Preliminary GS8644Z18/36E-xxxV
165-Bump BGA Commercial Temp Industrial Temp Features
• NBT (No Bus Turn Around) functionality allows zero wait Read-Write-Read bus utilization; fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs • 1.8 V or 2.5 V core power supply and I/O supply • User-configurable Pipeline and Flow Through mode • ZQ mode pin for user-selectable high/low output drive • IEEE 1149.1 JTAG-compatible Boundary Scan • LBO pin for Linear or Interleave Burst mode • Pin-compatible with 2Mb, 4Mb, 9Mb, 18Mb, and 36Mb devices • Byte write operation (9-bit Bytes) • 3 chip enable signals for easy depth expansion • ZZ Pin for automatic power-down • JEDEC-standard 165-bump BGA package • RoHS-compliant 165-bump BGA package available
72Mb Pipelined and Flow Through Synchronous NBT SRAM
250 MHz–133MHz 1.8 V or 2.5 V VDD 1.8 V or 2.5 V I/O
Because it is a synchronous device, address, data inputs, and read/write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable (ZZ) and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex offchip write pulse generation required by asynchronous SRAMs and simplifies input signal timing. The GS8644Z18/36E-xxxV may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edgetriggered registers that capture input signals, the device incorporates a rising edge triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge-triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock. The GS8644Z18/36E-xxxV is implemented with GSI's high performance CMOS technology and is available in a JEDECstandard 165-bump BGA package.
Functional Description
The GS8644Z18/36E-xxxV is a 72Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/ single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.
Parameter Synopsis
-250 -225 -200 -166 -150 -133 Unit
Pipeline 3-1-1-1 tKQ tCycle Curr (x18) Curr (x36) tKQ tCycle Curr (x18) Curr (x36) 3.0 4.0 385 450 6.5 6.5 265 290 3.0 4.4 360 415 6.5 6.5 265 290 3.0 5.0 335 385 6.5 6.5 265 290 3.0 6.0 305 345 8.0 8.0 255 280 3.3 6.7 295 325 8.5 8.5 240 265 3.5 7.5 265 295 8.5 8.5 225 245 ns ns mA mA ns ns mA mA
Flow Through 2-1-1-1
Rev: 1.05 6/2006
1/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
165 Bump BGA—x18 Common I/O—Top View (Package E)
1 A B C D E F G H J K L M N P R NC NC NC NC NC NC NC FT DQB DQB DQB DQB DQPB NC LBO 2 A A NC DQB DQB DQB DQB MCH NC NC NC NC NC A A 3 E1 E2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 4 BB NC VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 5 NC BA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI TMS 6 E3 CK VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC A1 A0 7 CKE W VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDO TCK 8 ADV G VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 9 A A VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 10 A A NC NC NC NC NC ZQ DQA DQA DQA DQA NC A A 11 A NC DQPA DQA DQA DQA DQA ZZ NC NC NC NC NC NC A A B C D E F G H J K L M N P R
11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch
Rev: 1.05 6/2006
2/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
165 Bump BGA—x36 Common I/O—Top View (Package E)
1 A B C D E F G H J K L M N P R NC NC DQPC DQC DQC DQC DQC FT DQD DQD DQD DQD DQPD NC LBO 2 A A NC DQC DQC DQC DQC MCH DQD DQD DQD DQD NC A A 3 E1 E2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 4 BC BD VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 5 BB BA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI TMS 6 E3 CK VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC A1 A0 7 CKE W VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDO TCK 8 ADV G VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 9 A A VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 10 A A NC DQB DQB DQB DQB ZQ DQA DQA DQA DQA NC A A 11 NC NC DQPB DQB DQB DQB DQB ZZ DQA DQA DQA DQA DQPA NC A A B C D E F G H J K L M N P R
11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch
Rev: 1.05 6/2006
3/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
GS8644Z18/36E-xxxV 165-Bump BGA Pin Description Symbol
A 0, A 1 A DQA DQB DQC DQD BA , BB , BC , BD NC CK CKE W E1 E3 E2 FT G ADV ZQ ZZ LBO TMS TDI TDO TCK MCH VDD VSS VDDQ
