0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HA12209F

HA12209F

  • 厂商:

    HITACHI(日立)

  • 封装:

  • 描述:

    HA12209F - Audio Signal Processor for Cassette Deck(Dolby B-type NR with Recording System) - Hitachi...

  • 数据手册
  • 价格&库存
HA12209F 数据手册
HA12209F Audio Signal Processor for Cassette Deck (Dolby B-type NR with Recording System) ADE-207-221A (Z) 2nd Edition Jun. 1999 Description HA12209F is silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor system, REC equalizer system and each electronic control switch in one chip. Functions • Dolby B-NR • REC equalizer • Music sensor × 2 channel × 2 channel × 1 channel • Each electronic control switch to change REC equalizer, bias, etc. Features • REC equalizer is very small number of external parts and have 4 types of frequency characteristics built-in. • 2 types of input for PB, 1 type of input for REC. • 70µ-PB equalizer changing system built-in. • Dolby NR with dubbing double cassette decks. Unprocessed signal output available from recording out terminals during PB mode. • Provide stable music sensor system, available to design music sensing time and level. • Controllable from direct micro-computer output. • Bias oscillator control switch built-in. • NR ON/OFF and REC/PB fully electronic control switching built-in. • Normal-speed/high-speed, TYPE I/TYPE II and PB equalizer fully electronic control switching built-in. • Available to reduce substrate-area because of high integration and small external parts. * Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. HA12209F Ordering Information Standard Level Operating Voltage Product HA12209F Package FP-56 PB-OUT Level 580mVrms REC-OUT Level Dolby Level 300mVrms 300mVrms Min 10V Max 15V Function Product HA12209F Dolby B-NR ❍ REC-EQ ❍ Music Sensor ❍ REC/PB Selection ❍ Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this case, please inquire the responsible agent because the adjustment of built-in resistor is necessary. Rev.2, Jun. 1999, page 2 of 49 HA12209F Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the table show typical value.) Pin No. 52 Pin Name AIN (R) Note V = VCC / 2 Equivalent Circuit Pin Description PB A deck input V 100k VCC/2 48 54 45 56 44 6 37 4 AIN (L) BIN (R) BIN (L) RIN (R) RIN (L) EQIN (R) EQIN (L) DET (R) V = 2.6V VCC PB B deck input REC input REC equalizer input Time constant pin for Dolby-NR V GND 39 49 1 DET (L) RIP BIAS1 V = VCC / 2 V = 0.6V Ripple filter Dolby bias current input V GND 42 BIAS2 V = 1.3V REC equalizer bias current input V GND Rev.2, Jun. 1999, page 3 of 49 HA12209F Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the table show typical value.) (cont) Pin No. 3 Pin Name PBOUT (R) Note V = VCC / 2 Equivalent Circuit VCC Pin Description PB output V GND 40 5 38 8 35 32 53 PBOUT (L) RECOUT (R) RECOUT (L) EQOUT (R) EQOUT (L) MAOUT ABO (R) V = VCC / 2 VCC REC output Equalizer output 1 MS amp. input * Time constant pin for PB equalizer V 15k 12k GND 46 25 ABO (L) BIAS (C) V = VCC – 0.7 VCC REC bias current output V 26 Note: BIAS (N) 1. MS : Music Sensor Rev.2, Jun. 1999, page 4 of 49 HA12209F Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the table show typical value.) (cont) Pin No. 29 Pin Name MSDET Note I = 0µA I V Equivalent Circuit VCC Pin Description Time constant 1 pin for MS * GND 31 MSIN V = VCC / 2 VCC MS input V 100k VCC/2 33 MAI V = VCC / 2 MAOUT VCC 100k V 45k VCC/2 MS amp. output 27 MSOUT I = 0µA V VCC I MS output (to MPU) DGND Note: 1. MS : Music Sensor Rev.2, Jun. 1999, page 5 of 49 