Semiconductor
DUC PRO 9 ETE 53 SOL e HA-2 OB Se
T
HA-2839
600MHz, Very High Slew Rate Operational Amplifier
November 1996
Features
• Low Supply Current. . . . . . . . . . . . . . . . . . . . . . . . 13mA • Very High Slew Rate . . . . . . . . . . . . . . . . . . . . . 625V/µs • Open Loop Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 25kV/V • Wide Gain-Bandwidth (AV ≥ 10) . . . . . . . . . . . . 600MHz • Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . 10MHz • Low Offset Voltage. . . . . . . . . . . . . . . . . . . . . . . . .0.6mV • Differential Gain/Phase . . . . . . . . . 0.03%/0.03 Degrees • Enhanced Replacement for EL2039
Description
The HA-2839 is a wideband, very high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with a closed loop gain of 10 or greater. A 625V/µs slew rate and a 600MHz gain bandwidth product ensure high performance in video and RF amplifier designs. Differential gain and phase are a low 0.03% and 0.03 degrees respectively, making the HA-2839 ideal for video applications. A full ±10V output swing, high open loop gain, and outstanding AC parameters, make the HA-2839 an excellent choice for high speed Data Acquisition Systems. The HA-2839 is available in commercial and industrial temperature ranges, and a choice of packages. For military grade product, refer to the HA-2839/883 data sheet.
Applications
• Pulse and Video Amplifiers • Wideband Amplifiers • High Speed Sample-Hold Circuits • RF Oscillators
Part Number Information
PART NUMBER HA1-2839-5 HA3-2839-5 HA3-2839-9 TEMP. RANGE (oC) 0 to 75 0 to 75 -40 to 85 PACKAGE 14 Ld CERDIP 14 Ld PDIP 14 Ld PDIP PKG. NO. F14.3 E14.3 E14.3
Pinout
HA-2839 (CERDIP, PDIP) TOP VIEW
+IN 1 NC 2 V- 3 NC 4 NC 5 NC 6 NC 7 + 14 -IN
-
13 NC 12 NC 11 NC 10 V+ 9 NC 8 OUT
NOTE: No Connection (NC) pins may be tied to a ground plane for better isolation and heat dissipation.
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright
© Harris Corporation 1996
File Number
2841.3
3-1
HA-2839
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . . 35V Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Thermal Information
Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W) CERDIP Package . . . . . . . . . . . . . . . . 95 40 PDIP Package . . . . . . . . . . . . . . . . . . . 80 N/A Maximum Internal Quiescent Power Dissipation (Note 1) Maximum Junction Temperature (Ceramic Package) . . . . . . . . . 175oC Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
Operating Conditions
Temperature Range HA-2839-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 75oC HA-2839-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC Recommended Supply Voltage Range. . . . . . . . . . . . . ±7V to ±15V
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES: 1. Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below 175oC for ceramic packages and below 150oC for plastic packages. 2. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