Type
I I I/O I — I I I I I I I I I I I I I I O I — I I I
Description
Address field LSBs and Address Counter Preset Inputs Address Inputs Data Input and Output pins Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low No Connect Clock Input Signal; active high Clock Enable; active low Write Enable; active low Chip Enable; active low Chip Enable; active low Chip Enable; active high Flow Through / Pipeline Mode Control Output Enable; active low Burst address counter advance enable; active high FLXDrive Output Impedance Control Low = Low Impedance [High Drive], High = High Impedance [Low Drive]) Sleep mode control; active high Linear Burst Order mode; active low Scan Test Mode Select Scan Test Data In Scan Test Data Out Scan Test Clock Must Connect High Core power supply I/O and Core Ground Output driver power supply
Rev: 1.05 6/2006
4/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Functional Details
Clocking Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation. Pipeline Mode Read and Write Operations All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable inputs will deactivate the device. Function Read Write Byte “a” Write Byte “b” Write Byte “c” Write Byte “d” Write all Bytes Write Abort/NOP W H L L L L L L BA X L H H H L H BB X H L H H L H BC X H H L H L H BD X H H H L L H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins. Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock. Flow Through Mode Read and Write Operations Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode. Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.
Rev: 1.05 6/2006
5/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Synchronous Truth Table Operation
Read Cycle, Begin Burst Read Cycle, Continue Burst NOP/Read, Begin Burst Dummy Read, Continue Burst Write Cycle, Begin Burst Write Cycle, Continue Burst Write Abort, Continue Burst Deselect Cycle, Power Down Deselect Cycle, Power Down Deselect Cycle, Power Down Deselect Cycle Deselect Cycle, Continue Sleep Mode Clock Edge Ignore, Stall
Type Address CK CKE ADV W Bx E1 E2 E3 G ZZ
R B R B W B B D D D D D External Next External Next External Next Next None None None None None None Current L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H X L-H L L L L L L L L L L L L X H L H L H L H H L L L L H X X H X H X L X X X X X L X X X X X X X L L H X X X H X X X L X L X L X X H X X L X X X H X H X H X X X X L H X X X L X L X L X X X H X L X X X L L H H X X X X X X X X X X L L L L L L L L L L L L H L
DQ
Q Q High-Z High-Z D D
Notes
1,10 2 1,2,10 3 1,3,10
High-Z 1,2,3,10 High-Z High-Z High-Z High-Z High-Z High-Z 4 1 1
Notes: 1. Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Deselect cycle is executed first. 2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin is sampled low but no Byte Write pins are active so no write operation is performed. 3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write cycles. 4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus will remain in High Z. 5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals are Low 6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge. 7. Wait states can be inserted by setting CKE high. 8. This device contains circuitry that ensures all outputs are in High Z during power-up. 9. A 2-bit burst counter is incorporated. 10. The address counter is incriminated for all Burst continue cycles.
Rev: 1.05 6/2006
6/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Pipelined and Flow Through Read Write Control State Diagram
D
B
Deselect
R
W
D
D W R
R
New Read
B
New Write
W B
R
W
R
W
B
Burst Read
D
Burst Write
D
B
Key
Input Command Code
Notes
1. The Hold command (CKE Low) is not shown because it prevents any state change.
ƒ Transition
Current State (n) Next State (n+1)
n n+1
2. W, R, B, and D represent input command codes as indicated in the Synchronous Truth Table. n+2 n+3
Clock (CK)
Command
ƒ
Current State
ƒ
Next State
ƒ
ƒ
Current State and Next State Definition for Pipelined and Flow through Read/Write Control State Diagram
Rev: 1.05 6/2006
7/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Pipeline Mode Data I/O State Diagram
