Global Mixed-mode Technology Inc.
G1430
2W Stereo Audio Amplifier
Features
Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V --1.8W/CH (typical) into a 4Ω Load --1.2W/CH (typical) into a 8Ω Load Bridge-Tied Load (BTL), Single-Ended (SE) Shutdown Control Available Dual Inline Package 16 pin (DIP16)
General Description
G1430 is a stereo audio power amplifier in 16pin Dual Inline Package. It can drive 1.8W continuous RMS power into 4Ω load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1430 supports the Bridge-Tied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. For the low current consumption applications, the SHDN mode is supported to disable G1430 when it is idle. The current consumption can be further reduced to below 5µA.
Applications
Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio Systems
Ordering Information
ORDER MARKING NUMBER
G1430Z4T G1430
TEMP. RANGE
-40°C to +85°C
PACKAGE
DIP-16L
Pin Configuration
G1430
LVDD SHUTDOWN LOUTGND/HS GND/HS SE/BTL ROUTROUTRVDD 1 2 3 4 5 6 7 8 DIP-16L 16 15 14 13 12 11 10 9 LBYPASS LLINEIN LOUT+ GND/HS GND/HS ROUT+ RLINEIN RBYPASS
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
1
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Supply Voltage, VCC…………………..…...…….……...6V Operating Ambient Temperature Range TA…….…………………………….……….-40°C to +85°C Maximum Junction Temperature, TJ…..……….….150°C Storage Temperature Range, TSTG….….-65°C to+150°C Soldering Temperature, 10seconds, TS……….……260°C
G1430
Power Dissipation (1) TA ≤ 25°C…………………………………………....2W Electrostatic Discharge, VESD Human body mode..…………………….-3000 to 3000(2)
Note: (1) : Both dual channels could provide 1.8W peak output power at 4 ohm speaker, but continuous output power is limited by package (DIP-16) power dissipation : 2W at Ta=25 degree °C (2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses
Electrical Characteristics
DC Electrical Characteristics, TA=+25°C PARAMETER
Supply Current
SYMBOL
VDD =3.3V IDD
CONDITION
Stereo BTL STEREO SE Stereo BTL VDD = 5V STEREO SE VDD = 5V,Gain = 2 VDD = 5V VDD = 5V Stereo BTL STEREO SE
MIN
---------------
TYP
7 3.5 8 4 5 8 4 2
MAX
10 6 13 6.5 50 13 6.5 5
UNIT
mA
DC Differential Output Voltage Supply Current in Mute Mode IDD in Shutdown
VO(DIFF) IDD(MUTE) ISD
mV mA µA
(AC Operation Characteristics, VDD = 5V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER SYMBOL CONDITION
THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD = 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz
MIN
-------------------------------------------
TYP
1.8 1.12 2 1.4 500 320 650 400 90 500 150 20 10 20 60 75 82 85 2 90 55
MAX
-------------------------------------------
UNIT
W
Output power (each channel) see Note
P(OUT)
mW
Total harmonic distortion plus noise
THD+N
m%
Maximum output power bandwidth Phase margin Power supply ripple rejection Channel-to-channel output separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage
BOM PSRR
ZI Vn PO = 500mW, BTL Output noise voltage
kHz ° dB dB dB MΩ dB µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
2
Global Mixed-mode Technology Inc.
(AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER SYMBOL CONDITION
THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz
G1430
MIN
-------------------------------------------
TYP
0.8 0.5 1 0.6 230 140 290 180 43 270 100 20 10 20 60 75 80 85 2 90 55
MAX
-------------------------------------------
UNIT
W
Output power (each channel) see Note
P(OUT)
mW
Total harmonic distortion plus noise
THD+N
m%
Maximum output power bandwidth Phase margin Power supply ripple rejection Channel-to-channel output separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage
BOM PSRR
ZI Vn PO = 500mW, BTL Output noise voltage
kHz ° dB dB dB MΩ dB µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
3
Global Mixed-mode Technology Inc.