HA12209F Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the table show typical value.) (cont) Pin No. 10 Pin Name PB A/B Note I = 20µA V 22k Equivalent Circuit I Pin Description Mode control input 100k GND 11 12 14 16 17 19 20 21 22, 23 50, 51 A 120/70 NORM/HIGH B 120/70 BIAS ON/OFF RM ON/OFF NR ON/OFF REC/PB LM ON/OFF VCC GND V = VCC V = 0V Power supply GND pin No connection 2, 7, 9, 13, NC 15, 18, 24, 28, 30, 34, 36, 41, 43, 47, 55 Rev.2, Jun. 1999, page 6 of 49 HA12209F Block Diagram RECOUT (L) EQOUT (L) PBOUT (L) EQIN (L) MAOUT MSDET DET (L) BIAS2 MSIN MAI NC NC NC NC + + 42 NC RIN (L) BIN (L) ABO (L) NC AIN (L) RIP 43 44 45 15k 46 12k 47 48 49 + 50 51 AIN (R) ABO (R) BIN (R) NC RIN (R) 52 15k 53 54 55 56 1 2 3 4 5 + 6 + EQ 7 8 + 9 10 11 12 13 14 12k 18 17 16 15 NC RM /OFF DOLBY B-NR LPF 21 20 19 LM ON/ REC/ NR ON/ DOLBY B-NR 45k 24 23 VCC 22 + – + + 39 38 + 37 36 EQ + 35 34 33 32 31 30 29 28 100k MS DET 27 26 25 MSOUT BIAS (N) NC 41 40 BIAS SW BIAS (C) NC BIASOUT BIAS ON/ NC PBOUT (R) DET (R) RECOUT (R) EQIN (R) EQOUT (R) PB /B BIAS1 /HIGH NC NC NC NC /70 A Rev.2, Jun. 1999, page 7 of 49 B /70 HA12209F Functional Description Power Supply Range HA12209F is designed to operate on single supply. Table 1 Item Single Supply Spply Voltage Power Supply Range 10V to 15V Note: The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12dB by Dolby Laboratories. Reference Voltage For this IC, the reference voltage (VCC/2) occurrence device is built-in as AC grand. A capacitor for a ripple filter is greatly small characteristic with 1/100 compared with conventional device. And, the reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. 22 23 VCC + – L channel Reference voltage VCC + – Music sensor Reference voltage + – R channel Reference voltage 50 51 49 GND PIR + 1µ Unit C:F Figure 1 Reference Voltage Rev.2, Jun. 1999, page 8 of 49 HA12209F Operating Mode Control HA12209F provides fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 Pin No. Control Voltage Lo Hi 4.0 to 5.3 Unit V Test Condition Input Pin Measure 10, 11, 12, 14, 16, –0.2 to 1.0 17, 19, 20, 21 Note: 1. Each pins are on pulled down with 100kΩ internal resistor. Therefore, it will be low-level when each pins are open. 2. Over shoot level and under shoot level of input signal must be the standardized. (High: 5.3V, Low: –0.2V) 3. For reduction of pop noise, connect 1µF to 22µF capacitor with mode control pins. But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at the same time. Input Block Diagram and Level Diagram MS REF 5.7dB PBOUT 580mVrms 300mVrms AIN 21.3dB BIN 25.9mVrms FLAT (120µ) 0dB 70µs 12k 15k ABO CEX1 42.4mVrms RIN PB REC REC PB 300mVrms DOLBY B-NR PB/REC=0dB/17dB RECOUT 300mVrms 300mVrms Unit R:Ω C:F Note: The each level shown above is typical value when offering PBOUT level to PBOUT pin. Figure 2 Input Block Diagram Rev.2, Jun. 1999, page 9 of 49 HA12209F PB Equalizer By switching logical input level of 11 pin (for Ain) and 14 pin (for Bin), you can equalize corresponding to tape position at play back mode. With the capacity CEX1 capacitance that we showed for figure 2 70 µs by the way figure seem to 3 they are decided. Gv t1 = CEX1 · (12k + 15k) t2 = CEX1 · 15k f (t1) (t2) Figure 3 Frequency Characteristic of PB Equalizer The sensitivity Adjustment of Music Sensor Adjusting MS amp. gain by external resistor, the sensitivity of music sensor can set up. VCC REP C26 0.01µ PB(L) MAI 100k 45k – + –6dB LPF 25kHz 100k DET MS AMP MS OUT Microcomputer GND MA OUT MSIN MS DET RL R12 330k + C10 0.33µ DVCC GND Unit PB(R) R:Ω C:F Figure 4 Music Sensor