Intermediate
BW High Z (Data In) D
R
Intermediate W Intermediate Intermediate
RB Data Out (Q Valid) D
Intermediate
W
R
High Z B D
Intermediate
Key
Input Command Code
Notes
1. The Hold command (CKE Low) is not shown because it prevents any state change.
ƒ Transition
Current State (n)
Transition Next State (n+2)
Intermediate State (N+1)
2. W, R, B, and D represent input command codes as indicated in the Truth Tables.
n
n+1
n+2
n+3
Clock (CK)
Command
ƒ
Current State
ƒ
Intermediate State
ƒ
Next State
ƒ
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram
Rev: 1.05 6/2006
8/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Flow Through Mode Data I/O State Diagram
BW High Z (Data In) D
R W
RB Data Out (Q Valid) D
W
R
High Z B D
Key
Input Command Code
Notes
1. The Hold command (CKE Low) is not shown because it prevents any state change.
ƒ Transition
Current State (n) Next State (n+1)
n n+1
2. W, R, B, and D represent input command codes as indicated in the Truth Tables.
n+2
n+3
Clock (CK)
Command
ƒ
Current State
ƒ
Next State
ƒ
ƒ
Current State and Next State Definition for: Pipeline and Flow Through Read Write Control State Diagram
Rev: 1.05 6/2006
9/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Burst Cycles Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode. Burst Order The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details. FLXDrive™ The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.
Mode Pin Functions Mode Name
Burst Order Control Output Register Control Power Down Control FLXDrive Output Impedance Control
Pin Name
LBO FT ZZ ZQ
State
L H L H or NC L or NC H L H or NC
Function
Linear Burst Interleaved Burst Flow Through Pipeline Active Standby, IDD = ISB High Drive (Low Impedance) Low Drive (High Impedance)
Note: There are pull-up devices on the ZQ and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.
Rev: 1.05 6/2006
10/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Burst Counter Sequences
Linear Burst Sequence A[1:0] A[1:0] A[1:0] A[1:0]
1st address 2nd address 3rd address 4th address 00 01 10 11 01 10 11 00 10 11 00 01 11 00 01 10
Interleaved Burst Sequence A[1:0] A[1:0] A[1:0] A[1:0]
1st address 2nd address 3rd address 4th address 00 01 10 11 01 00 11 10 10 11 00 01 11 10 01 00
Note: The burst counter wraps to initial state on the 5th clock.
Note: The burst counter wraps to initial state on the 5th clock.
BPR 1999.05.18
Sleep Mode
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after 2 cycles of wake up time. Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.
Sleep Mode Timing Diagram
tKH tKC CK tZZR tZZS ZZ tZZH tKL
Designing for Compatibility
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal. Not all vendors offer this option, however most mark the pin VDD or VDDQ on pipelined parts and VSS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets. Other vendors mark the pin as a No Connect (NC). GSI RAMs have an internal pull-up device on the FT pin so a floating FT pin will result in pipelined operation. If the part being replaced is a pipelined mode part, the GSI RAM is fully compatible with these sockets. In the unlikely event the part being replaced is a Flow Through device, the pin will need to be pulled low for correct operation.
Rev: 1.05 6/2006
11/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Absolute Maximum Ratings
(All voltages reference to VSS)
Symbol
VDD VDDQ VI/O VIN IIN IOUT PD TSTG TBIAS
Description
Voltage on VDD Pins Voltage on VDDQ Pins Voltage on I/O Pins Voltage on Other Input Pins Input Current on Any Pin Output Current on Any I/O Pin Package Power Dissipation Storage Temperature Temperature Under Bias
Value
–0.5 to 4.6 –0.5 to VDD –0.5 to VDDQ +0.5 (≤ 4.6 V max.) –0.5 to VDD +0.5 (≤ 4.6 V max.) +/–20 +/–20 1.5 –55 to 125 –55 to 125
Unit
V V V V mA mA W
o
C
oC
Note: Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.