Pin Description
PIN
1 2 3 4,5,12,13 6 7 8 9 10 11 14 15 16
G1430
NAME
LVDD SHUTDOWN LOUTGND/HS SE/ BTL ROUTRVDD RBYPASS RLINE IN ROUT+ LOUT+ LLINE IN LBYPASS
I/O
I I O I O I I O O I
FUNCTION
Supply voltage input for left channel and for primary bias circuits. Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD = 5µA. Left channel - output in BTL mode, high impedance state in SE mode. Ground connection for circuitry, directly connected to thermal pad. Mode control signal input, hold low for BTL mode, hold high for SE mode. Right channel - output in BTL mode, high impedance state in SE mode. Supply voltage input for right channel. Connect to voltage divider for right channel internal mid-supply bias. Right channel line input, selected when HP/pin is held low. Right channel + output in BTL mode, + output in SE mode. Left channel + output in BTL mode, + output in SE mode. Left channel line input, selected when HP/ pin is held low. Connect to voltage divider for left channel internal mid-supply bias.
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
4
Global Mixed-mode Technology Inc.
Typical Characteristics
Table of Graphs FIGURE
THD +N Total harmonic distortion plus noise Vn Output noise voltage Supply ripple rejection ratio Crosstalk Closed loop response IDD Supply current PO Output power PD Power dissipation vs Frequency vs Output power vs Frequency vs Frequency vs Frequency vs Frequency vs supply voltage vs supply voltage vs Load resistance vs Output power
G1430
2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33 1,3,6,9,10,13,16,19,22,25,28,31 34,35 36,37 38,39,40,41 42,43,44,45 46 47,48 49,50 51,52,53,54
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10 5
2 1 0.5 % 0.2 0.1 0.05
20kHz
2 1
Po=1.8W
1kHz
%
0.5
0.2 0.1
20 Hz
Po=1.5W
0.02 0.01 3m
VDD=5V RL=3Ω BTL
20m 50m 100m W 200m 500m 1 2 3
0.05
VDD=5V RL=3Ω BTL Av=-2V/V
200 500 Hz 1k 2k 5k 10k 20k
0.02 0.01 20
5m
10m
50
100
Figure 1
Figure 2
Ver: 1.0 Jan 15, 2004
5
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10 5
2 1 0.5 % 0.2 0.1 0.05
20kHz
Av=-4V/V
2 1
Av=-2V/V
1kHz
%
0.5
0.2 0.1
20 Hz
0.02 0.01 3m
VDD=5V RL=4Ω BTL
50m 100m W 200m 500m 1 2 3
Av=-1V/V
0.05
0.02 0.01 20
VDD=5V RL=4Ω BTL Po=1.5W
500 Hz 1k 2k 5k 10k 20k
5m
10m
20m
50
100
200
Figure 3
Figure 4
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=4Ω BTL Av=-2V/V
5
Po=1.5W Po=0.25W
%
2 1 0.5
20kHz
VDD=5V RL=8Ω BTL Av=-2V/V
0.2
1kHz
Po=0.75W
0.1 0.05
0.02 0.01 20
0.02 0.01 3m
20Hz
5m 10m 20m 50m 100m W 200m 500m 1 2 3
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 5
Figure 6
Ver: 1.0 Jan 15, 2004
6
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=8Ω BTL Av=-2V/V Po=0.25W
5
Po=1W
2 1 0.5 % 0.2 0.1
VDD=5V RL=8Ω BTL Po=1W Av=-2V/V
Av=-4V/V
Po=0.5W
0.05
0.02 0.01 20
0.02 0.01 20
Av=-1V/V
