0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TCA440

TCA440

  • 厂商:

    GSG

  • 封装:

  • 描述:

    TCA440 - AM - Receiver Circuit - Gunter Seniconductor GmbH.

  • 数据手册
  • 价格&库存
TCA440 数据手册
GSG 勁力 TCA440 EDITION 09/00 半導体 Gunter Semiconductor GmbH Integrated AM Circuit for frequencies up to 30 MHz For inquiry please contact : China Tel: 0086-755-3200442 Fax: 0086-755-3355520 Hong Kong Tel : 00852-26190748 Fax: 00852-24948080 e-mail sales@gsg-asia.com Technical Data TCA440/T Edition 09/00 AM - Receiver Circuit Description The TCA440/T is an efficient bipolar monolithic circuit to apply in battery - powered or mains operated radio receivers up to 30 MHz. It contains controlled RF stage, mixer, separated oscillator and regulated multistage IF amplifier. Features • symmetrical structured circuitry • controlled RF prestage • multiplicative balanced mixer, separated oscillator • very well implemented large - signal characteristic begins already from 4.5 V supply voltage • terminals for indicating instrument • controlled IF amplifier implementing 60 dB control range • external demodulator (diode) • wide range of supply voltage between 4.5 and 15 V Package TCA440 • DIP 16 19.4 ± 0.2 ≤ 1.27 ≤ 1.40 6.4 +0.2 - 0.1 ≤ 5.1 3.5 - 0.5 +1.0 ≥ 0.51 3.6 +0.2 -0.1 ≤ 0.98 2.50 0.47 ±0.12 0.25 M 0.27 -0.07 +0.09 7.55 7.9 . . . 9.7 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 09/00 1 1.35 ± 0.1 TCA440 T • SOP 16 ≤ 2.00 9.9 ± 0.1 6.0 ± 0.2 3.9 ± 0.1 + 0.1 0.05 0...8° 0.15 - 0.15 ≥ 0.3 1.27 0.42 + 0.07 - 0.06 0.25 M ≤ 0.7 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 Pin Configuration 1 2 3 4 5 6 7 8 RF prestage, input 1 RF prestage, input 2 RF control amplifier input oscillator circuit pin 1 oscillator circuit pin 2 oscillator circuit pin 3 IF output ground 9 10 11 12 13 14 15 16 input IF control amplifier indicator output IF control amplifier IF blocking input lF amplifier IF blocking supply voltage mixer output 1 mixer output 2 Block Diagram IF REQUIRED VCC 3 16 3.5V 14 3.5V STABILISATION HF - CIRCUIT 1 PRESTAGE MIXER 1st IF STAGE 2nd IF STAGE 3rd IF STAGE 4th IF STAGE 7 AF 2 6 5 4 OSCILLATOR IF GAIN CONTROL 8 15 12 11 13 10 9 VCC VCC IF FILTER TUNING INDICATOR 2 0.19 + 0.06 09/00 TCA440/T Functional Description It contains several function units, which enable designing and assembling of efficient AM tuners. Caused by internal voltage stabilization characteristics are rather independent from supply voltage. The RF input signal reaches via a controllable and overdriving proof preselector stage a balanced mixer. By means of a RF - signal generated by a separated oscillator the input signal is transported into IF. Multiplicative mixing causes only few harmonic content. Gain control is carried out by means of two separated feedback control loops for preselector stage and IF amplifier. By these a loop bandwidth of approximately 100 dB is obtained. The control voltage of the IF - amplifier can be used to drive a moving - coil instrument (field strength indicator). The IF amplifier consists of 4 