Power Supply Voltage Ranges (1.8 V/2.5 V Version) Parameter
1.8 V Supply Voltage 2.5 V Supply Voltage 1.8 V VDDQ I/O Supply Voltage 2.5 V VDDQ I/O Supply Voltage
Symbol
VDD1 VDD2 VDDQ1 VDDQ2
Min.
1.7 2.3 1.7 2.3
Typ.
1.8 2.5 1.8 2.5
Max.
2.0 2.7 VDD VDD
Unit
V V V V
Notes
Notes: 1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. 2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Rev: 1.05 6/2006
12/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
VDDQ2 & VDDQ1 Range Logic Levels Parameter
VDD Input High Voltage VDD Input Low Voltage
Symbol
VIH VIL
Min.
0.6*VDD –0.3
Typ.
— —
Max.
VDD + 0.3 0.3*VDD
Unit
V V
Notes
1 1
Notes: 1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. 2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Recommended Operating Temperatures Parameter
Ambient Temperature (Commercial Range Versions) Ambient Temperature (Industrial Range Versions)
Symbol
TA TA
Min.
0 –40
Typ.
25 25
Max.
70 85
Unit
°C °C
Notes
2 2
Notes: 1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. 2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Undershoot Measurement and Timing
VIH
Overshoot Measurement and Timing
20% tKC VDD + 2.0 V
VSS 50% VSS – 2.0 V 20% tKC
50% VDD
VIL
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 2.5 V)
Parameter
Input Capacitance Input/Output Capacitance Note: These parameters are sample tested.
Symbol
CIN CI/O
Test conditions
VIN = 0 V VOUT = 0 V
Typ.
4 6
Max.
5 7
Unit
pF pF
Rev: 1.05 6/2006
13/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
AC Test Conditions Parameter
Input high level Input low level Input slew rate Input reference level Output reference level Output load
Conditions
VDD – 0.2 V 0.2 V 1 V/ns VDD/2 VDDQ/2 Fig. 1 VDDQ/2
* Distributed Test Jig Capacitance
Figure 1
Output Load 1 DQ 50Ω 30pF*
Notes: 1. Include scope and jig capacitance. 2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted. 3. Device is deselected as defined by the Truth Table.
DC Electrical Characteristics Parameter
Input Leakage Current (except mode pins) FT, ZQ, ZZ Input Current Output Leakage Current
Symbol
IIL IIN IOL
Test Conditions
VIN = 0 to VDD VDD ≥ VIN ≥ 0 V Output Disable, VOUT = 0 to VDD
Min
–1 uA –100 uA –1 uA
Max
1 uA 100 uA 1 uA
DC Output Characteristics (1.8 V/2.5 V Version) Parameter
1.8 V Output High Voltage 2.5 V Output High Voltage 1.8 V Output Low Voltage 2.5 V Output Low Voltage
Symbol
VOH1 VOH2 VOL1 VOL2
Test Conditions
IOH = –4 mA, VDDQ = 1.6 V IOH = –8 mA, VDDQ = 2.375 V IOL = 4 mA IOL = 8 mA
Min
VDDQ – 0.4 V 1.7 V — —
Max
— — 0.4 V 0.4 V
Rev: 1.05 6/2006
14/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Operating Currents
-250 Mode Symbol 0 to 70°C Unit 400 50 270 20 360 25 250 15 120 120 200 170 200 170 200 160 230 190 220 180 210 190 160 120 160 120 160 120 170 160 160 120 160 120 160 120 160 160 200 190 275 15 250 15 275 15 250 15 275 15 240 15 260 15 225 15 120 120 170 150 395 25 335 25 370 25 315 20 350 20 285 20 320 20 275 20 310 20 250 15 160 160 200 180 295 20 270 20 295 20 270 20 295 20 260 20 285 20 245 20 270 20 230 15 250 15 210 15 120 120 160 140 435 50 370 45 405 45 345 40 380 40 310 35 345 35 295 30 330 30 270 25 305 25 255 15 285 15 235 15 160 160 190 170
mA mA mA mA mA mA mA mA
-225 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C
-200
-166
-150
-133
Rev: 1.05 6/2006 –40 to 85°C Pipeline (x36) Flow Through Pipeline (x18) Flow Through IDDQ ISB ISB IDD IDD Pipeline — Flow Through Pipeline — Flow Through IDD IDD IDDQ IDD IDDQ IDD IDDQ
Parameter
Test Conditions
Operating Current
Device Selected; All other inputs ≥VIH or ≤ VIL Output open
15/30
Standby Current
ZZ ≥ VDD – 0.2 V
Deselect Current
Device Deselected; All other inputs ≥ VIH or ≤ VIL
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Notes: 1. IDD and IDDQ apply to any combination of VDD1, VDD2, VDDQ1, and VDDQ2 operation. 2. All parameters listed are worst case scenario.