VSUPPLY = ±15V, RL = 1kΩ, CL ≤ 10pF, Unless Otherwise Specified HA-2839-5, -9
PARAMETER INPUT CHARACTERISTICS Offset Voltage (Note 13)
TEMP. (oC)
MIN
TYP
MAX
UNITS
25 Full
±10 -
0.6 2 20 5 8 1 10 1 6 6
2 6 14.5 20 4 8 -
mV mV µV/oC µA µA µA µA kΩ pF V nV ⁄ Hz pA ⁄ Hz
Average Offset Voltage Drift Bias Current (Note 13)
Full 25 Full
Offset Current
25 Full
Input Resistance Input Capacitance Common Mode Range Input Noise Voltage (f = 1kHz, RSOURCE = 0Ω, Note 13) Input Noise Current (f = 1kHz, RSOURCE = 10kΩ, Note 13) TRANSFER CHARACTERISTICS Large Signal Voltage Gain (Note 3)
25 25 Full 25 25
25 Full
20 15 75 10 -
25 20 80 600
-
kV/V kV/V dB V/V MHz
Common-Mode Rejection Ratio (Notes 4, 13) Minimum Stable Gain Gain Bandwidth Product (Notes 5, 12, 13) OUTPUT CHARACTERISTICS Output Voltage Swing (Notes 3, 13) Output Current (Notes 3, 13) Output Resistance Full Power Bandwidth (Notes 3, 7) Differential Gain (Notes 6, 11) Differential Phase (Notes 6, 11) Harmonic Distortion (Notes 6, 13, 14)
Full 25 25
Full Full 25 25 25 25 25
±10 ±10 8.7 -
±20 30 10 0.03 0.03 -79
-
V mA Ω MHz % Degrees dBc
3-2
HA-2839
Electrical Specifications
VSUPPLY = ±15V, RL = 1kΩ, CL ≤ 10pF, Unless Otherwise Specified (Continued) HA-2839-5, -9 PARAMETER TRANSIENT RESPONSE (Note 8) Rise Time Overshoot Slew Rate (Notes 3, 10, 13) Settling Time: 10V Step to 0.1% POWER REQUIREMENTS Supply Current (Note 13) Power Supply Rejection Ratio (Notes 9, 13) NOTES: 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. RL = 1kΩ, VO = ±10V, 0V to ±10V for slew rate. VCM = ±10V. VO = 90mV. AV = +10. Full Full 75 13 90 15 mA dB 25 25 25 25 550 4 20 625 180 ns % V/µs ns TEMP. (oC) MIN TYP MAX UNITS
Slew Rate Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = --------------------------- , V = 10V . 2 π V PEAK PEAK Refer to Test Circuit section of data sheet. VSUPPLY = ±10V to ±20V. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS. AV = +100. See “Typical Performance Curves” for more information. VO = 2VP-P, f = 1MHz.
Test Circuit and Waveforms
IN +
-
OUT 900Ω
NOTES: 15. VS = ±15V. 16. AV = +10. 17. CL < 10pF.
100Ω
TEST CIRCUIT
INPUT INPUT
OUTPUT
OUTPUT
Input = 1V/Div.; Output = 5V/Div., 50ns/Div. LARGE SIGNAL RESPONSE
Input = 10mV/Div.; Output = 100mV/Div.; 50ns/Div. SMALL SIGNAL RESPONSE
3-3
HA-2839 Test Circuit and Waveforms
V+ 0.001µF
(Continued)
NOTES: 18. AV = -10.
200Ω INPUT 1µF
19. Load Capacitance should be less than 10pF.
OUTPUT
+ 0.001µF
20. It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%. 21. SETTLING POINT (Summing Node) capacitance should be less than 10pF. For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.
PROBE MONITOR
500Ω V-
1µF 2kΩ
SETTLING POINT
5kΩ
SETTLING TIME TEST CIRCUIT
Typical Performance Curves
100 GAIN (dB) 80 60 40 20 AVCL = 1000 AVCL = 100 OPEN LOOP
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified
650 GAIN BANDWIDTH PRODUCT (MHz)
600
AVCL = 10 0 90
PHASE (DEGREES)
0
550
OPEN LOOP 1K 10K 100K 1M 10M 100M
180
