2SJ535
Silicon P Channel MOS FET High Speed Power Switching
ADE-208-627B (Z) 3rd. Edition Jun 1998 Features
• Low on-resistance R DS(on) = 0.028 Ω typ. • Low drive current. • 4V gate drive devices. • High speed switching.
Outline
TO–220FM
D
G
S
12
1. Gate 2. Drain 3. Source
3
2SJ535
Absolute Maximum Ratings (Ta = 25°C)
Item Drain to source voltage Gate to source voltage Drain current Drain peak current Symbol VDSS VGSS ID I D(pulse)
Note1
Ratings –60 ±20 –30 –120 –30
Unit V V A A A A mJ W °C °C
Body-drain diode reverse drain current I DR Avalanche current Avalanche energy Channel dissipation Channel temperature Storage temperature Note: I AP
Note3 Note3 Note2
–30 77 35 150 –55 to +150
EAR
Pch Tch
Tstg
1. PW ≤ 10µs, duty cycle ≤ 1 % 2. Value at Tc = 25° C 3. Value at Tch = 25° C, Rg ≥ 50 Ω
Electrical Characteristics (Ta = 25°C)
Item Symbol Min –60 ±20 — — –1.0 — — 15 — — — — — — — — — Typ — — — — — 0.028 0.038 25 2500 1300 300 25 150 350 220 –0.95 100 Max — — –10 ±10 –2.0 0.037 0.055 — — — — — — — — — — Unit V V µA µA V Ω Ω S pF pF pF ns ns ns ns V ns I F = –30A, VGS = 0 I F = –30A, VGS = 0 diF/ dt =50A/µs Test Conditions I D = –10mA, VGS = 0 I G = ±100µA, VDS = 0 VDS = –60 V, VGS = 0 VGS = ±16V, VDS = 0 I D = –1mA, VDS = –10V I D = –15A, VGS = –10V Note4 I D = –15A, VGS = –4V Note4 I D = –15A, VDS = –10V Note4 VDS = –10V VGS = 0 f = 1MHz VGS = –10V, I D = –15A RL = 2Ω Drain to source breakdown voltage V(BR)DSS Gate to source breakdown voltage V(BR)GSS Zero gate voltege drain current Gate to source leak current Gate to source cutoff voltage Static drain to source on state resistance Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time I DSS I GSS VGS(off) RDS(on) RDS(on) |yfs| Ciss Coss Crss t d(on) tr t d(off) tf
Body–drain diode forward voltage VDF Body–drain diode reverse recovery time Note: 4. Pulse test t rr
2
2SJ535
Main Characteristics
Power vs. Temperature Derating 40
–1000
Maximum Safe Operation Area
Pch (W)
I D (A)
30
–100
10
DC
PW
10
=
0
µs
1
10
m
µs
Channel Dissipation
Drain Current
20
–10
Op
er
ati
ms
s
sh ot)
(1
10
–1
Operation in this area is limited by R DS(on)
on
(T
c=
25
℃
)
–0.1
Ta = 25 °C
0
50
100
150 Tc (°C)
200
Case Temperature
–0.1 –1 –10 –100 Drain to Source Voltage V DS (V)
Typical Output Characteristics –50 –8 V –3.5 V Pulse Test –50
Typical Transfer Characteristics V DS = –10 V Pulse Test
I D (A)
–5 V –30 –4 V VGS = –10 V –20
I D (A) Drain Current
–40
–40
–30
Drain Current
–3 V
–20 Tc = 75 °C 25 °C -25 °C 0 –1 –2 –3 Gate to Source Voltage –4 –5 V GS (V)
–10
–2.5 V –2 V
–10
0
–2 –4 –6 Drain to Source Voltage
–10 V DS (V)
–8
3
2SJ535
Drain to Source Saturation Voltage vs. Gate to Source Voltage
Drain to Source On State Resistance R DS(on) ( Ω )
–5
Drain to Source Saturation Voltage V DS(on) (V)
Pulse Test
Static Drain to Source on State Resistance vs. Drain Current 1 0.5 0.2 0.1 VGS = –4 V –10 V Pulse Test
–3 –10 –30 –100 –300 –1000
–4
–3
–2 I D = –50 A –1 –20 A –10 A 0 –4 –8 –12 Gate to Source Voltage –16 –20 V GS (V)