Preliminary GS8644Z18/36E-xxxV
© 2003, GSI Technology
Preliminary GS8644Z18/36E-xxxV
AC Electrical Characteristics
Parameter Clock Cycle Time Clock to Output Valid Clock to Output Invalid Clock to Output in Low-Z Setup time Hold time Clock Cycle Time Clock to Output Valid Clock to Output Invalid Clock to Output in Low-Z Setup time Hold time Clock HIGH Time Clock LOW Time Clock to Output in High-Z G to Output Valid G to output in Low-Z G to output in High-Z ZZ setup time ZZ hold time ZZ recovery Symbol tKC tKQ tKQX tLZ1 tS tH tKC tKQ tKQX tLZ1 tS tH tKH tKL tHZ1 tOE tOLZ1 tOHZ1 tZZS
2
-250 Min 4.0 — 1.0 1.0 1.3 0.2 6.5 — 3.0 3.0 1.5 0.5 1.3 1.5 1.0 — 0 — 5 1 20 Max — 2.3 — — — — — 6.5 — — — — — — 2.3 2.3 — 2.3 — — —
-225 Min 4.4 — 1.0 1.0 1.3 0.3 6.5 — 3.0 3.0 1.5 0.5 1.3 1.5 1.0 — 0 — 5 1 20 Max — 2.5 — — — — — 6.5 — — — — — — 2.5 2.5 — 2.5 — — —
-200 Min 5.0 — 1.0 1.0 1.4 0.4 6.5 — 3.0 3.0 1.5 0.5 1.3 1.5 1.0 — 0 — 5 1 20 Max — 2.7 — — — — — 6.5 — — — — — — 2.7 2.7 — 2.7 — — —
-166 Min 6.0 — 1.0 1.0 1.5 0.5 7.0 — 3.0 3.0 1.5 0.5 1.3 1.5 1.0 — 0 — 5 1 20 Max — 2.9 — — — — — 7.0 — — — — — — 2.9 2.9 — 2.9 — — —
-150 Min 6.7 — 1.0 1.0 1.5 0.5 7.5 — 3.0 3.0 1.5 0.5 1.5 1.7 1.0 — 0 — 5 1 20 Max — 3.3 — — — — — 7.5 — — — — — — 3.0 3.3 — 3.0 — — —
-133 Min 7.5 — 1.0 1.0 1.5 0.5 8.5 — 3.0 3.0 1.5 0.5 1.7 2 1.0 — 0 — 5 1 20 Max — 3.5 — — — — — 8.5 — — — — — — 3.0 3.5 — 3.0 — — —
Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Pipeline
Flow Through
tZZH2 tZZR
Notes: 1. These parameters are sampled and are not 100% tested. 2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold times as specified above.