Block Diagram Rev.2, Jun. 1999, page 10 of 49 HA12209F The sensitivity of Music Sensor Gv f1 = 1 [Hz] 2π · C26 · 100k f2 = 25k [Hz] f f1 f2 Figure 5 Frequency Characteristic of MSIN Occasion of the external component of figure 4, f1 is 159Hz. A standard level of MS input pin 25.9mVrms, therefore, the sensitivity of music sensor (S) can request it, by lower formulas. A = MS Amp Gain B = PB input Gain × (1/2)*1 C = Sensed voltage 20log (A × B) = D [dB] PB input Gain = 21.3 [dB] S = 14 – D [dB] S = 20log C [dB] 25.9 · A · B Note: 1. Case of one-sided channel input. Time Constant of Detection Figure 6(1) generally shows that detection time is in proportion to value of capacitor C10. But, with 2 3 Attack* and Recovery* the detection time differs exceptionally. Detection time Detection time Recovery Attack Detection time Recovery Recovery Attack Attack C10 R12 Detection level Input level Function Characteristic of MS (1) Function Characteristic of MS (2) Function Characteristic of MS (3) Figure 6 Function Characteristics of MS Like the figure 6(2), Recovery time is variably possible by value of resistor R12. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency. Note: 2. Attack : Non-music → Music 3. Recovery : Music → Non-music Rev.2, Jun. 1999, page 11 of 49 HA12209F Music Sensor Output (MSOUT) As for internal circuit of music sensor block, music sensor out pin is connected to the collector of NPN type directly, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. Connection with microcomputer, it is requested to use external pull up resistor (RL = 10k to 22kΩ) Note: Supply voltage of MSOUT pin must be less than VCC voltage. The Tolerances of External Components For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a few electrolytic-capacitor, it can be applicable to C2 and C15. C15 0.1µ ±10% 39 DET (L) HA12209 BIAS1 1 R1 33k ±2% DET (R) 4 C2 0.1µ ±10% Unit R:Ω C:F Figure 7 Tolerance of External Components Low-Boost + + EQIN REC EQ EQOUT CEX2 REX1 2.2µ 20k Vin REX2 6.8k REX3 5.1k CEX4 0.47µ + CEX3 0.47µ GND Unit R:Ω C:F Figure 8 Example of Low Boost Circuit Rev.2, Jun. 1999, page 12 of 49 HA12209F External components shown figure 8 gives frequency response to take 6dB boost. And cut off frequency can request it, by lower formulas. Gv f1 = f2 = f f1 f2 1 [Hz] 2π · CEX3 · (REX3 + R0) 1 [Hz] 2π · CEX3 · REX3 R0 = REX1 · REX2 [Ω] REX1 + REX2 Figure 9 Frequency Characteristic of Low-Boost Bias Switch This series built-in DC voltage generator for bias oscillator and its bias switches. External resistor R8, R10 which corresponded with tape positions and bias out voltage are relater with below. Vbias = R9 × (VCC – 0.7) [V] (R10 or R8) + R9 Bias switch follows to a logic of 14 pin (B 120/70). Note: A current that flows at bias out pin, please use it less than 5mA. R10 BIAS (N) 26 R8 BIAS (C) 25 R9 GND Vbias Figure 10 External Components of Bias Block Rev.2, Jun. 1999, page 13 of 49 HA12209F Absolute Maximum Rating (Ta=25°C) Item Max supply voltage Power dissipation Operating temperature Storage temperature Symbol VCC max PT Topr Tstg Rating 16 500 –40 to +75 –55 to +125 Unit V mW °C °C Ta ≤ 75°C Note Rev.2, Jun. 1999, page 14 of 49 Item 120µ/ MUTE fin 70µ (Hz) RECOUT Other level (dB) No signal 120 ON Symbol Min Typ Max Unit Test Condition IC Condition*1 REC/PB A/B NR ON/OFF PB A Quiescent current Input AMP. gain 15.0 30.0 mA IQ GV P B GV REC B type ENC 2k (1) Encode boost ENC 2k (2) ENC 5k (1) ENC 5k (2) Signal handling Vo max Signal to noise ratio S/N Total harmonic distortion T.H.D. CTRL (1) Channel