Global Mixed-mode Technology Inc.
G5107
Low-Voltage, High-Efficiency, Step-up DC-DC Converter
Features
1.2V Low Start-up Input Voltage Deliver 3.3V 100mA from 2 Alkaline Battery Cell 90% Efficiency Adjustable Output from 2.5V to 5.5V 1.5A, 0.3Ω, 7V Power MOSFET 1.2V to 5.5V Input Range Fast 1MHz Switching Frequency SOT-23-6 & TSOT-23-6 Package
General Description
The G5107 boost converter in corporate high-performance, voltage-mode, fixed-frequency (at 1MHz), pulse width modulation (PWM) circuitry with a built-in 0.3Ω n-channel MOSFET to provide a highly efficient regulator. The low start-up input voltage 1.2V makes G5107 suitable for 2~4 cells alkaline battery applications. High switching frequency allows easy filtering and faster loop performance. An external compensation pin provides the user flexibility in determining loop dynamics, allowing the use of various types of output capacitors. The device can produce an output voltage from 2.5V to 5.5V. The G5107 is available in a space-saving SOT-23-6 & TSOT-23-6 package.
Applications
MP3 Players PDAs Digital Still Cameras Portable Applications Hand-Held Devices
Ordering Information
ORDER NUMBER
G5107TBU G5107TPU
MARKING
5107xx 5107xx
TEMP. RANGE
-40°C ~ +85°C -40°C ~ +85°C
PACKAGE (Pb free)
SOT-23-6 TSOT-23-6
Note: TB : SOT23-6
U: Tape & Reel
TP: TSOT-23-6
Pin Configuration
Typical Application Circuit
L1 VIN C1 100µF + 4.7µH 1N5819 VOUT 3.3V
SW
1
6
VCC VCC
VCC SHDN GND SW FB COMP RC CC R2 R1 + C3 100µF
GND
2
G5107
5
COMP
C2 1 µF
FB
3 SOT-23-6 / TSOT-23-6
4
SHDN
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
1
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
VCC, SHDN , SW to GND. . . . . . . . . . . . . -0.3V to +7V FB, COMP to GND. . . . . . . . . . . . . . . . . . -0.3V to VCC Operating Temperature. . . . . . . . . . . . .. -40°C to 85°C
G5107
Junction Temperature . . . . . . . . . . . . . . . . . . . . .125°C Storage Temperature. . . . . . . . . . . . . . -65°C to 150°C Reflow Temperature (soldering, 10sec) . . . . . . 260°C
Stress beyond those listed under “Absolute Maximum Rating” may cause permanent damage to the device.
Electrical Characteristics
(VIN = 1.5V, VCC = V SHDN = 3V, TA = 25°C) PARAMETER
Start-Up Voltage Range Operating Voltage Range VFB = 1.5V (no switching) Quiescent Current VFB = 0V (switching) V SHDN = 0V FB Comparator Trip Point Error Amp Transconductance Error Amp Voltage Gain Output Over Voltage Protection Switching Frequency Maximum Duty Switch RDS(ON) Switch Leakage Current Switch Current Limit Switch Current Limit (startup)
SHDN Pin Voltage High SHDN Pin Voltage Low
CONDITIONS
IOUT=1mA
MIN
--2.5 ------1.26 ---------
TYP
1.2 --100 --0.1 1.28 100 0.76 100 5 1 --0.3 0.1 1.5 0.6 -----
MAX
--5.5 200 2 1 1.3 ------10 1.3 --0.5 10 1.8 ----0.1xVCC
UNITS
V V µA mA µA V ppm/°C mmho V/V % MHz % Ω µA A A V V
Initial Accuracy Temperature Coefficient
VFB = 0V ISW = 150mA VSW = 7V
0.7 85 ----1.2 --0.9xVCC ---
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
2
Global Mixed-mode Technology Inc.
Typical Performance Characteristics
(VCC= +3.6V, V SHDN =+3.6V, L=4.7μH, TA=25°C, unless otherwise noted.)
G5107
IQ_SW vs. Temperature
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
IQ_SW vs. VCC
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2 2.5 3 3.5 4 4.5 5 5.5 6
IQ_SW (mA)
IQ_SW (mA)
-40
-20
0
20
40
60
80
100
VCC (V)
Temperature (°C)
IQ_NoSW vs. VCC
150 125 150 125
IQ_NoSW vs. Temperature
IQ_NoSW ( µA)
IQ_NoSW ( µA)
100 75 50 25 0 2 2.5 3 3.5 4 4.5 5 5.5 6
100 75 50 25 0 -40 -20 0 20 40 60 80 100
VCC (V)
Temperature (°C)
IQ_SHDN vs. VCC
0.1 0.08 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 2 2.5 3 3.5 4 4.5 5 5.5 6 0.1 0.08 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 -40
IQ_SHDN vs. Temperature
IQ_SHDN (µA)
IQ_SHDN (µA)
-20
0
20
40
60
80
100
VCC (V)
Temperature (°C)
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
3
Global Mixed-mode Technology Inc.