50 100 200 500 Hz 1k 2k 5k 10k 20k
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 7
Figure 8
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10 5
10 5
20kHz
2 1 0.5 % 0.2 0.1 0.05 2 1
20kHz
1kHz
%
0.5
1kHz
0.2 0.1
0.02 0.01 1m
VDD=3.3V RL=3Ω BTL
2m 5m 10m
20Hz
0.05
0.02 0.01 1m
VDD=3.3V RL=4Ω BTL
2m 5m 10m
20Hz
20m W
50m
100m
200m
500m
1
20m W
50m
100m
200m
500m
1
Figure 9
Figure 10
Ver: 1.0 Jan 15, 2004
7
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=4Ω BTL Po=0.65W
Av=-4V/V Av=-2V/V
5
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=4Ω BTL Av=-2V/V
Po=0.7W
Po=0.1W Po=0.35W
Av=-1V/V
0.02 0.01 20
0.02 0.01 20
50
100
200
500 Hz
1k
2k
5k
10k
20k
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 11
Figure 12
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
20kHz
VDD=3.3V RL=8Ω BTL
5
2 1 0.5
VDD=3.3V RL=8Ω BTL Po=0.4W Av=-2V/V
Av=-4V/V
1kHz
% 0.2 0.1 0.05
20Hz
0.02 0.01 1m 0.02 0.01 20
Av=-1V/V
2m
5m
10m
20m W
50m
100m
200m
500m
1
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 13
Figure 14
Ver: 1.0 Jan 15, 2004
8
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=8Ω BTL Av=-2V/V
5
2
Po=0.4W
VDD=5V RL=4Ω SE 20kHz
1 0.5
Po=0.1W
% 0.2 0.1 0.05
1kHz
Po=0.25W
0.02 0.01 20
100Hz
0.02 0.01 1m 2m 5m 10m 20m W 50m 100m 200m 500m 1
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 15
Figure 16
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=4Ω SE Po=0.5W Av=-2V/V
5
Av=-4V/V
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=4Ω SE Av=-2V/V
Po=0.4W
Po=0.1W
Av=-1V/V
Po=0.25W
0.02 0.01 20 20k
0.02 0.01 20
50
100
200
500 Hz
1k
2k
5k
10k
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 17
Figure 18
Ver: 1.0 Jan 15, 2004
9
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=8Ω SE 20kHz
%
5
2 1 0.5
VDD=5V RL=8Ω SE Po=0.25W Av=-2V/V
0.2 0.1
1kHz 100Hz
2m 5m 10m 20m W 50m 100m 200m 500m 1
Av=-4V/V Av=-1V/V
50 100 200 500 Hz 1k 2k 5k 10k 20k
0.05
0.02 0.01 1m
0.02 0.01 20
Figure 19
Figure 20
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=5V RL=8Ω SE Av=-2 Po=0.05W
%
5 2 1 0.5 0.2 0.1 0.05 0.02
VDD=5V RL=32Ω SE 20kHz
20Hz
Po=0.1W Po=0.25W
50 100 200 500 Hz 1k 2k 5k 10k 20k
0.01 0.005 0.002 0.001 1m 2m 5m 10m W
0.02 0.01 20
1kHz
20m 50m 100m 200m
Figure 21
Figure 22
Ver: 1.0 Jan 15, 2004
10
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 Hz 1k 2k 5k 10k 20k %
10
VDD=5V RL=32Ω SE Po=75mW
5 2 1
VDD=5V RL=32Ω SE Po=25mW
Av=-4V/V
0.5 0.2 0.1 0.05 0.02 0.01
Av=-2V/V
Po=50mW
Av=-1V/V
0.005 0.002 0.001 20 50 100 200 500 Hz 1k
Po=75mW
2k 5k 10k 20k
Figure 23
Figure 24
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=4Ω,SE Av=-2
5
20kHz
2 1 0.5 %
VDD=3.3V RL=4Ω SE Po=0.2W
Av=-4V/V
1kHz
0.2 0.1 0.05
Av=-2V/V
0.02 0.01 1m
100Hz
2m 5m 10m 20m W 50m 100m 200m 500m 1
0.02 0.01 20
Av=-1V/V