separation CTRL (2) CT A/B Crosstalk CT R/P Mute attenuation MUTE 70µ EQ gain GV EQ 1k GV EQ 10k MS sensing level*3 VON MS output low level VOL IOH MS output leak current Control voltage VIL VIH 25.5 21.2 2.8 7.0 1.7 6.7 12.0 64.0 Ñ 70.0 75.0 60.0 70.0 70.0 24.0 20.8 –15.4 — — –0.2 4.0 A/B PB REC A REC A REC A REC A REC A REC A REC A REC A A/B PB REC A A/B PB REC/PB A/B PB A PB A/B PB A/B PB A PB A PB A — — — — THD=1%*2 Rg=5.1kΩ, CCIR/ARM 28.5 24.2 5.8 10.0 4.7 9.7 — — 0.3 — — — — — 27.0 23.8 –7.4 1.5 2.0 1.0 5.3 120 120 120 120 120 120 120 120 120 120 120 120 120 120 70 70 120 120 120 — — OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF OFF OFF — — dB dB dB dB dB dB dB dB % dB dB dB dB dB dB dB dB V µA V V — 1k 1k 2k 2k 5k 5k 1k 1k 1k 1k 1k 1k 1k 1k 1k 10k 5k — — — — — 0 0 –20 –30 –20 –30 — — 0 +12 +12 +12 +12 +12 0 0 — — — — — 23.0 27.0 22.7 4.3 8.5 3.2 8.2 13.0 70.0 0.05 80.0 85.0 70.0 80.0 80.0 25.5 22.3 –11.4 1.0 — — — OFF OFF OFF ON ON ON ON ON ON ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF — — Note: 1. Other IC condition : REC-MUTE OFF, TYPE I, Normal speed, Bias OFF 2. VCC=10V Electrical Characteristics (Ta = 25°C, VCC = 12V, Dolby Level = REC-OUT Level = 300mVrms = 0dB) Rev.2, Jun. 1999, page 15 of 49 3. For inputting signal to one side channel HA12209F Item S/N (EQ) — — 0.5 dB dB % Vin max (EQ) T.H.D. (EQ) 55 10.5 — 58 12.5 0.2 HA12209F Symbol Min Typ Max Unit Rev.2, Jun. 1999, page 16 of 49 Test Condition TAPE SPEED TYPE I NORM Rg=5.1kΩ, A-WTG Filter TYPE I NORM f=1kHz, THD=1%, Vin=–26dBs=0dB TYPE I NORM f=1kHz, Vin=–26dBs Vofs (EQ) GVEQ-1N1 GVEQ-1N2 GVEQ-1N3 GVEQ-2N1 GVEQ-2N2 GVEQ-2N3 GVEQ-1H1 GVEQ-1H2 GVEQ-1H3 GVEQ-2H1 GVEQ-2H2 GVEQ-2H3 REC-MUTE Bias on 500 21.5 23.4 35.1 24.4 27.3 38.0 20.7 23.8 37.0 23.5 28.3 41.7 — — mV dB dB dB dB dB dB dB dB dB dB dB dB dB V mV RL=2.4kΩ+270Ω 100 TYPE I NORM No signal TYPE I NORM f=1kHz, Vin=–46dBs f=5kHz, Vin=–46dBs f=12.5kHz, Vin=–46dBs TYPE II NORM f=1kHz, Vin=–46dBs f=5kHz, Vin=–46dBs f=12.5kHz, Vin=–46dBs TYPE I HIGH f=2kHz, Vin=–46dBs f=10kHz, Vin=–46dBs f=25kHz, Vin=–46dBs TYPE II HIGH f=2kHz, Vin=–46dBs f=10kHz, Vin=–46dBs f=25kHz, Vin=–46dBs TYPE I NORM f=1kHz, Vin=–14dBs RL=2.4kΩ+270Ω Bias off –500 18.5 19.4 29.1 21.4 23.3 32.0 17.7 19.8 31.0 20.5 24.3 35.7 60 VCC –1.4 –100 0 20.0 21.4 32.1 22.9 25.3 35.0 19.2 21.8 34.0 22.0 26.3 38.7 70 VCC –1.0 0 Equalizer S/N Equalizer maximum input Equalizer Total Harmonic Distortion Equalizer offset voltage Equalizer frequency responce (TYPE I-NORM) Equalizer frequency responce (TYPE II-NORM) Equalizer frequency responce (TYPE I-HIGH) Equalizer frequency responce (TYPE II-HIGH) REC MUTE attenuation Bias out Max level Electrical Characteristics (Ta=25°C, VCC = 12V, Dolby Level = REC-OUT Level = 300mVrms = 0dB) (cont) Bias out offset PB REC OUT (L) OUT (L) R16 6.8k R19 R18 22k 10k R17 20k C26 0.01µ C11 + 2.2µ R12 330k 0.33µ R15 5.1k C13 0.47µ R14 5.1k EQ OUT (L) + EQIN (L) +C10 29 28 100k MS DET BIAS (N) R8 910 R10 2k R11 3.9k R13 10k Test Circuit C16 2.2µ C15 +0.1µ C14 2.2µ JP1 C12 + 0.47µ 42 43 RIN (L) R20 5.1k C17 0.47µ R21 C18 10k 0.47µ 41 EQ 40 39 + 38 37 36 35 34 33 32 31 30 44 27 26 25 24 23 22 + LPF 21 20 DOLBY B-NR 15k 53 54 55 12k 18 17 16 15 EQ 1 C1 2.2µ R2 10k BIN (L) 45 15k 46 12k 47 DOLBY B-NR 45k BIAS (C) – + C19 0.0047µ + MSOUT BIASOUT R9 2.4k + BIAS SW AIN (L) R22 C20 10k 0.47µ 48 49 50 51 C21 1µ + VCC + LM ON/ REC/ 19 NR ON/ R26 22k SW9 C9 100µ VCC1 + SW8 SW7 AIN (R) R23 C22 10k 0.47µ C23 0.0047µ BIN (R) R24 C24 10k 0.47µ + + RM /OFF BIAS ON/ B /70 /HIGH 