0.05
0.02 0.01
–1
Drain Current
I D (A)
Static Drain to Source on State Resistance R DS(on) ( Ω)
Forward Transfer Admittance |y fs | (S)
Static Drain to Source on State Resistance vs. Temperature 0.1 Pulse Test 0.08 I D = –50 A V GS = –4 V 0.04 –10,–20A –10 A –50 A –20 A
100 30
Forward Transfer Admittance vs. Drain Current
Tc = –25 °C 10 3 1 0.3 V DS = –10 V Pulse Test –100 25 °C
0.06
75 °C
0.02 0 –40
V GS = –10 V
0 40 80 120 160 Case Temperature Tc (°C)
0.1 –0.1 –0.3 –1 –3 –10 –30 Drain Current I D (A)
4
2SJ535
Body–Drain Diode Reverse Recovery Time 1000 10000 3000 1000 Coss 300 100 30 10 0 –10 –20 –30 –40 –50 Drain to Source Voltage V DS (V) Crss Ciss VGS = 0 f = 1 MHz Typical Capacitance vs. Drain to Source Voltage
Reverse Recovery Time trr (ns)
200 100 50
20 10 0.1
di / dt = 50 A / µs VGS = 0, Ta = 25 °C 10 100 30 3 1 0.3 Reverse Drain Current I DR (A)
Capacitance C (pF)
500
Dynamic Input Characteristics
Switching Characteristics
V DS (V)
–20
Drain to Source Voltage
I D = –30 A
–4
Switching Time t (ns)
V DD = –10 V –25 V –50 V
V DS
V GS (V)
0
0
1000 500 200 100 50 t d(on) 20 10 –0.1 –0.3 V GS = –10 V, V DD = –30 V PW = 5 µs, duty < 1 % = –3 –1 –10 –30 Drain Current I D (A) –100 t d(off) tf
–40 V GS –60 V DD = –10 V –25 V –50 V
–8
Gate to Source Voltage
tr
–12
–80
–16 –20 200
–100 0
160 40 80 120 Gate Charge Qg (nc)
5
2SJ535
Reverse Drain Current vs. Source to Drain Voltage Pulse Test Maximum Avalanche Energy vs. Channel Temperature Derating
Repetitive Avalanche Energy EAR (mJ)
–50
100 I AP = –30 A V DD = –25 V duty < 0.1 % Rg > 50 Ω
Reverse Drain Current I DR (A)
–40 –5 V –30 –10 V –20 V GS = 0
80
60
40
–10
20 0 25
0
–0.4
–0.8
–1.2
–1.6
–2.0
50
75
100
125
150
Source to Drain Voltage
V SD (V)
Channel Temperature Tch (°C)
Avalanche Test Circuit EAR =
Avalanche Waveform 1 2 • L • I AP • 2 VDSS VDSS – V DD
V DS Monitor
L I AP Monitor
V (BR)DSS I AP VDD ID V DS
Rg Vin –15 V
D. U. T
50 Ω 0 VDD
6
2SJ535
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermao Impedance γ s (t)
3 Tc = 25°C 1 D=1 0.5 0.3
0.2
0.1
0.1
0.05
θ ch – c(t) = γ s (t) • θ ch – c θ ch – c = 3.57 °C/W, Tc = 25 °C
PDM PW T
D=
0.03
0.01 10 µ
0.02 e 1 uls 0.0 tp ho 1s
PW T
100 µ
1m
100 m 10 m Pulse Width PW (S)
1
10
Switching Time Test Circuit Vin Monitor D.U.T. RL Vout Monitor Vin 10%
Waveform
90% Vin -10 V 50 Ω V DD = –30 V Vout td(on) 90% 10% tr td(off) 90% 10% tf
7
2SJ535
Package Dimensions
Unit: mm
10.0 ± 0.3 7.0 ± 0.3 φ 3.2 ± 0.2
2.8 ± 0.2 2.5 ± 0.2
2.0 ± 0.3 5.0 ± 0.3
2.7
0.7 ± 0.1
2.54 ± 0.5
2.54 ± 0.5
0.5 ± 0.1 Hitachi Code TO–220FM SC–67 EIAJ — JEDEC
8
14.0 ± 1.0
1.2 ± 0.2 1.4 ± 0.2
12.0 ± 0.3
4.45 ± 0.3
17.0 ± 0.3
0.6
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: (408) 433-1990 Fax: (408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: (2) 2718-3666 Fax: (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: (2) 735 9218 Fax: (2) 730 0281 Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.