BB305C
Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
ADE-208-608C (Z) 4th. Edition May 1998 Features
• • • • Build in Biasing Circuit; To reduce using parts cost & PC board space. Superior cross modulation characteristics. High gain; (PG = 28 dB typ. at f = 200 MHz) Wide supply voltage range; Applicable with 5 V to 9 V supply voltage. • Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 200V at C = 200 pF, Rs = 0 conditions. • Provide mini mold packages; CMPAK-4 (SOT-343mod)
Outline
CMPAK-4
2 3 1 4
1. Source 2. Gate1 3. Gate2 4. Drain
Note: 1. Marking is “EW–”. 2. BB305C is individual type number of HITACHI BBFET.
BB305C
Absolute Maximum Ratings (Ta = 25°C)
Item Drain to source voltage Gate1 to source voltage Symbol VDS VG1S VG2S ID Pch Tch Tstg Ratings 12 +10 –0 Gate2 to source voltage Drain current Channel power dissipation Channel temperature Storage temperature +10 25 100 150 –55 to +150 V mA mW °C °C Unit V V
2
BB305C
Electrical Characteristics (Ta = 25°C)
Item Drain to source breakdown voltage Gate1 to source breakdown voltage Gate2 to source breakdown voltage Symbol Min V(BR)DSS V(BR)G1SS V(BR)G2SS 12 +10 ±10 — — 0.4 0.4 2.3 1.1 — 10 — 23 — 24 — — — Typ — — — — — — — 2.8 1.5 Max — — — +100 ±100 1.0 1.0 3.5 1.9 Unit V V V nA nA V V pF pF pF mA mA mS mS dB dB dB dB Test Conditions I D = 200µA, VG1S = VG2S = 0 I G1 = +10 µA, VG2S = VDS = 0 I G2 = ±10µA, VG1S = VDS = 0 VG1S = +9V, V G2S = VDS = 0 VG2S = ±9V, VG1S = VDS = 0 VDS = 5V, VG2S = 4V, ID = 100µA VDS = 5V, VG1S = 5V, ID = 100µA VDS = 5V, VG1 = 5V VG2S =4V, RG = 82kΩ f = 1MHz VDS = 5V, VG1 = 5V, VG2S = 4V, RG = 82kΩ VDS = 9V, VG1 = 9V, VG2S =6V, RG = 220kΩ VDS = 5V, VG1 = 5V, VG2S =4V RG =82kΩ, f = 1kHz VDS = 9V, VG1 = 9V, VG2S =6V, RG = 220kΩ, f = 1kHz VDS = 5V, VG1 = 5V, VG2S =4V, RG = 82kΩ, f = 200MHz VDS = 9V, VG1 = 9V, VG2S =6V, RG = 220kΩ, f = 200MHz VDS = 5V, VG1 = 5V, VG2S =4V, RG = 82kΩ, f = 200MHz VDS = 9V, VG1 = 9V, VG2S =6V, RG = 220kΩ, f = 200MHz
Gate1 to source cutoff current I G1SS Gate2 to source cutoff current I G2SS Gate1 to source cutoff voltage VG1S(off) Gate2 to source cutoff voltage VG2S(off) Input capacitance Output capacitance Ciss Coss
Reverse transfer capacitance Crss Drain current I D(op) 1 I D(op) 2 Forward transfer admittance |yfs|1 |yfs|2 Power gain PG1 PG2 Noise figure NF1 NF2
0.017 0.04 15 13 28 28 28 28 1.3 1.3 20 — — — — — 1.8 —
3
BB305C
Main Characteristics
Test Circuit for Operating Items (I D(op) , |yfs|, Ciss, Coss, Crss, NF, PG)
VG2 Gate 2 Gate 1
RG
VG1
A ID
Drain
Source
Power Gain, Noise Figure Test Circuit
VT 1000p
VG2 1000p
VT 1000p
47k Input(50Ω) 1000p 36p L1
1000p
47k
BBFET L2 1000p
47k
Output(50Ω)
10p max 1000p 1SV70 RG 82k RFC 1SV70
1000p V D = V G1 Unit Resistance (Ω) Capacitance (F)
L1 : φ1mm Enameled Copper Wire,Inside dia 10mm, 2Turns L2 : φ1mm Enameled Copper Wire,Inside dia 10mm, 2Turns RFC : φ1mm Enameled Copper Wire,Inside dia 5mm, 2Turns
4
BB305C
Maximum Channel Power Dissipation Curve Pch (mW) 200 I D (mA) 25