52 + C8 22µ C7 22µ SW6 + + R27 22k SW5 VCC2 5V SW4 RIN (R) R25 C25 5.1k 0.47µ 56 2 + C2 0.1µ C3 2.2µ R3 20k R4 6.8k + SW3 3 4 5 + 6 + C5 7 0.47µ JP2 R5 5.1k 8 + C6 EQIN (R) + C4 0.47µ R6 5.1k 2.2µ 9 10 11 12 13 14 A /70 PB /B R7 10k SW2 SW1 R1 33k Rev.2, Jun. 1999, page 17 of 49 PB REC OUT (R) OUT (R) HA12209F EQ OUT (R) Unit R:Ω C:F HA12209F Parallel Data Format Pin No. 10 11 12 14 16 17 19 20 21 Note: Pin Name PB A/B A 120/70 NORM/HIGH B 120/70 BIAS ON/OFF RM ON/OFF NR ON/OFF REC/PB LM ON/OFF 1. PB EQ LOGIC PB A/B A 120/70 120 Lo Lo Hi Hi B 120/70 120 Lo Hi Lo Hi Lo FLAT FLAT 70µ 70µ Hi FLAT 70µ FLAT 70µ Lo Ain* * 1 1 Hi Bin* * 1 1 1 Mode “Pin Open” Lo Lo Lo 1 Normal speed REC EQ TYPE I* Bias TYPE I BIAS OFF REC MUTE ON NR OFF PB MODE LINE MUTE OFF High speed REC EQ TYPE II* Bias TYPE II BIAS OFF REC MUTE OFF NR ON REC MODE LINE MUTE ON Lo Lo Lo Lo Lo Lo Rev.2, Jun. 1999, page 18 of 49 HA12209F Characteristics Curve Quiescent Current vs. Supply Voltage (1) 25 RECmode Quiescent Current (mA) 20 15 No Signal NR-OFF, REC-MUTE ON NR-OFF, REC-MUTE OFF NR-ON, REC-MUTE ON NR-ON, REC-MUTE OFF Other SW is “Low” 10 8 10 12 Supply Voltage (V) 14 16 Quiescent Current vs. Supply Voltage (2) 25 PBmode Quiescent Current (mA) 20 15 No Signal NR-OFF, REC-MUTE ON NR-OFF, REC-MUTE OFF NR-ON, REC-MUTE ON NR-ON, REC-MUTE OFF Other SW is “Low” 10 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 19 of 49 HA12209F Input Amp. Gain vs. Frequency (1) 30 A µ Input Amp. Gain (dB) A 70µ 20 VCC=12V PBmode NR-OFF AIN→PBOUT 10 10 100 1k 10k Frequency (Hz) Input Amp. Gain vs. Frequency (2) 30 100k 1M Input Amp. Gain (dB) 20 VCC=12V PBmode NR-OFF AIN→RECOUT 10 10 100 1k 10k Frequency (Hz) 100k 1M Rev.2, Jun. 1999, page 20 of 49 HA12209F Input Amp. Gain vs. Frequency (3) 30 Input Amp. Gain (dB) PBOUT 20 RECOUT VCC = 12V RECmode NR-OFF RIN → PBOUT, RECOUT 10 10 100 1k 10k Frequency (Hz) 100k 1M Rev.2, Jun. 1999, page 21 of 49 HA12209F Encode Boost vs. Frequency 12 VCC = 12V Vin = –40dB Encode Boost (dB) 8 –30dB 4 –20dB –10dB 0dB 0 100 1k Frequency (Hz) Decode Cut vs. Frequency 0 Vin = 0dB –10dB –2 –20dB Decode Cut (dB) 10k 20k –4 –6 –30dB –8 –10 VCC=12V –12 100 1k Frequency (Hz) 10k –40dB 20k Rev.2, Jun. 1999, page 22 of 49 HA12209F Maximum Output Level vs. Supply Voltage (1) 25 NR-OFF NR-ON PBmode Ain → PBOUT 0dB = 580mVrms (at PBOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF Maximum Output Level Vomax (dB) 20 15 10 8 10 12 Supply Voltage (V) 14 16 Maximum Output Level vs. Supply Voltage (2) 25 Maximum Output Level Vomax (dB) 20 15 NR-OFF NR-ON PBmode Ain → RECOUT 0dB = 300mVrms (at RECOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF 8 10 12 Supply Voltage (V) 14 16 10 Rev.2, Jun. 1999, page 23 of 49 HA12209F Maximum Output Level vs. Supply Voltage (3) 25 Maximum Output Level Vomax (dB) 20 15 NR-OFF NR-ON RECmode Rin → RECOUT 0dB = 300mVrms (at RECOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF 8 10 12 Supply Voltage (V) 14 16 10 Maximum Output Level vs. Supply Voltage (4) 25 NR-OFF NR-ON RECmode Rin → PBOUT 0dB = 580mVrms (at PBOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF Maximum Output Level Vomax (dB) 20 15 10 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 24 of 49 HA12209F Signal to Noise Ratio vs. Supply Voltage (1) 85 Signal to Noise Ratio S/N (dB) 80 75 NR-OFF NR-ON PBmode Ain → PBOUT CCIR/ARM 0dB = 580mVrms (PBOUT) 70 8 10 12 Supply Voltage (V) 14 16 Signal to Noise Ratio vs. Supply Voltage (2) 85 Signal to Noise Ratio S/N (dB) 80 NR-OFF NR-ON RECmode Rin → RECOUT CCIR/ARM 