Typical Performance Characteristics (continued)
Feedback Voltage vs. VCC
1.3 1.295 1.29 1.285 1.28 1.275 1.27 1.265 1.26 2 2.5 3 3.5 4 4.5 5 5.5 6
G5107
Feedback Voltage vs. Temperature
1.3 1.295 1.29 1.285 1.28 1.275 1.27 1.265 1.26 -40 -20 0 20 40 60 80 100
Feedback Voltage (mV)
Feedback Voltage (mV)
VCC (V)
Temperature (°C)
Frequency vs. VCC
1 0.9 0.8 1 0.9 0.8
Frequency vs. Temperature
Frequency (MHz)
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2 2.5 3 3.5 4 4.5 5 5.5 6
Frequency (MHz)
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 -20 0 20 40 60 80 100
VCC (V)
Temperature (°C)
SW R_on vs. VCC
0.5 0.45 0.4 0.5 0.45 0.4
SW R_on vs. Temperature
SW R_on (Ω)
SW R_on (Ω)
0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 2 2.5 3 3.5 4 4.5 5 5.5 6
0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -40 -20 0 20 40 60 80 100
VCC (V)
Temperature (°C)
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
4
Global Mixed-mode Technology Inc.
Typical Performance Characteristics (continued)
Current Limit vs. VCC
1.8 1.7 1.8 1.7
G5107
Current Limit vs. Temperature
Current Limit (A)
Current Limit (A)
1.6 1.5 1.4 1.3 1.2 2 2.5 3 3.5
1.6 1.5 1.4 1.3 1.2
VCC (V)
4
4.5
5
5.5
6
-40
-20
0
20
40
60
80
100
Temperature (°C)
Stability Waveform
Stability Waveform
Stability Waveform
Stability Waveform
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
5
Global Mixed-mode Technology Inc.
Typical Performance Characteristics (continued)
G5107
Load Transient
Load Transient
Efficiency vs. Load Current
100 90 80 70 60 50 40 30 20 10 0 1 10 100 1000 VOUT = 3.3V 100 90 80 70 60 50 40 30 20 10 0 1
Efficiency vs. Load Current
VIN=4.5V
Efficiency (%)
Efficiency (%)
VIN=1.5V VIN=2.0V VIN=2.5V VIN=3.0V
VIN=2.0V VIN=2.5V VIN=1.5V VOUT = 5.0V 10 100
VIN=4.0V VIN=3.5V
VIN=3.0V
1000
10000
Load Current (mA)
Load Current (mA)
Max. Output Current vs. Input Voltage
1200
Recommended Minimum Footprint
SOT-23-6/ TSOT-23-6
Max. Output Current (mA)
1000 800 600 400 200 0 0 0.5 1 1.5 2
VOUT = 3.3V
VOUT = 5.0V
2.5 3 3.5 4
4.5 5
Input Voltage (V)
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
6
Global Mixed-mode Technology Inc.
Pin Description
PIN
1 2 3 4 5 6
G5107
NAME
SW GND FB
SHDN
FUNCTION
Switch Pin. The drain of the internal NMOS power switch. Connect this pin to inductor. Ground Pin. Feedback Pin. Active Low Shutdown Pin. Compensation Pin. Input Supply Pin. Bypass this pin with a capacitor as close to the device as possible.
COMP VCC
Block Diagram
FB COMP SW
COMPARATOR A1 + A2 + R Q CONTROL
DRIVER M1
S
1.28V VREF RAMP GENERATOR OC
+
1MHz OSCILLATOR
VCC
SHDN
GND
White LED Driver
L1 VIN C1 VCC ON OFF SHDN SW M1 C2 D2 (Optional) D1 VOUT
G5107
GND R2 FB
COMP R3 RC CC R4 R1
VBIAS
VDIM PWM Dimming
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
7
Global Mixed-mode Technology Inc.