50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 25
Figure 26
Ver: 1.0 Jan 15, 2004
11
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
10
10
5
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=4Ω SE Av=-2
5
Po=50mW
2 1 0.5 %
VDD=3.3V RL=8Ω,SE Av=-2 20kHz
Po=100mW
0.2 0.1 0.05
1kHz
0.02 0.01 20
Po=150mW
50 100 200 500 Hz 1k 2k 5k 10k 20k
0.02 0.01 1m
100Hz
2m 5m 10m W 20m 50m 100m 200m
Figure 27
Figure 28
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=8Ω SE Po=100mW
5
2 1 0.5 % 0.2
VDD=3.3V RL=8Ω SE Po=25mW Po=50mW
Av=-4V/V
Av=-2V/V
0.1 0.05
0.02 0.01 20
Av=-1V/V
50 100 200 500 Hz 1k 2k 5k 10k 20k
0.02 0.01 20
Po=100mW
50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 29
Figure 30
Ver: 1.0 Jan 15, 2004
12
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
10 5
10
2 1 0.5 % 0.2 0.1 0.05
VDD=3.3V RL=32Ω SE 20kHz
5 2
1kHz
1 0.5 0.2 % 0.1 0.05 0.02
VDD=3.3V RL=32Ω SE Po=30mW Av=-2V/V
Av=-4V/V
20Hz
0.01 0.005
Av=-1V/V
0.02 0.01 1m
0.002 2m 5m 10m W 20m 50m 100m 0.001 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 31
Figure 32
TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY
OUTPUT NOISE VOLTAGE vs FREQUENCY
10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 Hz 1k V
VDD=3.3V RL=32Ω SE Po=10mW
100u 90u 80u 70u 60u 50u 40u
VDD=5V RL=4Ω
BW=20Hz to 20kHz
Vo BTL
30u
Po=20mW
20u
Vo SE
Po=30mW
2k 5k 10k 20k 10u 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 33
Figure 34
Ver: 1.0 Jan 15, 2004
13
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
OUTPUT NOISE VOLTAGE vs FREQUENCY
SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY
100u 90u 80u 70u 60u 50u 40u V
+0
VDD=3.3V RL=4Ω
BW=20Hz to 20kHz
-10 -20 -30 -40 d B -50 -60
Vo BTL
VDD=5V RL=4Ω CB=4.7uF
30u
BTL
20u
Vo SE
-70 -80 -90
SE
10u 20
50
100
200
500 Hz
1k
2k
5k
10k
20k
-100 20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 35
Figure 36
SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY
CROSSTALK vs FREQUENCY
+0 -10 -20 -30 -40 d B -50 -60 -70 -80 -90
-20 -25
VDD=3.3V RL=4Ω CB=4.7uF
-30 -35 -40 -45 -50 -55 d B
VDD=5V Po=1.5W RL=4Ω BTL
BTL
-60 -65 -70 -75 -80 -85
L to R
SE
50 100 200 500 Hz 1k 2k 5k 10k 20k
-90 -95
R to L
50 100 200 500 Hz 1k 2k 5k 10k 20k
-100 20
-100 20
Figure 37
Figure 38
Ver: 1.0 Jan 15, 2004
14
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
CROSSTALK vs FREQUENCY
CROSSTALK vs FREQUENCY
-20 -25 -30 -35 -40 -45 -50 -55 d B -60 -65 -70 -75 -80 -85 -90 -95 -100 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
d B
-30
VDD=3.3V Po=0.75W RL=4Ω BTL
-35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85
VDD=5V Po=75mW RL=32Ω SE
L to R
R to L
R to L
-90 -95 -100 20 50 100 200 500 Hz 1k 2k
L to R
5k 10k 20k
Figure 39
Figure 40
CROSSTALK vs FREQUENCY
-30 -35 -40 -45 -50 -55 -60 d B -65 -70 -75 -80 -85 -90 -95 -100 20 50 100 200 500 Hz 1k 2k 5k