0dB = 300mVrms (RECOUT) 75 70 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 25 of 49 HA12209F Total Harmonic Distortion vs. Supply Voltage (1) 1.0 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF) PBmode NR-OFF Ain → PBOUT Vin = 0dB Total Harmonic Distortion T.H.D (%) 0.1 0.01 8 10 12 Supply Voltage (V) 14 16 Total Harmonic Distortion vs. Supply Voltage (2) 1.0 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF) PBmode NR-ON Ain → PBOUT Vin = 0dB Total Harmonic Distortion T.H.D (%) 0.1 0.01 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 26 of 49 HA12209F Total Harmonic Distortion vs. Supply Voltage (3) 1.0 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF) RECmode NR-OFF Rin → RECOUT Vin = 0dB Total Harmonic Distortion T.H.D (%) 0.1 0.01 8 10 12 Supply Voltage (V) 14 16 Total Harmonic Distortion vs. Supply Voltage (4) 1.0 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF) RECmode NR-ON Rin → RECOUT Vin = 0dB Total Harmonic Distortion T.H.D (%) 0.1 0.01 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 27 of 49 HA12209F Total Harmonic Distortion vs. Output Level (1) 10 100Hz 1kHz 10kHz VCC = 12V, PBmode NR-OFF, AIN → PBOUT 0dB = 580mVrms (at PBOUT) 1 Total Harmonic Distortion T.H.D (%) 0.1 0.01 –25 –20 –15 –10 –5 0 5 Output Level Vout (dB) 10 15 20 Total Harmonic Distortion vs. Output Level (2) 10 100Hz 1kHz 10kHz VCC = 12V, PBmode NR-ON, AIN → PBOUT 0dB = 580mVrms (at PBOUT) 1 Total Harmonic Distortion T.H.D (%) 0.1 0.01 –25 –20 –15 –10 –5 0 5 Output Level Vout (dB) 10 15 20 Rev.2, Jun. 1999, page 28 of 49 HA12209F Total Harmonic Distortion vs. Output Level (3) 10 100Hz 1kHz 10kHz VCC = 12V, RECmode NR-OFF, RIN → RECOUT 0dB = 300mVrms (at RECOUT) 1 Total Harmonic Distortion T.H.D (%) 0.1 0.01 –15 –10 –5 0 5 10 Output Level Vout (dB) 15 20 25 Total Harmonic Distortion vs. Output Level (4) 10 100Hz 1kHz 10kHz VCC = 12V, RECmode NR-ON, RIN → RECOUT 0dB = 300mVrms (at RECOUT) 1 Total Harmonic Distortion T.H.D (%) 0.1 0.01 –20 –15 –10 –5 0 5 10 Output Level Vout (dB) 15 20 25 Rev.2, Jun. 1999, page 29 of 49 HA12209F Total Harmonic Distortion vs. Frequency (1) 0.5 +10dB 0dB –10dB VCC = 12V, PBmode NR-OFF, AIN → PBOUT Vin = 0dB Total Harmonic Distortion T.H.D (%) 0.1 0.05 0.01 100 1k Frequency (Hz) Total Harmonic Distortion vs. Frequency (2) 10k 20k 0.5 +10dB 0dB –10dB VCC =12V, PBmode NR-ON, AIN → PBOUT Vin = 0dB Total Harmonic Distortion T.H.D (%) 0.1 0.05 0.01 100 1k Frequency (Hz) 10k 20k Rev.2, Jun. 1999, page 30 of 49 HA12209F Total Harmonic Distortion vs. Frequency (3) 0.5 +10dB 0dB –10dB VCC = 12V, RECmode NR-OFF, RIN → RECOUT Vin = 0dB Total Harmonic Distortion T.H.D (%) 0.1 0.05 0.01 100 1k Frequency (Hz) Total Harmonic Distortion vs. Frequency (4) 10k 20k 0.5 +10dB 0dB –10dB VCC =12V, RECmode NR-ON, RIN → RECOUT Vin = 0dB Total Harmonic Distortion T.H.D (%) 0.1 0.05 0.01 100 1k Frequency (Hz) 10k 20k Rev.2, Jun. 1999, page 31 of 49 HA12209F Crosstalk vs. Frequency (1) –40 AIN → BIN VCC = 12V PBmode (AIN, PBOUT) Vin = +10dB NR-OFF Crosstalk (dB) –60 –80 NR-ON –100 –120 –140 10 100 1k Frequency (Hz) Crosstalk vs. Frequency (2) 10k 100k –40 BIN → AIN VCC = 12V PBmode (BIN, PBOUT) Vin = +10dB NR-OFF Crosstalk (dB) –60 –80 NR-ON –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 32 of 49 HA12209F Crosstalk vs. Frequency (3) –40 PB → REC VCC = 12V PBmode (AIN, RECOUT) Vin = +10dB –60 NR-ON Crosstalk (dB) –80 NR-OFF –100 –120 –140 10 100 1k Frequency (Hz) Crosstalk vs. Frequency (4) 10k 100k –40 REC → PB VCC = 12V RECmode (RIN, PBOUT) Vin = +12dB –60 