amplifier stages, the first, second and third can be controlled. The bandwidth of the IF amplifier is approximately 2 MHz and on that account sufficient for usual IF frequencies in the AM range of approximately 460 kHz. The symmetrical arrangement of the entire circuitry guarantees well oscillating. The bridge of the mixer avoids direct breakdown. Absolute Maximum Ratings min Supply voltage Junction temperature Ambient operating temperature Storage temperature Total thermal resistance VCC Tj Ta Ts Rthja -15 -40 4.5 max 15.0 150 80 125 120 unit V °C °C °C K/W Recommended Operational Conditions min Supply voltage Ambient operating temperature VCC Ta 4.5 -10 max 15 70 unit V °C 09/00 TCA440/T 3 Characteristics refer to application examples, fi = 1 MHz, fosc = 1.455 kHz, flF = 455 kHz, VCC = 9 V, fm = 1 kHz, m = 0.8, voltages refer to ground, Ta = 20 to 25 °C, unless specified otherwise min Current and voltage supply (no RF signal) Supply voltage Current consumption V14-8 = 4.5 V V14-8 = 9 V V14-8= 15 V Entire receiver RF level variation with ∆VNF = 6 dB with ∆VNF = 10 dB NF output voltages (symmetrically measured at 1-2) ViHF = 20 µV, m = 0.8 ViHF = 1 mV, m = 0.8 ViHF = 500 mV, m = 0.8 ViHF = 20 µV, m = 0.3 ViHF = 1 mV, m = 0.3 ViHF = 500 mV, m = 0.3 RF input sensitivity measured at 60 Ω, m = 0.3, RG = 540 Ω signal-to-noise ratio S + N/N = 6 dB S + N/N = 26 dB S + N/N = 58 dB Maximum RF input voltage (THD = 10 %) Total harmonic distortion VHF = 500 mV VHF = 30 mV RF part Input frequency range Output frequency f|F = fosc - fiHF Control range typ max unit V14-8 4.5 9 15 V I14 I14 I14 7 10.5 12 16 mA mA mA ∆VRF ∆VRF 65 80 dB dB VNF(rms) VNF(rms) VNF(rms) VNF(rms) VNF(rms) VNF(rms) 60 100 140 260 350 50 100 130 560 mV mV mV mV mV mV ViRF ViRF ViRF ViHF 1 7 1 1.5 µV µV mV V THD THD 4.5 2.8 10 8 % % fiHF 0 50 MHz fIF ∆GV 455 38 kHz dB 4 09/00 TCA440/T min IF suppression between 1 - 2 and 15 RF input impedance unbalanced coupling ViHFmax ViHFmin balanced coupling ViHFmax ViHFmin Mixer output impedance (pin 15 or 16) Steepness IF part Input frequency range Control range filF = 455 kHz, ∆VNF = 10 dB Start of control (∆ViIF / ∆VNF = 10 dB / 3 dB) maximum IF input voltage (THDNF = 10 %) NF output voltage applied to 60 Ω VZF = 30 µV VZF = 3 mV VZF = 3 mV; m = 0.3 IF input impedance (unbanlanced coupling) IF output impedance (pin 7) filF ∆GV 0 alF typ 20 max unit dB Zi Zi Zi Zi 2 II 5 2.2 II 1.5 4.5 4.5 II 1.5 kΩIIpF kΩIIpF kΩ kΩIIpF Zo SHF 250 II 4.5 28 kΩIIpF mS 2 62 MHz dB VctrlF VilFmax 140 200 µV mV VNF(rms) VNF(rms) VNF(rms) 50 200 70 mV mV mV ZilF ZO 3 II 3 200 II 8 kΩllpF kΩIIpF Indication instrument Recommended indication instruments: 500 µA (Ri = 800 Ω) 300 µA (Ri = 1.5 kΩ) For indication a voltage source of 600 m V(EMF) and an internal source impedance of 400 Ω is available. 