VDD=3.3V Po=35mW RL=32Ω SE
R to L
L to R
10k 20k
Figure 41
Ver: 1.0 Jan 15, 2004
15
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
CLOSED LOOP RESPONSE
Figure 42
CLOSED LOOP RESPONSE
Figure 43
Ver: 1.0 Jan 15, 2004
16
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
CLOSED LOOP RESPONSE
Figure 44
CLOSED LOOP RESPONSE
Figure 45
Ver: 1.0 Jan 15,
17
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
SUPPLY CURRENT vs SUPPLY VOLTAGE 10 9 Po-Output Power (W) 8 Supply Current(mA) 7 6 5 4 3 2 1 0 3 3.5 4 4.5 5 5.5 6 SUPPLY VOLTAGE(V) 0 2.5 Stereo SE Stereo BTL 2 1.5 2.5
OUTPUT POWER vs SUPPLY VOLTAGE THD+N=1% BTL Each Channel RL=4Ω
RL=3Ω 1 0.5 RL=8Ω
3.5
4.5
5.5
6.5
SUPPLY VOLTAGE(V)
Figure 46
Figure 47
OUTPUT POWER vs SUPPLY VOLTAGE 0.7 0.6 Po-Output Power(W) 0.5 0.4 0.3 0.2 0.1 0 2.5 3.5 4.5 Supply Voltage(V) 5.5 6.5 RL=32Ω THD+N=1% SE Each Channel RL=4Ω 2 1.8 1.6 Po-Output Power(W) RL=8Ω 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0
OUTPUT POWER vs LOAD RESISTANCE
THD+N=1% BTL Each Channel VDD=5V
VDD=3.3V
4
8
12
16
20
24
28
32
Load Resistance(Ω)
Figure 48
Figure 49
Ver: 1.0 Jan 15, 2004
18
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
OUTPUT POWER vs LOAD RESISTANCE 0.7 0.6 Po-Output Power(W) 0.5 0.4 0.3 0.2 0.1 0 0 4 8 12 16 20 24 28 32 Load Resistance(Ω) VDD=3.3V VDD=5V THD+N=1% SE Each Channel 1.8 1.6 Power Dissipation(W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0
POWER DISSIPATION vs OUTPUT POWER
RL=3Ω
RL=4Ω VDD=5V BTL Each Channel
RL=8Ω
0.5
1
1.5
2
2.5
Po-Output Power(W)
Figure 50
Figure 51
POWER DISSIPATION vs OUTPUT POWER 0.8 0.7 Power Dissipation(W) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.25 0.5 Output Power(W) 0.75 1 RL=8Ω VDD=3.3V BTL Each Channel RL=4Ω RL=3Ω Power Dissipation(W) 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0
POWER DISSIPATION vs OUTPUT POWER
RL=4Ω
RL=8Ω
RL=32Ω
VDD=5V SE Each Channel
0.2
0.4 Output Power(W)
0.6
0.8
Figure 52
Figure 53
Ver: 1.0 Jan 15, 2004
19
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
POWER DISSIPATION vs OUTPUT POWER 0.16 POWER DISSIPATION (W) 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0 0.05 0.1 0.15 0.2 0.25 0.3 OUTPUT POWER(W) RL=32Ω RL=8Ω RL=4Ω VDD=3.3V SE Each Channel
Figure 54
Ver: 1.0 Jan 15, 2004
20
TEL: 886-3-5788833 http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
Block Diagram
20k
G1430
10
RLINEIN
_
ROUT+ ROUT-
11 7
9
RBYPASS
+
RVDD
8
2
SHUTDOW N
BIAS CIRCUITS MODES CONTROL CIRCUITS
SE/BTL
6
LVDD
1
16
LBYPASS + LOUTLOUT+ 3 14
15
LLINEIN
_
20k
Parameter Measurement Information
8
SHUTDOWN SE/BTL 6
LVDD 6 CB 4.7µF CI AC source RI 15 LLINEIN LBYPASS
1 RL 4/8/32ohm
+ _
LOUTLOUT+
3 14
RF
BTL Mode Test Circuit
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
21
Global Mixed-mode Technology Inc.