Crosstalk (dB) –80 NR-OFF –100 NR-ON –120 –140 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 33 of 49 HA12209F Channel Separation vs. Frequency (1) –20 VCC = 12V PBmode (AIN, PBOUT), 120µ Vin = +10dB –40 Channel Separation (dB) –60 NR-OFF –80 NR-ON –100 –120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (2) –20 VCC = 12V PBmode (BIN, PBOUT), 120µ Vin = +10dB –40 Channel Separation (dB) –60 NR-OFF –80 NR-ON –100 –120 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 34 of 49 HA12209F Channel Separation vs. Frequency (3) –40 VCC = 12V RECmode (RIN, RECOUT) Vin = +12dB –60 Channel Separation (dB) –80 NR-ON –100 –120 NR-OFF –140 10 100 1k Frequency (Hz) 10k 100k LINE-MUTE Attenuation vs. Frequency (1) –40 VCC = 12V PBmode (AIN, PBOUT) NR-OFF Vin = +12dB –60 LINE-MUTE Attenuation (dB) –80 –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 35 of 49 HA12209F LINE-MUTE Attenuation vs. Frequency (2) –40 VCC = 12V PBmode (BIN, PBOUT) NR-OFF Vin = +12dB –60 LINE-MUTE Attenuation (dB) –80 –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k LINE-MUTE Attenuation vs. Frequency (3) –40 VCC = 12V RECmode (RIN, PBOUT) NR-OFF Vin = +12dB –60 LINE-MUTE Attenuation (dB) –80 –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 36 of 49 HA12209F Ripple Relection Ratio vs. Frequency (1) 0 VCC = 12V PBmode Ripple Relection Ratio R.R.R. (dB) –20 PBOUT NR-ON PBOUT NR-OFF –40 RECOUT NR-ON –60 RECOUT NR-OFF –80 –100 10 100 1k Frequency (Hz) 10k 100k Ripple Relection Ratio vs. Frequency (2) 0 VCC = 12V RECmode Ripple Relection Ratio R.R.R. (dB) –20 RECOUT NR-ON PBOUT NR-ON/OFF –40 RECOUT NR-OFF –60 –80 –100 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 37 of 49 HA12209F Ripple Relection Ratio vs. Frequency (3) 0 VCC = 12V EQOUT N : Normal speed Ripple Relection Ratio R.R.R. (dB) N-TYPE II –20 N-TYPE I –40 –60 –80 –100 10 100 1k Frequency (Hz) REC-EQ Gain vs. Frequency 10k 100k 50 VCC = 12V N : Normal speed H : High speed 40 N-TYPE II REC-EQ Gain (dB) N-TYPE I 30 20 H-TYPE I H-TYPE II 10 0 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 38 of 49 HA12209F EQ Maximum Input Level vs. Supply Voltage (1) 25 f = 1kHz, EQin → EQOUT Vin = –26dBs, T.H.D ≥ 1% Norm speed, TYPE I EQ Maximum Input Level Vinmax (dB) 20 15 10 8 10 12 Supply Voltage (V) 14 16 EQ Maximum Input Level vs. Supply Voltage (2) 25 f = 1kHz, EQin → EQOUT Vin = –26dBs, T.H.D ≥ 1% Norm speed, TYPE II EQ Maximum Input Level Vinmax (dB) 20 15 10 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 39 of 49 HA12209F EQ Maximum Input Level vs. Supply Voltage (3) 25 f = 1kHz, EQin → EQOUT Vin = –26dBs, T.H.D ≥ 1% High speed, TYPE I EQ Maximum Input Level Vinmax (dB) 20 15 10 8 10 12 Supply Voltage (V) 14 16 EQ Maximum Input Level vs. Supply Voltage (4) 25 f = 1kHz, EQin → EQOUT Vin = –26dBs, T.H.D ≥ 1% High speed, TYPE II EQ Maximum Input Level Vinmax (dB) 20 15 10 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 40 of 49 HA12209F EQ Signal to Noise Ratio vs. Supply Voltage 65 EQ Signal to Noise Ratio EQ S/N (dB) 60 55 N-TYPE I N-TYPE II H-TYPE I H-TYPE II A-WTG filter N : Normal speed H : High speed 8 10 12 Supply Voltage (V) 14 16 50 EQ Total Harmonic Distortion vs. Supply Voltage (1) 10 EQ Total Harmonic Distortion EQ T.H.D (%) 315Hz (30kHz LPF) 1kHz (30kHz LPF + 400Hz HPF) 5kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF) EQin → EQOUT, Vin = –26dBs Normal speed, TYPE I 1.0 0.1 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 41 of 49 HA12209F EQ Total Harmonic Distortion vs. Supply Voltage (2) 10 EQ Total