500 5 6 7 8 9 10 11 12 13 14 15 SUPPLY VOLTAGE (±V)
FREQUENCY (Hz)
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS GAINS
FIGURE 2. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE
750 GAIN BANDWIDTH PRODUCT (MHz)
90 80 70 CMRR (dB) -40 -20 0 20 40 60 80 100 120 140
650
550
60 50 40
450
350 30 250 -60 20 100
TEMPERATURE (oC)
1K
10K
100K
1M
10M
FREQUENCY (Hz)
FIGURE 3. GAIN BANDWIDTH PRODUCT vs TEMPERATURE
FIGURE 4. CMRR vs FREQUENCY
3-4
HA-2839 Typical Performance Curves
110 100 90 80 PSRR (dB) 70 60 50 40 30 20 10 0 100 1K 10K 100K 1M 10M 30 NOISE VOLTAGE (nV/√Hz) 37.5 NOISE CURRENT (pA/√Hz) 15 15 ±PSRR
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified
(Continued)
50
20
NOISE CURRENT NOISE VOLTAGE
25
10
12.5
0 10
100
1K FREQUENCY (Hz)
10K
0 100K
FREQUENCY (Hz)
FIGURE 5. PSRR vs FREQUENCY
FIGURE 6. INPUT NOISE vs FREQUENCY
750
700
SLEW RATE (V/µs)
SLEW RATE (V/µs)
700
650
600
650
550
600 500
550 -60
450 -40 -20 0 20 40 60 80 100 120 140 5 6 7 8 9 10 11 12 13 14 TEMPERATURE (oC) SUPPLY VOLTAGE (±V)
FIGURE 7. SLEW RATE vs TEMPERATURE
FIGURE 8. SLEW RATE vs SUPPLY VOLTAGE
8.0 3.5 INPUT BIAS CURRENT (µA) 7.0 2.5 6.0 BIAS CURRENT OFFSET VOLTAGE 5.0 0.5 4.0 -0.5 3.0 -60 1.5 INPUT OFFSET VOLTAGE (mV)
14
SUPPLY CURRENT (mA)
12 -55oC 125oC
25oC 10
8
6 -40 -20 0 20 40 60 80 100 120 140 5 6 7 8 9 10 11 12 13 14 TEMPERATURE (oC) SUPPLY VOLTAGE (±V)
FIGURE 9. INPUT OFFSET VOLTAGE AND INPUT BIAS CURRENT vs TEMPERATURE
FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE
3-5
HA-2839 Typical Performance Curves
15 POSITIVE OUTPUT SWING (V) ±15V, 1kΩ OUTPUT SWING (V) -5
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified
(Continued)
-2.5
±8V, 75Ω
±8V, 150Ω ±8V, 1kΩ ±15V, 75Ω
12.5 10
±15V, 150Ω ±15V, 75Ω ±8V, 1kΩ
7.5 5
-7.5
±15V, 150Ω
-10 ±15V, 1kΩ
2.5 0 -60
±8V, 150Ω -40 -20 0 20 40 60 80 100
±8V, 75Ω 120 140 -12.5 -60 -40 -20 0 20 40 60 80 100 120 140
TEMPERATURE (oC)
TEMPERATURE (oC)
FIGURE 11. POSITIVE OUTPUT SWING vs TEMPERATURE
FIGURE 12. NEGATIVE OUTPUT SWING vs TEMPERATURE
25 OUTPUT VOLTAGE SWING (VP-P) 20 15 10 5 0 VSUPPLY = ±8V THD (dBc)
-35 VSUPPLY = ±15V
-45
-55
-65
-75
VO = 10VP-P VO = 0.5VP-P VO = 1VP-P 1M FREQUENCY (Hz) 10M
-85
VO = 2VP-P
1K
10K
100K
1M
10M
100M
100K
FREQUENCY (Hz)
FIGURE 13. MAXIMUM UNDISTORTED OUTPUT SWING vs FREQUENCY
FIGURE 14. TOTAL HARMONIC DISTORTION vs FREQUENCY
-35 THIRD INTERMOD PRODUCT (dBc) VO = 0.5VP-P -45 VO = 2VP-P -55 -65 -75 -85 -95 500K VO = 5VP-P VO = 1VP-P
VO = 0.25VP-P
1M FREQUENCY (Hz)
10M
FIGURE 15. INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE)
3-6
HA-2839 Die Characteristics
DIE DIMENSIONS: 65 mils x 52 mils x 19 mils 1650µm x 1310µm x 483µm METALLIZATION: Type: Aluminum, 1% Copper Thickness: 16kÅ ±2kÅ SUBSTRATE POTENTIAL VPASSIVATION: Type: Nitride over Silox Silox Thickness: 12kÅ ±2kÅ Nitride thickness: 3.5kÅ ±1kÅ TRANSISTOR COUNT: 34 PROCESS: High Frequency Bipolar Dielectric Isolation
Metallization Mask Layout
HA-2839
V+
OUT
-IN
+IN
V-
3-7