09/00 TCA440/T 5 Dependences TCA 440 / T S = f ( Vosc ) S = I15 / V1;2 VCC = 9V; 5V fIF = 455 kHz fi = 1 MHz; V3 = 0V 9V 500 5V 20 400 5V 300 9V 40 S ( mS ) 800 V10 ( mV ) TCA 440 / T V10 = f ( V9 ) VCC = parameter R6 = 1.5 kΩ 30 600 10 200 100 0 100 200 300 400 500 V9 ( mV ) 800 0 10 1 10 2 10 3 V osc ( mV ) TCA 440 / T 500 V3 ( mV ) V3 = f ( VgoHF ) VCC = parameter fi = 1 MHz 500 V3 ( mV ) TCA 440 / T V3 = f ( VgoHF ) VCC = parameter fi = 1 MHz 9V 5V 400 400 300 9V 5V 200 300 200 100 100 0 10 2 10 3 10 4 VgoHF ( µV ) 10 6 0 10 2 10 3 10 4 VgoHF ( µV ) 10 6 6 09/00 TCA440/T VAF ( mV ) TCA 440 / T VAF = f ( ViIF ) V3 = parameter fIF = 455 kHz m = 0.8; fm = 1 kHz 9V THD ( % ) TCA 440 / T THD = f ( ViIF ) fIF = 455 kHz m = 0.8; fm = 1 kHz 400 8 5V 6 300 200 4 5V 100 2 9V 0 0 10 1 10 2 10 3 10 4 ViIF ( µV ) 10 7 10 2 10 3 10 4 ViIF ( µV ) 10 6 V10 ( mV ) TCA 440 / T V9 ( mV ) V10 = f ( VgoHF ) VCC = parameter fi = 1 MHz 800 TCA 440 / T V9 = f ( ViIF ) VCC = parameter fIF = 455 kHz 9V 5V 500 400 9V 5V 300 600 400 200 200 100 0 10 0 10 1 10 2 10 3 10 4 V 10 goHF (µV) 6 0 10 1 10 2 10 3 10 4 10 5 10 6 V iIF (µV) 7 09/00 TCA440/T ICC ( mA) TCA 440 / T ICC = f ( VCC ) VgoHF = 0 400 VAF (mV) TCA 440 / T VAF = f ( VgoHF ) VCC = parameter fIF = 455 kHz m = 0.8; fm = 1 kHz 9V 18 5V 300 16 14 200 12 10 100 8 6 5 6 7 8 9 10 11 12 V ( V) 15 CC 0 10 0 10 1 10 2 10 3 10 4 10 5 V 10 8 goHF (µV) TCA 440 / T VAF ( mV ) VAF = f ( VgoHF ) VCC = parameter fIF = 455 kHz fm = 1 kHz; m = 0.8 9V 5V 8 THD ( % ) 400 TCA 440 / T THD = f ( VogHF) VCC = parameter fIF = 455 kHz fm = 1 kHz; m = 0.8 300 6 200 5V 4 100 2 9V 0 10 0 10 1 10 2 10 3 10 4 VgoHF (µV) 10 6 0 10 0 10 1 10 2 VgoHF (mV) 10 3 8 09/00 TCA440/T 80 S+N (dB) N TCA 440 / T V10 (mV) S+N = f (P ) gmax N VCC = 9 V fi = 1 MHz fm = 1 kHz; m = 0.3 Rg = parameter 500 TCA 440 / T V10 = f ( ViIF ) VCC = parameter fIF = 455 kHz m = 0.8; fm = 1 kHz 5V 9V 60 400 50 300 40 1 kΩ 4.7 kΩ 30 Ω 250 Ω 200 30 20 Pgmax= 10 V2go 4Rg 100 0 10 -9 0 10 -7 10 -5 10- 3 10 -1 10 0 10 1 Pgmax(µW) 10 1 10 2 10 3 10 4 V (µV) 10 6 iIF 800 V3 ( mV ) TCA 440 / T ∆HFgain = f ( V3 ) VCC = parameter V15 = 50 mV const. fiHF = 1 MHz 5V 9V 800 V9 ( mV ) TCA 440 / T ∆IFgain = f ( V9 ) VCC = parameter VAF = 200 mV const. fiIF = 455 kHz fm = 1 kHz; m = 0.8 5V 9V 600 600 400 400 200 200 0 0 10 20 30 50 40 ∆HFgain (dB) 0 0 10 20 30 40 50 60 ∆IFgain (dB) 9 09/00 TCA440/T V7 ( mV ) TCA 440 / T V7 = f ( V9 ) 9V ViIF = 100 µV fi = 455 kHz VCC = parameter V15 ( mV ) 800 TCA 440 / T V15 = f ( V3 ) VCC = parameter VgoHF = 700 µV fi = 1 MHz 9V 40 600 30 5V 400 5V 20 200 10 0 0 200 400 600 V9 (mV) 800 0 0 100 200 300 400 V3 (mV) Application Examples • TCA 440 VCC Fi2 Rp2 W1 b S6 12 15 14 C8 1.5n C11 100n C14 10n R9 60 C10 4.7µ VIF D2 C13 10n S4 S2 Fi4 W2 C12 W1 1.5n S5 C9 10n W2 R6 1.5k a Fi1 C13 S3 330 W1a W2 W1b C12 100n 16 4 10 5 6 R 2 TCA 440 A 7 Fi3 D1 x Rp3 C5 W 1.5n R5 12k C6 3.3n C7 4.7µ VAF VgoHF ~ ~ 1 3 R1 C2 1.8k C1 20µ R2 8.2k 100n C3 C4 100n 4.7µ S1 8 11 13 9 R4 39k R3 100 25Ω ≤ RG ≤ 100Ω 10 09/00 TCA440/T • TCA440 T +VCC 100n +50% -20% 47µ ±50% W Rp2 1.5k ±2% 1.5n W 10n +50% -20% ±2.5% S2 16 4 S3 ±2.5% 10 12 15 14 W1a 330p W1 R 100n +50% -20% 5 6 2 TCA 440 T A 7 Rp3 1.5n ±2% 4.7µ x W ±50% VgoHF ~ ~ 1 3 ±2% 12k 3.3n +50% -20% 8 11 13 9 ±2.5% VAF 1.8k S1 20µ 8.2k ±5% 100 ±2% 100n +50% -20% 39k ±2% 100n +50% -20% 25Ω ≤ RG ≤ 100Ω ±20% 4.7µ ±50% Application Hints The PCB is to arrange such that there are maximum ground lines (ground area) voltage supply has to be blocked to ground by a capacitor of 10...100 nF in order to avoid distortions. Blocking should be as close as possible to the circuit. The RF circuit has to layout such that 150 mV(rms) oscillator voltage are applied to pin 5. Symmetrically applying an external oscillator is possible to pin 4 or pin 5. The unused input must be connected to ground via capacitor and in the same time be connected to supply voltage at pin 6. It is recommendable to profide off earth connections 1 and 3, because in this way common - mode interferences more effectively can be suppessed. Single - sided capacitive control of pin 1 and 2 is possible, the unused input must be connected to ground via capacitor. Mixer outputs 15 and 16 can be used equivalently. Load resistances of the mixer (IF selection) at pin 15 respectively pin 16 should run to approximately 7 kΩ. To avoid saturation of the multiplier the maximum peak voltage occuring during operation should not exceed the level (VCC - 3 V) IF response to voltage from pin 15 respectively pin 16 to pin 12 should be approximately - 18 dB that the control characteristics of IF - and RF - part optimally be matched. Peak voltage at pin 7 occuring during operation should not exceed 2 V that the IF output does not go into saturation. All the RF bypass capacitors should amount to 100 nF. Sufficient decoupling of wavemagnet and oscillator coil is to be taken into consideration. All components and parts must be carefully proportioned in order to obtain optimum wise characteristics. Wavemagnets applied should so much mass as possible. The transformation ratio of the input circuitry should run to 10...12. In order to improve RF response characteristic a RF preselector can be additionally preceded or the wavemagnet can be tighty coupled by means of an emitter follower impedance transformer. Improvement of signal - to - noise ratio at average input voltages can be obtained by delayed control of the RF part. Control should be start at approximately 1...2 mV. Copying is generally permitted, indicating the source. However, our consent must be obtained in all cases. MEGAXESS reserves the right to make changes in specifications at any time and without notice. The information and suggestions are given without obligation and cannot give rise to any liability, they do not indicate the availability of the components mentioned. The information included herein is believed to be accurate and reliable. However, MEGAXESS assumes no responsibility for its use; nor for any infringements of patents or of other rights of third parties which may result from its use. Megaxess GmbH Deutschland • POB 1370 • 15236 Frankfurt(Oder) • Germany Phone +49 335 2005 • FAX +49 335 3251 • Internet http://www. megaxess.de 09/00 TCA440/T 11
TCA440 价格&库存

很抱歉,暂时无法提供与“TCA440”相匹配的价格&库存,您可以联系我们找货

免费人工找货