Harmonic Distortion EQ T.H.D (%) 315Hz (30kHz LPF) 1kHz (30kHz LPF + 400Hz HPF) 5kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF) EQin → EQOUT, Vin = –26dBs Normal speed, TYPE II 1.0 0.1 8 10 12 Supply Voltage (V) 14 16 EQ Total Harmonic Distortion vs. Supply Voltage (3) 10 EQ Total Harmonic Distortion EQ T.H.D (%) 315Hz (30kHz LPF) 2kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF) EQin → EQOUT, Vin = –26dBs High speed, TYPE I 1.0 0.1 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 42 of 49 HA12209F EQ Total Harmonic Distortion vs. Supply Voltage (4) 10 EQ Total Harmonic Distortion EQ T.H.D (%) 315Hz (30kHz LPF) 2kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF) EQin → EQOUT, Vin = –26dBs High speed, TYPE II 1.0 0.1 8 10 12 Supply Voltage (V) 14 16 EQ Total Harmonic Distortion vs. Input Level (1) 100 EQ Total Harmonic Distortion EQ T.H.D (%) 10 315Hz 1kHz 5kHz 10kHz VCC = 12V, EQin → EQOUT, Vin = –26dBs = 0dB Normal speed, TYPE I 1.0 0.1 –30 –20 –10 10 0 Input Level (dB) 20 30 Rev.2, Jun. 1999, page 43 of 49 HA12209F EQ Total Harmonic Distortion vs. Input Level (2) 100 EQ Total Harmonic Distortion EQ T.H.D (%) 10 315Hz 1kHz 5kHz 10kHz VCC = 12V, EQin → EQOUT, Vin = –26dBs = 0dB Normal speed, TYPE II 1.0 0.1 –30 –20 –10 10 0 Input Level (dB) 20 30 EQ Total Harmonic Distortion vs. Input Level (3) 100 EQ Total Harmonic Distortion EQ T.H.D (%) 10 315Hz 2kHz 10kHz 20kHz VCC = 12V, EQin → EQOUT, Vin = –26dBs = 0dB High speed, TYPE I 1.0 0.1 –30 –20 –10 10 0 Input Level (dB) 20 30 Rev.2, Jun. 1999, page 44 of 49 HA12209F EQ Total Harmonic Distortion vs. Input Level (4) 100 EQ Total Harmonic Distortion EQ T.H.D (%) 10 315Hz 2kHz 10kHz 20kHz VCC = 12V, EQin → EQOUT, Vin = –26dBs = 0dB High speed, TYPE II 1.0 0.1 –30 –20 –10 10 0 Input Level (dB) 20 30 REC-MUTE Attenuation vs. Frequency –40 VCC = 12V –60 REC-MUTE Attenuation (dB) –80 –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 45 of 49 HA12209F MS AMP. Gain vs. Frequency 40 VCC =12V 30 MAOUT MS AMP. Gain (dB) 20 MSIN 10 0 –10 10 100 1k Frequency (Hz) MS Sensitivity vs. Frequency 10k 100k 10 VCC =12V Hi → Lo Lo → Hi 5 MS Sensitivity (dB) 0 –5 –10 –15 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 46 of 49 HA12209F No-Signal Sensing Time vs. Resistance 10000 PBOUT MSOUT No-Signal Sensing Time (ms) 1000 VCC 22 R12 29 MSDET C10 100 10 +10dB 0dB –10dB VS = 12V, f = 5kHz 1 10k 100k Resistance R12 (Ω) 1M Signal Sensing Time vs. Capacitance 1000 PBOUT MSOUT 100 VCC 22 R12 29 MSDET Signal Sensing Time (ms) C10 10 1.0 +10dB 0dB –10dB VS = 12V, f = 5kHz 0.1 0.01 0.1 Capacitor C10 (µF) 1.0 Rev.2, Jun. 1999, page 47 of 49 HA12209F Package Dimensions 12.8 ± 0.3 10.0 42 29 28 Unit: mm 43 12.8 ± 0.3 56 1 *0.32 ± 0.08 0.30 ± 0.06 0.13 M 15 14 2.54 Max *0.17 ± 0.05 0.15 ± 0.04 0.775 0.35 2.20 0.65 0.775 1.40 0.1 +0.1 –0.09 0 –8 0.10 0.60 ± 0.15 Hitachi Code JEDEC EIAJ Weight (reference value) FP-56 — — 0.5 g *Dimension including the plating thickness Base material dimension Rev.2, Jun. 1999, page 48 of 49 HA12209F Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : -538-6533/538-8577 Fax : -538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : -(2)-2718-3666 Fax : -(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : -(2)-735-9218 Fax : -(2)-730-0281 URL : http://www.hitachi.com.hk Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: (408) 433-1990 Fax: (408) 433-0223 Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.2, Jun. 1999, page 49 of 49
HA12209F 价格&库存

很抱歉,暂时无法提供与“HA12209F”相匹配的价格&库存,您可以联系我们找货

免费人工找货