reduced to below 5µA. Applications Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio Systems Ordering Information ORDER MARKING NUMBER G1430Z4T G1430 TEMP. RANGE -40°C to +85°C PACKAGE DIP-16L Pin Configuration G1430 LVDD SHUTDOWN LOUTGND/HS GND/HS SE/BTL ROUTROUTRVDD 1 2 3 4 5 6 7 8 DIP-16L 16 15 14 13 12 11 10 9 LBYPASS LLINEIN LOUT+ GND/HS GND/HS ROUT+ RLINEIN RBYPASS Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 1 Global Mixed-mode Technology Inc. Absolute Maximum Ratings Supply Voltage, VCC…………………..…...…….……...6V Operating Ambient Temperature Range TA…….…………………………….……….-40°C to +85°C Maximum Junction Temperature, TJ…..……….….150°C Storage Temperature Range, TSTG….….-65°C to+150°C Soldering Temperature, 10seconds, TS……….……260°C G1430 Power Dissipation (1) TA ≤ 25°C…………………………………………....2W Electrostatic Discharge, VESD Human body mode..…………………….-3000 to 3000(2) Note: (1) : Both dual channels could provide 1.8W peak output power at 4 ohm speaker, but continuous output power is limited by package (DIP-16) power dissipation : 2W at Ta=25 degree °C (2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses Electrical Characteristics DC Electrical Characteristics, TA=+25°C PARAMETER Supply Current SYMBOL VDD =3.3V IDD CONDITION Stereo BTL STEREO SE Stereo BTL VDD = 5V STEREO SE VDD = 5V,Gain = 2 VDD = 5V VDD = 5V Stereo BTL STEREO SE MIN --------------- TYP 7 3.5 8 4 5 8 4 2 MAX 10 6 13 6.5 50 13 6.5 5 UNIT mA DC Differential Output Voltage Supply Current in Mute Mode IDD in Shutdown VO(DIFF) IDD(MUTE) ISD mV mA µA (AC Operation Characteristics, VDD = 5V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER SYMBOL CONDITION THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD = 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz MIN ------------------------------------------- TYP 1.8 1.12 2 1.4 500 320 650 400 90 500 150 20 10 20 60 75 82 85 2 90 55 MAX ------------------------------------------- UNIT W Output power (each channel) see Note P(OUT) mW Total harmonic distortion plus noise THD+N m% Maximum output power bandwidth Phase margin Power supply ripple rejection Channel-to-channel output separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage BOM PSRR ZI Vn PO = 500mW, BTL Output noise voltage kHz ° dB dB dB MΩ dB µV (rms) Note :Output power is measured at the output terminals of the IC at 1kHz. Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 2 Global Mixed-mode Technology Inc. (AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER SYMBOL CONDITION THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz G1430 MIN ------------------------------------------- TYP 0.8 0.5 1 0.6 230 140 290 180 43 270 100 20 10 20 60 75 80 85 2 90 55 MAX ------------------------------------------- UNIT W Output power (each channel) see Note P(OUT) mW Total harmonic distortion plus noise THD+N m% Maximum output power bandwidth Phase margin Power supply ripple rejection Channel-to-channel output separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage BOM PSRR ZI Vn PO = 500mW, BTL Output noise voltage kHz ° dB dB dB MΩ dB µV (rms) Note :Output power is measured at the output terminals of the IC at 1kHz. Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 3 Global Mixed-mode Technology Inc. Pin Description PIN 1 2 3 4,5,12,13 6 7 8 9 10 11 14 15 16 G1430 NAME LVDD SHUTDOWN LOUTGND/HS SE/ BTL ROUTRVDD RBYPASS RLINE IN ROUT+ LOUT+ LLINE IN LBYPASS I/O I I O I O I I O O I FUNCTION Supply voltage input for left channel and for primary bias circuits. Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD = 5µA. Left channel - output in BTL mode, high impedance state in SE mode. Ground connection for circuitry, directly connected to thermal pad. Mode control signal input, hold low for BTL mode, hold high for SE mode. Right channel - output in BTL mode, high impedance state in SE mode. Supply voltage input for right channel. Connect to voltage divider for right channel internal mid-supply bias. Right channel line input, selected when HP/pin is held low. Right channel + output in BTL mode, + output in SE mode. Left channel + output in BTL mode, + output in SE mode. Left channel line input, selected when HP/ pin is held low. Connect to voltage divider for left channel internal mid-supply bias. Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 4 Global Mixed-mode Technology Inc. Typical Characteristics Table of Graphs FIGURE THD +N Total harmonic distortion plus noise Vn Output noise voltage Supply ripple rejection ratio Crosstalk Closed loop response IDD Supply current PO Output power PD Power dissipation vs Frequency vs Output power vs Frequency vs Frequency vs Frequency vs Frequency vs supply voltage vs supply voltage vs Load resistance vs Output power G1430 2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33 1,3,6,9,10,13,16,19,22,25,28,31 34,35 36,37 38,39,40,41 42,43,44,45 46 47,48 49,50 51,52,53,54 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 5 2 1 0.5 % 0.2 0.1 0.05 20kHz 2 1 Po=1.8W 1kHz % 0.5 0.2 0.1 20 Hz Po=1.5W 0.02 0.01 3m VDD=5V RL=3Ω BTL 20m 50m 100m W 200m 500m 1 2 3 0.05 VDD=5V RL=3Ω BTL Av=-2V/V 200 500 Hz 1k 2k 5k 10k 20k 0.02 0.01 20 5m 10m 50 100 Figure 1 Figure 2 Ver: 1.0 Jan 15, 2004 5 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 5 2 1 0.5 % 0.2 0.1 0.05 20kHz Av=-4V/V 2 1 Av=-2V/V 1kHz % 0.5 0.2 0.1 20 Hz 0.02 0.01 3m VDD=5V RL=4Ω BTL 50m 100m W 200m 500m 1 2 3 Av=-1V/V 0.05 0.02 0.01 20 VDD=5V RL=4Ω BTL Po=1.5W 500 Hz 1k 2k 5k 10k 20k 5m 10m 20m 50 100 200 Figure 3 Figure 4 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=5V RL=4Ω BTL Av=-2V/V 5 Po=1.5W Po=0.25W % 2 1 0.5 20kHz VDD=5V RL=8Ω BTL Av=-2V/V 0.2 1kHz Po=0.75W 0.1 0.05 0.02 0.01 20 0.02 0.01 3m 20Hz 5m 10m 20m 50m 100m W 200m 500m 1 2 3 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 5 Figure 6 Ver: 1.0 Jan 15, 2004 6 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=5V RL=8Ω BTL Av=-2V/V Po=0.25W 5 Po=1W 2 1 0.5 % 0.2 0.1 VDD=5V RL=8Ω BTL Po=1W Av=-2V/V Av=-4V/V Po=0.5W 0.05 0.02 0.01 20 0.02 0.01 20 Av=-1V/V 50 100 200 500 Hz 1k 2k 5k 10k 20k 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 7 Figure 8 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER 10 5 10 5 20kHz 2 1 0.5 % 0.2 0.1 0.05 2 1 20kHz 1kHz % 0.5 1kHz 0.2 0.1 0.02 0.01 1m VDD=3.3V RL=3Ω BTL 2m 5m 10m 20Hz 0.05 0.02 0.01 1m VDD=3.3V RL=4Ω BTL 2m 5m 10m 20Hz 20m W 50m 100m 200m 500m 1 20m W 50m 100m 200m 500m 1 Figure 9 Figure 10 Ver: 1.0 Jan 15, 2004 7 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=3.3V RL=4Ω BTL Po=0.65W Av=-4V/V Av=-2V/V 5 2 1 0.5 % 0.2 0.1 0.05 VDD=3.3V RL=4Ω BTL Av=-2V/V Po=0.7W Po=0.1W Po=0.35W Av=-1V/V 0.02 0.01 20 0.02 0.01 20 50 100 200 500 Hz 1k 2k 5k 10k 20k 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 11 Figure 12 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 2 1 0.5 % 0.2 0.1 0.05 20kHz VDD=3.3V RL=8Ω BTL 5 2 1 0.5 VDD=3.3V RL=8Ω BTL Po=0.4W Av=-2V/V Av=-4V/V 1kHz % 0.2 0.1 0.05 20Hz 0.02 0.01 1m 0.02 0.01 20 Av=-1V/V 2m 