47 kΩ kΩ
Typical Output Characteristics V G2S = 4 V V G1 = VDS 20
150
Channel Power Dissipation
15
100
10
50
5
RG
kΩ 68 Ω k 82 k Ω 0 10 k Ω 20 Ω 1k 150 k Ω 180 0 kΩ = 22
Drain Current
0
50
100
150 Ta (¡C)
200
0
Ambient Temperature
1 2 3 Drain to Source Voltage
4 5 V DS (V)
Drain Current vs. Gate2 to Source Voltage 25 V DS = V G1 = 5 V I D (mA) 20
47 k Ω
Drain Current vs. Gate1 Voltage 20 V DS = 5 V R G = 68 k Ω I D (mA) 16
56 k Ω
15
68 k Ω
82 k Ω 100 k Ω 120 k Ω 150 k Ω 180 k Ω
12 3V 8
Drain Current
4V
10
Drain Current
5
2V 4 V G2S = 1 V 1 2 3 4 Gate1 Voltage VG1 (V) 5
Ω R G = 220 k
0
0.8 1.6 2.4 Gate2 to Source Voltage
4.0 VG2S (V)
3.2
0
56
5
BB305C
Drain Current vs. Gate1 Voltege 20 I D (mA) I D (mA) V DS = 5 V R G = 82 k Ω 20 V DS = 5 V R G = 100 k Ω Drain Current vs. Gate1 Voltege
16
16
12 3V
4V
12 4V 8 3V 2V V G2S = 1 V
Drain Current
8
2V 4 V G2S = 1 V 1 2 3 4 Gate1 Voltage VG1 (V) 5
Drain Current
4
0
0
1 2 3 4 Gate1 Voltage VG1 (V)
5
Forward Transfer Admittance |y fs | (mS)
Forward Transfer Admittance vs. Gate1 Voltage 30 Forward Transfer Admittance |y fs | (mS) V DS = 5 V R G = 68 k Ω 24 f = 1 kHz 30 4V 3V 18 2V
Forward Transfer Admittance vs. Gate1 Voltage V DS = 5 V R G = 82 k Ω 24 f = 1 kHz 18
4V 3V 2V
12
12
6 V G2S = 1 V 0 1 2 3 4 Gate1 Voltage VG1 (V) 5
6 V G2S = 1 V 0 1 2 3 4 Gate1 Voltage VG1 (V) 5
6
BB305C
Forward Transfer Admittance vs. Gate1 Voltage Forward Transfer Admittance |y fs | (mS) 30 V DS = 5 V R G = 100 k Ω f = 1 kHz 4V 3V 18 2V Power Gain PG (dB) 40 35 30 25 20 15 V G2S = 1 V 0 1 2 3 4 Gate1 Voltage VG1 (V) 5 10 10 V DS = 5 V V G1 = 5 V V G2S = 4 V f = 200 MHz 20 50 100 200 500 1000 Gate Resistance R G (k Ω )
Power Gain vs. Gate Resistance
24
12
6
Noise Figure vs. Gate Resistance 4 Noise Figure NF (dB) V DS = 5 V V G1 = 5 V V G2S = 4 V f = 200 MHz 40 35 Power Gain PG (dB) 30 25 20 15 0 10 10 0
Power Gain vs. Drain Current
3
2
1
V DS = 5 V V G1 = 5 V V G2S = 4 V R G = variable f = 200 MHz 5 10 15 20 25 30
20 50 100 200 500 1000 Gate Resistance R G (k Ω )
Drain Current ID
(mA)
7
BB305C
Noise Figure vs. Drain Current 4 Noise Figure NF (dB) V DS = 5 V V G1 = 5 V V G2S = 4 V R G = variable f = 200 MHz (mA) 30 25 20 15 10 5 0 10 V DS = 5 V V G1 = 5 V V G2S = 4 V 20 50 100 200 500 1000 Drain Current vs. Gate Resistance
3
2
1
0
5
10
15
20
25
30
Drain Current ID
Drain Current ID
(mA)
Gate Resistance R G (k Ω)
Gain Reduction vs. Gate2 to Source Voltage 60 50 40 30 20 10 Input Capacitance Ciss (pF) Gain Reduction GR (dB) V DS = 5 V V G1 = 5 V V G2S = 4 V R G = 82 k Ω f = 200 MHz 6 5 4 3 2 1 0 0
Input Capacitance vs. Gate2 to Source Voltage
V DS = 5 V V G1 = 5 V R G = 82 k Ω f = 1 MHz 5 1 2 3 4 Gate2 to Source Voltage VG2S (V)
0
1
2
3
4
5
Gate2 to Source Voltage VG2S (V)
8
BB305C
S11 Parameter vs. Frequency
.8 .6 .4 3 .2 4 5 10 0 .2 .4 .6 .8 1 1.5 2 3 45 10 —10 —.2 —5 —4 —3 —.4 —.6 —.8 —1.5 —2 —120¡ —90¡ —60¡ —1 180¡ 0¡ 150¡ 30¡ 1 1.5 2
S21 Parameter vs. Frequency
90¡ 120¡
Scale: 1 / div.