Rev: 1.05 6/2006
16/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Pipeline Mode Timing (NBT)
Write A Read B Suspend tKH tKL Read C tKC Write D writeno-op Read E Deselect
CK
tH tS
A
A tH tS
B
C
D
E
CKE
tH tS
E*
tH tS
ADV
tH tS
W
tH tS tS tH
Bn
tH tS tLZ tKQ Q(B) Q(C) D(D) Q(E) tHZ tKQX
DQ
D(A)
Rev: 1.05 6/2006
17/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Flow Through Mode Timing (NBT)
Write A Write B Write B+1 tKL tKH
CK
Read C tKC
Cont
Read D
Write E
Read F
Write G
tH tS
CKE
tH tS
E
tH tS
ADV
tH tS
W
tH tS
Bn
tH tS
A0–An A B C D E F G
tKQ tH tS
DQ D(A) D(B)
tKQ tLZ
D(B+1) Q(C)
tKQX tHZ
Q(D)
tLZ
D(E) Q(F)
tKQX
D(G)
tOLZ tOE tOHZ
G
*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1
JTAG Port Operation
Overview The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output drivers are powered by VDDQ. Disabling the JTAG Port It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected. Rev: 1.05 6/2006 18/30 © 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
JTAG Pin Descriptions Pin
TCK TMS
Pin Name
Test Clock Test Mode Select
I/O
In In
Description
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK. The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level. The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.
TDI
Test Data In
In
TDO
Test Data Out
Output that is active depending on the state of the TAP state machine. Output changes in Out response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.
Note: This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
JTAG Port Registers
Overview The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins. Instruction Register The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state. Bypass Register The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible. Boundary Scan Register The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
Rev: 1.05 6/2006
19/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
JTAG TAP Block Diagram
· · ·
108
·
·
·
·
·
·
· ·
1
Boundary Scan Register
0
Bypass Register
210
0
Instruction Register TDI ID Code Register
31 30 29
TDO
·
···
210
Control Signals TMS TCK Test Access Port (TAP) Controller
Identification (ID) Register The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM. It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
ID Register Contents
GSI Technology JEDEC Vendor ID Code Presence Register 0 1
Not Used
Bit #
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 X X X X X X X X X X X X X X X X X X X X 0 0 011011001
Rev: 1.05 6/2006
20/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Tap Controller Instruction Set
Overview There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific (Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load address, data or control signals into the RAM or to preload the I/O buffers. When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01. When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this device is listed in the following table.
JTAG Tap Controller State Diagram
1
Test Logic Reset
0 1 1 1
0
Run Test Idle
Select DR
0 1
Select IR
0 1
Capture DR
0
Capture IR
0
Shift DR
1 1
0 1
Shift IR
1
0
Exit1 DR
0
Exit1 IR
0
Pause DR
1
0
Pause IR
1
0
Exit2 DR
1
0
Exit2 IR
1
0
Update DR
1 0
Update IR
1 0
Instruction Descriptions BYPASS When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
Rev: 1.05 6/2006
21/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
SAMPLE/PRELOAD SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the TDI and TDO pins. EXTEST EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input pins. Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK when the controller is in the Update-IR state. Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated. IDCODE The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the Test-Logic-Reset state. SAMPLE-Z If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state. RFU These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.
Rev: 1.05 6/2006
22/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
JTAG TAP Instruction Set Summary Instruction
EXTEST IDCODE SAMPLE-Z RFU SAMPLE/ PRELOAD GSI RFU BYPASS
Code
000 001 010 011 100 101 110 111
Description
Places the Boundary Scan Register between TDI and TDO. Preloads ID Register and places it between TDI and TDO. Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. Forces all RAM output drivers to High-Z. Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO. Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. GSI private instruction. Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO. Places Bypass Register between TDI and TDO.
Notes
1 1, 2 1 1 1 1 1 1
Notes: 1. Instruction codes expressed in binary, MSB on left, LSB on right. 2. Default instruction automatically loaded at power-up and in test-logic-reset state.
Rev: 1.05 6/2006
23/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
JTAG Port Recommended Operating Conditions and DC Characteristics (1.8/2.5 V Version) Parameter
1.8 V Test Port Input Low Voltage 2.5 V Test Port Input Low Voltage 1.8 V Test Port Input High Voltage 2.5 V Test Port Input High Voltage TMS, TCK and TDI Input Leakage Current TMS, TCK and TDI Input Leakage Current TDO Output Leakage Current Test Port Output High Voltage Test Port Output Low Voltage Test Port Output CMOS High Test Port Output CMOS Low
Symbol
VILJ1 VILJ2 VIHJ1 VIHJ2 IINHJ IINLJ IOLJ VOHJ VOLJ VOHJC VOLJC
Min.