5m 10m 20m W 50m 100m 200m 500m 1 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 13 Figure 14 Ver: 1.0 Jan 15, 2004 8 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=3.3V RL=8Ω BTL Av=-2V/V 5 2 Po=0.4W VDD=5V RL=4Ω SE 20kHz 1 0.5 Po=0.1W % 0.2 0.1 0.05 1kHz Po=0.25W 0.02 0.01 20 100Hz 0.02 0.01 1m 2m 5m 10m 20m W 50m 100m 200m 500m 1 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 15 Figure 16 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=5V RL=4Ω SE Po=0.5W Av=-2V/V 5 Av=-4V/V 2 1 0.5 % 0.2 0.1 0.05 VDD=5V RL=4Ω SE Av=-2V/V Po=0.4W Po=0.1W Av=-1V/V Po=0.25W 0.02 0.01 20 20k 0.02 0.01 20 50 100 200 500 Hz 1k 2k 5k 10k 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 17 Figure 18 Ver: 1.0 Jan 15, 2004 9 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=5V RL=8Ω SE 20kHz % 5 2 1 0.5 VDD=5V RL=8Ω SE Po=0.25W Av=-2V/V 0.2 0.1 1kHz 100Hz 2m 5m 10m 20m W 50m 100m 200m 500m 1 Av=-4V/V Av=-1V/V 50 100 200 500 Hz 1k 2k 5k 10k 20k 0.05 0.02 0.01 1m 0.02 0.01 20 Figure 19 Figure 20 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=5V RL=8Ω SE Av=-2 Po=0.05W % 5 2 1 0.5 0.2 0.1 0.05 0.02 VDD=5V RL=32Ω SE 20kHz 20Hz Po=0.1W Po=0.25W 50 100 200 500 Hz 1k 2k 5k 10k 20k 0.01 0.005 0.002 0.001 1m 2m 5m 10m W 0.02 0.01 20 1kHz 20m 50m 100m 200m Figure 21 Figure 22 Ver: 1.0 Jan 15, 2004 10 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 Hz 1k 2k 5k 10k 20k % 10 VDD=5V RL=32Ω SE Po=75mW 5 2 1 VDD=5V RL=32Ω SE Po=25mW Av=-4V/V 0.5 0.2 0.1 0.05 0.02 0.01 Av=-2V/V Po=50mW Av=-1V/V 0.005 0.002 0.001 20 50 100 200 500 Hz 1k Po=75mW 2k 5k 10k 20k Figure 23 Figure 24 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=3.3V RL=4Ω,SE Av=-2 5 20kHz 2 1 0.5 % VDD=3.3V RL=4Ω SE Po=0.2W Av=-4V/V 1kHz 0.2 0.1 0.05 Av=-2V/V 0.02 0.01 1m 100Hz 2m 5m 10m 20m W 50m 100m 200m 500m 1 0.02 0.01 20 Av=-1V/V 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 25 Figure 26 Ver: 1.0 Jan 15, 2004 11 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER 10     10 5 2 1 0.5 % 0.2 0.1 0.05 VDD=3.3V RL=4Ω SE Av=-2 5 Po=50mW 2 1 0.5 % VDD=3.3V RL=8Ω,SE Av=-2 20kHz Po=100mW 0.2 0.1 0.05 1kHz 0.02 0.01 20 Po=150mW 50 100 200 500 Hz 1k 2k 5k 10k 20k 0.02 0.01 1m 100Hz 2m 5m 10m W 20m 50m 100m 200m Figure 27 Figure 28 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=3.3V RL=8Ω SE Po=100mW 5 2 1 0.5 % 0.2 VDD=3.3V RL=8Ω SE Po=25mW Po=50mW Av=-4V/V Av=-2V/V 0.1 0.05 0.02 0.01 20 Av=-1V/V 50 100 200 500 Hz 1k 2k 5k 10k 20k 0.02 0.01 20 Po=100mW 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 29 Figure 30 Ver: 1.0 Jan 15, 2004 12 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 5 10 2 1 0.5 % 0.2 0.1 0.05 VDD=3.3V RL=32Ω SE 20kHz 5 2 1kHz 1 0.5 0.2 % 0.1 0.05 0.02 VDD=3.3V RL=32Ω SE Po=30mW Av=-2V/V Av=-4V/V 20Hz 0.01 0.005 Av=-1V/V 0.02 0.01 1m 0.002 2m 5m 10m W 20m 50m 100m 0.001 20 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 31 Figure 32 TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY OUTPUT NOISE VOLTAGE vs FREQUENCY 10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 Hz 1k V VDD=3.3V RL=32Ω SE Po=10mW 100u 90u 80u 70u 60u 50u 40u VDD=5V RL=4Ω BW=20Hz to 20kHz Vo BTL 30u Po=20mW 20u Vo SE Po=30mW 2k 5k 10k 20k 10u 20 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 33 Figure 34 Ver: 1.0 Jan 15, 2004 13 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 OUTPUT NOISE VOLTAGE vs FREQUENCY SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY 100u 90u 80u 70u 60u 50u 40u V +0   VDD=3.3V RL=4Ω BW=20Hz