60¡
—150¡
—30¡
Test Condition : V DS = 5 V , V G1 = 5 V V G2S = 4 V , R G = 82 k Ω 50 1000 MHz (50 MHz step)
Test Condition : V DS = 5 V , V G1 = 5 V V G2S = 4 V , R G = 82 k Ω 50 1000 MHz (50 MHz step)
S12 Parameter vs. Frequency
90¡ 120¡
S22 Parameter vs. Frequency
.8 .6 .4 3 1 1.5 2
Scale: 0.002 / div.
60¡
150¡
30¡ .2
4 5 10
180¡
0¡
0
.2
.4
.6 .8 1
1.5 2
3 45
10 —10
—.2 —150¡ —30¡ —.4 —120¡ —90¡ —60¡ —.6 —.8 —1.5 —2 —1
—5 —4 —3
Test Condition : V DS = 5 V , V G1 = 5 V V G2S = 4 V , R G = 82 k Ω 50 1000 MHz (50 MHz step)
Test Condition : V DS = 5 V , V G1 = 5 V V G2S = 4 V , R G = 82 k Ω 50 1000 MHz (50 MHz step)
9
BB305C
Sparameter (VDS = VG1 = 5V, VG2S = 4V, RG = 82kΩ, Zo = 50Ω)
S11 f (MHz) MAG 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 0.991 0.991 0.982 0.975 0.972 0.956 0.942 0.928 0.920 0.906 0.894 0.880 0.868 0.854 0.842 0.835 0.820 0.802 0.801 0.789 ANG –4.8 –9.9 –15.4 –20.7 –25.6 –30.6 –35.5 –40.1 –44.9 –49.2 –53.6 –57.8 –62.1 –66.2 –70.3 –73.9 –77.7 –81.5 –84.7 –87.9 S21 MAG 2.69 2.68 2.66 2.62 2.60 2.54 2.47 2.42 2.38 2.32 2.25 2.18 2.12 2.06 2.00 1.94 1.89 1.83 1.78 1.73 ANG 174.9 169.3 163.4 157.5 152.0 146.3 140.9 135.7 130.5 125.7 120.8 116.2 111.5 106.8 102.5 98.4 94.0 89.6 85.6 82.1 S12 MAG 0.00090 0.00153 0.00243 0.00293 0.00370 0.00444 0.00478 0.00535 0.00551 0.00549 0.00584 0.00542 0.00562 0.00509 0.00465 0.00427 0.00416 0.00289 0.00288 0.00241 ANG 91.4 90.5 73.8 74.9 70.1 69.0 63.7 64.8 56.8 58.6 54.4 53.3 49.5 48.6 49.7 51.6 53.3 57.9 72.9 78.9 S22 MAG 0.991 0.992 0.991 0.989 0.985 0.981 0.977 0.973 0.967 0.962 0.957 0.952 0.944 0.939 0.933 0.927 0.921 0.915 0.909 0.904 ANG –2.2 –4.8 –7.5 –9.9 –12.6 –15.0 –17.3 –19.7 –22.0 –24.5 –26.9 –29.2 –31.5 –33.8 –36.1 –38.3 –40.5 –42.7 –44.9 –47.1
10
BB305C
Package Dimensions
Unit: mm
2.0 –0.2 1.3 0.65 0.65 0.3 — 0.05
+ 0.1
0.425
0.3 — 0.05
+ 0.1
0.16 — 0.06
+ 0.1
3
2
2.1 –0.3 1.25 0 ~ 0.1
4
0.3 — 0.05 0.65
+ 0.1
1
0.6
0.425 0.9 –0.1
0.4 — 0.05
+ 0.1
1.25
0.2
Hitahi Code EIAJ JEDEC
CMPAK-4 SC-82AB
11
BB305C
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to:
Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: (2) 2718-3666 Fax: (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: (2) 735 9218 Fax: (2) 730 0281 Telex: 40815 HITEC HX
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: (408) 433-1990 Fax: (408) 433-0223
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
12