–0.3 –0.3 0.6 * VDD1 0.6 * VDD2 –300 –1 –1 1.7 — VDDQ – 100 mV —
Max.
0.3 * VDD1 0.3 * VDD2 VDD1 +0.3 VDD2 +0.3 1 100 1 — 0.4 — 100 mV
Unit Notes
V V V V uA uA uA V V V V 1 1 1 1 2 3 4 5, 6 5, 7 5, 8 5, 9
Notes: 1. Input Under/overshoot voltage must be –2 V < Vi < VDDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC. 2. VILJ ≤ VIN ≤ VDDn 3. 0 V ≤ VIN ≤ VILJn 4. Output Disable, VOUT = 0 to VDDn 5. The TDO output driver is served by the VDDQ supply. 6. IOHJ = –4 mA 7. IOLJ = + 4 mA 8. IOHJC = –100 uA 9. IOLJC = +100 uA
JTAG Port AC Test Conditions Parameter
Input high level Input low level Input slew rate Input reference level Output reference level
Conditions
VDD – 0.2 V 0.2 V 1 V/ns VDDQ/2 VDDQ/2 DQ
JTAG Port AC Test Load
50Ω VDDQ/2
* Distributed Test Jig Capacitance
30pF*
Notes: 1. Include scope and jig capacitance. 2. Test conditions as shown unless otherwise noted.
Rev: 1.05 6/2006
24/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
JTAG Port Timing Diagram
tTKC TCK tTH tTS TDI tTH tTS TMS tTKQ TDO tTH tTS Parallel SRAM input
tTKH
tTKL
JTAG Port AC Electrical Characteristics
Parameter TCK Cycle Time TCK Low to TDO Valid TCK High Pulse Width TCK Low Pulse Width TDI & TMS Set Up Time TDI & TMS Hold Time Symbol tTKC tTKQ tTKH tTKL tTS tTH Min 50 — 20 20 10 10 Max — 20 — — — — Unit ns ns ns ns ns ns
Boundary Scan (BSDL Files) For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications Engineering Department at: apps@gsitechnology.com.
Rev: 1.05 6/2006
25/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Rev: 1.05 6/2006
26/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Package Dimensions—165-Bump FPBGA (Package E)
A1 CORNER
TOP VIEW
BOTTOM VIEW Ø0.10 M C Ø0.25 M C A B Ø0.40~0.60 (165x)
A1 CORNER
1 2 3 4 5 6 7 8 9 10 11 A B C D E F G H J K L M N P R
11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R
1.0 10.0 B 0.20(4x) 15±0.05 1.0
17±0.05
14.0
A
Rev: 1.05 6/2006
0.36~0.46 1.50 MAX.