Parameter Measurement Information (Continued)
G1430
2
SHUTDOWN SE/BTL 6 VDD
LVDD 6 CB 4.7µF CI RI 15 LLINEIN LBYPASS
1
+ _
LOUTLOUT+
3 14
RL 32ohm
RF
SE Mode Test Circuit
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
22
Global Mixed-mode Technology Inc.
Application Circuits
G1430
VDD 1 LVDD LVDD LBYPASS 16
CRL 4.7µF RFI 10k CLI L input Signal RCA RJ1 COUTL 330µF COUTR 1k RJ2 1k
2
SHUTDOWN
LLINEIN
15
2.2µF
R1 100k
3
LOUT-
LOUT+
14
RFL 20k
4
GND
GND
13
G1430
R2 100k 5 GND GND 12
330µF 6 C1 0.1µF SE/BTL ROUT+ 11 RFR 20k 7 VDD 8 RVDD RBYPASS 9 CBR 4.7µF ROUTRLINEIN 10 RRI 10k CRI RCA 2.2µF
Logical Truth Table INPUTS SE/ BTL
X Low High
Shutdown
High Low Low
L/R Out+
---BTL Output SE Output
AMPLIFIER STATES L/R Out---BTL Output ----
Mode
Mute BTL SE
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
23
Global Mixed-mode Technology Inc.
Application Information
Single Ended Mode Operation G1430 can drive clean, low distortion SE output power into headphone loads (generally 16Ω or 32Ω) as in Figure 1. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure 2. fC=1/(2πRLCC) For example, a 68uF capacitor with 32Ω headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation.
G1430
VDD VDD
Bridged-Tied Load Mode Operation G1430 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure 3 shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors.
VDD
Vo(PP)
CC RL Vo(PP)
RL Vo(PP) 2xVo(PP) -Vo(PP)
VDD
Figure 1
-3 dB
Figure 3
fc
Figure 2
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
24
Global Mixed-mode Technology Inc.
SHUTDOWN Mode Operations G1430 implements the shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 2) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1430 enters an extra low current consumption state, IDD is smaller than 5µA. Shutdown pin should never be left unconnected, this floating condition will cause the amplifier operations unpredictable.
Optimizing DEPOP Operation
G1430
De-popping circuitry of G1430 is shown on Figure 4. The PNP transistor limits the voltage drop across the 50kΩ by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit.
Circuitry has been implemented in G1430 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)). Where 100kΩ is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode.
VDD 100 kΩ Bypass Bypass 50 kΩ
100 kΩ
Figure 4
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
25
Global Mixed-mode Technology Inc.
Package Information
C
G1430
θ
E
E1
EA
D
A
A2 A1
L
B B1
e
DIP-16L Package
SYMBOL
A A1 A2 B B1 C D E E1 EA e L θ
DIMENSION IN MILIMETER MIN NOM MAX
----0.381 3.175 --------3.302 0.457 TYP 1.527 TYP 0.254 19.101 6.401 7.62 9.017 2.540 TYP 3.302 ----4.318 ----3.429
MIN
----0.015 0.125
DIMENSION IN INCH NOM
--------0.130 0.018 TYP 0.060 TYP 0.010 0.752 0.252 0.300 0.355 0.100 TYP 0.130 -----
MAX
0.170 0.015 -----
----18.974 6.274 7.366 8.509 3.048 0°
----19.228 6.528 7.874 9.525 3.556 15°
----0.740 0.247 0.290 0.335 0.120 0°
----0.757 0.257 0.310 0.375 0.140 15°
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
Ver: 1.0 Jan 15, 2004
TEL: 886-3-5788833 http://www.gmt.com.tw
26