to 20kHz -10 -20 -30 -40 d B -50 -60 Vo BTL VDD=5V RL=4Ω CB=4.7uF 30u BTL 20u Vo SE -70 -80 -90 SE 10u 20 50 100 200 500 Hz 1k 2k 5k 10k 20k -100 20 50 100 200 500 Hz 1k 2k 5k 10k 20k Figure 35 Figure 36 SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY CROSSTALK vs FREQUENCY +0 -10 -20 -30 -40 d B -50 -60 -70 -80 -90   -20 -25 VDD=3.3V RL=4Ω CB=4.7uF -30 -35 -40 -45 -50 -55 d B VDD=5V Po=1.5W RL=4Ω BTL BTL -60 -65 -70 -75 -80 -85 L to R SE 50 100 200 500 Hz 1k 2k 5k 10k 20k -90 -95 R to L 50 100 200 500 Hz 1k 2k 5k 10k 20k -100 20 -100 20 Figure 37 Figure 38 Ver: 1.0 Jan 15, 2004 14 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 CROSSTALK vs FREQUENCY CROSSTALK vs FREQUENCY -20 -25 -30 -35 -40 -45 -50 -55 d B -60 -65 -70 -75 -80 -85 -90 -95 -100 20 50 100 200 500 Hz 1k 2k 5k 10k 20k d B -30 VDD=3.3V Po=0.75W RL=4Ω BTL -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 VDD=5V Po=75mW RL=32Ω SE L to R R to L R to L -90 -95 -100 20 50 100 200 500 Hz 1k 2k L to R 5k 10k 20k Figure 39 Figure 40 CROSSTALK vs FREQUENCY -30 -35 -40 -45 -50 -55 -60 d B -65 -70 -75 -80 -85 -90 -95 -100 20 50 100 200 500 Hz 1k 2k 5k VDD=3.3V Po=35mW RL=32Ω SE R to L L to R 10k 20k Figure 41 Ver: 1.0 Jan 15, 2004 15 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 CLOSED LOOP RESPONSE Figure 42 CLOSED LOOP RESPONSE Figure 43 Ver: 1.0 Jan 15, 2004 16 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 CLOSED LOOP RESPONSE Figure 44 CLOSED LOOP RESPONSE Figure 45 Ver: 1.0 Jan 15, 17 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 SUPPLY CURRENT vs SUPPLY VOLTAGE 10 9 Po-Output Power (W) 8 Supply Current(mA) 7 6 5 4 3 2 1 0 3 3.5 4 4.5 5 5.5 6 SUPPLY VOLTAGE(V) 0 2.5 Stereo SE Stereo BTL 2 1.5 2.5 OUTPUT POWER vs SUPPLY VOLTAGE THD+N=1% BTL Each Channel RL=4Ω RL=3Ω 1 0.5 RL=8Ω 3.5 4.5 5.5 6.5 SUPPLY VOLTAGE(V) Figure 46 Figure 47 OUTPUT POWER vs SUPPLY VOLTAGE 0.7 0.6 Po-Output Power(W) 0.5 0.4 0.3 0.2 0.1 0 2.5 3.5 4.5 Supply Voltage(V) 5.5 6.5 RL=32Ω THD+N=1% SE Each Channel RL=4Ω 2 1.8 1.6 Po-Output Power(W) RL=8Ω 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 OUTPUT POWER vs LOAD RESISTANCE THD+N=1% BTL Each Channel VDD=5V VDD=3.3V 4 8 12 16 20 24 28 32 Load Resistance(Ω) Figure 48 Figure 49 Ver: 1.0 Jan 15, 2004 18 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 OUTPUT POWER vs LOAD RESISTANCE 0.7 0.6 Po-Output Power(W) 0.5 0.4 0.3 0.2 0.1 0 0 4 8 12 16 20 24 28 32 Load Resistance(Ω) VDD=3.3V VDD=5V THD+N=1% SE Each Channel 1.8 1.6 Power Dissipation(W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 POWER DISSIPATION vs OUTPUT POWER RL=3Ω RL=4Ω VDD=5V BTL Each Channel RL=8Ω 0.5 1 1.5 2 2.5 Po-Output Power(W) Figure 50 Figure 51 POWER DISSIPATION vs OUTPUT POWER 0.8 0.7 Power Dissipation(W) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.25 0.5 Output Power(W) 0.75 1 RL=8Ω VDD=3.3V BTL Each Channel RL=4Ω RL=3Ω Power Dissipation(W) 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 POWER DISSIPATION vs OUTPUT POWER RL=4Ω RL=8Ω RL=32Ω VDD=5V SE Each Channel 0.2 0.4 Output Power(W) 0.6 0.8 Figure 52 Figure 53 Ver: 1.0 Jan 15, 2004 19 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 POWER DISSIPATION vs OUTPUT POWER 0.16 POWER DISSIPATION (W) 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0 0.05 0.1 0.15 0.2 0.25 0.3 OUTPUT POWER(W) RL=32Ω RL=8Ω RL=4Ω VDD=3.3V SE Each Channel Figure 54 Ver: 1.0 Jan 15, 2004 20 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. Block Diagram 20k G1430 10 RLINEIN _ ROUT+ ROUT- 11 7 9 RBYPASS + RVDD 8 2 SHUTDOW N BIAS CIRCUITS MODES CONTROL CIRCUITS SE/BTL 6 LVDD 1 16 LBYPASS + LOUTLOUT+ 3 14 15 LLINEIN _ 20k Parameter Measurement Information 8 SHUTDOWN SE/BTL 6 LVDD 6 CB 4.7µF CI AC source RI 15 LLINEIN LBYPASS 1 RL 4/8/32ohm + _ LOUTLOUT+ 3 14 RF BTL Mode Test Circuit Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 21 Global Mixed-mode Technology Inc. Parameter Measurement Information (Continued) G1430 2 SHUTDOWN SE/BTL 6 VDD LVDD 6 CB 4.7µF CI RI 15 LLINEIN LBYPASS 1 + _ LOUTLOUT+ 3 14 RL 32ohm RF SE Mode Test Circuit Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 22 Global Mixed-mode Technology Inc. Application Circuits G1430 VDD 1 LVDD LVDD LBYPASS 16 CRL 4.7µF RFI 10k CLI L input Signal RCA RJ1 COUTL 330µF COUTR 1k RJ2 1k 2 SHUTDOWN LLINEIN 15 2.2µF R1 100k 3 LOUT- LOUT+ 14 RFL 20k 4 GND GND 13 G1430 R2 100k 5 GND GND 12 330µF 6 C1 0.1µF SE/BTL ROUT+ 11 RFR 20k 7 VDD 8 RVDD RBYPASS 9 CBR 4.7µF ROUTRLINEIN 10 RRI 10k CRI RCA 2.2µF Logical Truth Table INPUTS SE/ BTL X Low High Shutdown High Low Low L/R Out+ ---BTL Output SE Output AMPLIFIER STATES L/R Out---BTL Output ---- Mode Mute BTL SE Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 23 Global Mixed-mode Technology Inc. Application Information Single Ended Mode Operation G1430 can drive clean, low distortion SE output power into headphone loads (generally 16Ω or 32Ω) as in Figure 1. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure 2. fC=1/(2πRLCC) For example, a 68uF capacitor with 32Ω headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation. G1430 VDD VDD Bridged-Tied Load Mode Operation G1430 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure 3 shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors. VDD Vo(PP) CC RL Vo(PP) RL Vo(PP) 2xVo(PP) -Vo(PP) VDD Figure 1 -3 dB Figure 3 fc Figure 2 Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 24 Global Mixed-mode Technology Inc. SHUTDOWN Mode Operations G1430 implements the shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 2) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1430 enters an extra low current consumption state, IDD is smaller than 5µA. Shutdown pin should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. Optimizing DEPOP Operation G1430 De-popping circuitry of G1430 is shown on Figure 4. The PNP transistor limits the voltage drop across the 50kΩ by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit. Circuitry has been implemented in G1430 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)). Where 100kΩ is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. VDD 100 kΩ Bypass Bypass 50 kΩ 100 kΩ Figure 4 Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 25 Global Mixed-mode Technology Inc. Package Information C G1430 θ E E1 EA D A A2 A1 L B B1 e DIP-16L Package SYMBOL A A1 A2 B B1 C D E E1 EA e L θ DIMENSION IN MILIMETER MIN NOM MAX ----0.381 3.175 --------3.302 0.457 TYP 1.527 TYP 0.254 19.101 6.401 7.62 9.017 2.540 TYP 3.302 ----4.318 ----3.429 MIN ----0.015 0.125 DIMENSION IN INCH NOM --------0.130 0.018 TYP 0.060 TYP 0.010 0.752 0.252 0.300 0.355 0.100 TYP 0.130 ----- MAX 0.170 0.015 ----- ----18.974 6.274 7.366 8.509 3.048 0° ----19.228 6.528 7.874 9.525 3.556 15° ----0.740 0.247 0.290 0.335 0.120 0° ----0.757 0.257 0.310 0.375 0.140 15° GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications. Ver: 1.0 Jan 15, 2004 TEL: 886-3-5788833 http://www.gmt.com.tw 26
G1430 价格&库存

很抱歉,暂时无法提供与“G1430”相匹配的价格&库存,您可以联系我们找货

免费人工找货