Function Description
Normal Operation The G5107 uses a constant frequency control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the block diagram. At the start of each oscillator cycle, the SR latch is set, which turns on the power switch M1. An artificial ramp is generated to the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A2, the SR latch is reset turning off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the reference voltage of 1.28V. In this manner, the error amplifier sets the correct peak current level (DCM) or duty (CCM) to keep the output in regulation. Over Voltage Protection Over voltage protect function is designed to prevent the output accidentally damage the load. Once the device detects over voltage (nominalx1.05) at the output, the internal NMOS switch turned off to stop power input.
G5107
Capacitor Selection Various types of output capacitor are suitable for G5107. To obtain small output ripple, the small size of ceramic capacitors are suitable for G5107 applications. X5R and X7R types are recommended because they retain their capacitance over wider voltage and temperature ranges than other types such as Y5V or Z5U. A 4.7µF~22µF output capacitor is enough for most applications. To using a low cost Tantalum/Electrolytic type capacitors, a 47µF~100µF output capacitor is enough. Another small 1µF ceramic is recommended to place near G5107 VCC pin to bypass high frequency noise generated from the higher ESR output capacitor. Diode Selection Schottky diodes, with their low forward voltage drop and fast reverse recovery, are the ideal choices for G5107 applications. The forward voltage drop of a Schottky diode represents the conduction losses in the diode, while the diode capacitance (CT or CD) represents the switching losses. For diode selection, both forward voltage drop and diode capacitance need to be considered. Schottky diodes with higher current ratings usually have lower forward voltage drop and larger diode capacitance, which can cause significant switching losses at the 1MHz switching frequency of the G5107. A Schottky diode rated at 2A is sufficient for most G5107 applications.
Application Information
Inductor Selection A 2.2µH~10µH inductor is recommended for small ripple applications. Small form factor and high efficiency are the major concerns for most G5107 applications. Inductor with low core losses and small DCR (cooper wire resistance) at 1MHz are good choice for G5107 applications.
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
8
Global Mixed-mode Technology Inc.
Package Information
G5107
C L
D
E
H
e1 e
θ1
A2 b
A A1
SOT-23-6 (TB) Package
Note: 1. Package body sizes exclude mold flash protrusions or gate burrs 2. 3. Tolerance ±0.1000 mm (4mil) unless otherwise specified 4. Coplanarity: 0.1000mm 5. Dimension L is measured in gage plane
SYMBOL
A A1 A2 b C D E e e1 H L θ1
MIN.
1.00 0.00 0.70 0.35 0.10 2.70 1.40 --------2.60 0.37 1°
DIMENSION IN MM NOM.
1.10 ----0.80 0.40 0.15 2.90 1.60 1.90(TYP) 0.95 2.80 -----5°
MAX.
1.30 0.10 0.90 0.50 0.25 3.10 1.80 --------3.00 ----9°
MIN.
0.039 0.000 0.028 0.014 0.004 0.106 0.055 --------0.102 0.015 1°
DIMENSION IN INCH NOM.
0.043 ----0.031 0.016 0.006 0.114 0.063 0.075(TYP) 0.037 0.110 ----5°
MAX.
0.051 0.004 0.035 0.020 0.010 0.122 0.071 --------0.118 ----9°
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
9
Global Mixed-mode Technology Inc.
D C L
G5107
E1 E1 E
e e1
θ1
A2 y A1
A b
TSOT-23-6 (TP) Package
Note: 1. Dimension D does not include mold flash, protrusions or tate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.1mm PER end. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15mm PER side. 2. The package top may be smaller than the package bottom. Dimensions D and E1 are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interlead flash, but including any mismatch between the top and bottom of the plastic body.
SYMBOL
A A1 A2 b C D E E1 e e1 L y θ1
MIN.
0.75 0.00 0.70 0.35 0.10 2.80 2.60 1.50
DIMENSION IN MM NOM.
--------0.75 --------2.90 2.80 1.60 0.95 BSC 1.90 BSC -------------
MAX.
0.90 0.10 0.80 0.51 0.25 3.00 3.00 1.70
MIN.
0.030 0.000 0.028 0.014 0.004 0.110 0.102 0.059
DIMENSION IN INCH NOM.
--------0.030 --------0.114 0.110 0.063 0.0374 BSC 0.0748 BSC -------------
MAX.
0.035 0.004 0.031 0.020 0.010 0.118 0.118 0.067
0.37 ----0°
----0.10 8°
0.015 0°
----0.004 8°
Taping Specification
PACKAGE
SOT-23-6 TSOT-23-6
Feed Direction SOT-23-6/TSOT-23-6 Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
Q’TY/REEL
3,000 ea 3,000 ea
Ver: 0.3 Preliminary May 11, 2006
TEL: 886-3-5788833 http://www.gmt.com.tw
10