C
SEATING PLANE
0.20 C
27/30
1.0
1.0
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Ordering Information for GSI NBT SRAMs Org
4M x 18 4M x 18 4M x 18 4M x 18 4M x 18 4M x 18 2M x 36 2M x 36 2M x 36 2M x 36 2M x 36 2M x 36 4M x 18 4M x 18 4M x 18 4M x 18 4M x 18 4M x 18 2M x 36 2M x 36 2M x 36 2M x 36 2M x 36 2M x 36
Part Number1
GS8644Z18E-250 GS8644Z18E-225 GS8644Z18E-200 GS8644Z18E-166 GS8644Z18E-150 GS8644Z18E-133 GS8644Z36E-250 GS8644Z36E-225 GS8644Z36E-200 GS8644Z36E-166 GS8644Z36E-150 GS8644Z36E-133 GS8644Z18E-250I GS8644Z18E-225I GS8644Z18E-200I GS8644Z18E-166I GS8644Z18E-150I GS8644Z18E-133I GS8644Z36E-250I GS8644Z36E-225I GS8644Z36E-200I GS8644Z36E-166I GS8644Z36E-150I GS8644Z36E-133I
Type
NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM
Voltage Option
1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V
Package
165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA
Speed2 (MHz/ns)
250/6.5 225/6.5 200/6.5 166/8 150/8.5 133/8.5 250/6.5 225/6.5 200/6.5 166/8 150/8.5 133/8.5 250/6.5 225/6.5 200/6.5 166/8 150/8.5 133/8.5 250/6.5 225/6.5 200/6.5 166/8 150/8.5 133/8.5
TA3 Status4
C C C C C C C C C C C C I I I I I I I I I I I I PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ
Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8644Z18B-150IB. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode-selectable by the user. 3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range. 4. PQ = Pre-Qualification. 5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings. Rev: 1.05 6/2006 28/30 © 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
Ordering Information for GSI NBT SRAMs (Continued) Org
4M x 18 4M x 18 4M x 18 4M x 18 4M x 18 4M x 18 2M x 36 2M x 36 2M x 36 2M x 36 2M x 36 2M x 36 4M x 18 4M x 18 4M x 18 4M x 18 4M x 18 4M x 18 2M x 36 2M x 36 2M x 36 2M x 36 2M x 36 2M x 36
Part Number1
GS8644Z18E-250 GS8644Z18E-225V GS8644Z18E-200V GS8644Z18E-166V GS8644Z18E-150V GS8644Z18E-133V GS8644Z36E-250V GS8644Z36E-225V GS8644Z36E-200V GS8644Z36E-166V GS8644Z36E-150V GS8644Z36E-133V GS8644Z18E-250IV GS8644Z18E-225IV GS8644Z18E-200IV GS8644Z18E-166IV GS8644Z18E-150IV GS8644Z18E-133IV GS8644Z36E-250IV GS8644Z36E-225IV GS8644Z36E-200IV GS8644Z36E-166IV GS8644Z36E-150IV GS8644Z36E-133IV
Type
NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM NBT MCM
Voltage Option
1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V
Package
165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA
Speed2 (MHz/ns)
250/6.5 225/6.5 200/6.5 166/8 150/8.5 133/8.5 250/6.5 225/6.5 200/6.5 166/8 150/8.5 133/8.5 250/6.5 225/6.5 200/6.5 166/8 150/8.5 133/8.5 250/6.5 225/6.5 200/6.5 166/8 150/8.5 133/8.5
TA3 Status4
C C C C C C C C C C C C I I I I I I I I I I I I PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ
Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8644Z18B-150IB. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode-selectable by the user. 3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range. 4. PQ = Pre-Qualification. 5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.05 6/2006
29/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary GS8644Z18/36E-xxxV
72Mb Sync SRAM Datasheet Revision History DS/DateRev. Code: Old;
New 8644ZVxx_r1 8644ZVxx_r1; 8644ZVxx_r1_01 Content
Types of Changes Page;Revisions;Reason Format or Content
• Creation of new datasheet • Updated Operating Currents table • Updated FT AC Characteristics for tKQ • Updated FT tKQ and PL tS/tH and FT current numbers for 250 and 225 MHz (match 200 MHz) • Updated basic format • Updated Synchronous Truth Table • Added thermal characteristics to mechanical drawings • Updated JTAG section for module • Updated format • Added variation information to package mechanicals • Corrected 165 mechanical drawing • Updated entire document to reflect new part nomenclature • Removed all 119 and 209 BGA references • Added RoHS-compliant information
8644ZVxx_r1_01; 8644ZVxx_r1_02
Content
8644ZVxx_r1_02; 8644ZVxx_r1_03 8644ZVxx_r1_03; 8644ZVxx_r1_04 8644ZVxx_r1_04; 8644Zxx_V_r1_05
Format/Content Content Content
Rev: 1.05 6/2006
30/30
© 2003, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.